JP2017183455A - 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法 - Google Patents

窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法 Download PDF

Info

Publication number
JP2017183455A
JP2017183455A JP2016067390A JP2016067390A JP2017183455A JP 2017183455 A JP2017183455 A JP 2017183455A JP 2016067390 A JP2016067390 A JP 2016067390A JP 2016067390 A JP2016067390 A JP 2016067390A JP 2017183455 A JP2017183455 A JP 2017183455A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
substrate
warp
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067390A
Other languages
English (en)
Other versions
JP6735588B2 (ja
Inventor
丈士 田中
Takeshi Tanaka
丈士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Sciocs Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2016067390A priority Critical patent/JP6735588B2/ja
Publication of JP2017183455A publication Critical patent/JP2017183455A/ja
Application granted granted Critical
Publication of JP6735588B2 publication Critical patent/JP6735588B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】放熱性基板を有する半導体装置を高品質かつ容易に製造することができる技術を提供する。【解決手段】300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、放熱性基板の第1主面と反対の第2主面側に設けられ、第1反り抑制層と同じ材料からなる第2反り抑制層と、第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、を有する。【選択図】図1

Description

本発明は、窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法に関する。
窒化ガリウムなどのIII族窒化物半導体は、シリコンよりも高い飽和自由電子速度や高い絶縁破壊耐圧を有している。このため、窒化物半導体は、例えば携帯電話の基地局用などの高周波用途の半導体装置への応用が期待されている。
従来では、窒化物半導体系の半導体装置は、サファイア基板等を用いて製造されることが多かった。しかしながら、サファイア基板等は熱伝導率が低く、半導体装置の放熱性が不充分となっていた。そこで、窒化物半導体系の半導体装置の放熱性を向上させるため、多結晶ダイヤモンド基板等の放熱性基板を利用することが提案されている(例えば特許文献1参照)。
特開2009−166160号公報
しかしながら、上述のような放熱性基板を用いて窒化物半導体系の半導体装置を製造する場合では、放熱性基板の線膨張係数と窒化物半導体の線膨張係数との差が大きいため、高品質な単結晶の窒化物半導体層を放熱性基板上に直接形成することが困難となっていた。
本発明の目的は、放熱性基板を有する半導体装置を高品質かつ容易に製造することができる技術を提供することにある。
本発明の一態様によれば、
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、を有する窒化物半導体テンプレートが提供される。
本発明の他の態様によれば、
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、
前記成長下地層上に設けられ、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体と、を有する窒化物半導体積層物が提供される。
本発明のさらに他の態様によれば、
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、を有する窒化物半導体テンプレートの製造方法が提供される。
本発明のさらに他の態様によれば、
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、
前記成長下地層上に、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体を形成する工程と、を有する窒化物半導体積層物の製造方法が提供される。
本発明によれば、放熱性基板を有する半導体装置を高品質かつ容易に製造することができる。
本発明の一実施形態に係る窒化物半導体テンプレートを示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示すフローチャートである。 反り抑制層を形成する成膜装置を示す概略構成図である。 反り抑制層形成工程を示す断面図である。 イオン注入工程を示す断面図である。 基板接合工程を示す断面図である。 本発明の一実施形態に係る窒化物半導体積層物を示す断面図である。 本発明の一実施形態に係る半導体装置を示す断面図である。
<本発明の一実施形態>
以下、本発明の一実施形態について図面を参照しながら説明する。
(1)窒化物半導体テンプレート
まず、図1を用い、本実施形態に係る窒化物半導体テンプレートについて説明する。図1は、本実施形態に係る窒化物半導体テンプレートを示す断面図である。
窒化物半導体テンプレート10は、後述する窒化物半導体積層物20を製造する際に基体として用いられる基板状の構造体として構成されている。具体的には、窒化物半導体テンプレート10は、例えば、放熱性基板100と、第1反り抑制層112と、第2反り抑制層114と、成長下地層120と、を有している。
(放熱性基板)
放熱性基板100は、その上に形成される層(後述の窒化物半導体の積層体200)で生じた熱を外部に効率よく放出するヒートシンクとして機能するとともに、後述する成長下地層120等を支持する支持基板として機能するよう構成されている。なお、以下において、放熱性基板100の第1主面を「表面102」とし、放熱性基板100の第1主面と反対の第2主面を「裏面104」とする。
放熱性基板100の熱伝導率(熱伝導度)は、例えば、室温(300K)において6W/(cm・K)以上とする。放熱性基板100の熱伝導率が300Kにおいて6W/(cm・K)未満であると、放熱性基板100の放熱性が不充分となる。これに対して、放熱性基板100の熱伝導率を、窒化ガリウム(GaN)の熱伝導率(300Kにおいて約2.2W/(cm・K))よりも高く、300Kにおいて6W/(cm・K)以上とすることにより、放熱性基板100の放熱性を向上させ、後述する半導体装置30の性能を向上させることができる。なお、放熱性基板100の熱伝導率は高ければ高いほどよいため、熱伝導率の上限については特に制限はないが、放熱性基板100の入手性の観点から、放熱性基板100の熱伝導率は、例えば、300Kにおいて30W/(cm・K)以下とすることが好ましい。
放熱性基板100は、例えば、多結晶ダイヤモンド基板とする。なお、放熱性基板100として適用される多結晶ダイヤモンド基板としては、0.1%程度の窒素を含むタイプI、または窒素をほとんど含まないタイプIIaが挙げられる。なお、放熱性基板100として適用される多結晶ダイヤモンドとしては、窒素をほとんど含まずホウ素を含むタイプIIbは除かれる。放熱性基板100が多結晶ダイヤモンド基板であれば、その熱伝導率は6〜15W/(cm・K)程度となり、充分な放熱性を確保することができる。また、多結晶ダイヤモンド基板(タイプIIbを除く)は高抵抗であるため(約1016Ω・cm)、後述する半導体装置30において放熱性基板100側へのリーク電流を抑制することができる。また、放熱性基板100として用いられるダイヤモンド基板を多結晶とすることにより、単結晶のダイヤモンド基板よりも安価に入手することができる。
なお、放熱性基板100の厚さは、例えば、0.1mm以上1mm以下である。
(反り抑制層)
第1反り抑制層112および第2反り抑制層114は、それらの間に放熱性基板100を挟み込むことにより、放熱性基板100の反りを抑制するよう構成されている。具体的には、第1反り抑制層112は、放熱性基板100の表面102側に設けられ、第2反り抑制層114は、放熱性基板100の裏面104側に設けられている。また、第1反り抑制層112および第2反り抑制層114は、互いに同一の窒化物半導体からなっている。
ここで、放熱性基板100として用いられる多結晶ダイヤモンド基板の線膨張係数は、1.1×10−6/Kであり、GaNのa軸方向の線膨張係数(5.59×10−6/K)よりも低くなっている。このため、放熱性基板の片面にのみ直接GaN層を形成する(例えば接合する)と、放熱性基板の温度を変化させた際に、放熱性基板とGaN層との線膨張係数差に起因して、GaN層を形成した放熱性基板が反ってしまう可能性がある。
これに対して、本実施形態では、上述のように放熱性基板100の両面に反り抑制層(112,114)を設けることにより、窒化物半導体テンプレート10を後述する窒化物半導体の積層体の結晶成長温度に加熱した場合や、窒化物半導体テンプレート10の温度を結晶成長温度から下降させた場合であっても、後述する成長下地層120を有する窒化物半導体テンプレート10に反りが生じることを抑制することができる。
また、本実施形態では、第1反り抑制層112および第2反り抑制層114を窒化物半導体により構成することにより、第1反り抑制層112および第2反り抑制層114と放熱性基板100との接合体としての線膨張係数を、後述する単結晶の窒化物半導体からなる成長下地層120の線膨張係数と近づけることができる。これにより、第1反り抑制層112と成長下地層120との間に生じる熱応力を低減することができる。
第1反り抑制層112および第2反り抑制層114は、例えば、窒化アルミニウム(AlN)からなっている。AlNは、窒化物半導体の中でも、比較的、基板の種類に依存せずに成膜することが可能である。したがって、放熱性基板100が例えば多結晶ダイヤモンド基板であっても、放熱性基板100の表面102側および裏面104側にそれぞれ第1反り抑制層112および第2反り抑制層114を容易に形成することが可能となる。また、AlNは、1000℃を超える高温でも安定で、分解し難い性質を有している。これにより、窒化物半導体テンプレート10を後述する窒化物半導体の積層体の結晶成長温度に加熱した場合であっても、第1反り抑制層112および第2反り抑制層114の分解または結晶性の低下を抑制することができる。
第1反り抑制層112および第2反り抑制層114のそれぞれは、例えば、アモルファスまたは多結晶とする。なお、放熱性基板100としての多結晶ダイヤモンド基板に第1反り抑制層112および第2反り抑制層114を形成すれば、必然的に第1反り抑制層112および第2反り抑制層114は、アモルファスまたは多結晶となる。これにより、第1反り抑制層112および第2反り抑制層114のそれぞれにおいて、主面に沿った方向の熱膨張および熱収縮を特定の方向に偏らせずに等方的とすることができる。その結果、第1反り抑制層112上に形成される層や放熱性基板100に対して、第1反り抑制層112および第2反り抑制層114のそれぞれの主面に沿った方向に均等に熱応力がかかるようにすることができ、特定の方向への窒化物半導体テンプレート10の反りの発生を抑制することができる。
また、第1反り抑制層112および第2反り抑制層114のそれぞれの厚さは、例えば、0.1μm以上50μm以下とする。第1反り抑制層112および第2反り抑制層114のそれぞれの厚さが0.1μm未満であると、第1反り抑制層112および第2反り抑制層114のそれぞれの強度が不足し、第1反り抑制層112および第2反り抑制層114のうちの少なくともいずれか一方が破れてしまう可能性がある。その結果、第1反り抑制層112および第2反り抑制層114による反り抑制効果が不充分となるか、或いは得られない可能性がある。これに対して、第1反り抑制層112および第2反り抑制層114のそれぞれの厚さを0.1μm以上とすることにより、第1反り抑制層112および第2反り抑制層114のそれぞれにおいて所定の強度を確保し、第1反り抑制層112および第2反り抑制層114のうちの少なくともいずれか一方が破れてしまうことを抑制することができる。その結果、第1反り抑制層112および第2反り抑制層114による反り抑制効果を充分に得ることができる。一方で、第1反り抑制層112および第2反り抑制層114のそれぞれの厚さが50μm超であると、第1反り抑制層112が厚くなることで、第1反り抑制層112を介した熱伝導性が低下し、後述する半導体装置において第1反り抑制層112から放熱性基板100への放熱性が低下する可能性がある。また、第2反り抑制層114が厚くなることで、第2反り抑制層114を介した熱伝導性が低下し、後述する窒化物半導体の積層体の結晶成長を行う際に放熱性基板100の温度を制御し難くなる可能性がある。これに対して、第1反り抑制層112および第2反り抑制層114のそれぞれの厚さを50μm以下とすることにより、第1反り抑制層112を介した熱伝導性の低下を抑制し、後述する半導体装置において第1反り抑制層112から放熱性基板100への放熱性を向上させることができる。また、第2反り抑制層114を介した熱伝導性の低下を抑制し、後述する窒化物半導体の積層体の結晶成長を行う際に放熱性基板100の温度を制御し易くすることができる。
また、第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値(第1反り抑制層112の厚さをd1、第2反り抑制層114の厚さをd2としたとき、|d1−d2|)は、例えば、1.4μm以下とする。第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値が1.4μm超であると、第1反り抑制層112の曲げ剛性と第2反り抑制層114の曲げ剛性との差が大きくなり、放熱性基板100を有する窒化物半導体テンプレート10を窒化物半導体の結晶成長温度まで上昇させた際などに、窒化物半導体テンプレート10が反ってしまう可能性がある。具体的には、例えば放熱性基板100の板厚を400μmとし、|d1−d2|を1.5μmとし、放熱性基板100の直径を4インチとした場合に、980℃に加熱したときの放熱性基板100の反りが50μm以上となる。このため、反りによる温度ムラ(熱分布)の発生などに起因して放熱性基板100の使用が困難となる。これに対して、第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値を1.4μm以下とすることにより、第1反り抑制層112の曲げ剛性と第2反り抑制層114の曲げ剛性とを近づけることができ、放熱性基板100を有する窒化物半導体テンプレート10を窒化物半導体の結晶成長温度まで上昇させた際などに、窒化物半導体テンプレート10の反りの発生を抑制することができる。なお、第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値は小さければ小さいほどよいため、第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値の下限については、特に制限はなく、0以上とする。
(成長下地層)
成長下地層120は、後述する窒化物半導体の積層体をエピタキシャル成長させる下地層として構成され、第1反り抑制層112上に設けられている。成長下地層120は、例えば、単結晶の窒化物半導体からなっており、具体的には、単結晶のGaNからなっている。本実施形態では、成長下地層120は、例えば、後述するように、単結晶のGaN基板としての下地層提供基板の一部を切り出すことにより形成されている。
成長下地層120の表面の平均転位密度は、例えば、1×10個/cm未満とする。成長下地層120の表面の平均転位密度が1×10個/cm以上であると、成長下地層120の上に形成される後述の窒化物半導体の積層体の結晶性が低下する可能性がある。これに対して、成長下地層120の表面の平均転位密度を1×10個/cm未満とすることにより、当該平均転位密度は、一般的なGaN膜の平均転位密度(例えば1×10個/cm以上)よりも低くなる。これにより、成長下地層120の上に形成される後述の窒化物半導体の積層体の結晶性を向上させることができる。
成長下地層120は、例えば、半絶縁性を有している。具体的には、成長下地層120の抵抗率(比抵抗)は、例えば、10Ω・cm以上とし、好ましくは、10Ω・cm以上1012Ω・cm以下とする。成長下地層120の抵抗率が10Ω・cm未満であると、後述の半導体装置において、成長下地層120上の窒化物半導体の積層体から成長下地層120への自由電子の拡散(リーク電流)等が生じる可能性がある。これに対して、成長下地層120の抵抗率を10Ω・cm以上とすることにより、当該抵抗率は、例えば半導体レーザ用GaN基板に用いられる一般的な下地層の抵抗率(例えば10−3〜10−2Ω・cm)よりも高くなる。これにより、後述の半導体装置において、窒化物半導体の積層体から成長下地層120への自由電子の拡散(リーク電流)等を抑制することができる。
なお、成長下地層120は、例えば、鉄(Fe)等の遷移金属を含んでいる。これにより、成長下地層120において、上記した抵抗率を実現することができる。
成長下地層120の厚さは、例えば、1μm以上10μm未満とする。成長下地層120の厚さが1μm未満であると、成長下地層120の上に窒化物半導体の積層体を安定してエピタキシャル成長させることが困難となる。これに対して、成長下地層120の厚さを1μm以上とすることにより、成長下地層120の上に窒化物半導体の積層体を安定してエピタキシャル成長させることができる。一方で、成長下地層120の厚さが10μm以上であると、形成材料の増加によってコストが増加する可能性があり、また、成長下地層120を介した熱伝導性が低下する可能性がある。これに対して、成長下地層120の厚さを10μm未満とすることにより、形成材料の削減によって低コスト化を図ることができ、さらには成長下地層120を薄膜化することにより、成長下地層120を介した熱伝導性を向上させることができる。
なお、第1反り抑制層112上に形成される成長下地層120が上述の第1反り抑制層112とともに反り抑制層として機能する場合は、第1反り抑制層112の厚さ及び成長下地層120の厚さの合計と第2反り抑制層114の厚さとの差の絶対値(第1反り抑制層112の厚さをd1、第2反り抑制層114の厚さをd2とし、成長下地層120の厚さをd3としたとき、|(d1+d3)−d2|)は、例えば、1.4μm以下とすることが好ましい。これにより、第1反り抑制層112および成長下地層120の合計の曲げ剛性と第2反り抑制層114の曲げ剛性とを近づけることができ、放熱性基板100を有する窒化物半導体テンプレート10を窒化物半導体の結晶成長温度まで上昇させた際などに、窒化物半導体テンプレート10の反りの発生を抑制することができる。
(2)窒化物半導体テンプレートの製造方法
次に、図1〜図6を用い、本実施形態に係る窒化物半導体テンプレートの製造方法について説明する。なお、本実施形態に係る窒化物半導体テンプレートの製造方法は、半導体装置の製造方法の一部を構成している。図2は、本実施形態に係る半導体装置の製造方法を示すフローチャートである。なお、ステップをSと略している。図3は、反り抑制層を形成する成膜装置を示す概略構成図である。図4は、反り抑制層形成工程を示す断面図である。図5は、イオン注入工程を示す断面図である。図6は、基板接合工程を示す断面図である。
本実施形態では、以下に示すS110〜S136を実施することで、窒化物半導体テンプレート10を製造する例について説明する。
(S110:放熱性基板用意工程)
図2に示すように、まず、放熱性基板100を用意する。具体的には、放熱性基板100として、例えば、多結晶ダイヤモンド基板を用意する。なお、このとき、例えば、放熱性基板100の表面102と裏面104とを鏡面となるように研磨しておく。これにより、放熱性基板100の表面102側および裏面104側にそれぞれ第1反り抑制層112および第2反り抑制層114を滑らかに形成することができる。その結果、第1反り抑制層112と成長下地層120との密着性を向上させるとともに、第1反り抑制層112を介した熱伝導性を向上させることができる。一方で、例えば、放熱性基板100の表面102と裏面104とを所定の面粗さとなるよう形成してもよい。これにより、アンカー効果により、第1反り抑制層112および第2反り抑制層114のそれぞれの放熱性基板100への密着性を向上させることができる。その結果、第1反り抑制層112および第2反り抑制層114の反り抑制効果を向上させることができる。
(S120:第1,第2反り抑制層形成工程)
次に、例えば図3に示す成膜装置400を用い、放熱性基板100の表面102側に窒化物半導体からなる第1反り抑制層112を形成するとともに、放熱性基板100の裏面104側に第1反り抑制層112と同じ材料からなる第2反り抑制層114を形成する。
図3に示すように、成膜装置400は、加熱手段としてのヒータ407を有している。ヒータ407は、例えば筒形状を有し、鉛直方向に立設されている。ヒータ407の内側には、石英等の耐熱性材料からなる気密容器403が設けられている。気密容器403の内部には、成膜室401が構成されている。成膜室401内には、放熱性基板100を水平姿勢で鉛直方向に所定の間隔をあけて多段に保持する基板保持具417が設けられている。なお、基板保持具417は、それぞれの放熱性基板100の周縁部を保持するようになっている。また、基板保持具417は、中心軸を中心として回転するよう構成されている。成膜室401内には、第1ノズル449aと、第2ノズル449bとが設けられている。第1ノズル449aには、III族原料ガス(例えば、トリメチルアルミニウム(TMA)ガス)と、キャリアガスとしての水素(H)ガスと、を供給するガス供給管と、窒素(N)ガスを供給するガス供給管(不図示)とが接続されている。一方、第2ノズル449bには、V族原料ガス(窒素含有ガス)としてのアンモニア(NH)ガスを供給するガス供給管が接続されている。第1ノズル449aおよび第2ノズル449bのそれぞれは、成膜室401内の放熱性基板100の周縁部に隣接して配置され、気密容器403の内壁の下部から上部に沿って、放熱性基板100の配列方向上方に向かって立ち上がるように設けられている。第1ノズル449aおよび第2ノズル449bには、成膜室401内の放熱性基板100に向けて上記した原料ガスを供給するガス供給孔450a,450bがそれぞれ設けられている。ガス供給孔450a,450bのそれぞれは、気密容器403の下部から上部に亘って互いに均等な間隔で複数設けられている。一方、気密容器403には、基板保持具417を挟んで第1ノズル449aおよび第2ノズル449bと反対側の位置に、成膜室401内の雰囲気を排気する排気管431が設けられている。排気管431には、圧力調整弁(不図示)を介して、真空ポンプ(不図示)等が接続されている。
第1,第2反り抑制層形成工程S120は、上述の成膜装置400を用い、例えば以下の処理手順で実施することができる。まず、基板保持具417に所定数の放熱性基板100を装填させ、成膜室401内に基板保持具417を搬入する。次に、成膜室401内の放熱性基板100の加熱および成膜室401内の雰囲気の排気を実施しながら、第1ノズル449aから成膜室401内へキャリアガスとしてのHガスを供給する。そして、成膜室401内の放熱性基板100の温度が所望の成膜温度に達し、成膜室401内の圧力が所望の成膜圧力に到達したとき、第1ノズル449aのガス供給孔450aから放熱性基板100に対してHガスおよびTMAガスを供給するとともに、第2ノズル449bのガス供給孔450bから放熱性基板100に対してNHガスを供給する。これにより、複数の放熱性基板100に対して均等に原料ガスを供給することができるとともに、それぞれの放熱性基板100の表面102および裏面104の両方に対しても原料ガスを同時に供給することができる。
その結果、図4に示すように、放熱性基板100の表面102側および裏面104側のそれぞれに、互いに同一の窒化物半導体(例えばAlN)からなる第1反り抑制層112および第2反り抑制層114を同時に形成することができる。これにより、第1反り抑制層112および第2反り抑制層114によって放熱性基板100を挟み込む(サンドイッチする)ことができる。
このとき、第1反り抑制層112および第2反り抑制層114の成膜温度を、例えば500℃以上1450℃以下とする。成膜温度を500℃以上1450℃以下として、多結晶ダイヤモンド基板からなる放熱性基板100に反り抑制層(112,114)を形成することにより、第1反り抑制層112および第2反り抑制層114のそれぞれを、アモルファスまたは多結晶とすることができる。
また、このとき、上述の成膜装置400において、第1ノズル449aのガス供給孔450aおよび第2ノズル449bのガス供給孔450bから放熱性基板100の表面102および裏面104の両方に対して原料ガスを同時かつ均等に供給する。これにより、第1反り抑制層112の厚さと第2反り抑制層114の厚さとの差の絶対値を1.4μm以下とすることができ、好ましくは、第1反り抑制層112の厚さと第2反り抑制層114の厚さとをほぼ等しくすることができる。
第1反り抑制層112および第2反り抑制層114のそれぞれの厚さが所定の厚さ(例えば0.1μm以上50μm以下)となったら、成膜室401内へのTMAガスの供給を停止し、ヒータ407による加熱を停止する。そして、成膜室401内の温度が500℃以下となったらNHガスの供給を停止し、成膜室401内の雰囲気をNガスへ置換して大気圧に復帰させる。その後、成膜室401内を搬出可能な温度まで低下させた後、第1反り抑制層112および第2反り抑制層114が形成された放熱性基板100を成膜室401内から搬出する。
(S130:成長下地層形成工程)
次に、以下の成長下地層形成工程S130により、第1反り抑制層112上に、単結晶の窒化物半導体からなる成長下地層120を形成する。本実施形態の成長下地層形成工程S130は、例えば、イオン注入工程S132と、基板接合工程S134と、基板切断工程S136と、を有している。
(S132:イオン注入工程)
図5に示すように、まず、成長下地層120の基となる下地層提供基板130を用意する。下地層提供基板130は、単結晶の窒化物半導体からなる基板とし、例えば、単結晶のGaN基板(自立GaN基板)とする。なお、下地層提供基板130の主面を、c面((0001)面)とする。
このとき、下地層提供基板130の表面の平均転位密度を例えば1×10個/cm未満とする。例えば、下地層提供基板130を形成する成長手法や成長条件(例えば、成長温度、成長圧力、V/III比(III族原料ガス流量に対するV族原料ガス流量の比率)、成長速度)等を適宜調整することにより、下地層提供基板130の表面の平均転位密度を上記所定値とすることができる。
また、このとき、下地層提供基板130を半絶縁性とし、下地層提供基板130の抵抗率を例えば10Ω・cm以上とする。下地層提供基板130を形成する際に、例えば遷移金属等をドープすることにより、下地層提供基板130の抵抗率を上記所定値とすることができる。
次に、図5に示すように、下地層提供基板130に対して、イオン注入法により、水素(H)イオンの注入を行う。このとき、下地層提供基板130のGa極性面(c+面)およびN極性面(c−面)のうち、N極性面の側からイオン注入を行う。これにより、下地層提供基板130内には、N極性面から注入エネルギー(加速電圧)に応じて所定の深さにHイオンが高濃度に注入されたイオン注入領域132が形成される。N極性面からのイオン注入領域132の深さは、例えば1μm以上10μm未満とする。
(S134:基板接合工程)
次に、図6に示すように、イオン注入後の下地層提供基板130を、放熱性基板100上の第1反り抑制層112に接合させる。このとき、例えば、プラズマ活性化接合法(表面活性化接合法)により、下地層提供基板130を第1反り抑制層112に接合させる。プラズマ活性化接合法では、例えば、高真空中でArプラズマ等を生成させ、Arイオンを第1反り抑制層112に照射させる。これにより、第1反り抑制層112の表面を、ダングリングボンドが露出した状態とする。そして、下地層提供基板130を第1反り抑制層112の活性化された表面と接合する。これにより、原子レベルで下地層提供基板130と第1反り抑制層112とを接合することができる。なお、このとき、下地層提供基板130のN極性面と第1反り抑制層112とを接合させる。
(S136:基板切断工程)
次に、下地層提供基板130において、イオン注入領域132での剥離を行う。具体的には、下地層提供基板130と放熱性基板100との接合体に対して熱処理を行うことで、下地層提供基板130内の結晶の結合をイオン注入領域132で切断する。これにより、下地層提供基板130の一部を第1反り抑制層112に接合させた状態で残存させつつ、下地層提供基板130の他部を剥離する。このように、下地層提供基板130の一部を第1反り抑制層112から所定の厚さで切断することで、単結晶のGaNからなる成長下地層120を形成する(図1参照)。なお、このとき、成長下地層120の表面(第1反り抑制層112との接合面と反対側の面)は、Ga極性面となる。
以上により、図1に示すように、本実施形態の窒化物半導体テンプレート10が製造される。
(3)窒化物半導体積層物の製造方法
次に、図2および図7を用い、本実施形態に係る窒化物半導体積層物の製造方法について説明する。なお、本実施形態に係る窒化物半導体積層物の製造方法は、半導体装置の製造方法の一部を構成している。図7は、本実施形態に係る窒化物半導体積層物を示す断面図である。
本実施形態の窒化物半導体積層物20は、後述する半導体装置を製造する際に基体として用いられる基板状の構造体である。本実施形態では、上述のS110〜S136の後に、以下に示すS140を実施することで、窒化物半導体積層物20を製造する例について説明する。なお、本実施形態では、例えば、半導体装置として、電界効果トランジスタ(FET:Field Effect Transistor)の一つである高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)を製造する際に基体として用いられる窒化物半導体積層物20を製造する場合を説明する。
(S140:積層体形成工程)
図7に示すように、例えば、有機金属気相成長(MOVPE:Metal Organic Vapor Phase Epitaxy)装置を用い、以下の手順により、上述した窒化物半導体テンプレート10を基体とし、窒化物半導体テンプレート10の成長下地層120上に窒化物半導体の積層体200を形成する。
まず、MOVPE装置の処理室内に、窒化物半導体テンプレート10を搬入する。そして、MOVPE装置の処理室内に、Hガス(または、HガスおよびNガスの混合ガス)を供給し、窒化物半導体テンプレート10を所定の成長温度(例えば1000℃以上1100℃以下)まで昇温させる。窒化物半導体テンプレート10の温度が所定の成長温度となったら、例えば、III族原料ガスとしてトリメチルガリウム(TMG)ガスと、V族原料としてNHガスとを、窒化物半導体テンプレート10に対して供給する。これにより、単結晶GaNからなる成長下地層120上に、単結晶GaNからなる中間層210をエピタキシャル成長させる。なお、中間層210は、その上に電子走行層220および電子供給層230を安定的にエピタキシャル成長させるバッファ層として機能するようになる。
なお、中間層210は、炭素(C)またはFeをドープすることにより、中間層210を高抵抗化させることが好ましい。これにより、後述する電子走行層220から中間層210へのリーク電流を抑制することができる。炭素ドープは、中間層210の成長条件を適宜調整し、III族原料ガスのTMGガスから分解して生じるメチル基中の炭素を中間層210中に導入することで、実現することができる。一方、鉄ドープは、TMGガスおよびNHガスと同時に、CpFe(ジシクロペンタジエニル鉄)を供給することで実現することができる。
次に、中間層210の形成と同様にして、所定の成長温度(例えば1000℃以上1100℃以下)で、TMGガスとNHガスとを窒化物半導体テンプレート10に対して供給することで、中間層210上に単結晶GaNからなる電子走行層(チャネル層)220をエピタキシャル成長させる。なお、電子走行層220の形成においては、炭素または鉄のドープは行わない。
次に、所定の成長温度(例えば1000℃以上1200℃以下)で、TMAガス、TMGガス、およびNHガスを窒化物半導体テンプレート10に対して供給することで、電子走行層220上に単結晶AlGaNからなる電子供給層(バリア層)230をエピタキシャル成長させる。これにより、窒化物半導体テンプレート10上に窒化物半導体の積層体200を有する窒化物半導体積層物20が形成される。
電子供給層230の成長が完了したら、III族原料ガスの供給と、窒化物半導体積層物20の加熱とを停止する。そして、窒化物半導体積層物20の温度が500℃以下となったら、NHガスの供給を停止する。その後、MOVPE装置の処理室内の雰囲気をNガスへ置換して大気圧に復帰させるとともに、処理室内を基板搬出可能な温度にまで低下させた後、窒化物半導体積層物20を処理室内から搬出する。
以上により、本実施形態の窒化物半導体積層物20が製造される。
なお、上述の積層体形成工程S140では、上述のように、窒化物半導体テンプレート10において放熱性基板100の両面に反り抑制層(112,114)が設けられていることにより、放熱性基板100を有する窒化物半導体テンプレート10を窒化物半導体の積層体200の結晶成長温度に加熱した場合や、窒化物半導体テンプレート10の温度を結晶成長温度から下降させた場合であっても、窒化物半導体テンプレート10の反りの発生を抑制することができる。これにより、窒化物半導体の積層体200の結晶成長時において、ヒータが内蔵されたサセプタ上に窒化物テンプレート10を載置した際に、窒化物半導体テンプレート10の反りに起因した温度ムラの発生を抑制することができ、面内均一な結晶性を有する窒化物半導体の積層体200を形成することができる。また、降温時において窒化物半導体テンプレート10の反りを抑制することにより、窒化物半導体の積層体200におけるクラック等の発生を抑制することができる。
また、上述の積層体形成工程S140では、上述のように、窒化物半導体テンプレート10における成長下地層120の表面の平均転位密度を1×10個/cm未満とすることにより、成長下地層120の上に形成される窒化物半導体の積層体200の結晶性を向上させることができる。また、窒化物半導体の積層体200の結晶成長時において、成長下地層120に熱応力が印加された場合であっても、成長下地層120や、その上に成長される窒化物半導体の積層体200において転位を起点としてクラックが発生することを抑制することができる。
(4)窒化物半導体積層物
図7に示すように、本実施形態の窒化物半導体積層物20は、例えば、放熱性基板100、第1反り抑制層112、第2反り抑制層114、および成長下地層120を有する窒化物半導体テンプレート10と、中間層210、電子走行層220、および電子供給層230を有する積層体200と、を備えている。
窒化物半導体積層物20が上記のように構成されていることにより、後述の半導体装置を製造する際の基体として窒化物半導体積層物20を非常に好適に用いることが可能となる。
(5)半導体装置の製造方法
次に、図2および図8を用い、本実施形態に係る半導体装置の製造方法について説明する。図8は、本実施形態に係る半導体装置を示す断面図である。
本実施形態の半導体装置30は、上述のように、HEMTとして構成されている。本実施形態では、上述のS110〜S140の後に、以下に示すS150〜S160を実施することで、半導体装置30を製造する例について説明する。
(S150:電極形成工程)
図8に示すように、窒化物半導体積層物20の電子供給層230上に、例えば、所定パターンのフォトレジスト層を形成し、次いで、ニッケル(Ni)および金(Au)の複層構造を形成し、次いで、フォトレジスト層をリフトオフにより除去する。これにより、電子供給層230上に、Ni/Auからなるゲート電極310が形成される。また、窒化物半導体積層物20の電子供給層230上に、例えば、所定パターンのフォトレジスト層を形成し、次いで、チタン(Ti)およびアルミニウム(Al)の複層構造を形成し、次いで、フォトレジスト層をリフトオフにより除去する。これにより、電子供給層230上において、ゲート電極310から所定距離離れた位置に、Ti/Alからなるソース電極320およびドレイン電極330が形成される。
次に、電子供給層230上にゲート電極310、ソース電極320およびドレイン電極330が形成された窒化物半導体積層物20を所定の温度で熱処理する。これにより、電子供給層230に対するゲート電極310、ソース電極320およびドレイン電極330のそれぞれの密着性を向上させるとともに、ゲート電極310、ソース電極320およびドレイン電極330のそれぞれのコンタクト抵抗を低減することができる。このとき、上述のように、窒化物半導体テンプレート10において放熱性基板100の両面に反り抑制層(112,114)が設けられていることにより、当該熱処理時においても、窒化物半導体積層物20の反りの発生を抑制することができる。
(S160:第2反り抑制層除去工程)
次に、図8に示すように、例えばRIE(Reactive Ion Etching)により、窒化物半導体積層物20から第2反り抑制層114のみを選択的に除去する。これにより、放熱性基板100の裏面104側からの放熱性を向上させることができる。
以上により、本実施形態の半導体装置30が製造される。
(6)半導体装置
図8に示すように、本実施形態の半導体装置30は、例えば、放熱性基板100と、第1反り抑制層112と、中間層210、電子走行層220、および電子供給層230を有する積層体200と、ゲート電極310と、ソース電極320と、ドレイン電極330と、を備えている。
本実施形態の半導体装置30では、電子走行層220および電子供給層230の分極により、電子走行層220内の、電子走行層220と電子供給層230とのヘテロ接合界面付近に、高濃度かつ高移動度を有する二次元電子ガスが生成される。これにより、半導体装置30を、HEMTとして機能させることができる。その結果、例えば無線通信機器やこれに関連する機器等に用いられる高周波デバイスとして、本実施形態の半導体装置30を好適に用いることが可能となる。
また、本実施形態では、放熱性基板100を半導体装置30のヒートシンクとして機能させることができる。これにより、窒化物半導体の積層体200で発生する熱を放熱性基板100から効率よく逃がすことができる。その結果、半導体装置30の高周波高出力特性等を向上させることが可能となる。
また、本実施形態では、成長下地層120の表面の平均転位密度を1×10個/cm未満とすることにより、電子走行層220のチャネル領域内の平均転位密度も1×10個/cm未満とすることができる。これにより、欠陥起因の電子トラップによる電流コラプス現象を抑制することができ、同時にゲートリーク電流の増大も抑制することができる。その結果、半導体装置30の高周波高出力特性を向上させることができる。
(7)本実施形態により得られる効果
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(a)本実施形態の窒化物半導体テンプレート10では、同一の窒化物半導体からなる第1反り抑制層112および第2反り抑制層114が、窒化物半導体と異なる線膨張係数を有する放熱性基板100の表面102側および裏面104側にそれぞれ設けられている。窒化物半導体テンプレート10の温度を変化させたとき、放熱性基板100の表面102側において第1反り抑制層112が放熱性基板100に対して熱膨張または熱収縮することによって生じる熱応力は、放熱性基板100の裏面104側において第2反り抑制層114が放熱性基板100に対して熱膨張または熱収縮することによって生じる熱応力とほぼ等しくなる。これにより、窒化物半導体テンプレート10を窒化物半導体の積層体200の結晶成長温度に加熱した場合や、窒化物半導体テンプレート10の温度を結晶成長温度から下降させた場合であっても、窒化物半導体テンプレート10の反りの発生を抑制することができる。このように、窒化物半導体テンプレート10の反りの発生が抑制されることにより、窒化物半導体の積層体200の結晶成長時において、窒化物半導体テンプレート10の反りに起因した温度ムラの発生を抑制することができ、面内均一な結晶性を有する窒化物半導体の積層体200を形成することができる。また、降温時において、窒化物半導体の積層体200におけるクラック等の発生を抑制することができる。その結果、放熱性基板100を有する半導体装置30を高品質に製造することが可能となる。
(b)第1反り抑制層112および第2反り抑制層114は、成長下地層120と同種の窒化物半導体により構成されている。これにより、第1反り抑制層112および第2反り抑制層114と放熱性基板100との接合体としての線膨張係数を、単結晶の窒化物半導体からなる成長下地層120の線膨張係数と近づけることができ、窒化物半導体の積層体200の結晶成長時に、第1反り抑制層112と成長下地層120との間に生じる熱応力を低減することができる。その結果、第1反り抑制層112と成長下地層120との間におけるクラック等の発生を抑制することができ、窒化物半導体の積層体200の結晶成長を安定的に行うことが可能となる。
(c)第1反り抑制層112上には、高品質の単結晶の窒化物半導体からなる成長下地層120が設けられている(接合されている)。これにより、窒化物半導体と異なる線膨張係数を有する放熱性基板100を用いていても、成長下地層120上に窒化物半導体の積層体200を安定的にエピタキシャル成長させることができる。その結果、窒化物半導体テンプレート10上に成長させる積層体200の結晶性を向上させることができる。
(d)放熱性基板100を有する窒化物半導体テンプレート10上に高品質の窒化物半導体の積層体200を直接エピタキシャル成長させることにより、例えば従来のように仮支持基板から放熱性基板へ貼り替える工程(仮支持基板の除去工程、放熱性基板の接合工程)などを行うことなく、放熱性基板100を有する半導体装置30を容易に製造することが可能となる。また、製造工程を簡素化させることで、半導体装置30の製造コストを低減させ、歩留まりを向上させることが可能となる。
<他の実施形態>
以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
上述の実施形態では、放熱性基板100が多結晶ダイヤモンド基板である場合について説明したが、放熱性基板の熱伝導率が300Kにおいて6W/(cm・K)以上であれば、放熱性基板は多結晶ダイヤモンド基板でなくてもよい。具体的には、放熱性基板は、単結晶ダイヤモンド基板、またはカーボンナノチューブを複合化した基板などであってもよい。
上述の実施形態では、第1反り抑制層112および第2反り抑制層114がAlNからなっている場合について説明したが、第1反り抑制層および第2反り抑制層は、GaN、窒化インジウム(InN)、InGaN、AlGaN、またはInAlN、すなわちAlInGa1−x−yN(ただし、0≦x+y≦1)からなっていてもよい。
上述の実施形態では、第1反り抑制層112および第2反り抑制層114が上述の成膜方法により形成される場合について説明したが、第1反り抑制層および第2反り抑制層は、成長下地層と同様に、例えば窒化物半導体基板の一部を切り出すことにより形成されていてもよい。この場合、窒化物半導体基板が単結晶であれば、第1反り抑制層は、成長下地層を兼ねていてもよい。
上述の実施形態では、成長下地層120が単結晶GaNからなっている場合について説明したが、成長下地層が単結晶の窒化物半導体からなり、その上に窒化物半導体の積層体をエピタキシャル成長させることが可能であれば、成長下地層は必ずしもGaNからなっていなくてもよい。具体的には、成長下地層は、InN、AlN、InGaN、AlGaN、またはInAlN、すなわちAlInGa1−x−yN(ただし、0≦x+y≦1)からなっていてもよい。
上述の実施形態では、窒化物半導体積層物20を構成する窒化物半導体の積層体200が中間層210、電子走行層220、および電子供給層230を有している場合について説明したが、窒化物半導体の積層体は、少なくとも電子走行層および電子供給層を有していればよい。つまり、積層体は、中間層を有していなくてもよく、または上述の実施形態で説明しない他の層を有していてもよい。
上述の実施形態では、窒化物半導体テンプレート10や窒化物半導体積層物20を用いて製造される半導体装置30が、FETの一つであるHEMTとして構成されている場合について説明したが、半導体装置は、他の半導体デバイスとして構成されていてもよい。
上述の実施形態では、成長下地層形成工程S130のうちの基板接合工程S134において、プラズマ活性化接合法を用いる場合について説明したが、下地層提供基板を放熱性基板上の第1反り抑制層に接合可能であれば、他の方法を用いてもよい。具体的には、下地層提供基板を放熱性基板上の第1反り抑制層に接合した状態で600℃〜1200℃程度に加熱して接合する直接接合法、下地層提供基板を放熱性基板上の第1反り抑制層に接合した状態で0.1MPa〜10MPa程度の高い圧力を掛けて接合する高圧接合法、下地層提供基板を放熱性基板上の第1反り抑制層に接合した状態で10-6Pa〜10-3Pa程度の高真空雰囲気下で接合する高真空接合法などを用いてもよい。
上述の実施形態では、成長下地層形成工程S130のうちの基板切断工程S136において、下地層提供基板130と放熱性基板100との接合体に対して熱処理を行うことで、下地層提供基板130を切断する場合について説明したが、下地層提供基板を切断可能であれば、他の方法を用いてもよい。具体的には、ワイヤソー、ブレード、レーザ、放電加工、ウォータジェット等による切断方法を用いてもよい。
<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
(付記1)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、を有する窒化物半導体テンプレート。
(付記2)
前記放熱性基板は、多結晶ダイヤモンド基板である付記1に記載の窒化物半導体テンプレート。
(付記3)
前記第1反り抑制層および前記第2反り抑制層は、窒化アルミニウムからなる付記1又は2に記載の窒化物半導体テンプレート。
(付記4)
前記第1反り抑制層の厚さと前記第2反り抑制層の厚さとの差の絶対値は、1.4μm以下である付記1〜3のいずれか1項に記載の窒化物半導体テンプレート。
(付記5)
前記第1反り抑制層の厚さ及び前記成長下地層の厚さの合計と前記第2反り抑制層の厚さとの差の絶対値は、1.4μm以下である付記1〜3のいずれか1項に記載の窒化物半導体テンプレート。
(付記6)
前記第1反り抑制層および前記第2反り抑制層は、アモルファスまたは多結晶である付記1〜5のいずれか1項に記載の窒化物半導体テンプレート。
(付記7)
前記成長下地層の表面の平均転位密度は、1×10個/cm未満である付記1〜6のいずれか1項に記載の窒化物半導体テンプレート。
(付記8)
前記成長下地層の抵抗率は、10Ω・cm以上である付記1〜7のいずれか1項に記載の窒化物半導体テンプレート。
(付記9)
前記成長下地膜の膜厚は、10μm未満である付記1〜8のいずれか1項に記載の窒化物半導体テンプレート。
(付記10)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、
前記成長下地層上に設けられ、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体と、を有する窒化物半導体積層物。
(付記11)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、
前記成長下地層上に設けられ、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体と、を有する半導体装置。
(付記12)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、を有する窒化物半導体テンプレートの製造方法。
(付記13)
前記第1反り抑制層および前記第2反り抑制層を形成する工程では、
前記放熱性基板を所定温度に加熱し、前記放熱性基板の前記第1主面側および前記第2主面側の両方にIII族原料ガスおよびV族原料ガスを同時に供給する付記12に記載の窒化物半導体テンプレートの製造方法。
(付記14)
前記成長下地層を形成する工程は、
前記第1反り抑制層上に単結晶の窒化物半導体からなる下地層提供基板を貼り付ける工程と、
前記下地層提供基板の一部を前記第1反り抑制層から所定の厚さで切断することで、前記第1反り抑制層上に前記成長下地層を形成する工程と、を有する付記12又は13に記載の窒化物半導体テンプレートの製造方法。
(付記15)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、
前記成長下地層上に、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体を形成する工程と、を有する窒化物半導体積層物の製造方法。
(付記16)
300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、
前記成長下地層上に、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体を形成する工程と、を有する半導体装置の製造方法。
10 窒化物半導体テンプレート
20 窒化物半導体積層物
30 半導体装置
100 放熱性基板
112 第1反り抑制層
114 第2反り抑制層
120 成長下地層
200 積層体
210 中間層
220 電子走行層
230 電子供給層

Claims (10)

  1. 300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
    前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
    前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
    前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、を有する窒化物半導体テンプレート。
  2. 前記放熱性基板は、多結晶ダイヤモンド基板である請求項1に記載の窒化物半導体テンプレート。
  3. 前記第1反り抑制層および前記第2反り抑制層は、窒化アルミニウムからなる請求項1又は2に記載の窒化物半導体テンプレート。
  4. 前記第1反り抑制層の厚さと前記第2反り抑制層の厚さとの差の絶対値は、1.4μm以下である請求項1〜3のいずれか1項に記載の窒化物半導体テンプレート。
  5. 前記成長下地層の表面の平均転位密度は、1×10個/cm未満である請求項1〜4のいずれか1項に記載の窒化物半導体テンプレート。
  6. 前記成長下地層の抵抗率は、10Ω・cm以上である請求項1〜5のいずれか1項に記載の窒化物半導体テンプレート。
  7. 前記成長下地膜の膜厚は、10μm未満である請求項1〜6のいずれか1項に記載の窒化物半導体テンプレート。
  8. 300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板と、
    前記放熱性基板の第1主面側に設けられ、窒化物半導体からなる第1反り抑制層と、
    前記放熱性基板の前記第1主面と反対の第2主面側に設けられ、前記第1反り抑制層と同じ材料からなる第2反り抑制層と、
    前記第1反り抑制層上に設けられ、単結晶の窒化物半導体からなる成長下地層と、
    前記成長下地層上に設けられ、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体と、を有する窒化物半導体積層物。
  9. 300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
    前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
    前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、を有する窒化物半導体テンプレートの製造方法。
  10. 300Kにおいて6W/(cm・K)以上の熱伝導率を有する放熱性基板を用意する工程と、
    前記放熱性基板の第1主面側に窒化物半導体からなる第1反り抑制層を形成するとともに、前記放熱性基板の前記第1主面と反対の第2主面側に前記第1反り抑制層と同じ材料からなる第2反り抑制層を形成する工程と、
    前記第1反り抑制層上に、単結晶の窒化物半導体からなる成長下地層を形成する工程と、
    前記成長下地層上に、少なくとも電子走行層および電子供給層を有する窒化物半導体の積層体を形成する工程と、を有する窒化物半導体積層物の製造方法。
JP2016067390A 2016-03-30 2016-03-30 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法 Active JP6735588B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067390A JP6735588B2 (ja) 2016-03-30 2016-03-30 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067390A JP6735588B2 (ja) 2016-03-30 2016-03-30 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法

Publications (2)

Publication Number Publication Date
JP2017183455A true JP2017183455A (ja) 2017-10-05
JP6735588B2 JP6735588B2 (ja) 2020-08-05

Family

ID=60008558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067390A Active JP6735588B2 (ja) 2016-03-30 2016-03-30 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法

Country Status (1)

Country Link
JP (1) JP6735588B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235074A1 (ja) * 2019-05-23 2020-11-26 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
WO2023223858A1 (ja) * 2022-05-18 2023-11-23 株式会社ジャパンディスプレイ 半導体デバイス及びその作製方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523472A (ja) * 2004-01-09 2007-08-16 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 決定可能な熱膨張係数を有する基板
US20110186959A1 (en) * 2010-01-29 2011-08-04 Intersil Americas Inc. Diamond soi with thin silicon nitride layer
JP2012041252A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 半導体積層構造および電界効果トランジスター
JP2012146910A (ja) * 2011-01-14 2012-08-02 Toshiba Corp 半導体装置
JP2012238861A (ja) * 2004-01-22 2012-12-06 Cree Inc ダイアモンド基板上炭化珪素並びに関連するデバイス及び方法
JP2016507450A (ja) * 2012-12-18 2016-03-10 エレメント シックス リミテッド 半導体デバイス用基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523472A (ja) * 2004-01-09 2007-08-16 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 決定可能な熱膨張係数を有する基板
JP2012238861A (ja) * 2004-01-22 2012-12-06 Cree Inc ダイアモンド基板上炭化珪素並びに関連するデバイス及び方法
US20110186959A1 (en) * 2010-01-29 2011-08-04 Intersil Americas Inc. Diamond soi with thin silicon nitride layer
JP2012041252A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 半導体積層構造および電界効果トランジスター
JP2012146910A (ja) * 2011-01-14 2012-08-02 Toshiba Corp 半導体装置
JP2016507450A (ja) * 2012-12-18 2016-03-10 エレメント シックス リミテッド 半導体デバイス用基板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235074A1 (ja) * 2019-05-23 2020-11-26 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
JPWO2020235074A1 (ja) * 2019-05-23 2021-10-21 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
JP7186872B2 (ja) 2019-05-23 2022-12-09 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
WO2023223858A1 (ja) * 2022-05-18 2023-11-23 株式会社ジャパンディスプレイ 半導体デバイス及びその作製方法

Also Published As

Publication number Publication date
JP6735588B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
US9359693B2 (en) Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture
US20050269671A1 (en) Support for hybrid epitaxy and method of fabrication
JP2023525597A (ja) 窒化物エピタキシャルウェーハ、その製造方法、および半導体デバイス
JP6863423B2 (ja) 電子デバイス用基板およびその製造方法
WO2007094231A1 (ja) 半導体基板の製造方法
JP6882503B2 (ja) 高ブレークダウン電圧の窒化ガリウム系高電子移動度トランジスタおよびその形成方法
JP2016207748A (ja) 半導体装置の製造方法および半導体装置
JP5412093B2 (ja) 半導体ウェハ製造方法及び半導体装置製造方法
JP6783063B2 (ja) 窒化物半導体テンプレートおよび窒化物半導体積層物
JP5436819B2 (ja) 高周波用半導体素子、高周波用半導体素子形成用のエピタキシャル基板、および高周波用半導体素子形成用エピタキシャル基板の作製方法
JP2009231550A (ja) 半導体装置の製造方法
JP6735588B2 (ja) 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法
US20140159055A1 (en) Substrates for semiconductor devices
US20230307249A1 (en) Heteroepitaxial structure with a diamond heat sink
WO2018159646A1 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP2019186316A (ja) トランジスタの製造方法
JP2009117583A (ja) 窒化物半導体素子の製造方法、窒化物半導体結晶成長基板、結晶成長基板保持基板及び接着材
JP2003178976A (ja) 半導体装置およびその製造方法
JP6861849B2 (ja) 窒化物半導体装置およびその製造方法
WO2019142496A1 (ja) 窒化物半導体エピタキシャル基板
WO2018107616A1 (zh) 复合衬底及其制造方法
CN110164766A (zh) 一种基于金刚石衬底的氮化镓器件及其制备方法
US20230395375A1 (en) Method for fabricating gan chip and gan chip
JP2022131086A (ja) 窒化物半導体基板およびその製造方法
JP2017130539A (ja) 窒化物半導体装置、窒化物半導体装置の作製方法、及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6735588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250