JP2017174482A - 不揮発性半導体記憶装置とその消去方法 - Google Patents

不揮発性半導体記憶装置とその消去方法 Download PDF

Info

Publication number
JP2017174482A
JP2017174482A JP2016060570A JP2016060570A JP2017174482A JP 2017174482 A JP2017174482 A JP 2017174482A JP 2016060570 A JP2016060570 A JP 2016060570A JP 2016060570 A JP2016060570 A JP 2016060570A JP 2017174482 A JP2017174482 A JP 2017174482A
Authority
JP
Japan
Prior art keywords
voltage
memory cell
data
memory device
word lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016060570A
Other languages
English (en)
Inventor
マチアス・バイル
Bayle Mathias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powerchip Technology Corp
Original Assignee
Powerchip Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Technology Corp filed Critical Powerchip Technology Corp
Priority to JP2016060570A priority Critical patent/JP2017174482A/ja
Priority to US15/219,295 priority patent/US9704579B1/en
Priority to TW105128372A priority patent/TWI598880B/zh
Priority to CN201610840459.1A priority patent/CN107230498B/zh
Publication of JP2017174482A publication Critical patent/JP2017174482A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/20Initialising; Data preset; Chip identification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/344Arrangements for verifying correct erasure or for detecting overerased cells
    • G11C16/3445Circuits or methods to verify correct erasure of nonvolatile memory cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

【課題】ダブルパターニングを適用した不揮発性半導体記憶装置の消去動作を最適化する。【解決手段】複数のワード線と複数のビット線との各交差点に設けられたメモリセルを含むメモリセルアレイの所定のブロックに対して所定の消去電圧を印加することでデータの消去を行う制御回路を備えた不揮発性半導体記憶装置であって、上記制御回路は、上記メモリセルアレイの縁端部以外の偶数のワード線と奇数のワード線とに対して互いに異なるワード線電圧を印加し、上記メモリセルアレイの縁端部のワード線に上記ワード線電圧とは異なる電圧を印加し、上記消去電圧をメモリセルに印加することでデータを消去する。上記メモリセルアレイの縁端部以外の奇数のワード線に対するワード線電圧は、上記メモリセルアレイの縁端部以外の偶数のワード線に対するワード線電圧よりも高くなり又は低くなるように設定される。【選択図】図5

Description

本発明は、例えばフラッシュメモリなどの不揮発性記憶装置とその消去方法
昨今のフラッシュメモリなどの不揮発性記憶装置では、大容量微細化の半導体リソグラフィのためにダブルパターニング技術が採用されている。ダブルパターニング技術は、解像度が例えば42nm以下のリソグラフィ技術として使用されており、例えば2倍のピッチでパターンを露光した後にその1/2のピッチだけシフトされて露光させる方法、及び、スペーサプロセスなどのプロセストリックを用いた後に不要なパターンを除去する方法などの複数の方法が知られている。
特開2007−250186号公報 米国特許出願公開第2008/0165585号公報 米国特許出願公開第2013/0163359号公報 米国特許出願公開第2011/0069543号公報 米国特許出願公開第2012/0008412号公報
このようなフラッシュメモリの大容量微細化のために、各ワード線の間隔及び各ビット線の間隔が非常に狭くなり、隣接するワード線間もしくは隣接するビット線間でのデータプログラム(書き込み)又は消去時の特性に大きく影響を与えている。そのため、例えば特許文献1〜5などの従来技術では、データ消去特性の最適化のための方法が提案されている。
図1は従来例に係るフラッシュメモリのデータ消去時の各電極の印加電圧を示す縦断面図である。
図1において、P型半導体基板1に例えばリンを注入することでNウェル2を形成し、Nウェル2の上部に例えばボロンを注入することでPウェル3を形成する。次いで、Pウェル3上に以下の電極が形成され、各電極及びNウェル2、Pウェル3に図1のごとく所定の電圧(図1において各括弧内の電圧)を印加することでデータ消去を行う。なお、FLはフローティング状態である。
(1)ソース線SL;
(2)選択ゲート線SGS,SGD;
(3)ダミーワード線DWLS,DWLD;
(4)ワード線WL0〜WL31;
(5)ビット線GBL。
ここで、VDWLはダミーワード線DWLS,DWLDに印加される電圧であり、各ダミーワード線DWLS,DWLDにそれぞれ隣接する例えば2本のエッジ領域側ワード線WL0,WL1,WL30,WL31にそれぞれ電圧Vea,Veb,Veb,Veaが印加される。また、エッジ領域以外の中央部のワード線WL2〜WL29に電圧Veeが印加され、Nウェル2及びPウェル3に電圧VERSが印加される。これらの印加電圧の一例は以下の通りである。
Vea=Veb≒0V
Vee=0.3〜0.5V
VERS=15〜25V
図1の従来例に係る消去方法によれば、上記エッジ領域は製造プロセスにおいて周期的ではないので特異的な領域である。一般に、エッジ領域のワード線は他の領域のワード線に比較して遅い消去速度で消去されるので、エッジ領域のワード線には一般的には0Vが印加される一方、エッジ領域以外のワード線には0Vを超える電圧が印加される。このようにして速い消去スピードのワード線の消去スピードを落とすように調整を行って、すべてのワード線の消去スピードをそろえて、消去後のメモリセルのしきい値分布の狭帯化を図る。しかし、ダブルパターニング技術においては、中央部のワード線においても均一な線幅や間隔を保証できなくなり、従って、エッジ領域以外のワード線における消去動作を最適化することができないという問題点があった。
本発明の目的は従来技術に比較して不揮発性半導体記憶装置の消去動作を最適化することができる不揮発性半導体記憶装置とその消去方法を提供することにある。
第1の発明に係る不揮発性半導体記憶装置は、複数のワード線と複数のビット線との各交差点に設けられたメモリセルを含むメモリセルアレイの所定領域に対して所定の消去電圧を印加することでデータの消去を行う制御回路を備えた不揮発性半導体記憶装置であって、
上記制御回路は、上記メモリセルアレイの縁端部以外の偶数のワード線と奇数のワード線とに対して互いに異なるワード線電圧を印加し、上記メモリセルアレイの縁端部のワード線に上記ワード線電圧とは異なる電圧を印加し、上記消去電圧をメモリセルに印加することでデータを消去することを特徴とする。
上記不揮発性半導体記憶装置において、上記メモリセルアレイの縁端部以外の奇数のワード線に対するワード線電圧は、上記メモリセルアレイの縁端部以外の偶数のワード線に対するワード線電圧よりも高くなり又は低くなるように設定されたことを特徴とする。
また、上記不揮発性半導体記憶装置において、上記メモリセルアレイの縁端部のワード線は両端の選択ゲート線あるいはダミーワード線に隣接した、それぞれ少なくとも1本のワード線であることを特徴とする。
さらに、上記不揮発性半導体記憶装置において、上記制御回路は、偶数のビット線のメモリセルと、奇数のビット線のメモリセルとに対して異なるベリファイ条件で上記データ消去のベリファイを行うことを特徴とする、
またさらに、上記不揮発性半導体記憶装置において、上記ベリファイ条件は、
(1)ワード線電圧と、
(2)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線の放電時間と、
(3)ソースラインから充電して上記データ読み出しとは逆のデータ読み出しのときのビット線の充電時間と、
(4)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のプリチャージ時間と、
(5)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のセンス電圧と
のうちの少なくとも1つを、偶数のビット線のメモリセルと、奇数のビット線のメモリセルとに対して異なるように設定することであることを特徴とする。
また、上記不揮発性半導体記憶装置において、上記互いに異なるワード線電圧は、上記不揮発性半導体記憶装置のウェハテストで測定されたデータ消去時のしきい値電圧に基づいて決定されることを特徴とする。
さらに、上記不揮発性半導体記憶装置において、上記互いに異なるワード線電圧は、上記不揮発性半導体記憶装置のウェハテストで測定されたデータ消去時に同じしきい値電圧を与える消去電圧に基づいて決定されることを特徴とする。
またさらに、上記不揮発性半導体記憶装置において、上記ウェハテストで測定されたデータ消去時のしきい値電圧は、
(1)偶数のワード線及び偶数のビット線のケースと、
(2)偶数のワード線及び奇数のビット線のケースと、
(3)奇数のワード線及び偶数のビット線のケースと、
(4)奇数のワード線及び奇数のビット線のケースと
の4つのケースについて測定されることを特徴とする。
また、上記不揮発性半導体記憶装置において、上記消去電圧は、上記メモリセルアレイのウェルに印加されることを特徴とする。
さらに、上記不揮発性半導体記憶装置において、上記決定された互いに異なるワード線電圧は、上記メモリセルアレイの一部領域に格納された後、上記不揮発性半導体記憶装置の電源がオンされたときに上記メモリセルアレイから読み出されて上記データの消去時に用いることを特徴とする。
さらに、上記不揮発性半導体記憶装置において、上記消去のシーケンスを行う前に、上記所定領域の全メモリセルに書込みを行う特徴とする。
第2の発明に係る不揮発性半導体記憶装置の消去方法は、複数のワード線と複数のビット線との各交差点に設けられたメモリセルを含むメモリセルアレイの所定の領域に対して所定の消去電圧を印加することでデータの消去を行う制御回路を備えた不揮発性半導体記憶装置の消去方法であって、
上記制御回路が、上記メモリセルアレイの縁端部以外の偶数のワード線と奇数のワード線とに対して互いに異なるワード線電圧を印加し、上記メモリセルアレイの縁端部のワード線に上記ワード線電圧とは異なる電圧を印加し、上記消去電圧をメモリセルに印加することでデータを消去することを含むことを特徴とする。
上記不揮発性半導体記憶装置の消去方法において、上記メモリセルアレイの縁端部以外の奇数のワード線に対するワード線電圧は、上記メモリセルアレイの縁端部以外の偶数のワード線に対するワード線電圧よりも高くなり又は低くなるように設定されたことを特徴とする。
従って、本発明に係る従来技術に比較して不揮発性半導体記憶装置の消去動作を最適化することができる不揮発性半導体記憶装置とその消去方法を提供できる。
従来例に係るフラッシュメモリのデータ消去時の各電極の印加電圧を示す縦断面図である。 ダブルパターニングによるフラッシュメモリの消去特性であって、ページ番号に対するしきい値電圧Vthを示すグラフである。 ダブルパターニングによるフラッシュメモリの消去特性であって、奇数のワード線と偶数のワードに対するメモリセルのしきい値分布を示すグラフである。 本発明の一実施形態に係るフラッシュメモリの構成例を示すブロック図である。 図4のフラッシュメモリのデータ消去時の各電極の印加電圧を示す縦断面図である。 図4のフラッシュメモリのデータ消去時のベリファイ動作を示す回路図である。 図4のフラッシュメモリのためのウェハテスト処理を示すフローチャートである。 図4のフラッシュメモリのための電源オン時処理を示すフローチャートである。 図4のフラッシュメモリのための消去前事前書込み処理を示すフローチャートである。
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
本発明者の測定による知見.
図2は本発明者によるNAND型フラッシュメモリの測定結果であって、ページ番号に対するしきい値電圧Vthを示すグラフである。また、図3は本発明者によるNAND型フラッシュメモリの測定結果であって、奇数のワード線と偶数のワードに対するメモリセルのしきい値分布を示すグラフである。
図2において、NAND型フラッシュメモリのページP0及びP1のメモリセルは偶数のワード線WL0上にあり、ページP2及びP3のメモリセルは奇数のワード線WL1上にある。そして、ページP0,P2,P4等は偶数のビット線GBL上にあり、ページP1,P3,P5等は奇数のビット線GBL上にある。すなわち、ページ数とワード線番号、ビット線番号との関係は以下の通りである。
[表1]
―――――――――――――――――
ページ ワード線 ビット線
―――――――――――――――――
P0 WL0 偶数
P1 WL0 奇数
P2 WL1 偶数
P3 WL1 奇数
P4 WL2 偶数
P5 WL2 奇数
… … …
―――――――――――――――――
図2及び図3のグラフから明らかなように、以下のことが分かる。
(1)偶数のワード線あるいは奇数のワード線に対してしきい値電圧Vthはほぼ同一の値を有するが、半導体チップの製造バラツキにより若干異なる。
(2)ビット線GBLに対して、互いに隣接する偶数又は奇数のビット線に対してしきい値電圧Vthが周期的に変化する。
(3)ページ番号に対して、しきい値電圧Vthが周期的に変化する。
本発明者はこれらの知見に基づいて、本実施形態の消去方法を以下に提案する。
図4は本発明の一実施形態に係るNAND型フラッシュメモリの構成例を示すブロック図である。図4において、本実施形態に係るNAND型フラッシュメモリは、メモリセルアレイ10と、その動作を制御する制御回路11と、ロウデコーダ12と、高電圧発生回路13と、ページバッファ回路14と、カラムデコーダ15と、メモリレジスタ16と、コマンドレジスタ17と、アドレスレジスタ18と、動作ロジックコントローラ19と、データ入出力バッファ50と、データ入出力端子51と、制御信号入力端子53とを備えて構成される。なお、52はデータ線である。
ページバッファ回路14は、所定のページ単位のデータ書き込み及び読み出しを行うために、ビット線GBLの1組(GBLe,GBLo)毎に設けられたセンスアンプ回路(SA)及びデータラッチ回路を含む。なお、センスアンプ回路(SA)は、ラッチ回路(L2)を含むいくつかの素子で構成されるものである。
メモリセルアレイ10の各メモリセルストリングは選択ゲート線SGDとビット線GBLの各交差点に接続され、メモリセルストリングMCの各メモリセルは複数のワード線WLに接続され、メモリセルアレイ10のワード線WL及びビット線GBLの選択を行うために、それぞれロウデコーダ12及びカラムデコーダ15が設けられている。制御回路11は、データ書き込み、消去及び読み出しのシーケンス制御を行う。メモリレジスタ16は制御回路11に接続され、読み出し、書き込み及び消去の動作に必要なパラメータ(モードセットデータ)を予め格納しており、電源オン時に制御回路11によりメモリセルアレイ中のヒューズデータ格納領域より読み出されて設定される。制御回路11により制御される高電圧発生回路13は、データ書き換え、消去、読み出しに用いられる昇圧された高電圧や中間電圧を発生する。
データ入出力バッファ50は、データの入出力及びコマンドとアドレス信号の入力に用いられる。すなわち、入出力バッファ50、データ線52及びラッチ回路(L2)14bを介して、入出力端子51とページバッファ回路14の間でデータの転送が行われる。入出力端子51から入力されるアドレス信号は、アドレスレジスタ18に保持され、ロウデコーダ12及びカラムデコーダ15に送られてデコードされる。入出力端子51からは動作制御のコマンドも入力される。入力されたコマンドはデコードされてコマンドレジスタ17に保持され、これにより制御回路11が制御される。チップイネーブル信号CEB、コマンドラッチイネーブルCLE、アドレスラッチイネーブル信号ALE、書き込みイネーブル信号WEB、読み出しイネーブル信号REB等の外部制御信号は制御信号入力端子53を介して動作ロジックコントローラ19に取り込まれ、動作モードに応じて内部制御信号が発生される。内部制御信号は、入出力バッファ50でのデータラッチ、転送等の制御に用いられ、さらに制御回路11に送られて、動作制御が行われる。
図5は図4のフラッシュメモリのデータ消去時の各電極の印加電圧を示す縦断面図である。図5において、P型半導体基板1、Nウェル2及びPウェル3、並びに各電極が図1と同様に形成されるが、以下の点で異なることを特徴としている。
(1)ダミーワード線DWLSに対して電圧VDWLに代えて電圧VDWL1が印加される。
(2)ダミーワード線DWLDに対して電圧VDWDに代えて電圧VDWL2が印加される。
(3)エッジ領域のワード線WL0,WL1に対して電圧Vea,Vebが印加されるが、エッジ領域のワード線WL30,WL31に対して電圧Vec,Vedが印加される。
(4)エッジ領域以外の偶数のワード線WL2,WL4,…,WL28に対して電圧Veeが印加される。
(5)エッジ領域以外の奇数のワード線WL1,WL3,…,WL29に対して電圧Veoが印加される。
ここで、印加電圧の一例は以下の通りである。
Vea=Ved=0〜0.5V
Veb=Vec=0〜0.5V
Vee=0.3〜0.5V
Veo=0.3〜0.5V
VERS=15〜25V
従って、図2及び図3の知見に鑑みて、奇数のワード線用印加電圧Veoは好ましくは、偶数のワード線用印加電圧Veeよりも例えば0.1V〜0.5Vだけ低くなるように設定される。図1の従来例では、電圧Veaはエッジ領域中の最も縁端のエッジの2本のワード線WL0,WL31に用いられ、エッジ領域以外の中央領域のワード線の印加電圧は偶数又は奇数で電圧差なく電圧Veeを印加しているが、本実施形態では、図2及び図3の知見の効果を考慮して、エッジ領域以外の中央領域のワード線の印加電圧は偶数又は奇数に依存して電圧差を有して電圧Vee,Veoを印加したことを特徴としている。
また、本実施形態では、メモリアレイの縁端部の両エッジ領域の各2本のワード線WL0,WL1,WL30,WL31にはそれぞれ、中央領域のワード線の印加電圧Vee,Veoとは異なる印加電圧を用いている。ここで、メモリアレイの縁端部の両エッジ領域の各2本のワード線WL0,WL1,WL30,WL31としているが、本発明はこれに限らず、各両端で1本又は3本のワード線に中央領域のワード線の印加電圧Vee,Veoとは異なる印加電圧を用いてもよい。本実施形態ではメモリセルストリングMCに32メモリセルを接続する場合を示しているが、これに限らず64メモリセルなどのより大きな縦続数でも良く、その場合エッジ領域も広くなる。なお、図5に示すように、ワード線WL0はダミーワード線DWLSを介して選択ゲート線SGSに隣接して設けられ、ワード線WL31はダミーワード線DWLDを介して選択ゲート線SGDに隣接して設けられている。そして、縁端部のワード線は本実施形態のようにWL0,WL31に加えてワード線WL1、WL30を含んでもよい。
図6は図4のフラッシュメモリのデータ消去時のベリファイ動作を示す回路図である。図6において、MCはNAND型メモリセルストリングであり、BLSeは偶数のビット線GBL0,GBL2,…の選択信号であり、BLSoは奇数のビット線GBL1,GBL3,…の選択信号である。
ここで、メモリセルストリングMCの活性層領域の幅及びフローティングゲートの幅は、上述のように、ダブルパターニングによって偶数及び奇数の依存性を有する場合があり、このことは消去時のしきい値電圧Vthにも影響を与える。図2のグラフのデータは、その差が小さいが、フラッシュメモリチップのウェハ及び/又はロットに大きく依存する。この差は、ワード線WLが共通なので、消去時のワード線電圧VWLによってキャンセルすることはできない。この差は、ベリファイの条件設定を変えることによりキャンセルすることができる。例えば、ベリファイ時のワード線電圧VWLは、偶数ページと奇数ページとの間で変更することが好ましい。別の方法としては、通常のデータ読み出し時(ソースラインを接地し、ページバッファ回路14からビット線をプリチャージしてデータを読み出す)のビット線GBLの放電時間、もしくはリバース読み出し時(GBL=0VでソースラインSLからビット線を充電する)のビット線GBLの充電時間を用いて上記の差を実質的にキャンセルできる。もしくは、ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のプリチャージ時間を用いて、もしくは、ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のセンス電圧を用いて上記の差をキャンセルしてもよい。
すなわち、本実施形態においては、データを消去するときのベリファイ条件は、
(1)ワード線電圧VWLと、
(2)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線の放電時間と、
(3)ソースラインから充電して上記データ読み出しとは逆のデータ読み出しのときのビット線の充電時間と、
(4)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のプリチャージ時間と、
(5)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のセンス電圧とのうちの少なくとも1つを、偶数のビット線のメモリセルと、奇数のビット線のメモリセルとに対して異なるように設定してもよい。
図6は上記リバース読み出しによる奇数ページのベリファイを示しており、消去時のベリファイ(データ消去したときの確認)は、奇数ページのベリファイと、偶数ページのベリファイの2つの動作に分割される。例えば、あるワード線電圧VWLは偶数ページのベリファイのために0Vに設定され、奇数ページのベリファイのために例えば0.2Vに設定される。すなわち、図2のグラフの特性に基づき、奇数ページの消去は偶数ページの消去に比較して遅くなるからである。
図7は図4のフラッシュメモリのためのウェハテスト処理を示すフローチャートである。以下、図7を参照して電圧設定の一例を記載しつつ当該ウェハテスト処理について説明する。
図7のステップS1において、すべてのメモリセルストリングMCに対してデータ「0」にプログラムして書き込み時間を測定する。本ステップは次のステップで消去特性を測定するための前処理を兼ねるが、この書込み時間データは書込み条件設定のパラメータ決定に使用され、消去のパラメータには関係ない。
具体的には、ISPP(Increment Step Pulse Program)法を用いて、メモリセルアレイ10のうちのいくつかのブロックの全ページについて以下を測定して平均値から実際に使用する書込み開始電圧Vstartを計算する。ここで、最初の10ビットのしきい値がベリファイ電圧PVを越した時のワード線電圧Vpnを記録してゆき、例えば開始電圧Vstart=電圧Vpnの平均値−2Vから決定される。なお、この例ではすべてのページのデータの電圧Vpnの平均値を使用しているが、本発明はこれに限らず、すべてのページのデータの電圧Vpnの最小値を使用してもよい。
ステップS2において一部のブロックのメモリセルストリングMCのデータを消去して(Vth<0V)4つのケースA〜Dに対してしきい値電圧Vthを測定する。ここで、4つのケースとは、以下の通りである。
(ケースA)偶数のワード線、偶数のビット線。
(ケースB)偶数のワード線、奇数のビット線。
(ケースC)奇数のワード線、偶数のビット線。
(ケースD)奇数のワード線、奇数のビット線。
具体的には、いくつかのブロックについて以下を測定して平均値から実際に使用するオフセットを計算する。まず、ISPE(Increment Step Pulse Erase)法を用いて、ページ32(メモリストリングの中央のWL線)の50%のビットのしきい値電圧Vthが0V以下になるまで、例えば開始電圧Vstart=14V、ステップ電圧Vstep=0.2V,消去ベリファイ電圧EV=0Vを用いてデータを消去する。そして、上記4つのケースについてしきい値電圧Vthの最大値のビットの10ビット手前のしきい値電圧Vthを測定する。具体的な手順は以下の通りである。
(1)ページ0のデータを読み出して、上記しきい値電圧Vthの平均値をVth0として測定する。ここで、いくつかのブロックのページ0のデータが得られるので平均値をとる操作が入る。(以下同様)
(2)ページ1のデータを読み出して、上記しきい値電圧Vthの平均値をVth1として測定する。
(3)ページ2のデータを読み出して、上記しきい値電圧Vthの平均値をVth2として測定する。
(4)ページ3のデータを読み出して、上記しきい値電圧Vthの平均値をVth3として測定する。
(5)ページ4,8,12,…,56のデータを読み出して、上記しきい値電圧Vthの平均値をケースAのしきい値電圧Vtheeとして測定する。
(6)ページ5,9,13,…,57のデータを読み出して、上記しきい値電圧Vthの平均値をケースBのしきい値電圧Vtheoとして測定する。
(7)ページ6,10,14,…,58のデータを読み出して、上記しきい値電圧Vthの平均値をケースCのしきい値電圧Vthoeとして測定する。
(8)ページ7,11,15,…,59のデータを読み出して、上記しきい値電圧Vthの平均値をケースDのしきい値電圧Vthooとして測定する。
(9)ページ60のデータを読み出して、上記しきい値電圧Vthの平均値をVth60として測定する。
(10)ページ61のデータを読み出して、上記しきい値電圧Vthの平均値をVth61として測定する。
(11)ページ62のデータを読み出して、上記しきい値電圧Vthの平均値をVth62として測定する。
(12)ページ63のデータを読み出して、上記しきい値電圧Vthの平均値をVth63として測定する。
次いで、ステップS3において測定されたしきい値電圧Vthに基づいてオフセット値を決定し、ステップS4において決定されたオフセット値を消去電圧等のモードセットデータの一部としてメモリレジスタ16に格納して当該処理を終了する。そして、書込み、消去及び読み出しの動作パラメータ(モードセットデータ)がすべてそろった後に、メモリレジスタ16のデータはメモリセルアレイのヒューズデータ格納領域に書込まれる。
具体的には、例えば、Vth1=Vth63=0.5V,Vth0=Vth62=0.6V,Vth2=Vth3=Vth60=Vth61=1.2V,Vthee=0.8V,Vtheo=0.9V,Vthoe=1.1V,Vthoo=0.95Vとすると、上記オフセット値は、Vea=0.6V,Veb=0.0V,Vee=0.3V,Veo=0.1V,Vec=0.0V,Ved=0.6Vが得られ、これらの電圧を印加して消去すればほぼ消去後しきい値電圧Vthを平準化でき、ほぼ0.1Vのばらつきに抑えられる。(図3におけるしきい値のシフトを無くせる。)
これは、消去が最も遅いのはVth2、Vth3,Vth60,Vth61=1.2Vで、Vthee=0.8Vは0.4Vだけ消去が早いことを意味するので、逆に電圧Veeに0.3Vを印加して消去を遅くしている。0.4Vでないのは、同じワード線のしきい値電圧Vtheoのメモリセルの消去が浅くなるからこちらに合わせるためである。
ここで、例えば、同じワード線上のVth0とVth1をみると、Vea=0.6VとするとVth1の方(ワード線WL0,奇数のビット線、ページ1)の消去後しきい値電圧Vthが0.1V深くなるのだが、これを補正するならば、ページ1のベリファイ電圧を0Vでなく0.1Vとすればよい。
この後、これらの条件を入れてデータ消去を行い、さらにいくつかのブロックについて消去ベリファイ電圧EVをパスする消去電圧Vepより消去の開始電圧Vstartを例えばVep−4Vとする。そして、上記オフセット値及び消去開始電圧Vstartをメモリレジスタに格納して、消去の特性測定とパラメータ設定を終わる。
ここで、消去特性測定は、ページ32の50%のビットのしきい値Vthが0V以下になった点を基準に、各ページの最大しきい値のビットの10ビット分低いしきい値を測定しているが、本発明はこれに限らず、例えば、最も消去の早いページの99%のビットが例えばしきい値0V以下になる点を基準にするとか、あるいは3シグマに相当するビットがしきい値0V以下になる消去電圧を各ページについて測定して使用してもよい。また、ステップ電圧を0.2Vとしたが、始めはラフに0.5Vで開始してターゲットに近づいたら0.1Vに変えて精度を上げる方法も好ましい。
図8は図4のフラッシュメモリのための電源オン時処理を示すフローチャートである。図8のステップS11において、電源がオンされると、制御回路11はメモリセルアレイのヒューズデータ格納領域からモードセットデータを読み出し、メモリレジスタに転送して格納する。そして、ステップS12において、メモリレジスタ16から消去電圧等のモードセットデータを読み出して、読み出されたモードセットデータを動作条件として設定してメモリの動作をさせる。
以上説明したように、本実施形態によれば、偶数のワード線と奇数のワード線とで異なるワード線電圧を用いてデータを消去するので、データ消去のしきい値電圧特性に応じてデータ消去でき、従来技術に比較して高精度で最適化してデータを消去することができる。
ここで、従来の消去は、データの書かれたブロックに消去電圧を印加して、すなわち、メモリセルはデータが1(消去状態)のセルと0(書き込み状態)のセルが混在している状態で消去電圧を印加していた。FNトンネル効果では、初期のしきい値によらずに消去後のしきい値が決まるとはいえ、フローティングゲート間のカップリングの効果は残るため完全ではない。そこで、図9の消去前事前書込み処理に示すように、消去前書込み(S21)を行い、消去電圧を印加してベリファイを繰り返し行う(S22)。これにより消去電圧印加前のしきい値を概略そろえることにより、消去後のしきい値分布の均一性を一層高めることができる。消去前書込みは、全ワード線を一括選択して行え、ベリファイも不要であるので、せいぜい100μ秒ででき、消去は2m秒程度であるので、ほぼ問題にならない。
以上の実施形態においては、NAND型フラッシュメモリについて説明しているが、本発明はこれに限らず、ダブルパターニング技術を適用されている、NOR型フラッシュメモリなどの種々の不揮発性半導体記憶装置に適用することができる。
以上の実施形態においては、制御回路10は、メモリセルアレイの所定のブロックに対して所定の消去電圧を印加することでデータの消去を行っているが、本発明はこれに限らず、例えばNOR型フラッシュメモリなどの種々の不揮発性半導体記憶装置において、メモリセルアレイの所定領域に対して所定の消去電圧を印加することでデータの消去を行ってもよい。
以上の実施形態において、消去時のビット線の印加電圧について、偶数のビット線は偶数のグローバルビット線とし、奇数のビット線は奇数のグローバルビット線としてもよい。
本発明と特許文献1〜5との相違点.
本発明の特徴は、偶数のワード線と奇数のワード線とで異なるワード線電圧を用いてデータを消去動作することを特徴としているが、特許文献1〜5においてこの特徴について開示も示唆もない。
以上詳述したように、本発明に係る従来技術に比較してダブルパターニング技術を適用した不揮発性半導体記憶装置の消去動作を最適化することができる。
1…半導体基板、
2…Nウェル、
3…Pウェル、
10…メモリセルアレイ、
11…制御回路、
12…ロウデコーダ、
13…高電圧発生回路、
14…ページバッファ回路(PB)、
14b…ラッチ回路、
15…カラムデコーダ、
17…コマンドレジスタ、
18…アドレスレジスタ、
19…動作ロジックコントローラ、
50…データ入出力バッファ、
51…データ入出力端子、
52…データ線、
53…制御信号入力端子、
DWLS,DWLD…ダミーワード線、
GBL…ビット線、
MC…NAND型メモリセルストリング、
SL…ソース線、
SGS,SGD…選択ゲート線、
WL0〜WL31…ワード線。

Claims (13)

  1. 複数のワード線と複数のビット線との各交差点に設けられたメモリセルを含むメモリセルアレイの所定領域に対して所定の消去電圧を印加することでデータの消去を行う制御回路を備えた不揮発性半導体記憶装置であって、
    上記制御回路は、上記メモリセルアレイの縁端部以外の偶数のワード線と奇数のワード線とに対して互いに異なるワード線電圧を印加し、上記メモリセルアレイの縁端部のワード線に上記ワード線電圧とは異なる電圧を印加し、上記消去電圧をメモリセルに印加することでデータを消去することを特徴とする不揮発性半導体記憶装置。
  2. 上記メモリセルアレイの縁端部以外の奇数のワード線に対するワード線電圧は、上記メモリセルアレイの縁端部以外の偶数のワード線に対するワード線電圧よりも高くなり又は低くなるように設定されたことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 上記メモリセルアレイの縁端部のワード線は両端の選択ゲート線あるいはダミーワード線に隣接した、それぞれ少なくとも1本のワード線であることを特徴とする請求項1又は2記載の不揮発性半導体記憶装置。
  4. 上記制御回路は、偶数のビット線のメモリセルと、奇数のビット線のメモリセルとに対して異なるベリファイ条件で上記データ消去のベリファイを行うことを特徴とする請求項1〜3のうちのいずれか1つに記載の不揮発性半導体記憶装置。
  5. 上記ベリファイ条件は、
    (1)ワード線電圧と、
    (2)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線の放電時間と、
    (3)ソースラインから充電して上記データ読み出しとは逆のデータ読み出しのときのビット線の充電時間と、
    (4)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のプリチャージ時間と、
    (5)ビット線をプリチャージしてデータを読み出すデータ読み出しのときのビット線のセンス電圧と
    のうちの少なくとも1つを、偶数のビット線のメモリセルと、奇数のビット線のメモリセルとに対して異なるように設定することであることを特徴とする請求項4記載の不揮発性半導体記憶装置。
  6. 上記互いに異なるワード線電圧は、上記不揮発性半導体記憶装置のウェハテストで測定されたデータ消去時のしきい値電圧に基づいて決定されることを特徴とする請求項1〜5のうちのいずれか1つに記載の不揮発性半導体記憶装置。
  7. 上記互いに異なるワード線電圧は、上記不揮発性半導体記憶装置のウェハテストで測定されたデータ消去時に同じしきい値電圧を与える消去電圧に基づいて決定されることを特徴とする請求項1〜5のうちのいずれか1つに記載の不揮発性半導体記憶装置。
  8. 上記ウェハテストで測定されたデータ消去時のしきい値電圧は、
    (1)偶数のワード線及び偶数のビット線のケースと、
    (2)偶数のワード線及び奇数のビット線のケースと、
    (3)奇数のワード線及び偶数のビット線のケースと、
    (4)奇数のワード線及び奇数のビット線のケースと
    の4つのケースについて測定されることを特徴とする請求項6又は7記載の不揮発性半導体記憶装置。
  9. 上記消去電圧は、上記メモリセルアレイのウェルに印加されることを特徴とする請求項1〜8のうちのいずれか1つに記載の不揮発性半導体記憶装置。
  10. 上記決定された互いに異なるワード線電圧は、上記メモリセルアレイの一部領域に格納された後、上記不揮発性半導体記憶装置の電源がオンされたときに上記メモリセルアレイから読み出されて上記データの消去時に用いることを特徴とする請求項6又は7記載の不揮発性半導体記憶装置。
  11. 上記消去のシーケンスを行う前に、上記所定領域の全メモリセルに書込みを行う特徴とする請求項1〜10のうちのいずれか1つに記載の不揮発性半導体記憶装置。
  12. 複数のワード線と複数のビット線との各交差点に設けられたメモリセルを含むメモリセルアレイの所定の領域に対して所定の消去電圧を印加することでデータの消去を行う制御回路を備えた不揮発性半導体記憶装置の消去方法であって、
    上記制御回路が、上記メモリセルアレイの縁端部以外の偶数のワード線と奇数のワード線とに対して互いに異なるワード線電圧を印加し、上記メモリセルアレイの縁端部のワード線に上記ワード線電圧とは異なる電圧を印加し、上記消去電圧をメモリセルに印加することでデータを消去することを含むことを特徴とする不揮発性半導体記憶装置の消去方法。
  13. 上記メモリセルアレイの縁端部以外の奇数のワード線に対するワード線電圧は、上記メモリセルアレイの縁端部以外の偶数のワード線に対するワード線電圧よりも高くなり又は低くなるように設定されたことを特徴とする請求項12記載の不揮発性半導体記憶装置の消去方法。
JP2016060570A 2016-03-24 2016-03-24 不揮発性半導体記憶装置とその消去方法 Pending JP2017174482A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016060570A JP2017174482A (ja) 2016-03-24 2016-03-24 不揮発性半導体記憶装置とその消去方法
US15/219,295 US9704579B1 (en) 2016-03-24 2016-07-26 Non-valatile semiconductor memory device and location based erasure methods
TW105128372A TWI598880B (zh) 2016-03-24 2016-09-02 非揮發性半導體記憶裝置及其抹除方法
CN201610840459.1A CN107230498B (zh) 2016-03-24 2016-09-22 非易失性半导体存储设备及其擦除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060570A JP2017174482A (ja) 2016-03-24 2016-03-24 不揮発性半導体記憶装置とその消去方法

Publications (1)

Publication Number Publication Date
JP2017174482A true JP2017174482A (ja) 2017-09-28

Family

ID=59257045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060570A Pending JP2017174482A (ja) 2016-03-24 2016-03-24 不揮発性半導体記憶装置とその消去方法

Country Status (4)

Country Link
US (1) US9704579B1 (ja)
JP (1) JP2017174482A (ja)
CN (1) CN107230498B (ja)
TW (1) TWI598880B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11074979B2 (en) 2019-03-07 2021-07-27 Powerchip Semiconductor Manufacturing Corporation Erase control circuit and method of non-volatile semiconductor memory device, and non-volatile semiconductor memory device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580506B2 (en) * 2017-12-07 2020-03-03 Micron Technology, Inc. Semiconductor memory device and erase method including changing erase pulse magnitude for a memory array
US10482985B2 (en) 2018-02-05 2019-11-19 Sandisk Technologies Llc Dynamic erase loop dependent bias voltage
KR102509909B1 (ko) 2018-03-09 2023-03-15 삼성전자주식회사 불휘발성 메모리 장치 및 불휘발성 메모리 장치를 포함하는 메모리 시스템
CN109243516B (zh) * 2018-08-28 2021-08-10 长江存储科技有限责任公司 一种擦除方法、装置及计算机可读存储介质
CN111951853B (zh) * 2019-05-14 2023-05-05 兆易创新科技集团股份有限公司 一种控制擦除操作的方法、装置以及Nand flash存储器
US10861571B1 (en) * 2019-06-05 2020-12-08 Sandisk Technologies Llc Wordline voltage overdrive methods and systems
KR20210025249A (ko) 2019-08-27 2021-03-09 삼성전자주식회사 메모리 시스템 및 그 동작 방법
US11069417B2 (en) * 2019-08-27 2021-07-20 Samsung Electronics Co., Ltd. Memory system and method of operating the same
CN110945592B (zh) * 2019-11-13 2021-01-29 长江存储科技有限责任公司 执行编程操作的方法及相关的存储器件
US11574690B2 (en) * 2021-06-01 2023-02-07 Micron Technology, Inc. Sequential wordline erase verify schemes
US11901015B2 (en) * 2022-01-10 2024-02-13 Sandisk Technologies Llc Voltage kick for improved erase efficiency in a memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210503A (ja) * 2007-02-27 2008-09-11 Samsung Electronics Co Ltd 不揮発性メモリ装置及びその駆動方法
JP2008262623A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 不揮発性半導体記憶装置
JP2011165278A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置及びその制御方法
JP2013054798A (ja) * 2011-09-02 2013-03-21 Toshiba Corp 不揮発性半導体記憶装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749737B1 (ko) * 2006-01-25 2007-08-16 삼성전자주식회사 노어 플래시 메모리 및 그것의 소거 방법
US7414891B2 (en) 2007-01-04 2008-08-19 Atmel Corporation Erase verify method for NAND-type flash memories
KR101371522B1 (ko) * 2007-02-27 2014-03-12 삼성전자주식회사 비휘발성 메모리 장치 및 그것의 구동 방법
JP4712769B2 (ja) 2007-07-09 2011-06-29 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
KR101489885B1 (ko) 2007-11-21 2015-02-06 삼성전자주식회사 개선된 신뢰성을 갖는 트랩형 비휘발성 메모리 장치 및 그동작 방법
US7952927B2 (en) 2007-12-05 2011-05-31 Micron Technology, Inc. Adjusting program and erase voltages in a memory device
US7978527B2 (en) * 2008-06-03 2011-07-12 Sandisk Technologies Inc. Verification process for non-volatile storage
US8468370B2 (en) * 2009-09-16 2013-06-18 Seagate Technology Llc Systems, methods and devices for control of the operation of data storage devices using solid-state memory and monitoring energy used therein
KR101691088B1 (ko) * 2010-02-17 2016-12-29 삼성전자주식회사 불휘발성 메모리 장치, 그것의 동작 방법, 그리고 그것을 포함하는 메모리 시스템
KR20120005848A (ko) * 2010-07-09 2012-01-17 주식회사 하이닉스반도체 불휘발성 메모리 장치 및 이의 소거 방법
KR20130072665A (ko) * 2011-12-22 2013-07-02 에스케이하이닉스 주식회사 반도체 메모리 장치 및 이의 동작 방법
KR20140094278A (ko) 2013-01-22 2014-07-30 에스케이하이닉스 주식회사 반도체 장치 및 이의 동작 방법
US9042181B2 (en) 2013-03-15 2015-05-26 SanDisk Technologies, Inc. Periodic erase operation for a non-volatile medium
CN104347117B (zh) * 2013-08-06 2018-07-06 华邦电子股份有限公司 半导体存储装置及其擦除方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210503A (ja) * 2007-02-27 2008-09-11 Samsung Electronics Co Ltd 不揮発性メモリ装置及びその駆動方法
JP2008262623A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 不揮発性半導体記憶装置
JP2011165278A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置及びその制御方法
JP2013054798A (ja) * 2011-09-02 2013-03-21 Toshiba Corp 不揮発性半導体記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11074979B2 (en) 2019-03-07 2021-07-27 Powerchip Semiconductor Manufacturing Corporation Erase control circuit and method of non-volatile semiconductor memory device, and non-volatile semiconductor memory device

Also Published As

Publication number Publication date
TW201735043A (zh) 2017-10-01
CN107230498A (zh) 2017-10-03
TWI598880B (zh) 2017-09-11
CN107230498B (zh) 2020-11-10
US9704579B1 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
CN107230498B (zh) 非易失性半导体存储设备及其擦除方法
US9672926B2 (en) Apparatus and method of programming and verification for a nonvolatile semiconductor memory device
JP4005895B2 (ja) 不揮発性半導体メモリ装置
JP4510060B2 (ja) 不揮発性半導体記憶装置の読み出し/書き込み制御方法
KR100885784B1 (ko) 불휘발성 메모리 장치의 소프트 프로그램 방법
US9721672B1 (en) Multi-die programming with die-jumping induced periodic delays
US20080239828A1 (en) Flash memory device and erase method thereof
US8363471B2 (en) Nonvolatile memory device and method of programming the same
US8971109B2 (en) Semiconductor memory device and method of operating the same
JP5565948B2 (ja) 半導体メモリ
JP2007305281A (ja) フラッシュメモリ素子のプログラム方法
JP2010067327A (ja) 不揮発性半導体記憶装置
KR101705294B1 (ko) 플래시 메모리 및 그 프로그램 방법
TWI614760B (zh) 半導體記憶裝置
US9053793B2 (en) Semiconductor memory device and method of operating the same
US9236135B2 (en) Semiconductor storage device having a voltage generator
JP2011150750A (ja) 半導体記憶装置
JP2010140521A (ja) 不揮発性半導体記憶装置とその読み出し方法
JP2008091011A (ja) フラッシュメモリ素子とそのプログラム方法
US9779830B2 (en) Non-volatile semiconductor memory device and erase method thereof
KR20120059035A (ko) 반도체 메모리 장치의 프로그램 방법
US20150270003A1 (en) Non-volatile memory and method for programming the same
KR101203256B1 (ko) 불휘발성 메모리 장치 및 이의 동작 방법
US9786380B2 (en) Semiconductor memory device
KR101124126B1 (ko) 불휘발성 메모리 소자의 프로그램 방법

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170808