JP2017168283A - 電池用負極材料、電池、電池用負極の製造方法 - Google Patents

電池用負極材料、電池、電池用負極の製造方法 Download PDF

Info

Publication number
JP2017168283A
JP2017168283A JP2016052053A JP2016052053A JP2017168283A JP 2017168283 A JP2017168283 A JP 2017168283A JP 2016052053 A JP2016052053 A JP 2016052053A JP 2016052053 A JP2016052053 A JP 2016052053A JP 2017168283 A JP2017168283 A JP 2017168283A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
hydrogen
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016052053A
Other languages
English (en)
Inventor
智裕 上野
Tomohiro Ueno
智裕 上野
祐功 主藤
Yuko Shudo
祐功 主藤
俊男 高橋
Toshio Takahashi
俊男 高橋
博 河野
Hiroshi Kono
博 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2016052053A priority Critical patent/JP2017168283A/ja
Publication of JP2017168283A publication Critical patent/JP2017168283A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】水素と電解液との接触によって充放電を行う電池用負極において、気体水素と電解液との反応性を両立させることのできる高性能の電池用負極材料を提供する。【解決手段】水素と電解液との接触によって充放電を行う電池用負極に用いられる負極材料であって、粉末状の水素吸蔵合金と、粉末状の水素吸蔵合金同士を結着させる結着材と、を有し、水素吸蔵合金は、少なくとも表面が相対的に疎水性を有し、結着材は、相対的に親水性を有する材料と、疎水性を有する材料とを含み、結着材における親水性を与える材料と、結着材における疎水性を与える材料とが質量比で、0.05:1から0.1:1の範囲内であることを特徴とする。【選択図】図1

Description

本発明は、水素と電解液との接触によって充放電を行う電池用負極に用いられる電池用負極材料、前記負極材料を用いた電池、および電池用負極の製造方法に関する。
近年、非常用電源等を目的として、定置型の大型二次電池の需要が高まっている。大容量の電力を供給できる二次電池としては、鉛蓄電池、ニッケル水素電池、リチウムイオン電池が挙げられる。しかしながら、これらの電池を大型化する際には、重量やコスト、安全性などが課題となる。
この中で、ニッケル水素電池は、負極に水素吸蔵合金、正極に水酸化ニッケルを用いた電池であり、鉛蓄電池よりも軽量である。また、ニッケル水素電池は水系の電解質を用いるため、安全性の面でリチウムイオン電池よりも優れている。しかし、ニッケル水素電池の負極に用いられる水素吸蔵合金は価格が高く、大型化するとそれだけコストと重量が増加してしまう。この点が、高容量のニッケル水素電池を製作するにあたり大きなネックとなる。
一方、特許文献1〜3には、正極に水酸化ニッケル、負極に周知の燃料電池水素極を用いた電池が提唱されている。この電池は負極活物質である水素をガスの状態で電池内部に蓄積しているため、負極の重量を軽減することができるが、これらの電池では、負極に高価な白金微粒子を触媒として用いているため、用途が人口衛星用などに限られており根本的なコスト低下は難しい。
また、特許文献4では、正極に二酸化マンガン、負極に水素吸蔵合金を使用し、活物質である水素を気体の状態で電池容器内に蓄積させる電池が提唱されている。
特許文献4に記載された電池の負極では、放電時に負極の水素吸蔵合金が気体水素を吸収する反応(固−気反応)と、負極が電解液との界面で水素を消費する放電反応(固−液反応)とが起きる。特許文献4では、負極における固−気反応と固−液反応とを両立させるため、負極に疎水性の材料と親水性の材料とを併用することが記載されている。具体的には、負極の水素ガスと接する側には疎水性材料を多く使用し、負極のセパレータに接する側には親水性にしている。
特開昭57−49175号公報 特開昭60−115151号公報 特開平7−153484号公報 特開2013−20955号公報
しかし、特許文献4では、電池用負極において疎水性材料と親水性材料をどのように分散させるかについては明確ではなく、電池用負極で気体水素と電解液双方との接触を効果的に行うために更なる改善の余地がある。
特に、水素ガスの吸放出を担う水素吸蔵合金の表面には撥水性を付与することが重要であるが、水素吸蔵合金の粉末どうしを結び付ける結着材には親水性を付与することで放電反応の抵抗を低減させることができる。このように、負極の構成成分に対して選択的に疎水性と親水性を付与することで、水素ガスの吸放出反応と電解液を介する放電反応の両方を促進させることができる。
本願発明は、上記事情を背景としてなされたものであり、気体水素と電解液との反応性を両立させることのできる高性能の電池用負極材料、電池、および電池用負極の製造方法を提供することを目的とする。
すなわち、本発明の電池用負極材料のうち、第1の本発明は、水素と電解液との接触によって充放電を行う電池用負極に用いられる負極材料であって、
粉末状の水素吸蔵合金と、粉末状の水素吸蔵合金同士を結着させる結着材と、を有し、
前記水素吸蔵合金は、少なくとも表面が相対的に疎水性を有し、前記結着材は、相対的に親水性を有する材料と、疎水性を有する材料とを含み、
前記結着材における親水性を与える材料と、前記結着材における疎水性を与える材料とが質量比で、0.05:1から0.1:1の範囲内であることを特徴とする。
他の形態の電池用負極材料は、前記形態の本発明において、前記水素吸蔵合金の表面の全てに疎水性を有することを特徴とする。
他の形態の電池用負極材料は、前記形態の本発明において、前記水素吸蔵合金粉末の表面に疎水性膜を有することを特徴とする。
本発明の電池のうち、第1の本発明は、前記電池用負極材料の形態におけるいずれかの負極材料を有する負極と、前記負極に水素ガスを与える水素ガス供給部と、正極と、前記負極と前記正極との間に介在する電解液と、を有することを特徴とする。
本発明の電池用負極の製造方法のうち、第1の本発明は、水素と電解液と接触する電池用負極の製造方法であって、粉末状の水素吸蔵合金に疎水性材料を接触させて水素吸蔵合金粉末の表面に疎水性を付与し、その後、疎水性が付与された水素吸蔵合金粉末同士を、親水性の材料を含む結着材を用いて結着し、結着した水素吸蔵合金を担体に担持することを特徴とする。
他の形態の電池用負極の製造方法は、前記形態の本発明において、前記結着材における親水性を与える材料と、前記結着材における疎水性を与える材料とが質量比で、0.05:1から0.1:1の範囲内であることを特徴とする。
本発明によれば、負極活物質である水素吸蔵合金の粉末に疎水性を付与し、この粉末同士を結着させる結着材に親水性を付与することによって、負極は水素ガスとの反応性を維持し、同時に電極全体に電解液が浸透するので、高性能の負極が得られる。
本発明の一実施形態の負極を用いた電池を示す模式図である。 同じく、他の実施形態の負極を用いた電池を示す模式図である。 本発明の実施例と比較例における水素ガス消費速度を示す図である。
以下、本発明の一実施形態について説明する。
まず、本発明の電池用負極材料および電池の製造方法について説明する。
まず、負極用の水素吸蔵合金の粉末を用意する。本発明としては、水素吸蔵合金の種別は特に限定されるものではないが、水素吸蔵合金にはAB系合金やAB系合金またはA合金などを使用することができる。それぞれの水素吸蔵合金は、アーク溶解などを用いたアトマイズ法などによって製造することができ、機械粉砕、篩などによって所定の粒径まで分級されたものを使用することができる。本発明としては、粉末の製造法や粒径の調製方法が特定の方法に限定されるものではない。なお、水素吸蔵合金の粉末の粒径は、50μmから3μmとしたものを用いることができる。得られた粉末に対しては、酸処理やアルカリ処理などの適宜の表面処理を施すようにしてもよい。
次に、得られた粉末状の水素吸蔵合金に対して疎水性を付与する。疎水性の付与は、例えば、疎水性材料を水素吸蔵合金の粉末に接触させ、粉末の表面に疎水性膜を形成することによって行うことができる。疎水性材料としては、PTFE(ポリテトラフルオロエチレン)や、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などの懸濁液を挙げることができる。なお、水素吸蔵合金に与えられる疎水性は、水素吸蔵合金粉末特有の性質に対し、少なくとも疎水性を与えられるものであればよいが、疎水性の指標として、例えば、平滑かつ清浄な面に疎水性を付与し、水滴を落としたときの接触角が40°以上の撥水性を与えるものが望ましい。
疎水性を与える作業としては、具体的には、水素吸蔵合金を懸濁液に浸漬させて撹拌するコーティングにより行う。
次に、疎水性を与えた水素吸蔵合金の粉末に対し親水性を有する結着材で結着する。親水性を有する結着材としては、例えばCMC(カルボキシルメチルアセテート)を用いることができる。その他の親水性を有する材料としては、このほかにPVA(ポリビニルアルコール)などを用いることができる。親水性は、合金粉末どうしを結着させる結着材に対し、親水性を有するものであればよいが、親水性の指標として、例えば、平滑かつ清浄な表面に塗布し、水滴を落とした時の接触角が40°未満であることが望ましい。
結着材は、親水性を有する材料のみでなく、疎水性を有する材料を含んでいるのが望ましい。その理由は親水性材料のみで結着材を構成すると、電解液が合金の隙間を埋めてしまうため、負極の充放電反応に必要な水素ガスの通路がふさがれてしまうからである。疎水性の結着材としては、例えばPTFE、SBR(スチレンブタジエンラバー)などを用いることができる。
なお、結着材において、親水性の有する材料と疎水性を有する材料の質量比は、0.05:1から0.1:1とすることが望ましい。その理由は、親水性を有する材料の量が多すぎると負極中の電解液が過剰に浸透し、水素ガスとの反応が阻害されるからである。逆に、親水性を有する材料の比率が少なすぎると負極の電解液の浸透が不十分となり、放電反応が十分に進行しなくなってしまう。
負極の製造では、親水性を付与した水素吸蔵合金粉末に、親水性を有する親水性結着材、疎水性を有する疎水性結着材、および導電性を高める導電性材料の粉末を混合し、スラリーを形成する。導電性材料としては、例えばカーボン粉末を用いることができる。上記スラリーは、本発明の電池用負極材料を含んでいる。
次に、得られたスラリーを、塗布などの方法によって担体に担持する。担体としては、例えば発泡ニッケルを用いることができる。担体としては発泡ニッケルに限定されるものではなく、各種の材料を用いることができる。その後、スラリーを塗布した発布ニッケルには所望により圧延などの加工をして適宜の厚さにすることができる。
上記工程によって負極を得ることができる。ただし、本発明の製造工程が上記に限定されるものではない。
上記により得られた負極2は、電池1に組み込まれて使用される。図1は、電池セルに気体水素収容室4を有する実施形態を示すものである。
電池セルでは、負極2の背面側に気体水素収容室4が設けられており、気体水素収容室4内の気体水素が負極2の水素吸蔵合金粒子で吸放出され、これに伴って放電反応が起こる。気体水素収容室4は、本発明の水素ガス供給部に相当する。
負極2と正極3との間には、不織布などからなるセパレータ7を配する。
正極3の材料は特定のものに限定されないが、水酸化ニッケルを用いることができ、水酸化ニッケルを粉末状(例えば平均粒径10μm)にし、多孔体ニッケルに付着させ、圧延と加熱・乾燥によって正極3とする。電解液には、KOHまたはKOHを主体とするアルカリ性水溶液を用いることができる。セパレータは、絶縁性があり電解液を保持できるような膜を有するものを用いることができ、例えば、ポリオレフィン系繊維、ポリアミド系繊維などを用いることができる。
図2は、他の実施形態の電池1Aを示すものである。なお、前記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
この実施形態では、電池セル内には気体水素収容室を有しておらず、負極2と気体水素が接触できるように、気体水素移動路11が負極2に接続されている。気体水素移動路11は、気体水素収容室10に接続されている。気体水素収容室10は本発明の水素ガス供給部に相当する。
この実施形態においても、気体水素収容室10、気体水素移動路11を通して移動する気体水素が負極2の水素吸蔵合金粒子で吸放出され、放電反応が生じ、電池1Aとして機能する。
負極2が電解液および気体水素と接していることにより、負極2の水素吸蔵合金においては、放電時に、電解液を介して放電反応を行う固−液反応と、気体水素から水素を補充する固−気反応とが効果的に生じる。
以下、本発明の一実施例について説明する。
負極用のAB型水素吸蔵合金として、MmNi55MnCo75Alをアルゴン雰囲気中にてアーク溶解で作成した。これを熱処理後、37μm(400メッシュ)まで分級した後に、PTFE溶液を用いて水素吸蔵合金粉末を撥水処理し、疎水性を付与する。
その後、疎水性を付与した水素吸蔵合金粉末と、親水性バインダーであるCMCと、疎水性バインダーであるPTFEと、水素吸蔵合金の粉末同士の導電性を高めるカーボン粉末と、を混合し、スラリーを形成した。CMCとPTFEの質量比は、0.07:1とした。得られたスラリーを発泡ニッケルに塗布し、圧延をして厚さ0.2mmの負極とした。サイズは25mm×25mm×0.25mmで、容量は約82mAhとした。負極は、後述の電気化学セルに組み込む前に、1回気体水素を吸放出させた。
正極は、Ni(OH)粉末をバインダーとともに混練したものを多孔体ニッケルに塗布し、圧延と乾燥を行い作製した。電解液は、KOHとNaOH、LiOHを質量比で3:3:0.4の割合で混合し、トータルで6.4規定となる溶液を用いた。
上記の手法で作製した負極と正極を、負極と正極の容量比が約7:1となるように電気化学セルに組み込んだ。また、正極と負極の間には厚さ約0.2mmのセパレータを介して短絡を防止した。さらに、電気化学セルを容積約170ccの圧力容器に組み入れ、最大圧力0.9MPaGの水素圧下で充放電実験を行った。
このようなセルで放電試験を行うと、放電中は圧力容器の内圧が直線的に減少し、負極容量を超える放電容量を示した。これは、負極が気体水素を消費して放電したことが原因であり、内圧の減少速度は以下のような水素の放電反応から電流値として表すことができる(H+2OH→2HO+2e)。放電電流と、内圧の減少速度から計算した水素ガスの消費速度との関係を図3に示す。水素ガスの消費速度が放電電流に追従しているほど、負極の性能が良いと言える。
比較例1から比較例3として、結着材のうちの親水性と疎水性の成分比を変化させたものを図3に示す。
図3に示すように、すべての負極で放電電流を増加させると水素ガス消費速度の放電電流への追従性が低下した。これは放電電流に対して水素吸蔵合金の水素ガス吸収反応が追いつかず、水素吸蔵合金の内部の水素を一部消費したためと考えられる。図3では放電電流と水素ガス消費速度が1:1で対応するところを点線で示しており、点線に対する追従性で負極性能の良し悪しを判断することができる。
親水性、疎水性の結着材の成分比を0.05:1から0.1:1の範囲にした負極では放電電流を増加させても水素ガス消費速度の追従性が良好であり、200mAを超える放電電流でも水素ガス消費速度が理論値の80%以上を示した。しかし、成分比を0.14:1とした負極では低い放電電流から水素ガス消費速度が飽和した。これは親水性の結着材の比率を増加させたために負極中に電解液が過剰に存在し、水素ガスの吸収反応が阻害されたためとみられる。
以上、本発明について、上記実施形態および実施例に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは、前記実施形態に対する適宜の変更が可能である。
1 電池
1A 電池
2 電池用負極
3 電池用正極
4 気体水素収容室
5 電解液
7 セパレータ
10 気体水素収容室
11 気体水素移動路

Claims (6)

  1. 水素と電解液との接触によって充放電を行う電池用負極に用いられる負極材料であって、
    粉末状の水素吸蔵合金と、粉末状の水素吸蔵合金同士を結着させる結着材と、を有し、
    前記水素吸蔵合金は、少なくとも表面が相対的に疎水性を有し、前記結着材は、相対的に親水性を有する材料と、疎水性を有する材料とを含み、
    前記結着材における親水性を与える材料と、前記結着材における疎水性を与える材料とが質量比で、0.05:1から0.1:1の範囲内であることを特徴とする電池用負極材料。
  2. 前記水素吸蔵合金の表面の全てに疎水性を有することを特徴とする請求項1記載の電池用負極材料。
  3. 前記水素吸蔵合金粉末の表面に疎水性膜を有することを特徴とする請求項1または2に記載の電池用負極材料。
  4. 請求項1〜3のいずれかに記載の負極材料を有する負極と、前記負極に水素ガスを与える水素ガス供給部と、正極と、前記負極と前記正極との間に介在する電解液と、を有することを特徴とする電池。
  5. 水素と電解液と接触する電池用負極の製造方法であって、粉末状の水素吸蔵合金に疎水性材料を接触させて水素吸蔵合金粉末の表面に疎水性を付与し、その後、疎水性が付与された水素吸蔵合金粉末同士を、親水性の材料と疎水性の材料とを含む結着材を用いて結着し、結着した水素吸蔵合金を集電体に接触させて電力を得ることを特徴とする電池用負極の製造方法。
  6. 前記結着材における親水性を与える材料と、前記結着材における疎水性を与える材料とが質量比で、0.05:1から0.1:1の範囲内であることを特徴とする請求項5に記載の電池用負極材料の製造方法。
JP2016052053A 2016-03-16 2016-03-16 電池用負極材料、電池、電池用負極の製造方法 Pending JP2017168283A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052053A JP2017168283A (ja) 2016-03-16 2016-03-16 電池用負極材料、電池、電池用負極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052053A JP2017168283A (ja) 2016-03-16 2016-03-16 電池用負極材料、電池、電池用負極の製造方法

Publications (1)

Publication Number Publication Date
JP2017168283A true JP2017168283A (ja) 2017-09-21

Family

ID=59914059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052053A Pending JP2017168283A (ja) 2016-03-16 2016-03-16 電池用負極材料、電池、電池用負極の製造方法

Country Status (1)

Country Link
JP (1) JP2017168283A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103546A3 (ko) * 2017-11-24 2019-07-18 주식회사 엘지화학 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103546A3 (ko) * 2017-11-24 2019-07-18 주식회사 엘지화학 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN110741493A (zh) * 2017-11-24 2020-01-31 株式会社Lg化学 锂二次电池的负极及包括该负极的锂二次电池
US11502283B2 (en) 2017-11-24 2022-11-15 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP3246345B2 (ja) アルカリ蓄電池用ニッケル正極とこれを用いたニッケル・水素蓄電池
JP5361712B2 (ja) 新規なアルカリ蓄電池用銀正極
JP5975307B2 (ja) ニッケル水素蓄電池および組電池
JPH10284113A (ja) アルカリ蓄電池
KR100312945B1 (ko) Mg계 네가티브 전극 활성재, 이 활성재를 제조하는 방법, 수소 저장 합금 전극, 알카리 2차 배터리
WO2007004703A1 (ja) ニッケル水素電池
JP2004247288A (ja) 密閉型ニッケル水素蓄電池とその製造法
JP2023133607A (ja) 亜鉛電池用電解液及び亜鉛電池
JP5959003B2 (ja) ニッケル水素二次電池及びニッケル水素二次電池用の負極
JP2017168283A (ja) 電池用負極材料、電池、電池用負極の製造方法
JPH02291665A (ja) アルカリ蓄電池およびその負極の製造法
US10263251B2 (en) Battery negative electrode, battery, and manufacturing method of battery negative electrode
JPH0973897A (ja) 密閉型二次電池
JP5334498B2 (ja) アルカリ蓄電池
JPH06302319A (ja) 水素吸蔵電極の製造法およびその電極を備えた金属酸化物−水素蓄電池
JP2016048609A (ja) ニッケル水素電池用負極およびその製造方法
JP4706163B2 (ja) 水素吸蔵合金電極及びこれを用いたニッケル水素蓄電池
JPH08287906A (ja) 水素吸蔵合金電極
JPH09115519A (ja) アルカリ二次電池
JP2022115451A (ja) 鉄-炭素複合材料、その製造方法、負極およびニッケル水素電池
JP2023095566A (ja) 二次電池
JPH06215764A (ja) 水素吸蔵電極の製造法およびその水素吸蔵電極を備えた金属酸化物−水素蓄電池
JP2022182855A (ja) アルカリ蓄電池用の負極、及び当該負極を用いたアルカリ蓄電池
JPH03295177A (ja) 密閉形アルカリ蓄電池
JP2007265960A (ja) アルカリ蓄電池