JP7338674B2 - 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法 - Google Patents

静電チャック部材、静電チャック装置、および静電チャック部材の製造方法 Download PDF

Info

Publication number
JP7338674B2
JP7338674B2 JP2021210440A JP2021210440A JP7338674B2 JP 7338674 B2 JP7338674 B2 JP 7338674B2 JP 2021210440 A JP2021210440 A JP 2021210440A JP 2021210440 A JP2021210440 A JP 2021210440A JP 7338674 B2 JP7338674 B2 JP 7338674B2
Authority
JP
Japan
Prior art keywords
support plate
electrostatic chuck
flow path
chuck member
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021210440A
Other languages
English (en)
Other versions
JP2023094871A (ja
Inventor
敏祥 乾
拓 一由
剛史 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2021210440A priority Critical patent/JP7338674B2/ja
Priority to PCT/JP2022/045561 priority patent/WO2023120258A1/ja
Publication of JP2023094871A publication Critical patent/JP2023094871A/ja
Application granted granted Critical
Publication of JP7338674B2 publication Critical patent/JP7338674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Description

本発明は、静電チャック部材、静電チャック装置、および静電チャック部材の製造方法に関する。
半導体製造工程では、真空環境下で半導体ウエハを保持する静電チャック装置が用いられている。静電チャック装置は、載置面に半導体ウエハ等の板状試料を載置し、板状試料と内部電極との間に静電気力を発生させて、板状試料を吸着固定する。このような静電チャック装置において、載置面が形成される誘電体基板の内部に板状試料を冷却するためのガス流路を設ける場合がある。特許文献1には、2枚のセラミック板を積層する静電チャックにおいて、セラミック板の間に配置されるスラリー層に流路を形成する構成が開示されている。特許文献2には、グリーンシートを積層して形成する静電チャック装置において、グリーンシートにパンチングや研削などの機械加工により流路形成を形成する構成が開示されている。
特開2021-141116号公報 特許第5936165号公報
ガス流路は、高さ寸法を大きくし過ぎると断熱層として機能し、載置面の温度の不均一を招く。特許文献1の静電チャックでは、30μm以下のガス流路を形成するものであるが、1200℃~1700℃の比較的低温でスラリー層を焼成する必要がありスラリー層の耐電圧が不十分になるという問題がある。特許文献2の静電チャックは、グリーンシートの焼成によって形成されるため、焼成時に生じる収縮によりガス流路の高さ寸法を十分に小さくすることが困難であった。
本発明は、ガス流路の高さ寸法を抑えた静電チャック部材、静電チャック装置、および静電チャック部材の製造方法を提供することを目的の一つとする。
本発明の1つの態様の静電チャック部材は、試料を搭載する載置面が設けられ厚さ方向に積層される第1支持板および第2支持板を有する誘電体基板と、前記誘電体基板の内部に埋め込まれる吸着電極と、を備え、前記第1支持板と前記第2支持板との間には、互いに対向する面のうち少なくとも一方に設けられ他方に覆われる凹溝によって形成されるガス流路が設けられ、前記ガス流路の高さ方向の寸法は、90μm以上300μm以下であり、前記ガス流路の幅寸法は、500μm以上3000μm未満である。
上記の静電チャック部材において、前記誘電体基板は、酸化アルミニウムと炭化ケイ素の複合焼結体である構成としてもよい。
上記の静電チャック部材において、前記誘電体基板を構成する絶縁性物質の平均一次粒子径は、1.6μm以上10.0μm以下である構成としてもよい。
上記の静電チャック部材において、前記第1支持板と前記第2支持板とは、接合層を介して接合され、前記ガス流路の高さ寸法は、前記接合層の厚さ寸法と前記凹溝の深さ寸法との総和である構成としてもよい。なお、前記接合層の厚さ寸法は、5μm以上30μm以下が好ましく、7μm以上20μm以下がより好ましい。
上記の静電チャック部材において、前記吸着電極は、前記第1支持板と前記第2支持板との間に配置され前記ガス流路に露出する構成としてもよい。
本発明の1つの態様の静電チャック装置は、上記の静電チャック部材と、前記静電チャック部材を前記載置面の反対側から支持する基台と、を備える。
本発明の1つの態様の静電チャック部材の製造方法は、第1支持板、第2支持板、並びに前記第1支持板および前記第2支持板の間に配置される接合層を有する誘電体基板と、前記誘電体基板の内部に埋め込まれる吸着電極と、を備える静電チャック部材の製造方法であって、前記第1支持板に凹溝を形成する凹溝形成工程と、前記第1支持板および前記第2支持板の少なくとも一方に接合層ペーストを塗布する塗布工程と、前記第1支持板と前記第2支持板とを前記接合層ペーストを介して厚さ方向に積層し、加熱しながら加圧して接合する接合工程と、を有し、前記接合工程における熱処理温度を1700℃以上とする。
本発明の1つの態様によれば、ガス流路の高さ寸法を抑えた静電チャック部材、静電チャック装置、および静電チャック部材の製造方法が提供される。
図1は、実施形態の静電チャック装置1を示す断面模式図である。 図2は、静電チャック部材2の平面図である。 図3は、一実施形態の静電チャック部材の製造方法において、凹溝形成工程を示す図である。 図4は、一実施形態の静電チャック部材の製造方法において、塗布工程を示す図である。 図5は、一実施形態の静電チャック部材の製造方法において、接合工程を示す図である。 図6は、変形例の静電チャック部材の部分断面模式図である。
以下、本発明の静電チャック装置の各実施形態について、図面を参照して説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせて表示する場合がある。
また、各図には、Z軸を図示する。本明細書において、Z軸は、必要に応じて載置面と直交するする方向である。また、載置面が向く方向である上面を+Z方向とする。
図1は、本実施形態の静電チャック装置1を示す断面模式図である。
静電チャック装置1は、ウエハ(試料)Wを搭載する載置面2sが設けられる静電チャック部材2と、静電チャック部材2を載置面2sの反対側から支持する基台3と、静電チャック部材2に電圧を付与する給電端子16と、を備える。なお、静電チャック部材2の上面の外周部には、ウエハWを囲むフォーカスリングが配置されていてもよい。
静電チャック部材2は、中心軸Cを中心とする円盤状である。静電チャック部材2は、誘電体基板11と、誘電体基板11の内部に埋め込まれる吸着電極13と、を有する。静電チャック部材2は、誘電体基板11に設けられる載置面2sでウエハWを吸着する。
以下の説明においては、静電チャック装置1の各部は、静電チャック部材2に対しウエハWを搭載する側を上側、基台3側を下側として説明される。また、静電チャック部材2は、上下方向(Z軸方向)を厚さ方向とする。すなわち、静電チャック部材2、および誘電体基板11は、載置面に直交する方向を厚さ方向とする。
なお、ここでの上下方向は、あくまで説明の簡素化のために用いる方向であって、静電チャック装置1の使用時の姿勢を限定するものではない。
誘電体基板11は、平面視で円形の板状である。誘電体基板11には、ウエハWが載置される載置面2sが設けられる。載置面2sには、例えば複数の突起部(図示略)が所定の間隔で形成されている。載置面2sは、複数の突起部の先端部でウエハWを支持する。
誘電体基板11は、第1支持板11aと、第2支持板11bと、第3支持板11cと、接合層11dと、を有する。第1支持板11a、第2支持板11b、および第3支持板11cは、載置面2sに沿って延びる板状である。第1支持板11a、第2支持板11b、および第3支持板11cは、下側から上側に向かってこの順で厚さ方向に積層される。また、接合層11dは、第1支持板11aと第2支持板11bとの間に配置される。第1支持板11aと第2支持板11bとは、接合層11dを介して接合される。なお、接合層11dは、第2支持板11bと第3支持板11cとの間にも、設けられていてもよい。さらに、誘電体基板11は、接合層11dを有していなくてもよい。この場合、第1支持板11aと第2支持板11bとは、直接的に接合される。
誘電体基板11を構成する第1支持板11a、第2支持板11b、第3支持板11c、および接合層11dは、機械的に十分な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する複合焼結体からなる。誘電体基板11を構成する誘電体材料としては、機械的な強度を有し、しかも腐食性ガスおよびそのプラズマに対する耐久性を有するセラミックスが好適に用いられる。誘電体基板11を構成するセラミックスとしては、例えば、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化アルミニウム(Al)-炭化ケイ素(SiC)複合焼結体などが好適に用いられる。
特に、高温での誘電特性、高耐食性、耐プラズマ性、耐熱性の観点から、誘電体基板11は、酸化アルミニウム(Al)-炭化ケイ素(SiC)の複合焼結体であることが好ましい。また、後述するように、誘電体基板11は、複数の支持板11a、11bを、接合層11dを介して接合することで形成される。誘電体基板11を酸化アルミニウムと炭化ケイ素との複合焼結体とすることで、支持板同士の接合温度を高め易く、これにより絶縁性物質である酸化アルミニウムの粒径を成長させて耐電圧を高めることができる。すなわち、誘電体基板11として酸化アルミニウムと炭化ケイ素との複合焼結体とすることで、耐電圧を高め易い。
本実施形態において、接合層11dを構成する材料における複合材料の構成は、第1支持板11aおよび第2支持板11bを構成する複合材料の構成と異なっていてもよい。後述するように、接合層11dを構成する材料の熱伝導率は、第1支持板11aおよび第2支持板11bの熱伝導率より高いことが好ましい。一例として、第1支持板11a、第2支持板11b、および接合層11dが、同材料(例えば、酸化アルミニウム-炭化ケイ素複合焼結体)から構成される場合、接合層11dにおける導電性物質(例えば、炭化ケイ素)の比率を、第1支持板11a、および第2支持板11bの導電性物質の比率より高めることで、接合層11dの熱伝導率を高めることができる。
誘電体基板11の第1支持板11a、第2支持板11b、第3支持板11c、および接合層11dを構成する絶縁性物質(例えば、酸化アルミニウム)の平均一次粒子径は、0.5μm以上10.0μm以下であることが好ましく、1.6μm以上6.0μm以下であることがより好ましい。
誘電体基板11を構成する絶縁性物質の平均一次粒子径が0.5μm以上であれば、充分な耐電圧性を得ることができる。一方、誘電体基板11を構成する絶縁性物質の平均一次粒子径が10.0μm以下(より好ましくは、6.0μm以下)であれば、研削等の加工性がよく、後述する凹溝の形成を容易に行うことができる。さらに、絶縁性物質の平均一次粒子径を10.0μm以下とすることで、後述するガス流路60内の伝熱ガスGに対する誘電体基板11の熱交換効率を十分に確保することができる。
なお、誘電体基板11を構成する絶縁性物質の平均一次粒子径の測定方法は、次の通りである。日本電子社製の電解放出型走査電子顕微鏡(FE-SEM)で、誘電体基板11の厚さ方向の切断面を観察し、インターセプト法により絶縁性物質200個の粒子径の平均を平均一次粒子径とする。なお、サンプルの切断面は、回転する円盤状の砥石を用いてサンプルを厚さ方向に切断することで形成する。また、各評価において、サンプルの切断方法は同様である。
誘電体基板11には、第1ガス孔67と第2ガス孔68とガス流路60とが設けられる。ガス流路60は、載置面2sの平面方向に沿って延びる。第1ガス孔67は、ガス流路60から下側に延びる。一方で、第2ガス孔68は、ガス流路60から上側に延びて載置面2sに開口する。第1ガス孔67と第2ガス孔68とは、ガス流路60を介して互いに連通している。第1ガス孔67、ガス流路60、および第2ガス孔68には、伝熱ガスGが流れる。
伝熱ガスGは、例えばHe等の冷却用のガスである。伝熱ガスGは、第1ガス孔67を通過してガス流路60に流入する。ガス流路60を通過する伝熱ガスGは、静電チャック部材2を冷却する。さらに、ガス流路60の伝熱ガスGは、第2ガス孔68から載置面2sに供給され、載置面2sに搭載されるウエハWを冷却する。
ガス流路60は、第1支持板11aと第2支持板11bとの間に設けられる。本実施形態の第1支持板11aは、第2支持板11b側(すなわち、上側)を向く第1対向面12aを有する。同様に、第2支持板11bは、第1支持板11a側(すなわち、下側)を向く第2対向面12bを有する。第1対向面12aと第2対向面12bとは、接合層11dを介して互いに対向する。第2対向面12bには、第1対向面12aに覆われる凹溝60Aが設けられる。ガス流路60は、凹溝60Aと第1対向面12aとによって囲まれる空間に形成される。
なお、本実施形態では、第2支持板11bの第2対向面12bに凹溝60Aが設けられる場合について説明したが、第1支持板11aの第1対向面12aに凹溝60Aが設けられていてもよいし、第1対向面12aと第2対向面12bの両方に互いに重なる凹溝60Aが設けられていてもよい。すなわち、ガス流路60は、第1支持板11aと第2支持板11bとの間で互いに対向する面のうち少なくとも一方に設けられ他方に覆われる凹溝によって形成されていればよい。
なお、本実施形態の誘電体基板11は、複数の支持板が厚さ方向に積層されて構成されており、吸着電極13とガス流路60とは異なる支持板の間に配置される。しかしながら、吸着電極13とガス流路60とは、同じ支持板の間に配置されていてもよい。すなわち、吸着電極13とガス流路60とは、ともに、第1支持板11aと第2支持板11bとの間に配置されていてもよい。
図2は、静電チャック部材2の平面図である。
本実施形態のガス流路60は、静電チャック部材2の中心軸Cを中心として円環状に延びる。本実施形態の誘電体基板11には、2つのガス流路60が設けられる。複数のガス流路60は、同心円状に配置される内周流路61と外周流路62とを含む。
複数の第1ガス孔67は、周方向に沿って等間隔に配置される。同様に、複数の第2ガス孔68は、周方向に沿って等間隔に配置される。第1ガス孔67と第2ガス孔68とは、1つのガス流路60の経路において周方向に交互に配置される。
図1に示すように、本実施形態のガス流路60は、横断面が略台形状である。ガス流路60の内側面は、底面部60aと、天面部60bと、一対の側面部60c、60dと、を有する。
底面部60aおよび天面部60bは、載置面2sと略平行に延びる平面である。底面部60aは、載置面2sと同方向(上側)を向く。天面部60bは、載置面2sと反対方向(下側)を向く。天面部60bは、底面部60aと対向する。底面部60aは、第1支持板11aに設けられる。天面部60bは、第2支持板11bに設けられる。
一対の側面部60c、60dは、底面部60aと天面部60bとを繋ぐ。側面部60c、60dは、第2支持板11bと接合層11dとに跨って設けられる。すなわち、側面部60c、60dの少なくとも一部は、接合層11dに設けられる。
本実施形態において、ガス流路60を構成する凹溝60Aは、開口側に向かうに従い幅寸法Lを大きくする。したがって、本実施形態の一対の側面部60c、60dは、開口側に向かうに従い互いに離間する。
ガス流路60の高さ寸法D(厚さ方向に沿う寸法であり、底面部60aと天面部60bとの距離寸法)は、90μm以上300μm以下であることが好ましい。ガス流路60の高さ寸法Dが90μm未満である場合、ガス流路60を形成した後にガス流路60内に残留するパーティクルを除去するための洗浄で、ガス流路60内に水又は洗浄液を流すことが困難となる。このため、ガス流路60に伝熱ガスGを流動させた際にパーティクルがウエハW側に噴出する虞が生じる。このため、ガス流路60の高さ寸法Dは、90μm以上であることが好ましい。また、ガス流路60の高さ寸法Dが300μmを超える場合、ガス流路60が断熱層として機能して、静電チャック部材2の載置面2sの均熱性を保ちづらくなる虞がある。このため、ガス流路60の高さ寸法Dは、300μm以下であることが好ましい。
本実施形態の第1支持板11aと第2支持板11bとは、接合層11dを介して接合される。このため、ガス流路60の高さ寸法Dは、接合層11dの厚さ寸法d2と凹溝60Aの深さ寸法d1との総和である。本実施形態によれば、ガス流路60の高さ寸法Dを、接合層11dの厚さ寸法d2と凹溝60Aの深さ寸法d1とで確保することができるため、ガス流路60の断面積を確保しやすい。
本実施形態において、接合層11dの厚さ寸法d2は、5μm以上30μm以下、さらに7μm以上20以下であることがより好ましい。接合層11dの厚さ寸法d2を大きくしすぎると、接合層11dの形成時の膜厚の均一性を確保し難くなり、ガス流路60の高さ寸法Dが不安定となり伝熱ガスGによる冷却効果が不均一となる虞がある。また、接合層11dの厚さ寸法d2を大きくしすぎると、第1支持板11aと第2支持板11bとを積層して加圧する際に、接合層11dの一部がガス流路60側に変形、および浸入してガス流路60を埋め込んでしまう虞がある。このため、接合層11dの厚さ寸法d2を5μm以上30μm以下とすることが好ましい。
なお、ガス流路60の底面部60aおよび天面部60bは、それぞれ第1支持板11aと第2支持板11bとを積層して加圧する際に他方側に変形する場合がある。この場合、ガス流路60の高さ寸法Dは、ガス流路60の幅方向中央において最も小さくなる。本明細書におけるガス流路60の高さ寸法Dとは、ガス流路60の高さ寸法Dが幅方向に沿って変化する場合であっても、最も大きい部分の寸法であるとする。
ガス流路60の幅寸法Lは、500μm以上3000μm未満であることが好ましい。ガス流路60の幅寸法Lを500μm未満とする場合、ガス流路60内に水又は洗浄液を流すことが困難となる。このため、ガス流路60の幅寸法Lは、500μm以上とすることが好ましい。また、ガス流路60の幅寸法Lが3000μm以上である場合、第1支持板11aと第2支持板11bとを積層して加圧する際に発生する底面部60aおよび天面部60bの変形が顕著になり、ガス流路60の断面積を著しく小さくする虞がある。このため、ガス流路60の幅寸法Lは、3000μm未満であることが好ましい。
本実施形態のガス流路60は、天面部60bから底面部60aに向かうに従い幅寸法Lが大きくなる。本明細書において、ガス流路60の幅寸法Lは、ガス流路60の幅寸法Lが高さ方向に沿って変化する場合であっても、最も大きい部分の寸法であるとする。したがって、本実施形態の幅寸法Lは、底面部60aの幅方向の寸法である。
一対の側面部60c、60dのうち、一方はガス流路60の内周側に配置される内周側面部60cであり、他方は外周側に配置される外周側面部60dである。したがって、内周側面部60cは、中心軸Cの径方向外側を向き、外周側面部60dは、中心軸Cの径方向内側を向く。内周側面部60cおよび外周側面部60dは、ともに厚さ方向に対して傾斜する。したがって、内周側面部60cおよび外周側面部60dは、静電チャック部材2の中心軸Cを中心とする円錐面である。
内周側面部60cが厚さ方向に対し傾斜することで、ガス流路60の高さ寸法Dは、ガス流路60の幅中央から静電チャック部材2の径方向内側に向かうに従い徐々に小さくなる。このため、ガス流路60中に流れる伝熱ガスGの冷却効果は、ガス流路60の中央から静電チャック部材2の径方向内側に向かうに従い徐々に弱まる。同様に、外周側面部60dが厚さ方向に対し傾斜することで、ガス流路60の高さ寸法Dは、ガス流路60の幅中央から静電チャック部材2の径方向外側に向かうに従い徐々に小さくなる。このため、ガス流路60中に流れる伝熱ガスGの冷却効果は、ガス流路60の中央から静電チャック部材2の径方向外側に向かうに従い徐々に弱まる。本実施形態によれば、ガス流路60が設けられる領域とガス流路60が設けられない領域との境界部分において、伝熱ガスGによる冷却効率を徐々に弱めることができる。このため、ガス流路60が設けられる領域とガス流路60が設けられない領域との境界部分で急激な温度勾配が生じにくい。結果的に、載置面2sに搭載されるウエハWの温度分布の不均一を抑制することができる。
本実施形態によれば、ガス流路60は、円環状に延びる。このため、ウエハWが円板状である場合に、ウエハWを搭載する載置面2sをウエハWの中心軸C周りに環状に冷却することができウエハWの温度分布を均一にしやすい。
図1に示すように、吸着電極13は、誘電体基板11の内部に埋め込まれる。吸着電極13は、誘電体基板11の載置面2sに沿って板状に延びる。吸着電極13は、電圧を印加されることで、誘電体基板11の載置面2sにウエハWを保持する静電吸着力を生じさせる。
吸着電極13は、絶縁性物質と導電性物質の複合体から構成される。吸着電極13に含まれる絶縁性物質は、特に限定されないが、例えば、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、酸化イットリウム(III)(Y)、イットリウム・アルミニウム・ガーネット(YAG)およびSmAlOからなる群から選択される少なくとも1種であることが好ましい。吸着電極13に含まれる導電性物質は、炭化モリブデン(MoC)、モリブデン(Mo)、炭化タングステン(WC)、タングステン(W)、炭化タンタル(TaC)、タンタル(Ta)、炭化ケイ素(SiC)、カーボンブラック、カーボンナノチューブおよびカーボンナノファイバーからなる群から選択される少なくとも1種であることが好ましい。
吸着電極13には、吸着電極13に直流電圧を印加するための給電端子16が接続されている。給電端子16は、吸着電極13から下側に向かって延びる。給電端子16は、基台3、および誘電体基板11の一部を厚さ方向に貫通する端子用貫通孔17の内部に挿入されている。給電端子16の外周側には、絶縁性を有する端子用碍子23が設けられる。すなわち、給電端子16は、端子用碍子23の挿通孔15に挿入される。端子用碍子23は、金属製の基台3と給電端子16とを絶縁する。
給電端子16は、外部の電源21に接続されている。電源21は、吸着電極13に電圧を付与する。給電端子16の数、形状等は、吸着電極13の形態、すなわち単極型か、双極型かにより決定される。
基台3は、静電チャック部材2を下側から支持する。基台3は、平面視で円板状の金属部材である。基台3を構成する材料は、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限されるものではない。基台3を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタン(Ti)等の合金が好適に用いられる。基台3を構成する材料は、熱伝導性、導電性、加工性の観点からアルミニウム合金が好ましい。基台3における少なくともプラズマに曝される面は、アルマイト処理またはポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、基台3の全面が、前記のアルマイト処理または樹脂コーティングが施されていることがより好ましい。基台3にアルマイト処理または樹脂コーティングを施すことにより、基台3の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、基台3の耐プラズマ安定性が向上し、また、基台3の表面傷の発生も防止することができる。
基台3の躯体は、プラズマ発生用内部電極としても機能をも有する。基台3の躯体は、図示略の整合器を介して外部の高周波電源22に接続されている。
基台3は、接着剤によって静電チャック部材2に固定されている。すなわち、静電チャック部材2と基台3との間には、静電チャック部材2と基台3とを互いに接着する接着層55が設けられる。接着層55の内部には、静電チャック部材2を加熱するヒータが埋め込まれていてもよい。
基台3および接着層55には、これらを上下に貫通するガス導入孔30が複数設けられている。ガス導入孔30は、載置面2sに開口する。ガス導入孔30は、図示を省略するガス供給装置に繋がる。ガス導入孔30は、静電チャック部材2の第1ガス孔67に繋がる。ガス導入孔30は、第1ガス孔67に伝熱ガスGを供給する。ガス導入孔30は、筒状の碍子24に囲まれる。碍子24の外周面は、例えば接着剤などによって基台3に固定される。
次に、本実施形態の静電チャック部材2の製造方法について説明する。本実施形態の静電チャック部材2の製造方法は、支持板準備工程、第1接合工程、第2接合工程、ガス孔形成工程、および端子接続工程を有する。
支持板準備工程は、第1支持板11a、第2支持板11b、および第3支持板11cを準備する工程である。以下の説明では、第1支持板11a、第2支持板11b、および第3支持板11cの形成材料が酸化アルミニウム-炭化ケイ素(Al-SiC)複合焼結体であることとする。
支持板準備工程では、炭化ケイ素粉末および酸化アルミニウム粉末を含む混合粉末を所望の形状に成形し、その後、例えば1600℃~2000℃の温度、非酸化性雰囲気、好ましくは不活性雰囲気下にて所定時間、焼成することにより、第1支持板11a、第2支持板11b、および第3支持板11cを得ることができる。
第1接合工程は、第1支持板11aと第2支持板11bとを互いに接合するとともに支持板間にガス流路60を形成する工程である。第1接合工程の予備工程として第1支持板11aと第2支持板11bの互いに接合される面には、研磨が施される。ガス流路形成工程は、凹溝形成工程と、塗布工程と、接合工程と、を有する。すなわち、静電チャック部材2の製造方法は、凹溝形成工程と、塗布工程と、接合工程と、を有する。
図3に示すように凹溝形成工程では、第2支持板11bに凹溝60Aを形成する。凹溝60Aは、ブラスト加工やロータリー加工によって形成することができる。ロータリー加工とは、加工対象である第2支持板11bを中心軸C周りに回転させながら工具を加工面に押し当てて凹溝60Aを加工する加工方法である。ロータリー加工を採用する場合、短時間で安定した形状の凹溝60Aを形成することができ、安価に静電チャック部材2を製造できる。また、ロータリー加工では、凹溝60Aの加工時に、工具を加工面から徐々に離間させることで容易に傾斜する側面部60c、60dを形成することができる。一方で、ブラスト加工を採用する場合、凹溝60Aの深さ寸法d1を精密に制御することができ、高さ寸法Dの安定したガス流路60を形成し易い。
本実施形態では、第2支持板11bのみに凹溝60Aを形成する場合について説明した。しかしながら、凹溝60Aは、第1支持板11aのみに凹溝60Aを形成してもよいし、第1支持板11aと第2支持板11bとにそれぞれ凹溝60Aを形成してもよい。すなわち、凹溝形成工程は、第1支持板11a又は第2支持板11bのうち少なくとも一方に凹溝60Aを設ける工程であればよい。なお、第1支持板11aと第2支持板11bとにそれぞれ凹溝60Aを形成する場合、第1支持板11aおよび第2支持板11bの凹溝60Aは、厚さ方向からみて互いに重なり合う。この構成を採用する場合、形成されるガス流路60の高さ方向Dの寸法を大きくし易い。
図4に示す塗布工程では、まず、第1支持板11aおよび第2支持板11bと同一組成または主成分が同一の粉末材料を含む接合層ペースト11dAを用意する。次いで、第2支持板11bにおいて、凹溝60Aを形成した面の凹溝60A以外に接合層ペースト11dAを塗布する。なお、本実施形態では、第2支持板11bに接合層ペースト11dAを塗布する場合について説明したが、第1支持板11aに接合層ペースト11dAを塗布してもよい。すなわち、塗布工程は、第1支持板11aおよび第2支持板11bの少なくとも一方に接合層ペースト11dAを塗布する工程であればよい。
図5に示す接合工程では、第1支持板11aと第2支持板11bとを接合層ペースト11dAを介して厚さ方向に積層し、高温、高圧下にてホットプレスして一体化する。このホットプレスにおける雰囲気は、真空、あるいはAr、He、N等の不活性雰囲気が好ましい。また、圧力は1MPa~50MPa以下が好ましく5MPa~20MPaであることがより好ましい。熱処理温度は1600℃~1900℃であることが好ましく、1650℃~1850℃がより好ましい。
接合工程のホットプレスにより、接合層ペースト11dAは焼成、固化されて接合層11dが形成されるとともに接合層11dを介して第1支持板11aと第2支持板11bとが接合一体化される。なお、以下の説明において、第1接合工程によって接合一体化された第1支持板11aと第2支持板11bとの接合体を、接合支持板11Aと呼ぶ。
接合工程における熱処理温度を1700℃以上とすることで、接合工程において焼成される接合層11dにおいて絶縁性物質(例えば、酸化アルミニウム)の粒径を十分に成長させて平均一次粒子径を1.6μm以上とすることができ、接合層11dの耐電圧性を十分に確保することができる。
本実施形態では、第1支持板11aと第2支持板11bとが、接合層11dを介して接合される。しかしながら、第1支持板11aと第2支持板11bとは、直接的に接合されていてもよい。この場合、第1支持板11aと第2支持板11bの互いに対向する面を研磨したのちに上述の接合工程を行うことが好ましい。
第2接合工程は、第3支持板11cと接合支持板11Aとを互いに接合するとともに、支持板間に吸着電極13を形成する工程である。第2接合工程の予備工程として第3支持板11cと接合支持板11Aの互いに接合される面には、研磨が施される。第2接合工程では、まず第3支持板11c又は接合支持板11Aの何れか一方の一面に、導電性セラミックスなどの導電材料のペーストを塗布するとともに、上記導電材料の塗膜を形成した領域以外に接合層ペーストを塗布する。次いで、第3支持板11cおよび接合支持板11Aを、ペーストを塗布した面を挟んで重ね合わせ、高温、高圧下にてホットプレスして一体化する。このホットプレスにより、導電材料のペーストが焼成されて吸着電極13となるとともに、第3支持板11cと接合支持板11Aとが接合一体化される。
ガス孔形成工程は、第1支持板11a、第2支持板11b、および第3支持板11cを接合した接合体に、第1ガス孔67、および第2ガス孔68を形成して、ガス流路60を外部に開口させる工程である。ガス孔形成工程が行われた後には、洗浄工程が行われる。洗浄工程では、第1ガス孔67、又は第2ガス孔68から水又は洗浄液を流入させ、ガス流路60内のパーティクルを洗い流す。
端子接続工程は、第1支持板11a、第2支持板11b、および第3支持板11cを接合した接合体に貫通孔を設け当該貫通孔に給電端子16を配置するとともに給電端子と吸着電極13を接合する工程である。
静電チャック部材2は、以上の工程を経ることで製造される。また、製造された静電チャック部材2は、端子用碍子23および伝熱ガスGの流路用の碍子24を設けた基台3に搭載されて静電チャック装置1を構成する。
(変形例)
図6は、変形例の静電チャック部材102の部分断面模式図である。
上述の実施形態と同様に、静電チャック部材102は、誘電体基板111と、誘電体基板111の内部に埋め込まれる吸着電極113と、を備える。誘電体基板111の内部には、ガス流路60が設けられる。
本変形例の誘電体基板111は、第1支持板111aと第2支持板111bと接合層111dとを有する。本変形例の静電チャック部材102において、吸着電極113とガス流路60とは、ともに第1支持板111aと第2支持板111bとの間に配置される。すなわち、本変形例において、吸着電極113とガス流路60とは、同一平面上に配置される。吸着電極113は、ガス流路60に露出する。本変形例によれば、ガス流路60中を流れる伝熱ガスGによって吸着電極113を冷却することができ、静電チャック部材102の性能を安定させることができる。また、本変形例の吸着電極113は、ガス流路60と同一平面上に配置されるため、ガス流路60とともに、第1支持板111aと第2支持板111bとの間に形成することができる。このため、製造方法が必要以上に煩雑となることを抑制することができる。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。ここでは、本発明の優位性を確認するために、第1試験と第2試験とを行った。
[第1試験]
第1試験として、絶縁性を十分に確保できる接合層を形成するための適切な熱処理温度を確認する試験を行った。
(サンプルの作製)
以下の工程を経て第1試験の実施例1、実施例2、比較例1、比較例2のサンプルを作製した。
まず、91質量%の酸化アルミニウム粉末と、9質量%の炭化ケイ素粉末との混合粉末を成型、焼結し、円盤状の酸化アルミニウム-炭化ケイ素複合焼結体からなる一対のセラミックス板(第1支持板11a、および第2支持板11bに相当)を作製した。
次いで、一対のセラミック板において接合層11dと接する面に研磨加工を施し、算術平均粗さ(Ra)を0.2μmとした。次いで、スクリーン印刷法により、一方のセラミックス板の研磨面に導電層形成用ペーストと接合層ペースト11dAとを塗布した。
導電層形成用ペーストとしては、酸化アルミニウム粉末と炭化モリブデン粉末を、イソプロピルアルコールに分散させたものを用いた。導電層形成用ペーストにおける酸化アルミニウム粉末の含有量を25質量%とし、炭化モリブデン粉末の含有量を25質量%とした。
接合層ペースト11dAとしては、平均一次粒子径が2.0μmの酸化アルミニウム粉末を、イソプロピルアルコールに分散させたものを用いた。接合層ペースト11dAにおける酸化アルミニウム粉末の含有量を50質量%とした。
次いで、導電層形成用ペーストおよび接合層ペースト11dAを介して一対のセラミックス板の研磨面同士を向かい合わせにして、一対のセラミックス板を厚さ方向に積層した。次いで、この積層体を、アルゴン雰囲気下、加熱しながら、厚さ方向に加圧して接合一体化する接合工程を行った。接合工程を経ることで、接合層ペースト11dAが焼成され接合層11dが形成される。接合工程においては、加圧力を10MPa、熱処理および加圧する時間を2時間とした。
接合工程の熱処理温度は、実施例1、実施例2、比較例1、および比較例2のサンプルで、互いに異ならせている。各サンプルの接合工程における熱処理については、後段の表1にまとめて記す。
(平均一次粒子径の測定)
作製した各サンプルの接合層11dについて、絶縁性物質(Al)の平均一次粒子径の測定を行った。接合層11dを構成する絶縁性物質の平均一次粒子径は、日本電子社製の電解放出型走査電子顕微鏡(FE-SEM)で、切断面を観察し、インターセプト法により絶縁性物質200個の粒子径の平均を平均一次粒子径とした。測定結果を、後段の表1にまとめて記す。
(絶縁性評価)
作製した各サンプルの絶縁性を評価した。作製したサンプルの接合体の側面(セラミックス板の厚さ方向の側面)において、一対のセラミックス板、導電層、および接合層に接するようにカーボンテープを貼付した。次いで、一方のセラミックス板を、その厚さ方向に貫通し導電層に至る貫通電極を形成した。さらに、カーボンテープと貫通電極を介して、接合体に電圧を印加し、接合体が絶縁破壊する電圧を測定した。具体的には、3000Vの電圧を印加した状態でRF電圧を印加し10分保持し、その後500Vずつ徐々に電圧を印加して、10分保持し、測定した電流値が0.1mA(ミリアンペア)を超えたところを絶縁破壊とした。測定結果を、後段の表1にまとめて記す。
Figure 0007338674000001
表1に示す結果から、接合工程におい蹴る熱処理温度を1700℃以上とすることで、接合層11dの絶縁性物質の平均一次粒子径を1.6μm以上に成長させることができ、静電チャック部材の絶縁性を高めることができることが確認された。なお、一対のセラミック板に含まれる絶縁性物質の平均一次粒子径は複合層11dの絶縁性物質の平均一次粒子径よりも大きくなる。これは、セラミック板は複合層11dよりも多くの熱処理を経ることで、絶縁性物質の粒径がより成長し易いためである。
[第2試験]
第2試験として、洗浄を安定的に行うことができるガス流路60の形状を確認する試験を行った。
(サンプルの作製)
以下の工程を経て第1試験の実施例3~9、比較例3~10の各サンプルを作製した。
まず、91質量%の酸化アルミニウム粉末と、9質量%の炭化ケイ素粉末との混合粉末を成型、焼結し、円盤状の酸化アルミニウム-炭化ケイ素複合焼結体からなる一対のセラミックス板(第1支持板11a、および第2支持板11bに相当)を作製した。
次いで、一対のセラミック板において接合層11dと接する面に研磨加工を施し、算術平均粗さ(Ra)を0.2μmとした。さらに、一部のサンプルには、一対のセラミック板のうち一方の研磨面にブラスト加工、又はロータリー加工によって凹溝60Aを形成した。凹溝60Aの深さ寸法d1は、各サンプルで互いに異ならせている。各サンプルについて、凹溝60Aの形成の有無、凹溝60Aの形成方法、凹溝60Aの深さ寸法d1については、後段の表2にまとめて記す。
次いで、スクリーン印刷法により、一方のセラミックス板の研磨面に接合層ペースト11dAを塗布した。接合層ペースト11dAとしては、平均一次粒子径が2.0μmの酸化アルミニウム粉末を、イソプロピルアルコールに分散させたものを用いた。接合層ペースト11dAにおける酸化アルミニウム粉末の含有量を50質量%とした。凹溝60Aを形成しないサンプルについても、接合層ペースト11dAを設けない部分を用いて接合層ペースト11dAの塗布厚さに相当する深さを有する凹溝を形成した。接合層ペースト11dAの塗布厚さは、各サンプルで互いに異ならせている。接合層ペースト11dAの塗布厚さについては、後段の表2にまとめて記す。
次いで、接合層ペースト11dAを介して一対のセラミックス板の研磨面同士を向かい合わせにして、一対のセラミックス板を厚さ方向に積層した。次いで、この積層体を、アルゴン雰囲気下、加熱しながら、厚さ方向に加圧して接合一体化する接合工程を行った。接合工程を経ることで、接合層ペースト11dAが焼成され接合層11dが形成される。接合工程においては、加圧力を10MPa、熱処理温度を1700℃とし、熱処理および加圧する時間を2時間とした。これらの工程を経ることで、一対のセラミック板の間には、凹溝60Aおよび接合層ペースト11dAによって構成されるガス流路60が形成される。なお、ガス流路60の平面視形状は、図2に示す形状と略同じであり円環状である。次いで、ガス流路60に繋がる複数の第1ガス孔67と複数第2ガス孔68とを形成する。第1ガス孔67、および第2ガス孔68の配置は、図2と同様である。これにより、第1ガス孔67、ガス流路60、および第2ガス孔68が互いに連通する。
(ガス流路の寸法測定)
作製した各サンプルのガス流路60の高さ寸法D、および幅寸法Lをそれぞれ測定した。高さ寸法D、および幅寸法Lは、公知の方法で各サンプルを切断して観察面を研磨加工してガス流路60を露出させた観察サンプルを作製した。顕微鏡(デジタルマイクロスコープ:VHX-900:キーエンス社製)を用いて観察し各部の寸法を測定した。測定結果は後段の表2にまとめて記す。なお、顕微鏡での観察時において、ガス流路60に顕著な潰れが生じていた場合、目視判定として×とし、ガス流路60の形状が維持されている場合目視判定として〇として表2にまとめて記す。特に、比較例10のサンプルについては、ガス流路60の潰れが顕著であったためガス流路60の寸法測定が困難であった。
(ガス流路の洗浄試験)
作製した各サンプルのガス流路60について洗浄が可能か否かについて評価した。静電チャック部材2は、ガス流路60を形成した後にガス流路60に水を流してガス流路60を洗浄する。ガス流路60の潰れが顕著である場合、ガス流路60の断面積が小さくなりガス流路60に純水を流し難く洗浄を適切に行うことができない。ここでは、水圧を0.16MPaとして複数の第1ガス孔67からそれぞれ純水をガス流路60内に噴射し、第2ガス孔68から流出する純水の流量を測定する。測定結果は後段の表2にまとめて記す。なお、比較例10のサンプルについては、目視判定におけるガス流路60の中央部からの潰れが顕著であったため、洗浄試験を実施していない。
Figure 0007338674000002
表2において、「A~B」のように範囲指定した数値を記載して物は、取得した複数のデータの数値範囲を記載したものである。
表2の洗浄試験の結果において、「N.D」は、未検出(not detected)を表す。
表2の洗浄試験の結果において、比較例9、実施例3~実施例9の水量は、ガス流路の断面積に必ずしも比例しない。これは断面形状が水の流れ易さに影響したものと考えられる。
表2に示すように、ガス流路60の高さ寸法Dを90μm以上300μm以下であり、幅寸法Lを500μm以上とすることで、洗浄試験時に十分な流量をガス流路60内に流すことができ、ガス流路60を適切に洗浄できることが確認された。また、ガス流路60の幅寸法Lが3000μmである比較例10では、接合工程におけるガス流路60の底面部60a又は天面部60bの変形が顕著となりガス流路60が目視で潰れてはしまっていた。これにより、ガス流路60の幅寸法Lは、3000μm未満が好ましいことについて確認された。
以上に、本発明の様々な実施形態を説明したが、各実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
例えば、上述の実施形態および変形例では、静電チャック部材が1つの電極(吸着電極)のみを有する場合に説明した。しかしながら、静電チャック部材は、ヒータ電極、RF(Radio Frequency、高周波)電極などの他の電極をさらに有していてもよい。
1…静電チャック装置、2,102…静電チャック部材、2s…載置面、3…基台、11,111…誘電体基板、11a…支持板、11a,111a…第1支持板、11b,111b…第2支持板、11d,111d…接合層、11dA…接合層ペースト、13,113…吸着電極、60…ガス流路、60A…凹溝、D…高さ寸法、D…高さ方向、d1…深さ寸法、d2…厚さ寸法、L…幅寸法、W…ウエハ(試料)

Claims (7)

  1. 試料を搭載する載置面が設けられ厚さ方向に積層される第1支持板および第2支持板を有する誘電体基板と、
    前記誘電体基板の内部に埋め込まれる吸着電極と、を備え、
    前記第1支持板と前記第2支持板との間には、互いに対向する面のうち少なくとも一方に設けられ他方に覆われる凹溝によって形成されるガス流路が設けられ、
    前記ガス流路の高さ方向の寸法は、90μm以上300μm以下であり、
    前記ガス流路の幅寸法は、500μm以上3000μm未満である、
    静電チャック部材。
  2. 前記誘電体基板は、酸化アルミニウムと炭化ケイ素の複合焼結体である、
    請求項1に記載の静電チャック部材。
  3. 前記誘電体基板は、前記第1支持板と前記第2支持板との間に配置される接合層を有し、
    前記接合層を構成する絶縁性物質の平均一次粒子径は、1.6μm以上10.0μm以下である、
    請求項2に記載の静電チャック部材。
  4. 前記第1支持板と前記第2支持板とは、接合層を介して接合され、
    前記ガス流路の高さ寸法は、前記接合層の厚さ寸法と前記凹溝の深さ寸法との総和である、
    請求項1~3の何れか一項に記載の静電チャック部材。
  5. 前記吸着電極は、前記第1支持板と前記第2支持板との間に配置され前記ガス流路に露出する、
    請求項1~4の何れか一項に記載の静電チャック部材。
  6. 請求項1~5の何れか一項に記載の静電チャック部材と、
    前記静電チャック部材を前記載置面の反対側から支持する基台と、を備える、
    静電チャック装置。
  7. 請求項1~5の何れか一項に記載の静電チャック部材の製造方法であって、
    前記誘電体基板は、前記第1支持板と前記第2支持板との間に配置される接合層を有し、
    前記第1支持板に凹溝を形成する凹溝形成工程と、
    前記第1支持板および前記第2支持板の少なくとも一方に接合層ペーストを塗布する塗布工程と、
    前記第1支持板と前記第2支持板とを前記接合層ペーストを介して厚さ方向に積層し、加熱しながら加圧して接合する接合工程と、を有し、
    前記接合工程における熱処理温度を1700℃以上とする、
    静電チャック部材の製造方法。
JP2021210440A 2021-12-24 2021-12-24 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法 Active JP7338674B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021210440A JP7338674B2 (ja) 2021-12-24 2021-12-24 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
PCT/JP2022/045561 WO2023120258A1 (ja) 2021-12-24 2022-12-09 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021210440A JP7338674B2 (ja) 2021-12-24 2021-12-24 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法

Publications (2)

Publication Number Publication Date
JP2023094871A JP2023094871A (ja) 2023-07-06
JP7338674B2 true JP7338674B2 (ja) 2023-09-05

Family

ID=86902395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210440A Active JP7338674B2 (ja) 2021-12-24 2021-12-24 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法

Country Status (2)

Country Link
JP (1) JP7338674B2 (ja)
WO (1) WO2023120258A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024349A1 (en) 1998-09-08 2001-09-27 Applied Materials, Inc. Method of fabricating a semiconductor wafer support chuck apparatus having small diameter gas distribution ports for distributing a heat transfer gas
JP2013012616A (ja) 2011-06-30 2013-01-17 Kyocera Corp 載置用部材
JP2014165405A (ja) 2013-02-27 2014-09-08 Kyocera Corp 流路部材、これを用いた真空吸着装置および冷却装置ならびに流路部材の製造方法
JP2016207931A (ja) 2015-04-27 2016-12-08 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2017208527A (ja) 2016-05-13 2017-11-24 Toto株式会社 静電チャック
JP2018073613A (ja) 2016-10-28 2018-05-10 京セラ株式会社 ヒータ
JP2021141116A (ja) 2020-03-02 2021-09-16 東京エレクトロン株式会社 静電チャックの製造方法、静電チャック及び基板処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879879B2 (ja) * 2011-09-29 2016-03-08 住友大阪セメント株式会社 静電チャック装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024349A1 (en) 1998-09-08 2001-09-27 Applied Materials, Inc. Method of fabricating a semiconductor wafer support chuck apparatus having small diameter gas distribution ports for distributing a heat transfer gas
JP2013012616A (ja) 2011-06-30 2013-01-17 Kyocera Corp 載置用部材
JP2014165405A (ja) 2013-02-27 2014-09-08 Kyocera Corp 流路部材、これを用いた真空吸着装置および冷却装置ならびに流路部材の製造方法
JP2016207931A (ja) 2015-04-27 2016-12-08 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2017208527A (ja) 2016-05-13 2017-11-24 Toto株式会社 静電チャック
JP2018073613A (ja) 2016-10-28 2018-05-10 京セラ株式会社 ヒータ
JP2021141116A (ja) 2020-03-02 2021-09-16 東京エレクトロン株式会社 静電チャックの製造方法、静電チャック及び基板処理装置

Also Published As

Publication number Publication date
WO2023120258A1 (ja) 2023-06-29
JP2023094871A (ja) 2023-07-06

Similar Documents

Publication Publication Date Title
JP4040284B2 (ja) プラズマ発生用電極内蔵型サセプタ及びその製造方法
JP6064908B2 (ja) 静電チャック装置
KR102526558B1 (ko) 정전 척 장치
KR20080025012A (ko) 정전 척 및 그 제조 방법
JP2003160874A (ja) 被処理物保持体、半導体製造装置用サセプタおよび処理装置
JP2006128603A (ja) セラミックス部材及びその製造方法
US6693789B2 (en) Susceptor and manufacturing method thereof
US6872908B2 (en) Susceptor with built-in electrode and manufacturing method therefor
JP7322922B2 (ja) セラミックス接合体の製造方法
JP7110828B2 (ja) 静電チャック装置
JP4275682B2 (ja) 静電チャック
JP2001308165A (ja) サセプタ及びその製造方法
JP7338674B2 (ja) 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
JP7338675B2 (ja) 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
JP7400854B2 (ja) 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
WO2023176936A1 (ja) 静電チャック部材、および静電チャック装置
US20210074569A1 (en) Electrostatic puck and method of manufacture
JP7327713B1 (ja) セラミックス接合体、静電チャック装置、及びセラミックス接合体の製造方法
TWI836170B (zh) 陶瓷接合體、靜電卡盤裝置、陶瓷接合體的製造方法
JP2019179780A (ja) 静電チャック装置の製造方法
WO2024004778A1 (ja) 半導体製造装置用部材及び静電チャック装置
TWI772767B (zh) 電極埋設構件及其製造方法、靜電夾、陶瓷製加熱器
JP2022133003A (ja) 複合導電性部材、試料保持具、静電チャック装置
JP2020045253A (ja) セラミックス接合体
JP2023056710A (ja) ウエハ載置台

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7338674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150