JP2017208565A - 静電チャック - Google Patents

静電チャック Download PDF

Info

Publication number
JP2017208565A
JP2017208565A JP2017143727A JP2017143727A JP2017208565A JP 2017208565 A JP2017208565 A JP 2017208565A JP 2017143727 A JP2017143727 A JP 2017143727A JP 2017143727 A JP2017143727 A JP 2017143727A JP 2017208565 A JP2017208565 A JP 2017208565A
Authority
JP
Japan
Prior art keywords
communication path
electrostatic chuck
variation
base plate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017143727A
Other languages
English (en)
Inventor
康介 山口
Kosuke Yamaguchi
康介 山口
雄一 吉井
Yuichi Yoshii
雄一 吉井
佐々木 均
Hitoshi Sasaki
均 佐々木
健吾 前畑
Kengo Maehata
健吾 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Publication of JP2017208565A publication Critical patent/JP2017208565A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

【課題】処理対象物の温度分布の均一性を向上させることができる静電チャックを提供することを目的とする。
【解決手段】処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、前記第2主面の側に設けられ前記セラミック誘電体基板を支持するベースプレートと、を備え、前記ベースプレートは、前記処理対象物の温度を調整する媒体を通す第1の連通路を有し、前記第1の連通路は、上面、側面及び下面を有し、前記第1の連通路の高さに対する、前記上面における最大高さSzのばらつきの比は、1%以下であることを特徴とする静電チャックが提供される。
【選択図】図1

Description

本発明の態様は、一般的に、静電チャックに関する。
エッチング、CVD(Chemical Vapor Deposition)、スパッタリング、イオン注入、アッシングなどを行うプラズマ処理チャンバ内では、半導体ウェーハやガラス基板などの処理対象物を吸着保持する手段として、静電チャックが用いられている。静電チャックは、内蔵する電極に静電吸着用電力を印加し、ウェーハ等の基板を静電力によって吸着するものである。また、静電チャックには、冷却ガスなどの流路を内蔵したベースプレートやヒータが設けられており、これにより処理対象物の温度を制御することができる。
近年、エッチング装置などのプラズマ処理装置においては、スループットを向上させるため、または、処理対象物の材料の変化に対応するため、プラズマの高出力化が進んでいる。プラズマの高出力化に伴い、ウェーハ等の処理対象物の温度が高くなる。プラズマの高出力化・高温化に伴って、静電チャックには、処理対象物に対する高い冷却性能が求められている。
一方、プロセスの精度(例えばエッチングで加工された処理対象物の寸法精度)をコントロールするためには、処理対象物の温度分布を均一化することが求められる。例えば、ウェーハ面内の温度分布の均一性が求められる。
静電チャックが、冷却ガスなどの流路を内蔵したベースプレートと、ヒータと、を有する場合、ウェーハの温度分布は、ヒータとベースプレートとの熱のやり取りに依存する。
また、ウェーハ加工のプロセスでは、RF(Radio Frequency)電圧(高周波電圧)の印加によって、ウェーハの温度が高くなる。そして、ベースプレートによる冷却によって温度を制御する。このため、ウェーハの温度分布には、静電チャックの温度制御性(ベースプレートの冷却均一性)や、静電チャックの温度分布が反映される。処理対象物の温度分布を制御するためには、静電チャックの温度分布の均一性が重要な要素の1つである。
このような静電チャックにおいては、上述のプロセスの高出力化・高温化に鑑みて、静電チャックの面内の温度分布の均一性を向上させ、処理対象物の面内の温度分布の均一性を向上させることが、従来よりもさらに求められている。
特開2003−243371号公報
本発明は、かかる課題の認識に基づいてなされたものであり、処理対象物の温度分布の均一性を向上させることができる静電チャックを提供することを目的とする。
第1の発明は、処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、前記第2主面の側に設けられ前記セラミック誘電体基板を支持するベースプレートと、を備え、前記ベースプレートは、前記処理対象物の温度を調整する媒体を通す第1の連通路を有し、前記第1の連通路は、上面、側面及び下面を有し、前記第1の連通路の高さに対する、前記上面における最大高さSzのばらつきの比は、1%以下であることを特徴とする静電チャックである。
この静電チャックによれば、第1の連通路の上面の最大高さSzのばらつきが小さいことにより、静電チャックの面内の温度分布の均一性を向上させることができ、処理対象物の面内の温度均一性を向上させることができる。
第2の発明は、第1の発明において、前記ベースプレートは、前記第2主面の側の第1の部分と、前記第1の部分の下方に設けられ、前記第1の部分と接合された第2の部分と、を有し、前記第1の部分と前記第2の部分との接合部は、前記第1の連通路の上下方向における中央よりも下方に位置することを特徴とする静電チャックである。
この静電チャックによれば、接合部が第1の連通路の下方に位置するため、第1の連通路の上面の最大高さSzのばらつきを小さくすることができる。これにより、処理対象物の面内の温度均一性を確保することができる。
第3の発明は、第1または第2の発明において、前記上面における最大高さSzのばらつき、前記側面における最大高さSzのばらつき、及び、前記下面における最大高さSzのばらつきは、互いに異なることを特徴とする静電チャックである。
この静電チャックによれば、第1の連通路の各面における最大高さSzのばらつき、すなわち表面粗さのばらつきが互いに異なる。表面粗さのばらつきが大きい面では、乱流が発生し易く、第1の連通路を流れる媒体よる温度調整効果が高くなる。これにより、ランプレートを高くすることができる。
第4の発明は、第3の発明において、前記上面における最大高さSzのばらつきは、前記側面における最大高さSzのばらつきよりも小さいことを特徴とする静電チャックである。
この静電チャックによれば、側面の表面粗さのばらつきが大きいことにより、乱流が促進され、第1の連通路を流れる媒体よる温度調整効果が高くなる。これにより、ランプレートを高くすることができる。
第5の発明は、第3または第4の発明において、前記上面における最大高さSzのばらつきは、前記下面における最大高さSzのばらつきよりも小さいことを特徴とする静電チャックである。
この静電チャックによれば、下面の表面粗さのばらつきが大きいことにより、乱流が促進され、第1の連通路を流れる媒体よる温度調整効果が高くなる。これにより、ランプレートを高くすることができる。
第6の発明は、第1〜5のいずれか1つの発明において、前記側面は、前記第2主面の側の第1の領域と、前記第1の領域の下方に位置する第2の領域と、を有し、前記第1の領域における最大高さSzのばらつきは、前記第2の領域における最大高さSzのばらつきよりも小さいことを特徴とする静電チャックである。
この静電チャックによれば、第2の領域の表面粗さのばらつきが大きいことにより、乱流が促進され、第1の連通路を流れる媒体よる温度調整効果が高くなる。これにより、ランプレートを高くすることができる。また、上方に位置する第1の領域における表面粗さのばらつきが小さいことで、第1の連通路の上部で熱伝達のばらつきを抑制することができる。これにより、処理対象物の面内の温度均一性を向上させることができる。
第7の発明は、第1〜第6のいずれか1つの発明において、前記上面の材料と前記下面の材料とは、互いに異なることを特徴とする静電チャックである。
この静電チャックによれば、上面の材料と下面の材料とを互いに異ならせることにより、上面の粗さと下面の粗さとを互いに異ならせることができる。例えば、下面にろう材を用いることで下面を粗くすることができる。粗い面では、乱流が促進され、ランプレートを高くすることができる。
第8の発明は、第7の発明において、前記上面の材料におけるアルミニウムの濃度は、前記下面の材料におけるアルミニウムの濃度よりも高いことを特徴とする静電チャックである。
この静電チャックによれば、アルミニウムの濃度によって、下面を上面よりも粗くすることができる。例えば、上面の材料にアルミニウムを用い、下面の材料にアルミニウム以外の元素を含むアルミニウム合金などのろう材を用いる。粗い面では、乱流が促進され、ランプレートを高くすることができる。
第9の発明は、第6〜第8のいずれか1つの発明において、前記側面は、前記第2主面の側の第1の領域と、前記第1の領域の下方に位置する第2の領域と、を有し、前記第1の領域の材料におけるアルミニウム濃度は、前記第2の領域の材料におけるアルミニウム濃度よりも高いことを特徴とする静電チャックである。
この静電チャックによれば、アルミニウムの濃度によって、第2の領域を第1の領域よりも粗くすることができる。例えば、第1の領域の材料にアルミニウムを用い、第2の領域の材料にアルミニウム以外の元素を含むアルミニウム合金などのろう材を用いる。粗い面では、乱流が促進され、ランプレートを高くすることができる。
第10の発明は、第1〜第9のいずれか1つの発明において、前記下面と、前記側面のうちの下方の領域と、のいずれかは、前記媒体を攪拌する乱流促進部であることを特徴とする静電チャックである。
この静電チャックによれば、媒体が攪拌されることにより、第1の連通路を流れる媒体よる温度調整効果が高くなる。これにより、ランプレートを高くすることができる。
第11の発明は、第1〜第10のいずれか1つの発明において、前記第1の連通路の前記高さは、前記第1の連通路の横幅よりも長いことを特徴とする静電チャックである。
この静電チャックによれば、ベースプレート内に第1の連通路をより密に配置することができる。また、温度を調整する媒体の圧力損失を抑制することができる。これにより、処理対象物の面内の温度均一性を向上させることができる。
第12の発明は、第11の発明において、前記第1の連通路の前記横幅に対する、前記第1の連通路の前記高さの比は、1より大きく6未満であることを特徴とする静電チャックである。
この静電チャックによれば、ベースプレート内に第1の連通路をより密に配置することができる。また、温度を調整する媒体の圧力損失を抑制することができる。したがって、処理対象物の面内の温度均一性を向上させることができる。
第13の発明は、第1〜第12のいずれか1つの発明において、前記第1の連通路の前記高さに対する、前記ベースプレートの前記第2主面側の上面と前記第1の連通路の前記上面との間の距離の比は、0.1以上10以下であることを特徴とする静電チャックである。
この静電チャックによれば、高いランプレートと、処理対象物の面内の温度均一性を向上と、を両立することができる。
第14の発明は、第1〜第13のいずれか1つの発明において、前記第1の連通路は、前記上面と前記側面とをつなぐ、曲面状の接続部をさらに有することを特徴とする静電チャック。
この静電チャックによれば、上面と側面との接続部における乱流の影響を抑制することができる。これにより、処理対象物の面内の温度均一性を向上させることができる。
第15の発明は、第1〜第14のいずれか1つの発明において、前記第1の連通路は、前記第2主面の側の第1の空間部と、前記第1の空間部の下方の第2の空間部と、を有し、前記第2の空間部の横幅は、下方に向けて狭くなることを特徴とする静電チャックである。
この静電チャックによれば、ベースプレートの接合面を広くとることができ、接合強度を向上させることができる。接合面にろう材を使用した場合には、ろう材が第1の連通路の側面に沿って、第1の連通路の上部まで上昇することを抑制できる。これにより、処理対象物の面内の温度均一性を向上させることができる。
第16の発明は、第1〜第15のいずれか1つの発明において、前記ベースプレートは、第1の部分と、前記第1の部分の上方に設けられ前記第1の部分と接合された第3の部分と、前記第1の部分と前記第3の部分との間に設けられ、前記第1の連通路を流れる媒体とは異なるガス媒体を通す第2の連通路と、を有し、前記第2の連通路は、前記第1の連通路よりも前記第2主面の側に設けられることを特徴とする静電チャックである。
この静電チャックによれば、第2の連通路にガス媒体を通すことで、処理対象物との間で熱伝達を行うガス媒体を所定の箇所に所定の圧力で供給することができる。
第17の発明は、第16の発明において、前記第1の部分と前記第3の部分との接合部は、前記第2の連通路の上下方向における中央よりも下方に位置し、前記第2の連通路は、前記第2主面の側の第3の空間部と、前記第3の空間部の下方の第4の空間部と、を有し、前記第4の空間部の横幅は、下方に向けて狭くなることを特徴とする静電チャックである。
この静電チャックによれば、ベースプレートの接合面を広くとることができ、接合強度を向上させることができる。接合面にろう材を使用した場合には、ろう材が第2の連通路の側面に沿って、第2の連通路の上部まで上昇することを抑制できる。これにより、処理対象物の面内の温度均一性を向上させることができる。
第18の発明は、第2の発明において、前記ベースプレートは、前記第1の部分の上方に設けられ前記第1の部分と接合された第3の部分と、前記第1の部分と前記第3の部分との間に設けられ、ガス媒体が流れる第2の連通路と、をさらに有し、前記第1の部分と前記第3の部分との接合部は、前記第2の連通路の上下方向における中央よりも下方に位置することを特徴とする静電チャックである。
この静電チャックによれば、接合部が第2の連通路の下方に位置するため、第2の連通路の上面の最大高さSzのばらつきを小さくすることができる。これにより、処理対象物の面内の温度均一性を確保することができる。
本発明の態様によれば、処理対象物の温度分布の均一性を向上させることができる静電チャックを提供することを目的とする。
実施形態に係る静電チャックを例示する断面図である。 図2(a)〜図2(c)は、本実施形態に係る静電チャックのベースプレートを例示する平面図である。 実施形態に係る静電チャックのベースプレートの一部を例示する断面図である。 図4(a)及び図4(b)は、最大高さSzの測定方法を例示する模式図である。 静電チャックの構造と、処理対象物の面内の温度分布の均一性と、の関係を例示するグラフ図である。 ランプレートについて説明するグラフ図である。 静電チャックの構造とランプレートとの関係を例示するグラフ図である。 静電チャックの構造と特性との関係を例示するグラフ図である。 実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。 実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。 図11(a)及び図11(b)は、実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。 実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。 実施形態に係る別の静電チャックを例示する斜視図である。
以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
図1は、実施形態に係る静電チャックを例示する断面図である。
図1に表したように、本実施形態に係る静電チャック110は、セラミック誘電体基板11と、ベースプレート500と、を有する。
セラミック誘電体基板11は、例えば多結晶セラミック焼結体による平板状の基材であり、半導体ウェーハ等の処理対象物Wを載置する第1主面11aと、この第1主面11aとは反対側の第2主面11bと、を有する。
また、静電チャック110は、電極層12を有する。電極層12は、第1主面11aと、第2主面11bと、の間に介設されている。すなわち、電極層12は、セラミック誘電体基板11の中に挿入されるように形成される。電極層12は、セラミック誘電体基板11に一体焼結されている。静電チャック用基板100は、セラミック誘電体基板11と、セラミック誘電体基板11に設けられた電極層12と、を含む板状の構造物である。
静電チャック110は、例えばクーロン型静電チャックである。セラミック誘電体基板11の体積抵抗率は、例えば、1×1014Ω・cm以上である。静電チャック110は、この電極層12に吸着保持用電圧80を印加することによって、電極層12の第1主面11a側に電荷を発生させ、静電力によって処理対象物Wを吸着保持する。
ここで、本実施形態の説明においては、第1主面11aと第2主面11bとを結ぶ方向をZ方向(上下方向)、Z方向と直交する方向の1つをX方向、Z方向及びX方向に直交する方向をY方向ということにする。第2主面11bから第1主面11aへ向かう方向を上方向とし、上方向の反対を向く方向を下方向とする。
電極層12は、セラミック誘電体基板11の第1主面11a及び第2主面11bに沿って設けられている。電極層12は、処理対象物Wを吸着保持するための吸着電極である。電極層12は、単極型でも双極型でもよい。また、三極型やその他の多極型であってもよい。電極層12の数や配置は適宜選択される。図1に表した電極層12は双極型であり、同一面上に2極の電極層12が設けられている。
セラミック誘電体基板11は、電極層12と第1主面11aとの間の第1誘電層111と、電極層12と第2主面11bとの間の第2誘電層112と、を有する。セラミック誘電体基板11のうち少なくとも第1誘電層111における可視光の透過率は、例えば0%よりも大きく、3.7%以下である。ここで、可視光の透過率は、厚さ1ミリメートル(mm)の誘電体に波長約600ナノメートル(nm)の光を照射した場合の透過率である。
セラミック誘電体基板11に含まれる結晶の材料は、例えばAl、Y及びYAGのいずれかである。この材料を用いることで、セラミック誘電体基板11における可視光透過性、絶縁耐性及びプラズマ耐久性を高めることができる。
セラミック誘電体基板11のうち第1誘電層111の厚さは例えば100マイクロメートル(μm)以上である。第1誘電層111の厚さが100μm以上あると、静電チャック110における十分な絶縁耐圧を維持することができる。第1誘電層111の厚さは吸着力に大きく影響し、処理対象物Wの温度を所望の温度にするために、適宜設定することができる。実施形態では、第1誘電層111の厚さは、例えば100μmから1000μm、より好ましくは100μmから500μmに設定することができる。
セラミック誘電体基板11のうち第2誘電層112の厚さも同様に適宜設定できる。セラミック誘電体基板11に電極層12を設けた静電チャック用基板100の全体の厚さは、セラミック誘電体基板11の機械的強度と冷却性を考慮して、例えば0.5mmから7mmが好ましい。
ベースプレート500は、セラミック誘電体基板11の第2主面11b側に設けられており、セラミック誘電体基板11を支持する。すなわち、セラミック誘電体基板11(静電チャック用基板100)は、ベースプレート500の上に取り付けられている。セラミック誘電体基板11をベースプレート500に取り付けるには、シリコーン等の耐熱性樹脂、インジウム接合、及び、ろう付などが用いられる。接着材料は、使用温度帯やコスト等の観点から適宜選択される。
ベースプレート500は、第1の部分50aと、第2の部分50bと、を有する。第1の部分50aは、上側(第2主面11b側)に設けられており、第2の部分50bは、第1の部分50aの下方に設けられている。
第1の部分50a及び第2の部分50bの材料には、例えばアルミニウムを用いることができる。また、第1の部分50aと第2の部分50bとは、電子ビーム溶接又はろう付けなどによって、接合されている。
ベースプレート500は、連通路55(第1の連通路)を有する。連通路55は、第1の部分50aと第2の部分50bとの間に形成された空間である。連通路55は、一端側が入力路51に接続され、他端側が出力路52に接続される。
連通路55には、処理対象物Wの温度を調整する媒体が通される。これにより、ベースプレート500は、静電チャック用基板100及びその上に載置された処理対象物Wの温度調整を行う。例えば、静電チャック用基板100を冷却する場合には、入力路51から冷却媒体を流入し、連通路55を通過させ、出力路52から流出させる。これにより、冷却媒体によってベースプレート500の熱を吸収し、その上に取り付けられた静電チャック用基板100を冷却することができる。処理対象物Wの温度を調整する媒体として、例えば、水、エチレングリコール、フロリナート(3M社製)またはガルデン(SOLVAY社製)などが用いられる。
一方、静電チャック用基板100を保温する場合には、連通路55内に保温媒体を入れることも可能である。または、静電チャック用基板100やベースプレート500に発熱体を内蔵させることも可能である。このように、ベースプレート500を介して静電チャック用基板100の温度が調整されると、静電チャック用基板100で吸着保持される処理対象物Wの温度を容易に調整することができる。
また、セラミック誘電体基板11の第1主面11a側には、必要に応じて凸部13が設けられており、凸部13の間に溝14が設けられている。この溝14は連通していて、静電チャック110に搭載された処理対象物Wの裏面と溝14との間に空間が形成される。
溝14には、ベースプレート500及びセラミック誘電体基板11を貫通する導入路53が接続されている。処理対象物Wを吸着保持した状態で導入路53からヘリウム(He)等の伝達ガスを導入すると、処理対象物Wと溝14との間に設けられた空間に伝達ガスが流れ、処理対象物Wを伝達ガスによって直接冷却することができるようになる。
ここで、凸部13の高さ(溝14の深さ)、凸部13及び溝14の面積比率、形状等を適宜選択することで、処理対象物Wの温度や処理対象物Wに付着するパーティクルを好ましい状態にコントロールすることができる。
セラミック誘電体基板11の第2主面11bには接続部20が設けられる。接続部20の位置と対応するベースプレート500の上部にはコンタクト電極61が設けられている。したがって、静電チャック110をベースプレート500の上部50aに取り付けると、コンタクト電極61が接続部20と接触し、これによりコンタクト電極61と電極層12とが、接続部20を介して電気的に導通することになる。
コンタクト電極61には、例えば可動式プローブが用いられている。これにより、コンタクト電極61と接続部20とを確実に接触させ、コンタクト電極61が接触することによる接続部20へのダメージを最小限に抑制している。なお、コンタクト電極61は、上記に限定されず、接続部20と単に接触するだけの構成や、接続部20と嵌合または螺合によって接続されるものなど、どのような形態であってもよい。
図2(a)〜図2(c)は、実施形態に係る静電チャックのベースプレートを例示する平面図である。
例えば、図2(a)に表したように、ベースプレート500を上方から見たときに、入力路51と出力路52とは、ベースプレート500の外周付近に設けられ、X方向において互いに離間している。入力路51と出力路52とを繋ぐ連通路55は、複数の折り返し部55eを有する。この折り返し部55eは、連通路55がX−Y平面内において屈曲した部分であり、折り返し部55eにおいて連通路55が延在する方向は、ある方向から、その逆方向に変化する。複数の折り返し部55eにより、連通路55は、上方から見たときにベースプレート500の略全体にわたって延在するように配置されている。
連通路55の平面パターンは、図2(b)又は図2(c)に表したようなパターンであってもよい。図2(b)の例では、入力路51がベースプレート500の中央部に設けられ、出力路52がベースプレート500の外周付近に設けられる。連通路55の平面パターンは、入力路51を中心とした渦状である。図2(c)の例では、入力路51及び出力路52は、ベースプレート500の中央部に設けられる。連通路55の平面パターンは、入力路51及び出力路52を中心とした渦状である。ベースプレート500の外周付近に折り返し部55eが設けられている。なお、入力路51の位置と出力路52と位置とは入れ替わってもよい。
実施形態において連通路55の平面パターンは、図示した例に限られない。連通路55の平面パターンは、静電チャック用基板100や処理対象物Wの全体の温度をムラなく調整できるように、適宜調整される。
図3は、実施形態に係る静電チャックのベースプレートの一部を例示する断面図である。
図3は、例えば一部の連通路55の延在方向に直交する平面における断面を表している。すなわち、図3に表した連通路55には、紙面に対して垂直方向に冷却媒体等が流れる。
図3に表したように、連通路55は、上面55Uと、側面55Sと、下面55Lと、を有する。上面55U及び下面55Lは、それぞれX−Y平面に沿って延在する面であり、Z方向において互いに離間している。側面55Sは、X−Y平面と交差する面であり、上面55Uと下面55Lとを繋ぐ。
プラズマプロセスの高出力化・高温化に伴い、静電チャックには高い冷却性能(高ランプレート)と、温度分布の均一性と、を両立することが求められる。本願発明者は、連通路の平面パターンだけでなく、連通路内の形状(内面の凹凸や断面形状)を制御することで、処理対象物の温度分布の均一性が向上することを見出した。これにより、高ランプレートと温度分布の均一性とを高いレベルで両立することができる。連通路内の形状によって、温度を調整する媒体の流れをコントロールし、高ランプレートと温度分布の均一性とを満たすことができる。
具体的には、本願発明者は、連通路55の高さに対する、上面55Uにおける最大高さSzのばらつきの比を1%以下とすることで、静電チャック110及び処理対象物Wの面内(X−Y平面内)の温度分布の均一性が向上することを見出した。
ここで、連通路55の高さとは、連通路55のZ方向に沿った長さ(Lz)である。Lzは、例えば、8mm以上18mm以下である。
実施形態において、各面における最大高さSz(μm)は、各面(表面)を観察することで、測定される。観察には、デジタルマイクロスコープを用いることができ、倍率は、例えば100倍程度である。
図4(a)及び図4(b)は、最大高さSzの測定方法を例示する模式図である。
図4(a)は、観察対象表面の観察範囲Rにおける凹凸を例示する模式的断面図である。任意の倍率で測定した画像マップにおいて、表面の凹凸の最高点(点PH)の高さと、表面の凹凸の最低点(点PL)の高さと、の差を、最大高さSzとする。換言すると、最大高さSzは、観察範囲内において、観察範囲の平均面PAから最も突き出た点PHと最も凹んだ点PLとの間の、当該平均面に対して垂直方向に沿った長さである。観察対象が上面55Uの場合には、観察範囲内において、上面55Uの最高点のZ方向における位置と、上面55Uの最低点のZ方向における位置と、の差が最大高さSz(μm)である。
したがって、表面が粗いほど、最大高さSz(μm)は大きい。
また、流路(連通路55等)内の最大高さSz(表面粗さ)のばらつきについて言及する。
最大高さSzは、例えば面内の24点の測定点について測定される。図4(b)は、連通路55の平面パターンが図2(c)の例である場合の測定点を例示する。1〜24の数字が付された箇所が測定点に対応する。
ベースプレート500の中心から外周へ向かう1つの方向上に位置する連通路55から、3つの測定点を選定する。この3つの測定点は、ベースプレートの半径を3等分する位置を目安に選定される。例えば、ベースプレートの半径が150mmである場合、中心から50mmの点、100mmの点、及び150mmの点を測定点とする。中心からの上記の距離だけ離れた位置に連通路55が無い場合は、当該位置に最も近い連通路55の一部から測定点を選定する。そして、ベースプレート500の中心から外周へ向かう8つの方向のそれぞれについて、上述のように3つずつ測定点を選定し、測定点を合計24点とする。なお、8つの方向は、円周(ベースプレートの外周)を略8等分するように定められる。つまり、8つの方向のうち、隣合う2つの方向同士が成す角度は、45°程度である。また、1つの測定点(観察範囲)の大きさは、例えば、10(mm)×10(mm)程度とすることができる。
上記の24点の測定点のそれぞれにおいて最大高さSzを測定する。測定された24点の最大高さSzのうち、最大値Sz−maxと最小値Sz−minとの差を表面粗さ(最大高さ)のばらつきとする。
図5は、静電チャックの構造と、処理対象物の面内の温度分布の均一性と、の関係を例示するグラフ図である。
図5では、処理対象物Wは、例えば半導体ウェーハである。図5の横軸は、連通路55の高さに対する、上面55Uにおける最大高さSzのばらつきの比である。すなわち、図5の横軸は、((Sz−max)−(Sz−min))/Lz(%)を表す。
図5の横軸の値を算出する際には、デジタルマイクロスコープ(キーエンス社製、VHX−2000)を用い、倍率を100倍とする。また、測定点としては、流路(連通路55)内の上面55Uの表面から上記24点を選ぶ。
図5の横軸の値は、上記24点におけるSzの最大値(Sz−max)とSzの最小値(Sz−min)との差を連通路55の高さで除した値である。流路内の24点の表面粗さにばらつきが大きいベースプレートほど、横軸の値は大きくなる。なお、比を計算する際には、Lz、Sz−max、Sz−minの単位を例えばmmに揃えるものとする。
図5の縦軸は、処理対象物面内の温度ばらつき/ΔT(%)を表す。
「ΔT(℃)」は、処理対象物Wの温度の変化幅である。ΔTは、例えば、連通路55を通る媒体の温度を制御するチラーの温度と処理対象物Wの温度との差に対応する。ΔTは、例えばヒータやRF電圧等によって変化させた処理対象物Wの温度の幅である。つまり、例えば、チラーの温度調整媒体等の設定温度がT1(℃)であり、処理対象物Wの温度(例えば平均温度)がT2(℃)である場合、言い換えれば静電チャックによって処理対象物Wの温度(平均温度)をT2からT1へ変化させる場合、ΔT=|T2−T1|である。
「処理対象物面内の温度ばらつき(℃)」は、処理対象物Wの温度をΔTだけ変化させたときの、処理対象物Wの面内(X−Y平面内)における最高温の箇所と最低温の箇所との温度差である。
図5に表したように、横軸の値が大きくなると、縦軸の値が大きくなる。すなわち、上面55U(流路内の上面55Uから選択された24点)における表面粗さにばらつきが大きいと、処理対象物Wの面内の温度均一性が低下する。また、横軸の値の1%付近を境として、グラフの傾きに変化が見られる。横軸の値が1%を超えるとグラフの傾きが急峻となり、処理対象物Wの面内の温度均一性が低下しやすいことが分かる。
連通路55の上面55U(流路内の上面55Uから選択された24点)における表面粗さ(最大高さSz)のばらつきが大きい場合には、連通路55内の冷却媒体等と、上面55Uと、の間の熱伝達にもばらつきが生じると考えられる。その結果、連通路55の上方に載置された処理対象物Wの温度にもばらつきが生じる。
そこで、実施形態においては、連通路55の高さに対する、上面55Uにおける最大高さSzのばらつきの比を1%以下、望ましくは0.5%以下とする。これにより、処理対象物Wの面内の温度均一性を向上させることができ、処理対象物面内の温度ばらつき/ΔTを10%程度以下とすることができる。
前述した通り、連通路55は、第1の部分50aと第2の部分50bとの接合によって形成される。図3を再び参照すると、第1の部分50aと第2の部分50bとの接合部50dは、連通路55のZ方向における中央C1よりも下方に位置する。この例では、上面55U及び側面55Sは、第1の部分50aによって形成され、下面55Lは、第2の部分50bによって形成されている。つまり、接合部50dは、側面55Sと下面55Lとの境界付近に位置している。接合部50dのZ方向における位置と、下面55LのZ方向における位置とは略同じである。
第1の部分50aと第2の部分50bとを電子ビーム溶接や、ろう付けによって接合したときに、接合部付近において連通路55の表面が粗くなる場合がある。これに対して、実施形態においては、接合部50dが連通路55の下方に位置するため、連通路55の上面55U(流路内の上面55Uから選択された24点)における表面粗さのばらつきが、接合によって大きくなることが抑制される。これにより、処理対象物Wの面内の温度均一性を確保することができる。
また、連通路55内の各面の粗さは、互いに異なっていてもよい。また、連通路55内の各面における表面粗さのばらつきは、互いに異なっていてもよい。すなわち、上面55U(流路内の上面55Uから選択された24点)における表面粗さのばらつき、側面55S(流路内の側面55Sから選択された24点)における表面粗さのばらつき、及び、下面55L(流路内の下面55Lから選択された24点)における表面粗さのばらつきは、互いに異なっていてもよい。
連通路55に冷却媒体等が流れたときに、表面粗さや表面粗さのばらつきの大きい面の付近では、冷却媒体等が面の凹凸によって攪拌される。これにより、表面粗さや表面粗さのばらつきの大きい面は、例えば乱流促進部として機能する。乱流が発生すると、連通路を流れる冷却媒体等とベースプレート500との間の熱交換が促進され、冷却効果などの温度調整効果が高くなる。また、表面粗さや表面粗さのばらつきが大きいことにより、表面積が増大する。これにより、ランプレート(Ramp rate)を高くすることができる。
実施形態に係る静電チャック110においては、上面55U(流路内の上面55Uから選択された24点)における表面粗さのばらつきは、側面55S(流路内の側面55Sから選択された24点)における表面粗さのばらつきよりも小さい。また、上面55Uにおける凹凸高さのばらつきは、下面55L(流路内の下面55Lから選択された24点)における表面粗さのばらつきよりも小さい。上面55Uにおける表面粗さのばらつきを小さくすることで、図5に関して説明したように面内の温度均一性を向上させる。そして、下面55L及び側面55Sを粗くすることにより、乱流が促進される。これにより、連通路55を流れる媒体による温度調整効果を高くし、ランプレートを高くすることができる。
図6は、ランプレートについて説明するグラフ図である。
ランプレート(単位時間あたりの所定の温度までの温度追従性)は、ランプアップ(昇温)と、ランプダウン(降温)の平均であり、処理対象物Wの温度の熱源への温度追従性を示す。つまり、ランプレートは、設定温度を変更した際に、処理対象物Wが当該設定温度に到達するスピードに対応する。ランプレートが高いほど追従性がよく、ランプレートは、タクトタイムに関係する。
ランプアップ及びランプダウンは、過渡現象の応答の指標であるので、時定数の考えを用いる。時定数は、システムの温度が目標値の(1−e−1)倍に達するまでの時間を示す(eは自然対数の底)。これは、処理対象物の温度が目標値の約63.2%に達するまでの時間を用いることを意味する。
例えばチラーの温度を30℃から90℃とする、60℃の持ち上げ(ランプアップ:Ramp up)について考える。時定数の63.2%を考慮すると、ここで言うランプアップは、60℃の63.2%は38℃であるので、30℃から68℃まで昇温するときの1秒あたりの昇温温度となる。一方、90℃から30℃までの持ち下げ(ランプダウン:Ramp down)について考えると、時定数を考慮すると、ランプダウンは、90℃から52℃まで降温するときの1秒あたりの降温温度となる。
ここで、連通路55の上部の上板厚さが厚いと、ベースプレートの熱容量が大きくなるため、ランプレートが低下する。なお、上板厚さとは、ベースプレート500の上面50Uと、連通路55の上面55Uと、の間の距離(図3に示すDz)である。
図7は、静電チャックの構造とランプレートとの関係を例示するグラフ図である。
ランプレートを議論する際は、熱源からの入熱量による規格化を行う。入熱量Yキロワット(kW)で、ランプレート(℃/秒(s))を割った値を縦軸とする。また、図7の横軸は、連通路55の高さに対する上板厚さの比を表す。すなわち、横軸の値は、Dz(mm)/Lz(mm)である。
高ランプレートの静電チャック(High Ramp rate ESC)に求められるスペックは、例えば、図7の縦軸の値(Ramp rate/Wattage)が0.05以上であることである。よって、連通路55の高さに対する上板厚さの比を、10以下とすることが望ましい。また、連通路55の高さに対する上板厚さの比を0.1以下とすることは、温度均一性の観点から困難である。実施形態においては、連通路55の高さに対する上板厚さの比を0.1以上10以下とする。これにより、高いランプレートと、処理対象物Wの面内の温度均一性と、を両立することができる。
また、図3に表したように、連通路55の高さ(長さ(Lz))は、連通路55の横幅(冷却媒体の流れる方向及びZ方向に対して垂直な方向に沿った長さ(Lx))よりも長い。Lz/Lxは、1より大きく6未満である。Lxは、例えば3mm以上12mm以下である。
図8は、静電チャックの構造と特性との関係を例示するグラフ図である。
図8の横軸は、連通路55の横幅に対する連通路55の高さの比(Lz/Lx)、すなわち連通路55のアスペクト比を表す。図7では、連通路55の断面積(冷却媒体が流れる方向に対して垂直な平面における断面積)を一定として、アスペクト比を変化させている。
図8の左縦軸は、冷却媒体が連通路55を通るときの、単位長さあたりの圧力損失(キロパスカル/メートル:kPa/m)を表す。図7に示す特性CT1は、単位長さ当たりの圧力損失とアスペクト比との関係を示す。
また、図8の右縦軸は、図5の縦軸と同様に、処理対象物面内の温度ばらつき/ΔT(%)を表す。図8に示した特性CT2は、処理対象物面内の温度ばらつき/ΔTとアスペクト比との関係を示す。
特性CT2に示すように、アスペクト比(Lz/Lx)が大きくなると、処理対象物Wの面内の温度均一性が向上する。そこで、実施形態においては、例えばアスペクト比を1より大きくする。これにより、処理対象物Wの面内の温度均一性を向上させることができ、処理対象物面内の温度ばらつき/ΔTを10%程度以下とすることができる。
一方、特性CT1に示すように、アスペクト比(Lz/Lx)が1よりも大きくなると、単位長さ当たりの圧力損失が大きくなる。そこで、実施形態においては、アスペクト比を6未満とする。これにより、圧力損失が大きくなりすぎることを抑えつつ、処理対象物Wの面内の温度均一性を向上させることができる。
連通路55の横幅(Lx)を狭くすることによって、X−Y平面内における連通路55の配置パターンの自由度が向上する。例えば、連通路55を密に配置することができる。
また、連通路55の高さ(Lz)を長くすることによって、連通路55における冷却媒体等の圧力損失を抑制することができる。以上により、処理対象物Wの面内の温度均一性をさらに向上させることができる。
なお、ベースプレート500の厚さ(Z方向に沿った長さ)をLbp(mm)とすると、連通路の厚さ/ベースプレートの厚さ(=Lz/Lbp)は、0.1以上0.9以下が好ましく、0.2以上0.8以下がさらに好ましく、0.3以上0.7以下がより好ましい。
図9は、実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。
図9に表したベースプレート501は、図1〜7に関して説明した連通路55に代えて連通路55aを有する。連通路55aは、断面の形状において連通路55と異なる。これ以外については、図9に表したベースプレート501は、図1〜図7に関して説明したベースプレート500と同様である。図9は、図3と同様に、連通路55aの延在方向に直交する平面における断面を表す。
図9に表したように、連通路55の側面55Sは、第1の領域R1と、第2の領域R2と、を有する。第1の領域R1は、セラミック誘電体基板11の第2主面11bの側に位置する。第2の領域R2は、第1の領域R1よりも下方に位置する。この例では、第1の領域R1は、Z方向に対して略平行に延在する領域であり、第2の領域R2は、Z方向に対して傾斜した領域である。例えば、第2の領域R2は、c面(チャンファー)に対応する。第2領域R2のZ軸方向に沿った長さLcは、例えば、0.4mm以上3.0mm以下である。Lcを長くすると、連通路の断面積が小さくなり、流速が高くなる。適度にLcを長くすることで、冷却能力が向上し、連通路の下方における変形が低減される。
連通路55の内部は、第1の空間部S1と、第2の空間部S2と、を有する。第1の空間部S1は、セラミック誘電体基板11の第2主面11bの側に位置し、第1の領域R1及び上面55Uと接する。第2の空間部S2は、第1の空間部S1の下方に位置し、第2の領域R2及び下面55Lと接する。第2領域R2の傾きによって、第2の空間部S2の横幅WS2は、下方に向けて両側から狭くなっている。すなわち、下方に向かうにしたがい、連通路55の両側面が互いに近づく。これにより、第1の部分50aと第2の部分50bとの接合面積を広くすることができる。
第1の領域R1(流路内の第1の領域R1から選択された24点)における表面粗さ(最大高さSz)のばらつきは、第2の領域R2(流路内の第2の領域R2から選択された24点)における表面粗さ(最大高さSz)よりも小さい。上方に位置する第1の領域R1における表面粗さのばらつきが小さいことにより、連通路55の上部での熱伝達のばらつきを抑制することができる。これにより、処理対象物Wの面内の温度均一性を向上させることができる。
また、第2の領域R2が粗いことにより、連通路55の下部では、乱流が促進される。
これにより、連通路55を流れる媒体による温度調整効果を高くし、ランプレートを高くすることができる。
各面における最大高さSz(μm)を調整する方法としては、第1の部分50a及び第2の部分50bを形成するときの加工条件の調整が挙げられる。例えば、連通路55となる溝を形成する際の研削の条件などを変更する。
また、各面を形成する材料を変更することで、最大高さSz(μm)を調整してもよい。上面55Uの材料と下面55Lの材料とが異なることにより、上面55Uの粗さと下面55Lの粗さとを異ならせることができる。
例えば、アルミニウム製の第1の部分50aと、アルミニウム製の第2の部分50bと、を接合する際にろう付けを用いる場合、下面55Lの少なくとも一部を、ろう付けのろう材によって形成する。ろう材は、例えば、アルミニウムと、アルミニウム以外の元素(シリコン、鉄及び銅など)と、を含むアルミニウム合金である。したがって、上面55Uの材料におけるアルミニウムの濃度(単位体積あたりの物質量)は、下面55Lの材料におけるアルミニウムの濃度よりも高い。
また、側面55Sにおいても、第2の領域R2の少なくとも一部を、ろう材によって形成する。つまり、第1の領域R1の材料におけるアルミニウムの濃度は、第2の領域R2の材料におけるアルミニウムの濃度よりも高い。
図10は、実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。
図10に表したベースプレート502は、図9に関して説明した連通路55aに代えて連通路55bを有する。連通路55bは、断面の形状において連通路55aと異なる。これ以外については、図10に表したベースプレート502は、図9に関して説明したベースプレート501と同様である。図10は、図9と同様に、連通路55bの延在方向に直交する平面における断面を表す。
連通路55は、上面55Uと側面55Sとをつなぐ曲面状の接続部55Cを有する。 冷却媒体の流路の端は、乱流(壁乱流)の影響を大きく受ける部分である。例えば、連通路55の上面55Uと側面55Sとの接続部55Cが直角に曲がった形状であると、この部分において乱流の影響が大きくなる。連通路55の中で乱流の影響が大きい部分と小さい部分とが存在すると、温度均一性が低下することがある。これに対して、上面55Uと側面55Sとの接続部55Cを曲面状とすることで、接続部55Cにおける乱流の影響と、接続部55Cの周辺における乱流の影響と、の差を抑制することができる。これにより、処理対象物Wの面内の温度均一性を向上させることができる。
図11(a)及び図11(b)は、実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。
図11(a)に表したベースプレート503は、第3の部分50c及び連通路56(第2の連通路)を有する。これ以外については、図11(a)に表したベースプレート503は、図9に関して説明したベースプレート501と同様である。図11は、図9に関する説明と同様の平面における断面を表す。
第3の部分50cは、第1の部分50aの上方に設けられる。つまり、第3の部分50cは、第1の部分50aと、セラミック誘電体基板11の第2主面11bと、の間に設けられる。
第3の部分50cの材料には、例えばアルミニウムを用いることができる。また、第1の部分50aと第3の部分50cとは、電子ビーム溶接又はろう付けなどによって、接合されている。
連通路56は、第1の部分50aと第3の部分50cとの間に形成された空間である。
連通路56には、連通路55を流れる媒体とは異なる媒体(ガス)を通すことができる。
これにより、セラミック誘電体基板11及びその上に載置された処理対象物Wの温度調整を行う。例えば、連通路56には、冷却媒体としてヘリウムなどが流される。
連通路55に加えて連通路56を設けることで、温度を調整する媒体が流れる領域の配置パターンの自由度が向上する。例えば、ベースプレートの所定の箇所に所定の圧力で、温度を調整する媒体を供給することができる。
図11(b)は、図11(a)の連通路56の近傍を拡大して表している。
図11(b)に表したように、連通路56は、上面56Uと、側面56Sと、下面56Lと、を有する。上面56U及び下面56Lは、それぞれX−Y平面に沿って延在する面であり、Z方向において互いに離間している。側面56Sは、X−Y平面と交差する面であり、上面56Uと下面56Lとを繋ぐ。
また、第1の部分50aと第3の部分50cとの接合部50eは、連通路56のZ方向における中央C2よりも下方に位置する。この例では、上面56U及び側面56Sは、第3の部分50cによって形成され、下面56Lは、第1の部分50aによって形成されている。つまり、接合部50eは、側面56Sと下面56Lとの境界付近に位置している。
接合部50eのZ方向における位置と、下面56LのZ方向における位置とは略同じである。
すなわち、この例では、第1の連通路55aは、第1の部分50aの下面に設けられた凹部(開口部)により形成され、かつ、第2の連通路56は、第3の部分50cの下面に設けられた凹部(開口部)により形成されている。
第1の部分50aと第3の部分50cとを電子ビーム溶接やろう付けによって接合したときに、接合部付近において連通路56の表面が粗くなる場合がある。これに対して、接合部50eが連通路56の下方に位置することにより、図3に関して説明した連通路55の場合と同様にして、連通路56の上面56Uにおける表面粗さのばらつきが接合によって大きくなることが抑制される。
連通路56の側面55Sは、第3の領域R3と、第4の領域R4と、を有する。第3の領域R3は、Z方向に対して略平行に延在し、第4の領域R4は、Z方向に対して傾斜している。また、連通路56の内部は、第3の空間部S3と、第4の空間部S4と、を有する。第3の空間部S3は、第3の領域R3と上面56Uとに接する。第4の空間部S4は、第3の空間部S3の下方に位置し、第4の領域R4と下面56Lとに接する。第4の空間部S4の横幅WS4は、下方に向けて狭くなっている。すなわち、下方に向かうにしたがい、連通路56の両側面が互いに近づく。これにより、第1の部分50aと第3の部分50cとの接合面積を広くすることができる。
また、例えば、上面56U(流路内の上面56Uから選択された24点)における表面粗さ(最大高さSz)のばらつきは、下面56L(流路内の下面56Lから選択された24点)における表面粗さ(最大高さSz)のばらつきよりも小さく、第4の領域R4(流路内の第4の領域R4から選択された24点)における表面粗さ(最大高さSz)のばらつきよりも小さい。また、第3の領域R3(流路内の第3の領域R3から選択された24点)における表面粗さ(最大高さSz)のばらつきは、第4の領域R4における表面粗さのばらつきよりも小さい。これにより、連通路55に関する説明と同様に、処理対象物Wの面内の温度均一性及びランプレートを向上させることができる。なお、連通路55に関する説明と同様に、研削や接合の条件によって各面の最大高さSz(μm)を調整することができる。
図12は、実施形態に係る別の静電チャックのベースプレートの一部を例示する断面図である。
図12に表したベースプレート504は、連通路56に代えて連通路57(第2の連通路)を有する。これ以外については、ベースプレート504は、図11に関して説明したベースプレート503と同様である。
連通路57は、連通路56と同様に、ろう付け等によって互いに接合された第1の部分50aと第3の部分50cとの間の空間である。連通路57には、処理対象物Wの温度を調整するための媒体(ガス)が通される。
連通路57は、上面57Uと、側面57Sと、下面57Lと、を有する。この例では、上面57Uは、第3の部分50cによって形成され、側面57S及び下面57Lは、第1の部分50aによって形成されている。つまり、第1の部分50aと第3の部分50cとの接合部50eは、側面57Sと下面57Lとの境界付近に位置している。接合部50eのZ方向における位置と、下面56LのZ方向における位置とは略同じである。このように、第1の部分50aと第3の部分50cとの接合部50eは、第2の連通路(連通路57)のZ方向における中央よりも上方に位置してもよい。
図13は、実施形態に係る別の静電チャックを例示する斜視図である。
図13では、説明の便宜上、静電チャックの一部において断面図を表している。図13に表した静電チャック110aは、ヒータプレート200を有する。これ以外についてyは、静電チャック110aは、前述した静電チャックと同様である。
ヒータプレート200は、ベースプレート500と、静電チャック用基板100と、の間に設けられている。例えば、ベースプレート500とヒータプレート200との間には、接着剤が設けられている。また、ヒータプレート200と静電チャック用基板100との間には、接着剤が設けられている。接着剤の材料としては、例えば、比較的高い熱伝導性を有するシリコーン等の耐熱性樹脂が挙げられる。ヒータプレート200は、ヒータ用電流が流れることによって発熱し、ヒータプレート200が発熱しない場合と比較して処理対象物Wの温度を上げることができる。なお、ベースプレート500は、前述したベースプレート501〜504のいずれかであってもよい。また、ベースプレート500に図示しないヒータを内蔵させることも可能である。
例えば、ヒータプレート200の発熱を、ベースプレート500内の連通路55を流れる冷媒によって冷却することで、処理対象物Wの温度を制御することができる。つまり、ヒータプレート200とベースプレート500との間の熱のやり取りによって、セラミック誘電体基板11と処理対象物Wの温度を制御する。ベースプレート500は、その上に設けられたヒータプレート200を冷却するため、処理対象物Wの温度は、連通路55の上面における熱伝達の均一性に依存する。
このようにヒータプレート200が設けられた場合においても、前述したベースプレート500〜504に関する説明と同様に、ベースプレートの連通路(連通路55、55a、55b、56、57)の形状を制御することで、処理対象物Wの温度分布の均一性を向上させることができる。また、ランプレートを高くすることができる。
以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、セラミック誘電体基板やベースプレートが備える各要素の形状、寸法、材質、配置、設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。
また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
11 セラミック誘電体基板、 11a 第1主面、 11b 第2主面、 12 電極層、 13 凸部、 14 溝、 20 接続部、 50U 上面、 50a 第1の部分、 50b 第2の部分、 50c 第3の部分、 50d 接合部、 50e 接合部、 51 入力路、 52 出力路、 53 導入路、 55 連通路、 55C 接続部、 55L 下面、 55S 側面、 55U 上面、 55a、55b 連通路、 55e 折り返し部、 56 連通路、 56L 下面、 56S 側面、 56U 上面、 57 連通路、 57L 下面、 57S 側面、 57U 上面、 61 コンタクト電極、 80 吸着保持用電圧、 100 静電チャック用基板、 110 静電チャック、 110a 静電チャック、 111 第1誘電層、 112 第2誘電層、 200 ヒータプレート、 500〜504 ベースプレート、 C1 中央、 R1〜R4 第1〜第4の領域、 S1〜S4 第1〜第4の空間部、 W 処理対象物

Claims (18)

  1. 処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、
    前記第2主面の側に設けられ前記セラミック誘電体基板を支持するベースプレートと、
    を備え、
    前記ベースプレートは、前記処理対象物の温度を調整する媒体を通す第1の連通路を有し、
    前記第1の連通路は、上面、側面及び下面を有し、
    前記第1の連通路の高さに対する、前記上面における最大高さSzのばらつきの比は、1%以下であることを特徴とする静電チャック。
  2. 前記ベースプレートは、
    前記第2主面の側の第1の部分と、
    前記第1の部分の下方に設けられ、前記第1の部分と接合された第2の部分と、
    を有し、
    前記第1の部分と前記第2の部分との接合部は、前記第1の連通路の上下方向における中央よりも下方に位置することを特徴とする請求項1記載の静電チャック。
  3. 前記上面における最大高さSzのばらつき、前記側面における最大高さSzのばらつき、及び、前記下面における最大高さSzのばらつきは、互いに異なることを特徴とする請求項1または2に記載の静電チャック。
  4. 前記上面における最大高さSzのばらつきは、前記側面における最大高さSzのばらつきよりも小さいことを特徴とする請求項3記載の静電チャック。
  5. 前記上面における最大高さSzのばらつきは、前記下面における最大高さSzのばらつきよりも小さいことを特徴とする請求項3または4に記載の静電チャック。
  6. 前記側面は、
    前記第2主面の側の第1の領域と、
    前記第1の領域の下方に位置する第2の領域と、
    を有し、
    前記第1の領域における最大高さSzのばらつきは、前記第2の領域における最大高さSzのばらつきよりも小さいことを特徴とする請求項1〜5のいずれか1つに記載の静電チャック。
  7. 前記上面の材料と前記下面の材料とは、互いに異なることを特徴とする請求項1〜6のいずれか1つに記載の静電チャック。
  8. 前記上面の材料におけるアルミニウムの濃度は、前記下面の材料におけるアルミニウムの濃度よりも高いことを特徴とする請求項7記載の静電チャック。
  9. 前記側面は、
    前記第2主面の側の第1の領域と、
    前記第1の領域の下方に位置する第2の領域と、
    を有し、
    前記第1の領域の材料におけるアルミニウム濃度は、前記第2の領域の材料におけるアルミニウム濃度よりも高いことを特徴とする請求項6〜8のいずれか1つに記載の静電チャック。
  10. 前記下面と、前記側面のうちの下方の領域と、のいずれかは、前記媒体を攪拌する乱流促進部であることを特徴とする請求項1〜9のいずれか1つに記載の静電チャック。
  11. 前記第1の連通路の前記高さは、前記第1の連通路の横幅よりも長いことを特徴とする請求項1〜10のいずれか1つに記載の静電チャック。
  12. 前記第1の連通路の前記横幅に対する、前記第1の連通路の前記高さの比は、1より大きく6未満であることを特徴とする請求項11記載の静電チャック。
  13. 前記第1の連通路の前記高さに対する、前記ベースプレートの前記第2主面側の上面と前記第1の連通路の前記上面との間の距離の比は、0.1以上10以下であることを特徴とする請求項1〜12のいずれか1つに記載の静電チャック。
  14. 前記第1の連通路は、前記上面と前記側面とをつなぐ、曲面状の接続部をさらに有することを特徴とする請求項1〜13のいずれか1つに記載の静電チャック。
  15. 前記第1の連通路は、
    前記第2主面の側の第1の空間部と、
    前記第1の空間部の下方の第2の空間部と、
    を有し、
    前記第2の空間部の横幅は、下方に向けて狭くなることを特徴とする請求項1〜14のいずれか1つに記載の静電チャック。
  16. 前記ベースプレートは、
    第1の部分と、
    前記第1の部分の上方に設けられ前記第1の部分と接合された第3の部分と、
    前記第1の部分と前記第3の部分との間に設けられ、前記第1の連通路を流れる媒体とは異なるガス媒体を通す第2の連通路と、
    を有し、
    前記第2の連通路は、前記第1の連通路よりも前記第2主面の側に設けられることを特徴とする請求項1〜15のいずれか1つに記載の静電チャック。
  17. 前記第1の部分と前記第3の部分との接合部は、前記第2の連通路の上下方向における中央よりも下方に位置し、
    前記第2の連通路は、
    前記第2主面の側の第3の空間部と、
    前記第3の空間部の下方の第4の空間部と、
    を有し、
    前記第4の空間部の横幅は、下方に向けて狭くなることを特徴とする請求項16記載の静電チャック。
  18. 前記ベースプレートは、
    前記第1の部分の上方に設けられ前記第1の部分と接合された第3の部分と、
    前記第1の部分と前記第3の部分との間に設けられ、ガス媒体が流れる第2の連通路と、
    をさらに有し、
    前記第1の部分と前記第3の部分との接合部は、前記第2の連通路の上下方向における中央よりも下方に位置することを特徴とする請求項2記載の静電チャック。
JP2017143727A 2016-05-13 2017-07-25 静電チャック Pending JP2017208565A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097287 2016-05-13
JP2016097287 2016-05-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017016905A Division JP6183567B1 (ja) 2016-05-13 2017-02-01 静電チャック

Publications (1)

Publication Number Publication Date
JP2017208565A true JP2017208565A (ja) 2017-11-24

Family

ID=59678251

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017016905A Active JP6183567B1 (ja) 2016-05-13 2017-02-01 静電チャック
JP2017095300A Pending JP2017208542A (ja) 2016-05-13 2017-05-12 静電チャック
JP2017143727A Pending JP2017208565A (ja) 2016-05-13 2017-07-25 静電チャック

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017016905A Active JP6183567B1 (ja) 2016-05-13 2017-02-01 静電チャック
JP2017095300A Pending JP2017208542A (ja) 2016-05-13 2017-05-12 静電チャック

Country Status (5)

Country Link
US (1) US10964577B2 (ja)
JP (3) JP6183567B1 (ja)
KR (2) KR102167283B1 (ja)
CN (1) CN108780774B (ja)
TW (1) TWI657522B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041091A1 (en) * 2018-08-22 2020-02-27 Lam Research Corporation Ceramic baseplate with channels having non-square corners
WO2021034595A1 (en) * 2019-08-16 2021-02-25 Applied Materials, Inc. Heated substrate support with thermal baffles
KR20230140386A (ko) 2022-03-29 2023-10-06 토토 가부시키가이샤 정전 척
US11848177B2 (en) 2018-02-23 2023-12-19 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
US11967517B2 (en) 2019-02-12 2024-04-23 Lam Research Corporation Electrostatic chuck with ceramic monolithic body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229968B2 (en) * 2011-11-30 2022-01-25 Watlow Electric Manufacturing Company Semiconductor substrate support with multiple electrodes and method for making same
US10475687B2 (en) * 2014-11-20 2019-11-12 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
KR20190114216A (ko) * 2018-03-29 2019-10-10 어플라이드 머티어리얼스, 인코포레이티드 정전척 및 기판처리장치
JP7365815B2 (ja) * 2019-08-09 2023-10-20 東京エレクトロン株式会社 載置台及び基板処理装置
WO2021201108A1 (ja) * 2020-03-31 2021-10-07 京セラ株式会社 流路部材およびその製造方法
JP7338675B2 (ja) * 2021-12-24 2023-09-05 住友大阪セメント株式会社 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
JP7338674B2 (ja) * 2021-12-24 2023-09-05 住友大阪セメント株式会社 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
KR20230161746A (ko) * 2022-05-19 2023-11-28 뉴브이테크주식회사 웨이퍼용 척 및 그 제조방법
JP7343069B1 (ja) 2023-03-27 2023-09-12 Toto株式会社 静電チャック

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209057B2 (ja) * 1999-12-01 2009-01-14 東京エレクトロン株式会社 セラミックスヒーターならびにそれを用いた基板処理装置および基板処理方法
JP3742349B2 (ja) 2002-02-15 2006-02-01 株式会社日立製作所 プラズマ処理装置
US20060105182A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Erosion resistant textured chamber surface
JP2005150506A (ja) * 2003-11-18 2005-06-09 Sumitomo Electric Ind Ltd 半導体製造装置
KR100666039B1 (ko) * 2003-12-05 2007-01-10 동경 엘렉트론 주식회사 정전척
US7544251B2 (en) * 2004-10-07 2009-06-09 Applied Materials, Inc. Method and apparatus for controlling temperature of a substrate
JP4564973B2 (ja) 2007-01-26 2010-10-20 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4886876B2 (ja) * 2010-05-31 2012-02-29 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
JP5848043B2 (ja) * 2011-06-30 2016-01-27 京セラ株式会社 載置用部材
JP5441021B1 (ja) * 2012-09-12 2014-03-12 Toto株式会社 静電チャック
JP6034402B2 (ja) * 2012-11-29 2016-11-30 京セラ株式会社 静電チャック
JP6080571B2 (ja) * 2013-01-31 2017-02-15 東京エレクトロン株式会社 載置台及びプラズマ処理装置
JP5633766B2 (ja) * 2013-03-29 2014-12-03 Toto株式会社 静電チャック
JP6119430B2 (ja) * 2013-05-31 2017-04-26 住友大阪セメント株式会社 静電チャック装置
JP6240028B2 (ja) * 2014-05-20 2017-11-29 京セラ株式会社 試料保持具
JP6349228B2 (ja) * 2014-10-22 2018-06-27 新光電気工業株式会社 静電チャック及びその静電チャックに使用されるベース部材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848177B2 (en) 2018-02-23 2023-12-19 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
WO2020041091A1 (en) * 2018-08-22 2020-02-27 Lam Research Corporation Ceramic baseplate with channels having non-square corners
US11133211B2 (en) 2018-08-22 2021-09-28 Lam Research Corporation Ceramic baseplate with channels having non-square corners
US11967517B2 (en) 2019-02-12 2024-04-23 Lam Research Corporation Electrostatic chuck with ceramic monolithic body
WO2021034595A1 (en) * 2019-08-16 2021-02-25 Applied Materials, Inc. Heated substrate support with thermal baffles
KR20230140386A (ko) 2022-03-29 2023-10-06 토토 가부시키가이샤 정전 척

Also Published As

Publication number Publication date
CN108780774A (zh) 2018-11-09
TWI657522B (zh) 2019-04-21
KR20200110461A (ko) 2020-09-23
JP6183567B1 (ja) 2017-08-23
CN108780774B (zh) 2023-04-11
KR102167283B1 (ko) 2020-10-19
US10964577B2 (en) 2021-03-30
KR20180096745A (ko) 2018-08-29
JP2017208527A (ja) 2017-11-24
US20190013231A1 (en) 2019-01-10
TW201740492A (zh) 2017-11-16
JP2017208542A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6183567B1 (ja) 静電チャック
KR102644272B1 (ko) 정전척 어셈블리
US10607874B2 (en) Electrostatic chuck
JP5987966B2 (ja) 静電チャックおよびウェーハ処理装置
US10373854B2 (en) Electrostatic chuck
US10923382B2 (en) Electrostatic chuck
TW202127575A (zh) 具有獨立隔離的加熱器區域的晶圓載體
TWI647785B (zh) 恒定質量流多層次冷卻劑路徑之靜電式夾具
US11328907B2 (en) Electrostatic chuck
JP4540407B2 (ja) 静電チャック
WO2017195893A1 (ja) 静電チャック
US11302560B2 (en) Electrostatic chuck
US20220108909A1 (en) Member for semicondutor manufacturing apparatus
US11302559B2 (en) Electrostatic chuck
WO2016093297A1 (ja) 静電チャックおよびウェーハ処理装置