WO2007004703A1 - ニッケル水素電池 - Google Patents

ニッケル水素電池 Download PDF

Info

Publication number
WO2007004703A1
WO2007004703A1 PCT/JP2006/313517 JP2006313517W WO2007004703A1 WO 2007004703 A1 WO2007004703 A1 WO 2007004703A1 JP 2006313517 W JP2006313517 W JP 2006313517W WO 2007004703 A1 WO2007004703 A1 WO 2007004703A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
battery
nickel
alloy powder
storage alloy
Prior art date
Application number
PCT/JP2006/313517
Other languages
English (en)
French (fr)
Inventor
Hiroaki Mori
Kouichi Sakamoto
Toshinori Bandou
Kazuya Okabe
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to CN2006800241247A priority Critical patent/CN101213690B/zh
Priority to US11/988,205 priority patent/US7867655B2/en
Publication of WO2007004703A1 publication Critical patent/WO2007004703A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nickel metal hydride battery having a hydrogen storage electrode having a hydrogen storage alloy powder as a negative electrode, and more particularly to a nickel metal hydride battery having improved output characteristics and cycle characteristics.
  • the output characteristics, particularly at low temperatures can be further improved without degrading the charge / discharge cycle characteristics. It has been demanded.
  • a particularly large load such as HEV and power supply for power tools
  • the atmosphere of the place where the battery is installed becomes high like HEV, it should have a cycle life of at least 400 cycles, preferably at least 500 cycles at high temperatures (eg 45 ° C). Is desirable.
  • the output characteristics of nickel metal hydride batteries are mainly determined by the discharge characteristics of the hydrogen storage electrode.
  • a method is disclosed in which hydrogen storage alloy powder is surface treated with a weakly acidic aqueous solution having a pH value of 0.5 to 5. (For example, see Patent Document 1)
  • Patent Document 1 JP-A-7-7 3 8 78 (Page 3, paragraph 0 0 1 1)
  • Patent Document 2 A method of immersing in a 0% by weight aqueous sodium hydroxide solution is disclosed. (For example, see Patent Document 2)
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 2 — 2 5 6 3 0 1 (Page 3, paragraph 0 0 0 9) According to Patent Document 1 and Patent Document 2, it was formed on the surface of the hydrogen storage alloy powder. The oxide or hydroxide film is removed to create a clean surface, and the layer containing Ni as the main component is formed on the surface, so the hydrogen storage alloy powder is activated and activated. As a result, the chemical conversion process is shortened and the high rate discharge characteristics of the hydrogen storage electrode are improved. However, the low-temperature discharge characteristics shown in Patent Document 1 were discharged at 1 It A (the discharge rate is smaller than the discharge rate in the evaluation of output characteristics described later) at 0 ° C.
  • Output characteristics can be improved by adding yttrium (Y) compounds and light rare earth compounds such as lanthanum (L a), cerium (C e), and praseodymium (P r) to the hydrogen storage electrode in addition to the hydrogen storage alloy powder.
  • Y yttrium
  • L a lanthanum
  • C e cerium
  • P r praseodymium
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11 1 2 6 0 3 6 1
  • Patent Document 4 Japanese Patent Laid-Open No. 9-7 5 8 8
  • Patent Document 3 and Patent Document 4 have an excellent anticorrosive effect against the corrosion of the hydrogen storage alloy powder.
  • the addition of Er or Yb oxide or hydroxide powder suppresses the corrosion of the hydrogen storage alloy powder and significantly improves cycle characteristics.
  • Patent Document 3 does not touch the output characteristics at all, Patent Document 3 is not intended to improve the output characteristics.
  • Patent Document 4 mentions improvement of output characteristics, but Patent Document 4 does not actively improve the output density compared to the prior art, but instead of using hydrogen storage alloy powder.
  • the hydrogen storage alloy surface is covered with a high-resistance film, and the output density is reduced by suppressing the covering with the high-resistance film. is there.
  • the hydrogen storage electrode (negative electrode) has a higher rate of discharge characteristics and charge acceptance than the nickel electrode (positive electrode), so it balances the characteristics with the positive electrode, as well as charge reserve and discharge.
  • the capacity of the negative electrode needs to be larger than the capacity of the positive electrode.
  • the ratio of the negative electrode capacity to the positive electrode capacity (NZ P ratio) is 1.5 to 1.7.
  • the active material per unit area of the hydrogen storage electrode has heretofore been The filling amount is set to 0. 1 6 ⁇ 0. 2 0 g Z cm 2.
  • Patent Document 5 Japanese Patent Laid-Open No. 11 1 8 6 8 9 8
  • the discharge ratio shown in Patent Document 5 is a ratio when discharging at 1 C mA (1 It A) at 0 ° C, and the discharge rate is equal to the discharge rate in the evaluation of output characteristics described later. Compared to Patent Document 1, the output characteristics are not shown.
  • the hydrogen storage electrode disclosed in Patent Document 5 the hydrogen storage alloy itself is not highly active as an active material, so the reaction resistance is large, and the effect of improving the characteristics when performing high rate discharge at low temperature is small, and In the initial cycle, the charge acceptability was poor, hydrogen was generated during charging, and the oxygen absorption capacity was poor, so that the electrolyte solution was consumed and the power / cycle characteristics were likely to deteriorate.
  • a conventional cylindrical nickel metal hydride battery has a lid that also serves as one terminal (positive electrode terminal) (the lid is a hat-shaped cap 6, a sealing plate 0, a cap 6 and a sealing plate). It is composed of a valve body 7 arranged in a space surrounded by 0.
  • a gasket 5 is attached to the peripheral portion of the sealing plate 0, and the open end of the bottomed cylindrical battery case 4 is bent, The periphery of the lid body is crimped, and the lid body and the battery case are in airtight contact with each other via the gasket 5.) Attached to the upper end face of the sealing plate 0 and the wound electrode group 1 The upper current collector plate (positive electrode current collector plate) 2 is connected by a ribbon-shaped current collector lead 12 shown in FIG. In the conventional battery, after the welding of the ribbon-shaped current collecting lead 12 and the inner surface of the sealing plate 0 and the welding of the current collecting lead 12 and the upper current collecting plate 2, the lid body is opened. In order to attach to the discharge end, it is necessary to provide a sag in the current collecting lead.
  • the welding point between the current collecting lead 1 2 and the inner surface of the sealing plate 0, the current collecting lead 1 2 and the upper current collecting plate 2 The length of the current collecting lead connecting the weld point to the normal is usually 6 to 7 times the distance between the sealing plate 0 and the upper current collecting plate 2, and the current collecting lead is long.
  • the electrical resistance of the electric lead itself is large, which is thought to be one of the reasons for the low output characteristics of the battery.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sealed nickel hydrogen battery that has excellent output characteristics at low temperatures that has not been proposed in the past while maintaining cycle characteristics. And Means for solving the problem
  • the present inventors have conducted intensive studies, and determined that the mass saturation magnetization of the hydrogen storage alloy powder has a specific value, and per unit area of the hydrogen storage alloy powder in the hydrogen storage electrode. Surprisingly, the reaction resistance of the hydrogen storage electrode is very small, the output performance is excellent at low temperatures, and the required performance is maintained while maintaining the cycle characteristics. The inventors have found that a nickel metal hydride battery can be obtained, and have reached the present invention.
  • the present inventors found that in a nickel-metal hydride battery having a nickel electrode as a positive electrode and a hydrogen storage electrode as a negative electrode, hydrogen storage as a negative electrode It was confirmed that the reaction resistance of the electrode occupied a large part of the resistance during high rate discharge.
  • the present inventors determined the charge transfer rate on the alloy surface of the negative electrode during high rate discharge. In order to improve it, we examined the surface modification treatment of the hydrogen storage alloy.
  • reaction resistance can be remarkably reduced when hydrogen storage alloy powder of 2 e muZg or more is applied.
  • the mass saturation magnetization is increased to 2 emu / g or more by, for example, immersing in a high-temperature NaOH aqueous solution.
  • a nickel-rich phase having a thickness of 100 nanometers (nm) or more is formed in layers on the surface of the enhanced hydrogen storage alloy powder, and the phase acts as a catalyst for electrode reaction. Therefore, the hydrogen storage alloy powder It has been confirmed that the reaction resistance of the hydrogen storage electrode to which is applied is reduced. This effect is remarkable at room temperature.
  • the effect of reducing the reaction resistance is limited only by increasing the mass saturation magnetization of the hydrogen storage alloy, especially at low temperatures (eg, 0 ° C). Even if the mass saturation magnetization of the hydrogen storage alloy powder is further increased beyond 2 em uZg, the reaction resistance is not significantly reduced, and if the mass saturation magnetization is increased, the amount of magnetic material increases. It has also been found that the capacity of the alloy is reduced and the cycle life characteristics are lowered accordingly.
  • a hydrogen storage alloy powder having a mass saturation magnetization value of 2 emu / g or more was applied, and the amount of the hydrogen storage alloy powder supported by the hydrogen storage electrode (hereinafter also referred to as the filling amount) was It was found that the reaction resistance of the hydrogen storage electrode can be remarkably reduced by setting it to 0.15 g / cm 2 or less.
  • the cycle characteristics tend to decrease as the loading amount of the hydrogen storage alloy powder is decreased and as the mass saturation magnetization is increased, but the loading amount is set to 0.06 g / cm 2 or more.
  • the mass saturation magnetization was set to 6 emu / g or less, the decrease in the cycle characteristics was small and the cycle characteristics could be maintained at a desirable level.
  • a nickel metal hydride battery according to the present invention is a nickel metal hydride battery having a nickel electrode as a positive electrode and a hydrogen storage electrode as a negative electrode, wherein a hydrogen storage alloy powder comprising a rare earth element and a non-rare earth metal element including nickel is used.
  • a nickel metal hydride battery comprising a hydrogen storage electrode of 5 g / cm 2 . (See claim 1)
  • the value of mass saturation magnetization here is 0.3 g of hydrogen storage alloy powder, weighed in a sample holder and used a vibrating sample magnetometer (model BHV-30) manufactured by Riken Electronics Co., Ltd. This is a value measured by applying a magnetic field of 5 kelstead.
  • the particle size of the powder here is a value measured by a laser diffraction / scattering method using a Micro Track ⁇ 3000 manufactured by Micro ⁇ Rack Co., Ltd.
  • the average particle size is the cumulative average diameter (d 50) This refers to the particle size at which the cumulative curve reaches 50% when the cumulative curve is determined with the total volume of powder as 100%.
  • the nickel metal hydride battery according to the present invention is characterized in that the hydrogen storage electrode contains a hydroxide of at least one rare earth element selected from erbium (Er) and ytterbium (Yb).
  • Er erbium
  • Yb ytterbium
  • the compound [1] is present in the presence of an alkali hydroxide as a hydroxide, but when an oxide is added as described later, all of the added oxide Does not necessarily change to hydroxide in a short time in the battery. Therefore, the hydroxide here includes a mixture of hydroxide and oxide.
  • a nickel-metal hydride battery according to the present invention includes a wound electrode group, the open end of a bottomed cylindrical battery case is sealed with a lid, and an inner surface of a sealing plate constituting the lid A sealed type in which the upper surface of the upper current collector attached to the upper winding end face of the pole group is connected via a current collector lead A nickel-metal hydride battery, wherein at least one of the welding point of the inner surface of the sealing plate and the current collecting lead and the welding point of the current collecting lead and the upper current collecting plate is The nickel metal hydride battery according to any one of (1) to (3), wherein welding is performed between the positive electrode terminal and the negative electrode terminal by energizing the battery via an external power source. . (Refer to claim 5) Effect of the Invention
  • FIG. 1 is a diagram schematically illustrating a structure of a nickel metal hydride battery according to the present invention and a method of welding a current collecting lead and an upper current collecting plate.
  • FIG. 2 is a diagram showing an example of a current collecting lead applied to the nickel metal hydride battery according to the present invention.
  • FIG. 3 is a view showing an example of the upper current collector plate applied to the nickel metal hydride battery according to the present invention.
  • FIG. 4 is a diagram schematically showing a cross-sectional structure of a conventional cylindrical nickel hydrogen battery.
  • FIG. 5 is a diagram schematically showing a ribbon-shaped current collecting lead.
  • FIG. 6 is a graph showing the relationship between the reaction resistance of the hydrogen storage electrode single electrode, the mass saturation magnetization of the hydrogen storage alloy powder, and the filling amount per unit area.
  • FIG. 7 is a graph showing the relationship between the power density and cycle life of a nickel metal hydride battery at 0 ° C. and the mass saturation magnetization of the hydrogen storage alloy powder.
  • Figure 8 shows the power density, cycle life, and hydrogen of a nickel metal hydride battery at 0 ° C. It is a graph which shows the relationship of the filling amount per unit area of storage alloy powder.
  • FIG. 9 is a graph showing the relationship between the power density and cycle life of a nickel metal hydride battery at 0 ° C. and the average particle size of the hydrogen storage alloy powder.
  • the hydrogen storage alloy applied to the present invention may be any non-rare earth metal element including rare earth elements and nickel (N i), and its composition is not particularly limited. Containing rare earth elements such as La, Ce, Pr, and Nd and nickel as the main component elements, those having AB 5 type crystal structure, rare earth elements, magnesium (Mg) and nickel as the main component elements It can be applied to any of those containing AB 3 and AB 35 crystal structures.
  • AB type 5 hydrogen storage alloy an alloy in which a part of Ni in MmN i (Mm represents Misch metal, which is a mixture of rare earth elements) is replaced with Co, Mn, Al, Cu, etc. is excellent. It is preferable because of its high cycle life characteristics and high discharge capacity.
  • the hydrogen storage electrode of the nickel metal hydride battery according to the present invention is obtained by supporting a hydrogen storage alloy powder on a conductive support such as a nickel-plated perforated steel sheet.
  • the mass saturation magnetization of the hydrogen storage alloy powder applied to the hydrogen storage electrode according to the present invention is as high as 2 to 6 emu Zg as compared with the mass saturation magnetization of a normal hydrogen storage alloy being 0.1 emuZg or less.
  • the hydrogen storage alloy powder having an increased mass saturation magnetization can be obtained by immersing the hydrogen storage alloy powder in, for example, a high-temperature aqueous solution.
  • the immersion is referred to as surface modification treatment.
  • a Ni-rich phase is formed in layers on the surface of the powder.
  • a Ni-rich phase is formed as a layer having a thickness of about 100 nm or more. It is considered that this layer acts as a catalyst for promoting the electrode reaction of the hydrogen storage electrode and improves the high rate discharge characteristics of the hydrogen storage electrode.
  • a layer composed of a Ni-rich phase formed on the surface of the hydrogen storage alloy powder is referred to as a catalyst layer.
  • the hydrogen storage alloy powder As an alkaline solution used for immersing the hydrogen storage alloy powder, one or a mixture of two or more alkali hydroxides such as KOH, NaOH, LiOH, etc., used for the electrolyte is used! / Since the elution element component and the component ratio are similar to those of the electrolyte, it is preferable because the alloy does not easily corrode when it is made into a battery. Because it is fast, it is preferable because the processing time can be shortened. In addition, when Na OH is applied, a uniform and dense catalyst layer is formed on the surface of the hydrogen storage alloy compared to when KOH is applied, so that both power, high-rate discharge performance, and charge / discharge cycle performance are superior. It is preferable because a hydrogen storage electrode can be obtained.
  • alkali hydroxides such as KOH, NaOH, LiOH, etc.
  • the concentration of the Al power solution that performs surface modification treatment on the hydrogen storage alloy powder is not particularly limited, but the higher the concentration of Na OH in the NaH solution used for the surface modification treatment, the higher the concentration. Promotes the progress of corrosion.
  • a Na OH concentration of 28% by weight or more is preferable because the processing speed can be improved and the time can be shortened.
  • the concentration of Na OH exceeds 50% by weight sodium hydroxide can be used when the processing solution temperature is lowered to room temperature. This causes a disadvantage that it is difficult to separate and remove sodium hydroxide from the hydrogen storage alloy powder after the immersion treatment.
  • the concentration of Na OH in the Na OH aqueous solution used for the dipping treatment is preferably 28 to 50% by weight.
  • the immersion treatment at a high temperature because the immersion treatment speed is high. If the temperature of the treatment liquid used for the surface modification treatment is less than 90 ° C, it is effective for removing impurities such as oxides and hydroxides generated on the surface of the hydrogen storage alloy powder. In order to form a catalyst layer on the surface of the hydrogen storage alloy powder, it is necessary to immerse for a long time and is not practical. Short time In order to form a catalyst layer by this treatment, it is preferable to set the temperature of the treatment liquid in the range of 90 to 110 ° C.
  • the filling amount per unit area of the hydrogen storage alloy powder is set to a low value of 0.06 to 0.15 g / cm 2 . This makes it possible to significantly reduce the reaction resistance of the hydrogen storage electrode compared to the conventional case.
  • the filling amount per unit area of the hydrogen storage alloy powder in the range of 0.07 to 0.15 gZcm 2 , and 0.09 to 0.0. It is more preferable to set it in the range of 1 5 gZc m 2 .
  • the average particle size of the hydrogen storage alloy powder applied to the hydrogen storage electrode according to the present invention is preferably 10 to 35 ⁇ , and more preferably 10 to 28 ⁇ m.
  • the average particle size is less than 10 ⁇ , the corrosion resistance to the electrolytic solution is inferior, and good cycle performance cannot be obtained. on the other hand.
  • the average particle diameter exceeds 35 m, the surface layer does not function as a catalyst because the matrix is large, and the reaction resistance increases. In addition, corrosion may be promoted because a new surface is formed by refining when charge and discharge are repeated.
  • a powdering machine or a classifier is used, but the powdering method and the classification method are not particularly limited.
  • the negative electrode active material which is a main component of the negative electrode has been described in detail.
  • the hydrogen storage electrode includes a conductive agent, a binder, a thickener, an anticorrosive, and a filler. Etc. may be contained as other constituents.
  • Na In particular, Er oxide and hydroxide powders hardly increase the reaction resistance of the hydrogen storage electrode, and are effective in improving cycle characteristics while maintaining high output.
  • the oxide and hydroxide powder of £ 1: 1) is mixed and added to the hydrogen storage alloy powder by pre-grinding and classification treatment. It is preferable that the oxide or hydroxide powder of Yb is a fine powder having an average particle diameter (d50) of 0.3 to 5 ⁇ m.
  • the addition ratio is preferably 0.3 to 1.5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. When the ratio is less than 0.3 parts by weight, it is difficult to obtain a corrosion protection effect. When the ratio exceeds 1.5 parts by weight, the filling amount of the hydrogen storage alloy powder decreases and the capacity decreases or the reaction resistance of the hydrogen storage electrode decreases. There is a trap to increase.
  • the purity of the oxides and hydroxides of Er and Yb to be added is preferably 90% or more. If the purity is less than 90%, the anticorrosive effect of the added compound may be impaired.
  • the conductive auxiliary agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite flaky graphite, earthy graphite, etc.
  • artificial graphite carbon black, acetylene black
  • Conductive materials such as ketjen black, carbon whistle, carbon fiber, vapor grown carbon, metal (copper, nickel, gold, etc.) powder, metal fiber, etc. can be included as one kind or a mixture thereof.
  • Ketjen Black is desirable as a conductive aid from the viewpoints of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1 to 2% by weight with respect to the total weight of the positive electrode or the negative electrode because it has conductivity and does not significantly reduce the capacity of the negative electrode.
  • ketjen black is preferably used after being pulverized into ultrafine particles of 0.1 to 0.5 / m because the required carbon amount can be reduced.
  • binder examples include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyethylene, and polypropylene, ethylene-propylene-generator monopolymer (EP DM), sulfonated EP DM, styrene butadiene rubber ( SBR), polymers having rubber elasticity such as fluoro rubber can be used as one kind or a mixture of two or more kinds.
  • the addition amount of the binder is preferably 0.1 to 3% by weight based on the total weight of the positive electrode or the negative electrode.
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • HPMC hydroxypropylmethylenolecellulose
  • the addition amount of the thickener is preferably 0.1 to 3% by weight based on the total weight of the positive electrode or the negative electrode.
  • any material that does not adversely affect battery performance may be used.
  • olefin-based polymers such as polypropylene and polyethylene, carbon and the like are used.
  • the addition amount of the filler is preferably 5% by weight or less with respect to the total weight of the positive electrode or the negative electrode.
  • the positive electrode uses nickel hydroxide powder in which several percent by weight of Zn and Co as a solid solution is used as a core layer, and the surface thereof is a conductive high-order cobalt compound (oxyhydroxy hydroxide).
  • the active material powder coated with is preferably applied.
  • E it is preferable to add a few wt% of rare earth oxide or hydroxide powder such as r and Yb.
  • the positive electrode and the negative electrode are obtained by mixing the active material, the conductive agent, and the binder in an organic solvent such as water, alcohol, and toluene, and then mixing the resulting mixture on the conductive support described in detail below. It is suitably produced by applying to and drying.
  • an organic solvent such as water, alcohol, and toluene
  • roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc.
  • roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc.
  • spin coating such as bar coater, etc.
  • the conductive support may be any electronic conductor that does not adversely affect the constructed battery.
  • a steel plate with nickel or nickel is suitable. 2D substrates such as punched steel sheets are used in addition to foams, formed fibers, and uneven 3D substrates.
  • the thickness of the conductive support is not particularly limited, but a conductive support of 5 to 700 is used.
  • Ni which has excellent corrosion resistance and oxidation resistance against alkalis, is used as a foam with a porous structure, which is a structure with excellent current collecting function and active material holding function. It is preferable to use the same.
  • a perforated plate punching body that is made of Ni foil for improving reduction resistance on an inexpensive and highly conductive iron foil.
  • the punched diameter of the perforated plate is preferably 1.7 mm or less and the opening ratio is 40% or more, so that the adhesion between the negative electrode active material and the conductive support is excellent even with a small amount of binder. It will be.
  • Ni powder, carbon, platinum, etc. are used on the surface of the conductive support to improve adhesion, conductivity and oxidation resistance. be able to. The surface of these materials can be oxidized.
  • porous membrane As a separator for a nickel metal hydride battery, it is preferable to use a porous membrane, a nonwoven fabric, or the like exhibiting excellent high rate characteristics alone or in combination.
  • the material constituting the porous membrane non-woven fabric include polyolefin resins represented by polyethylene (P E), polypropylene (P P) and the like, and nylon.
  • the separator has a porosity of 80% by volume or less from the viewpoint of ensuring the strength of the separator, preventing the occurrence of an internal short circuit due to penetration of the electrode through the separator, and ensuring gas permeability.
  • the porosity is preferably 20% by volume or more from the viewpoint of keeping the electrical resistance of the separator low and ensuring excellent high rate characteristics.
  • the separator is preferably subjected to a hydrophilic treatment.
  • a polyolefin resin such as polyethylene (P E) that has been subjected to sulfonation treatment, corona treatment, PVA treatment on the surface, or a mixture of those already subjected to these treatments may be used.
  • P E polyethylene
  • Water as a solvent, and solutes may include potassium (K), sodium (N a), lithium (L i) alone or a mixture of two or more thereof. Is not limited to these.
  • an aqueous solution containing 5 to 7 mo 1 / dm 3 of KOH and 0.1 to 0.8 mo 1 / dm 3 of LiOH is used. Can be mentioned.
  • the nickel metal hydride battery according to the present invention is preferably produced by injecting an electrolyte before or after laminating the positive electrode, the separator, and the negative electrode, and finally sealing with an exterior material. .
  • the electrolyte is preferably injected into the power generation element before and after the winding.
  • an injection method it is possible to inject at normal pressure, but a vacuum impregnation method, a pressure impregnation method, and a centrifugal impregnation method can also be used.
  • Examples of the material for the exterior body of the nickel-metal hydride battery according to the present invention include nickel-plated iron, stainless steel, and polyolefin-based resin.
  • the configuration of the nickel metal hydride battery according to the present invention is not particularly limited, and examples thereof include coin batteries, button batteries, square batteries, flat batteries, and the like having a positive electrode, a negative electrode, and a single-layer or multi-layer separator.
  • a cylindrical battery having a wound electrode group in which a positive electrode, a negative electrode, and a separator are wound in a roll shape is preferable because the number of electrode plates is small and the electrode area can be increased.
  • the cylindrical nickel-metal hydride battery according to the present invention connects the inner surface of the sealing plate 0 with the cap 6 serving as one of the positive electrode and the negative electrode on the outer surface and the upper current collector plate 2 with leads. is doing.
  • the pole group 1 to which the upper current collector plate 2 and the lower current collector plate 3 are attached is housed in a bottomed cylindrical metal battery case 4, and a predetermined amount of electrolytic solution is stored.
  • the bottom current collector plate 3 and the bottom inner surface of the battery case 4 are joined by electric resistance welding, and then the lead is formed on the inner surface (in the example shown in FIG. 2, the lead consists of the main lead 8 and the auxiliary lead 9).
  • the cap 6 which is one terminal of the battery is joined to the outer surface, the valve body 7 of the safety valve is placed inside the cap, and the sealing plate 0 with the gasket 5 attached to the periphery is placed on the upper side of the upper current collector plate.
  • the battery case 4 is bent and the open end of the battery case 4 is bent to hold the gasket, and then the output terminal A (both electrode rod) of one of the electric resistance welders is attached to the outer surface of the sealing plate 0 (or cap 6).
  • Connect the other output terminal B to the bottom outer surface of the battery case 4 and pass the current required for welding through the battery.
  • the lead and the upper current collector plate 2 are welded with the sealing plate fixed in advance to the open end of the battery case, it is not necessary to provide a squeeze allowance for the lead as in the conventional case, and the length is short.
  • the lead plate can connect the sealing plate and the upper current collector plate, and the electrical resistance of the lead can be reduced compared to the conventional case.
  • the welding point between the current collecting lead and the sealing plate 0 to the welding point P 1 between the current collecting lead and the upper current collecting plate 2 is connected.
  • the ratio of the length of the current collecting lead to the distance between the sealing plate 0 and the upper current collecting plate 2 is preferably 2.1 or less, and more preferably 1.7 or less.
  • the current that is energized via the inside of the battery for welding is preferably AC pulse energization because it can suppress the decomposition of the electrolyte solution due to the energization.
  • the lead is composed of, for example, a ring-shaped main lead 8 and an auxiliary lead 9, and a plurality of protrusions are formed on one end surface of the main lead 8 in order to improve the joining when joining the sealing plate by electric resistance welding.
  • the auxiliary lead 9 has a plurality of protruding pieces 9 ′ (projecting pieces protruding from the ring of the ring-shaped main lead 8 inward). May protrude toward the outside of the ring), and at the tip of the projecting piece 9 ′ is joined when the projecting piece is joined to the upper surface of the upper current collector plate 2 by electric resistance welding.
  • Protrusions 10 are provided for smoothness, and the projecting pieces project below the main lead 8 as shown in Fig. 2 and have elasticity against vertical deformation. Even if an error (variation) occurs in the height dimension, When the pin is pressed from below, a stable contact pressure is obtained between the protrusion 10 and the upper current collector plate 2 due to the elasticity of the protrusion itself, which is good when joining the lead and the upper current collector plate 2 by electric resistance welding. Can be achieved.
  • the upper current collecting plate 2 has a disk shape, has a through hole in the center, and has a plurality of slits 2-2 extending radially from the center.
  • the slit is effective in reducing reactive current when the upper current collecting plate is joined to the winding end face of the pole group by electric resistance welding.
  • Teeth (getter's teeth) 2 1 3 provided along the two opposite sides of the slit and the long side end of the electrode plate protruding from the wound end face of the pole group are substantially orthogonal to each other and are joined.
  • the long side end of the tooth and the electrode plate cross over the entire area of the substrate at the long side end.
  • the radius of the upper current collector 2 is almost equal to the radius of the pole group 1 (however, the upper current collector should not protrude outside the winding end surface of the pole group), and the circle of the upper current collector It is preferable that the center of the circle of the winding end face of the pole group overlap.
  • the lead and the upper current collecting plate 2 are preferably joined at a plurality of welding points (P 1 in FIG. 1).
  • the number of welding points varies depending on the size of the battery and is not particularly limited. However, it is preferably 2 to 16, more preferably 4 to 16.
  • the welding point P 1 is placed on one or more circles concentric with the current collector plate. It is preferable to arrange them at equal intervals.
  • the welding point is It exists in the central part of the long side, which is preferable because the current collection function is enhanced, and high output characteristics can be obtained.
  • the lower current collector plate 3 and the bottom inner surface of the electric grid 4 are joined at a plurality of welding points P 2 as shown in FIG. 1 in addition to the center of the lower current collector plate.
  • the lower current collecting plate 3 has a disk shape from the center like the upper current collecting plate 2 and has a plurality of slits extending radially from the center.
  • a plurality of protrusions 14 are provided in addition to the center and center.
  • the number of projections 14 other than the center varies depending on the size of the battery and is not particularly limited.
  • the present invention will be described in more detail based on examples.
  • the present invention is not limited to the following descriptions, and the test method and the positive electrode material, negative electrode material, positive electrode, and negative electrode of the battery to be configured
  • the immersion time of the immersion treatment is set to five levels of 1.3 hours, 2.6 hours, 4 hours, and 5.3 hours, and the hydrogen storage alloy powders obtained corresponding to each immersion time are respectively hydrogen storage alloy powder B Hydrogen storage alloy powder C, hydrogen storage alloy powder D, hydrogen storage alloy powder E. Table 1 shows the mass saturation magnetization of the obtained hydrogen storage alloy powder.
  • A, B, C, D, and E are applied to the hydrogen storage alloy powder, and the hydrogen per unit area for each alloy powder.
  • the filling amount of the storage alloy powder is 0.04 gZcm 2 , 0.06 g / cm ⁇ 0.07 g / cm, 0.09 g / cm, 0.15 gcm—
  • a total of 35 types of hydrogen storage electrodes were prepared for a total of 7 levels including the 2 levels of 0.1 l S gZcm 2 and 0. SO gZcm 2 .
  • This alloy electrode was 1 Omm larger than the monopolar test hydrogen storage electrode in terms of width and length through a sulfonated polypropylene nonwoven separator with a thickness of 120 ⁇ , and the capacity per side was a negative electrode plate. A nickel electrode approximately equal to the capacity of the negative electrode was placed on both sides of the negative electrode so that the negative electrode was sandwiched between them. Electrolyte KOH 6. to prepare a 8 mol / dm 3, L i OH to 0. 8mo l / dm aqueous injected with liquid excess unipolar test cell containing 3 as.
  • the prepared battery was stored in an atmosphere at a temperature of 25 ° C for 12 hours, then charged at 4 mA (0.02 1 t A) for 3 hours, and then continuously at 2 OmA (0.1 It A) at 1 0 After charging for 40 hours (0.2 I t A), discharge to 0.6 V against the reference electrode (HgZHgO electrode), then charge for 12 hours at 20 mA (0.1 I t A). The operation of discharging to 1 0.6 V at 40 mA (0.2 I tA) was repeated 4 times.
  • the reason for this is not necessarily clear, but can be considered as follows. Since the magnetic material formed on the surface of the hydrogen storage alloy functions as a catalyst for the reaction related to charge transfer, the reaction resistance decreases as the amount of magnetic material increases, that is, the mass saturation magnetization increases. However, as the filling amount increases, the electrode area with respect to the alloy amount becomes relatively small, and the interface with the electrolyte solution becomes small, so the reaction resistance is thought to increase. For this reason, it is considered that a hydrogen storage electrode having a remarkably low reaction resistance can be obtained when the mass saturation magnetization of the hydrogen storage alloy is 2 emu / g or more and the filling amount is 0.15 g / cm 2 or less. It is done.
  • the high-density nickel hydroxide particles were put into an alkaline aqueous solution controlled to ⁇ 11 to 12 with sodium hydroxide. While stirring the solution, cobalt sulfate of a predetermined concentration And an aqueous solution containing ammonium sulfate were added dropwise. During this time, an aqueous sodium hydroxide solution was appropriately added dropwise to maintain the pH of the reaction bath in the range of 11 to 12. The pH was maintained in the range of 11 to 12 for about 1 hour, and a surface layer made of mixed hydroxide containing Co was formed on the surface of the nickel hydroxide particles. The ratio of the surface layer of the mixed hydroxide was 4. Ow t% with respect to the core layer mother particles (hereinafter simply referred to as the core layer).
  • nickel hydroxide particles having a surface layer made of the mixed hydroxide were put into a 30 wt% (l Omol / dm 3 ) aqueous sodium hydroxide solution at a temperature of 110 ° C. and stirred sufficiently. . Then, based on the equivalents of hydroxide of cobalt contained in the surface layer by adding an excess of K 2 S 2 ⁇ _S in. It was confirmed that the oxygen gas is generated from the particle surface. The obtained particles were filtered, washed with water, and dried to obtain an active material powder.
  • CMC Carboxymethylcellulose
  • a nickel positive electrode plate with a capacity of 650 OmAh (6.5 Ah) was used.
  • the positive electrode plates are described in Examples 1 to 3, Example 13 to Example 15, 5, Example 17, Comparative Example 1, Comparative Example 2, Reference Example 1, Reference Example 2, and Reference Example 4. Applied as a common positive electrode plate. (For Example 4 to Example 12, Example 16, Comparative Example 3 to Comparative Example 12 and Reference Example 3, according to the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate, the positive electrode The thickness and length of the plate were adjusted.)
  • a hydrogen storage electrode plate having a filling amount per unit area of the hydrogen storage alloy powder of 0.07 g / cm 2 was produced. Specifically, for 100 parts by weight of hydrogen storage alloy powder C, 1 part by weight of Er 2 O 3 powder having an average particle size of 5 ⁇ m and 0.65 part by weight of styrene butadiene copolymer are used. Hydroxypropyl methylcellulose (HPMC) 0.3 parts by weight, a predetermined amount of water was added and kneaded to obtain a paste.
  • HPMC Hydroxypropyl methylcellulose
  • the paste was applied to a negative electrode substrate made of a punched steel plate with nickel plating on iron using a blade coater, dried at 80 ° C, and the porosity of the electrode plate was reduced to 20%. Press processing was performed.
  • the capacity of the press plate is 48.5 mm wide, 1 1 8 Omm long, and an active material uncoated part with a width of 1.5 mm along one long side 1 1 00 OmAh (1 1. 0 Ah) negative electrode (hydrogen storage electrode).
  • the filling amount of the hydrogen storage alloy powder per 1 cm 2 of the negative electrode was set to 0.07 g.
  • a combination of the negative electrode plate and the sulfonated polypropylene nonwoven fabric separator having a thickness of 120 ⁇ m and the positive electrode plate, wound in a roll shape, and shown in FIG. 1 has a radius of 15.2 mm.
  • Group 1 was designated.
  • the end face of the positive electrode substrate protruded from one winding end face of the pole group 1 is made of a steel plate having a nickel plating as shown in FIG.
  • a circular through-hole and 8 slits 2-2 are provided, and clogs with a height of 0.5 mm on the two opposite sides of the slits 2-2 (biting part to the electrode substrate) 2 —
  • a disc-shaped upper current collector plate (positive electrode current collector plate) 2 with a radius of 14.5 mm provided with 3 was joined by resistance welding.
  • a total of nine projections (projections) were formed at a position 9 mm away from the center of the substrate.
  • This lower current collecting plate 3 was joined by resistance welding to the end face of the negative electrode substrate protruding from the other wound end face of the wound pole group 1 (the lower wound end face in FIG. 1).
  • the height of the projection at the center of the lower current collector was set slightly lower than the height of the eight projections other than the center.
  • a bottomed cylindrical battery case 4 made of nickel-plated steel plate is prepared.
  • the pole group 1 to which the upper current collector plate 2 and the lower current collector plate 3 are attached is connected to the upper current collector plate 2 of the battery case 4.
  • Open end, lower collector plate 3 is stored in battery case 4 so that it contacts the bottom of battery case 4, and KOH contains 6.8m o 1 / dm ⁇ 1011 containing 0.8 mo 1 Z dm 3
  • a predetermined amount of the electrolyte solution was injected.
  • the welding output terminal of the resistance welding machine is brought into contact with the upper current collector plate 2 and the bottom surface (negative electrode terminal) of the battery case 4, and the same energizing time is obtained with the same current value in the charging and discharging directions.
  • the energization conditions were set as follows. Specifically, the current value is 0.6 kA / Ah (3.9 kA) per lAh capacity of the positive electrode plate (6.5 Ah), the energization time is 4.5 msec in the charging direction, and 4. m in the discharging direction. It was set to 5 msec, and the AC pulse energization was set to 1 cycle so that 2 cycles could be energized, and an AC pulse consisting of a rectangular wave was energized.
  • the lower surface of the lower current collector plate 3 and the inner surface of the bottom of the battery case were welded by eight protrusions located 11 mm away from the center of the negative electrode current collector plate.
  • the ratio of the distance from the center of the lower current collector 3 at the welding point P2 between the lower surface of the lower current collector 3 and the inner surface of the bottom of the battery case 4 to the radius of the pole group 1 was 0.7. .
  • the electrode rod for resistance welding was pressed against the upper surface of the negative electrode current collector plate and the outer surface of the bottom of the battery case, and the protrusion formed on the center of the lower surface of the lower current collector plate 3
  • the inner surface of the tank bottom was brought into close contact, and the protrusion was joined to the inner surface of the battery tank bottom by electric resistance welding.
  • a current collecting lead consisting of a ring-shaped main lead 8 shown in Fig. 2 and an auxiliary lead 9 joined to one of the long sides (the lower side of the main lead 8 in Fig. 2) was applied.
  • the main lead 8 is a nickel plate having a thickness of 0.8 mm, and includes 16 protrusions 1 1 having a width of 2.5 mm, a length of 66 mm, and a height of 0.2 mm on one of the long sides. Height on the long side of 0.
  • the auxiliary lead 9 is formed by processing a 0.3 mm thick nickel plate, and has a ring-shaped portion having the same outer diameter as the main lead 8 and 8 pieces protruding 1 mm inside the ring-shaped portion.
  • Each of the slices 9 ′ and the tip of the slice 9 ′ is provided with one protrusion 10.
  • the section 9 ′ of the auxiliary lead 9 is projected downward from the ring portion as shown in FIG. 2, and has a panel function.
  • a sealing plate ⁇ consisting of a nickel-plated steel plate with a circular through hole with a diameter of 0.8 mm in the center is prepared, and one long side of the main lead 8 is attached to the inner surface side of the sealing plate 0.
  • the ring-shaped main lead 8 was welded to the inner surface of the sealing plate 0 by electric resistance welding.
  • the ring-shaped portion of the auxiliary lead 9 was welded to the other long side of the ring-shaped main lead 8 by electric resistance welding.
  • a valve body 7 and a cap 6 were attached to the outer surface of the sealing plate 0 to form a lid.
  • a gasket 5 was attached to the sealing plate 0 so as to wrap around the periphery of the sealing plate 0.
  • the lid radius is 14.5 mm
  • the cap radius is 6.5 mm
  • the caulking radius of the gasket is 12.5 mm.
  • the lid with the current collecting lead mounted thereon was placed on the pole group 1 so that the auxiliary lead 9 was in contact with the upper current collecting plate 2, and the open end of the battery case 4 was squeezed tightly and hermetically sealed.
  • the total height of the battery was adjusted by compression.
  • the protrusion 9 ′ of the auxiliary lead 9 has the function of a spring as described above. For example, it is assumed that there is a variation in the distance between the inner surface of the sealing plate 0 and the upper surface of the upper current collector plate.
  • the auxiliary lead 9 and the upper current collector plate 2 can be in good contact with each other.
  • One output terminal A of the electric resistance welding machine is brought into contact with the lid (positive electrode terminal), and the other output terminal B of the electric resistance welding machine is brought into contact with the bottom surface (negative electrode terminal) of the battery case 4, and the charging direction and the discharging direction
  • the energization conditions were set so that the same energization time was obtained at the same current value.
  • the current value is 0.6 kA / Ah (3.9 kA) per lAh capacity of the positive electrode plate (6.5 Ah)
  • the energization time is 4.5 msec in the charging direction, and 4. m in the discharging direction.
  • the radius of the lid is 14.5 mm.
  • the radius of the cap is 6.5 mm.
  • the caulking radius of the gasket is 12.5 mm.
  • the ratio of the distance from the center of the upper current collecting plate 2 at the eight welding points P 1 to the radius of the pole group 1 was 0.6.
  • the inner surface of the sealing plate and the welding point of the current collecting lead, the shortest length of the current collecting lead connecting the welding point of the current collecting lead and the upper current collecting plate, the inner surface of the sealing plate and the upper current collecting plate The ratio of the distance between the top surface and the top surface was about 1.4.
  • the current collecting lead and the upper current collecting plate are welded after the battery is sealed in this way, it is not necessary to provide the current collecting lead with bending as in the prior art, and the inner surface of the sealing plate It is possible to shorten the shortest length of the current collecting lead connecting the welding point between the current collecting lead and the current collecting lead and the welding point between the current collecting lead and the upper current collecting plate.
  • the weight of this example battery was 172 g. (By the way, the battery weights of the nickel metal hydride batteries according to the examples, reference examples, and comparative examples described below were all 1 72 g.)
  • the sealed battery is left at ambient temperature of 25 ° C for 12 hours, then charged at 120 mA (0.02 1 tA) at 120 OmAh, and then at 65 OmA (0. II tA) at 10 After charging for 1 hour, the battery was discharged at 1 300 mA (0.2 It A) to a cut voltage of 1 V. Furthermore, after charging for 16 hours at 650 mA (0.1 I tA), it is discharged to 1.0 V at 130 OmA (0.2 1 tA), and charging / discharging for 4 cycles is performed with this charging / discharging as one cycle. went.
  • the battery was charged at 6500mA (lit A) at 45 ° C until a fluctuation of 1 mV of 5 mV occurred, and then discharged to 1.0 V at 6500mA (ll tA). Charging / discharging was repeated 10 cycles.
  • the power density was measured in an atmosphere at 0 ° C.
  • the formed battery is charged at 65 OmA (0.1 I t A) for 5 hours from the end of discharge in an atmosphere at 25 ° C, left in an atmosphere at 0 ° C for 4 hours, and then discharged at 3 OA (4. 6 1 tA equivalent) for 12 seconds
  • the voltage after 10 seconds from the start of discharge is the 10th second voltage at the time of 30 A discharge.
  • the discharge current is 4 OA (equivalent to 6.2 1 tA) for 12 seconds is discharged, and after 10 seconds, the voltage after 10 seconds is the 10th second voltage at 40 A discharge.
  • the voltage after discharging for 10 seconds after starting discharging when discharged for 12 seconds at a discharge current of 5 OA (equivalent to 7. 7 ItA) The voltage is set at the 10th second, and after charging an amount of electricity equal to the discharge amount of the discharge at a charge current of 6 A, discharge is started when discharged for 12 seconds at a discharge current of 6 OA (equivalent to 9. 2 1 tA).
  • the voltage after 10 seconds had elapsed was taken as the 10th voltage at 60 A discharge.
  • the voltage (measured value) at the 10th second was plotted against the discharge current, linearly approximated by the least square method, the voltage value when the current value was external to OA was E 0, and the slope of the line was RDC.
  • the value obtained by substituting E 0, R DC and battery weight into the following equation was defined as the output density at 0 ° C at 0.8V cut.
  • a charge / discharge cycle test was conducted in an atmosphere at 45 ° C. After the formed battery is left in an atmosphere of 45 ° C for 4 hours, it is charged until a fluctuation of 5! 11 V occurs at a charge rate of 0.5 I, and a discharge rate of 0.5 I Discharged at tA, discharge cut voltage 1.0V. This charge / discharge was repeated as one cycle, and the cycle life was defined as the number of cycles in which the discharge capacity was less than 80% of the discharge capacity in the first cycle of the charge / discharge cycle test.
  • a hydrogen battery was prepared and subjected to charge / discharge cycle tests and output density measurements in the same manner as in Example 1. This example is referred to as Example 2.
  • Example 3 In the preparation of the negative electrode plate, the same configuration as in Example 1 was applied except that hydrogen storage alloy powder D (mass saturation magnetization: 6 e mu / g ) with a different immersion time for the surface modification treatment was applied. A nickel-metal hydride battery was prepared and subjected to a charge / discharge cycle test and output density measurement in the same manner as in Example 1. This example is referred to as Example 3.
  • hydrogen storage alloy powder D mass saturation magnetization: 6 e mu / g
  • Example 2 A nickel-metal hydride battery having the same configuration as in Example 1 was used except that hydrogen storage alloy powder A (mass saturation magnetization of 0.06 emu / g) that was not subjected to surface modification treatment was applied in the production of the negative electrode plate. The sample was prepared and subjected to charge / discharge cycle test and output density measurement in the same manner as in Example 1. This example is referred to as Comparative Example 1. (Comparative Example 2)
  • Example 2 Nickel having the same structure as in Example 1 except that hydrogen storage alloy powder E (mass saturation magnetization: 8 emu / g) with a different immersion time for the surface modification treatment was applied in the preparation of the negative electrode plate.
  • a hydrogen battery was prepared and subjected to charge / discharge cycle tests and output density measurements in the same manner as in Example 1. This example is referred to as Comparative Example 2.
  • the test results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 2 and FIG. Table 2
  • the battery output using a hydrogen storage electrode with low reaction resistance in a single electrode test has a high output at 0 ° C, and there is a correlation between the reaction resistance and the output characteristics of the battery.
  • the results shown in Fig. 6, Table 2, and Fig. 7 are It is shown that high output characteristics can be obtained by setting the mass saturation magnetization of the alloy powder to 2 emuZg or more and the filling amount to 0.15 g / cm 2 or less.
  • the higher the mass saturation magnetization of the hydrogen-absorbing alloy powder the lower the cycle characteristics, and it was found that the cycle life was significantly reduced when the mass saturation magnetization was 8 emu / g .
  • Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.06 g / cm 2 .
  • the capacity of the battery that is, the positive electrode capacity is 6500 mAh
  • the positive electrode plate group consisting of the positive electrode plate and the negative electrode plate while maintaining the relationship of the length of the positive electrode plate and the length of the negative electrode plate of 1 (80 mm).
  • the lengths of the positive and negative bipolar plates and the thickness of the positive electrode plate were adjusted so that the insertion ratio into the battery case can be the same.
  • the length of the negative electrode plate was 1 26 Omm
  • the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 000 OmAh.
  • a nickel-metal hydride battery having the same configuration as in Example 2 was produced and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 2. This example is referred to as Example 4.
  • Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.09 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive electrode plate were adjusted so that the penetration ratios into the battery case cans were the same.
  • the length of the negative electrode plate of the fabricated battery was 108 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 290 OmAh.
  • a nickel-metal hydride battery having the same configuration as in Example 2 was produced and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 2. This example is referred to as Example 5.
  • Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 0.15 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 6500 mAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the penetration ratio of the plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 81 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 690 OmAh.
  • a nickel hydride battery having the same configuration as in Example 2 was fabricated, and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 2. This example is referred to as Example 6.
  • Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate is 0.04 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the insertion ratio of the plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 135 Omm
  • the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 720 OmAh.
  • a nickel hydride battery having the same configuration as in Example 2 was fabricated, and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 2. This example is referred to as Comparative Example 3.
  • Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 18 g / cm 2 at present. Also, in the production of the battery, the capacity of the battery, that is, the positive electrode capacity is 650 OmAh, and the positive electrode plate length is equal to the negative electrode plate length of 80 (mm). The lengths of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the insertion ratio of the electrode plate group into the battery case can be the same. The length of the negative electrode plate of the fabricated battery was 75 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 790 OmAh.
  • Example 4 a nickel-metal hydride battery having the same configuration as in Example 2 was produced, and the charge / discharge cycle test and output density measurement were performed in the same manner as in Example 2.
  • This example is referred to as Comparative Example 4.
  • Table 3 shows the test results of Example 4 to Example 6, Comparative Example 3, and Comparative Example 4 in accordance with Example 2 and Comparative Example 1.
  • the output density gradually decreases as the filling amount increases in the range where the filling amount is 0.15 g / cm 3 or less.
  • the filling amount is increased from 0.15 gZc m 3 to the current 0.18 g / cm 3 , the output density is greatly reduced. This is because when the filling amount was increased from 0.15 g / cm 3 to 0.18 g / cm 3 , the reaction resistance of the negative electrode greatly increased during discharge.
  • the cycle characteristics gradually decrease as the filling amount is reduced, but the cycle characteristics decrease when the filling amount is reduced to 0.0 4 g / cm 3. Is significantly reduced. This is considered to be because it became difficult to secure the charge reserve when the filling amount was reduced to 0.04 g / cm 3 .
  • the cycle life is preferably more than 500 cycles, and when it is 0.09 g / cm 3 or more, the cycle life is more than 600 cycles.
  • Example 1 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.06 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 6500 mAh
  • the electrode composed of the positive electrode plate and the negative electrode plate is maintained.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the penetration ratio of the plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 1260 mm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 000 OmAh. Other than this, the configuration is the same as in Example 1. 6313517
  • Example 7 A nickel metal hydride battery was prepared and subjected to a charge / discharge cycle test and measurement of power density in the same manner as in Example 1. This example is referred to as Example 7.
  • Example 1 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.09 gZcm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 6500 mAh
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the insertion ratio of the group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 108 Omni, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 290 OmAh. Except for this, a nickel-metal hydride battery having the same configuration as in Example 1 was produced, and the charge / discharge cycle test and the output density were measured in the same manner as in Example 1. This example is referred to as Example 8.
  • Example 1 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 0.15 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive electrode plate were adjusted so that the penetration ratios into the battery case cans were the same.
  • the length of the negative electrode plate of the fabricated battery was 81 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1690 OmAh.
  • a nickel hydride battery having the same configuration as in Example 1 was fabricated and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 1. This example is referred to as Example 9.
  • the length of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the insertion ratio of the electrode plate group consisting of the positive electrode plate and the negative electrode plate into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 135 mm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 720 OmA h.
  • a nickel hydride battery having the same configuration as in Example 1 was fabricated and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 1. This example is referred to as Comparative Example 5.
  • Example 1 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.18 gZcm 2 at present. Also, in the production of the battery, the capacity of the battery, that is, the positive electrode capacity is 650 OmAh, and the positive electrode plate length is equal to the negative electrode plate length of 80 (mm). The lengths of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the insertion ratio of the electrode plate group into the battery case can be the same. The length of the negative electrode plate of the fabricated battery was 75 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 790 OmAh. Except for this, a nickel-metal hydride battery having the same structure as in Example 1 was produced, and the charge / discharge cycle test and output density measurement were performed in the same manner as in Example 1. This example is referred to as Comparative Example 6.
  • Example 1 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 20 g / cm 2 at present.
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the positive electrode plate and the negative electrode plate are formed while maintaining the relationship of the length of the positive electrode plate to the length of the negative electrode plate of 80 (mm).
  • the lengths of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the penetration ratio of the electrode plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 71 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 885 OmAh.
  • Example 7 a nickel metal hydride battery having the same configuration as in Example 1 was prepared and subjected to the measurement of the output density in the same manner as in Example 1. .
  • This example is referred to as Comparative Example 7.
  • Table 4 and FIG. 8 show the test results of Example 7 to Example 9 and Comparative Example 5 to Comparative Example 7 in accordance with Example 1. .
  • Example 3 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.09 gZcm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the insertion ratio of the plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 108 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 290 OmAh.
  • a nickel-metal hydride battery having the same configuration as in Example 3 was produced, and subjected to a charge / discharge cycle test and output density measurement in the same manner as in Example 3. This example will be referred to as Example 11.
  • Example 3 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 0.15 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive electrode plates were adjusted so that the penetration ratio of the group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 81 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1690 OmAh.
  • Example 12 a nickel hydride battery having the same configuration as in Example 3 was fabricated, and subjected to a charge / discharge cycle test and measurement of output density in the same manner as in Example 3. This example is referred to as Example 12. (Comparative Example 8)
  • Example 3 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.04 g / cm 2 .
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate is 80 mm, while maintaining the relationship of the positive electrode plate and the negative electrode plate.
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the insertion ratio of the group into the battery case was the same.
  • the length of the negative electrode plate of the fabricated battery was 135 mm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 720 OmAh. Except for this, a nickel hydrogen battery having the same configuration as in Example 3 was produced, and the charge / discharge cycle test and output density measurement were performed in the same manner as in Example 3. This example is referred to as Comparative Example 8.
  • Example 3 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to 0.18 g / cm 2 at present.
  • the capacity of the battery that is, the capacity of the positive electrode is 650 OmAh
  • the length of the positive electrode plate the length of the negative electrode plate of 80 (mm)
  • the lengths of the positive and negative bipolar plates and the thickness of the positive electrode plate were adjusted so that the penetration ratio of the electrode plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 75 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 790 OmAh.
  • a nickel-metal hydride battery having the same configuration as in Example 3 was produced, and the charge / discharge cycle test and output density measurement were performed in the same manner as in Example 3. This example is referred to as Comparative Example 9.
  • the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 0.15 g / cm 2 .
  • the lengths of the positive and negative bipolar plates and the thickness of the positive plate were adjusted so that the insertion ratio of the plate group into the battery case can be the same.
  • the length of the negative electrode plate was 8 1 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 690 OmA h.
  • a nickel hydride battery having the same configuration as in Comparative Example 2 was fabricated, and subjected to a charge / discharge cycle test and measurement of output density as in Comparative Example 2. This example is referred to as Comparative Example 10.
  • Comparative Example 2 the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was 0.18 gZcm 2 at present. Also, in the production of the battery, the capacity of the battery, that is, the positive electrode capacity is 650 OmAh, and the positive electrode plate length is equal to the negative electrode plate length of 80 (mm). The lengths of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the insertion ratio of the electrode plate group into the battery case can be the same. The length of the negative electrode plate of the fabricated battery was 75 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 790 OmAh. Except for this, a nickel-hydrogen battery having the same configuration as in Comparative Example 2 was fabricated, and subjected to the charge / discharge cycle test and output density measurement in the same manner as in Comparative Example 2. This example is referred to as Comparative Example 1 1.
  • the filling amount per unit area of the hydrogen storage alloy powder of the negative electrode plate was set to the current 0.20 gZcm 2 .
  • the battery capacity that is, the positive electrode capacity is 6500 mAh
  • the positive electrode plate length is equal to the negative electrode plate length of 80 (mm).
  • the lengths of the positive and negative electrode plates and the thickness of the positive electrode plate were adjusted so that the penetration ratio of the electrode plate group into the battery case can be the same.
  • the length of the negative electrode plate of the fabricated battery was 71 Omm, and the capacity of the negative electrode plate calculated from the filling amount of the hydrogen storage alloy powder was 1 885 OmAh.
  • Comparative Example 1 a nickel-metal hydride battery having the same configuration as Comparative Example 2 was prepared and subjected to measurement of the output density as in Comparative Example 2 (the output density was inferior, so it was not used for the charge / discharge cycle test. .)
  • This example is referred to as Comparative Example 1 2.
  • tests of Example 10 to Example 12, Comparative Example 8 to Comparative Example 1 2 The results are shown in Table 5.
  • the filling amount is 0.15 as in the case of application of hydrogen storage alloy powder with mass saturation magnetization of 2 emuZg or 4 emu Zg.
  • the output density gradually decreases, but if the filling amount is increased from 0.15 g / cm 3 to the current 0.18 g / cm 3 , the output density will be greatly increased. It is falling.
  • the filling amount is 0.06 g / cm 3 or more, the cycle characteristics gradually decrease when the filling amount is reduced. However, when the filling amount is reduced to 0.04 g / cm 3 , the cycle characteristics become remarkable. It has dropped to.
  • the mass saturation magnetization of the hydrogen storage alloy electrode is 2 emu / g ⁇ 6 If em uZg and the filling amount of the hydrogen storage alloy is 0.06 g / cm 2 to 0.15 g Zcm 2 , the reaction resistance of the hydrogen storage alloy electrode can be reduced. It was found that a sealed nickel-metal hydride battery with high output and excellent cycle characteristics can be obtained by using. Among them, it has been found that excellent cycle characteristics can be obtained when the filling amount is preferably 0.07 g / cm 2 or more, more preferably 0.09 g / cm 3 or more.
  • Example 13 In the production of the negative electrode plate, a hydrogen-absorbing alloy powder having an average particle size of 10 ⁇ was prepared. A nickel-metal hydride battery having the same configuration as in Example 1 was produced, and charging / discharging was performed in the same manner as in Example 1. It was used for cycle testing and measurement of power density. This example is referred to as Example 13.
  • Example 14 In the production of the negative electrode plate, the average particle size of the hydrogen storage alloy powder was set to 28. Except for this, a nickel metal hydride battery having the same configuration as in Example 1 was produced. It was used for testing and measurement of power density. This example is referred to as Example 14.
  • Example 15 In the production of the negative electrode plate, a hydrogen-absorbing alloy powder having an average particle size of 35 ⁇ , except that, a nickel-metal hydride battery having the same configuration as in Example 1 was produced, and charge / discharge was performed in the same manner as in Example 1. It was used for cycle testing and measurement of power density. This example is referred to as Example 15.
  • Example 2 In the production of the negative electrode plate, the average particle size of the hydrogen storage alloy powder was set to 5 ⁇ rii. Except for this, a Neckel hydrogen battery having the same configuration as in Example 1 was produced, and the charge / discharge cycle was conducted in the same manner as in Example 1. It was used for testing and measurement of power density. This example is referred to as Reference Example 1. (Reference Example 2)
  • the hydrogen storage alloy powder had an average particle size of 50 / m. Except for this, a nickel hydrogen battery having the same configuration as in Example 1 was produced, and in the same manner as in Example 1. It was used for charge / discharge cycle test and power density measurement. This example is referred to as Reference Example 2. Together with the test results of Example 1, the test results of Example 1 to Example 15, Reference Example 1, and Reference Example 2 are shown in Table 6 and FIG.
  • the average particle size is 50 ⁇
  • the catalyst layer becomes thick. For this reason, the distance between the alloy matrix to be reacted and the magnetic substance having a catalytic action is increased, and the catalytic action is not effectively exhibited, and the effect of reducing the reaction resistance is reduced.
  • the average particle size of the gold powder is preferably 35 or less, and the average particle size of the hydrogen-absorbing alloy powder is more preferably 28 ⁇ or less because an output density of 60 OW / kg or more can be obtained. preferable.
  • nickel hydrogen batteries is preferably the average particle size of the hydrogen storage alloy powder and 1 0 M m ⁇ 3 5 im, 1 0 ⁇ 111 ⁇ 2 8 zm is even better.
  • Example 16 The hydrogen storage alloy powder surface-modified in the process of producing the single electrode test cell of the hydrogen storage electrode and the negative electrode of the cylindrical nickel battery in Example 1 was replaced with ErO powder in 100 parts by weight. One part by weight of Y b 2 O 3 powder having an average particle size of 5 ⁇ m was added and mixed. Other than this, a unipolar test cell was prepared in the same manner as described above, and the reaction resistance was measured by the same method. Also, E r 2 ⁇ 3 powder instead to prepare a cylindrical nickel-hydrogen batteries except for adding and mixing Y b 2 O 3 powder having an average particle diameter of 5 mu m in the same manner as in Example 1, the same test It was used for. This example is referred to as Example 16.
  • the rare earth element compound to be added contains both Er and Yb (a mixture of each compound of Er and Yb or a compound containing Er and Yb).
  • the sum of Er and Yb in the rare earth element contained in the rare earth compound is 90% by weight or more, so that the hydrogen storage electrode using the hydrogen storage powder as an active material can also be used. Cycle characteristics can be improved without degrading output performance.
  • Example 17 only one welding projection was provided at the center of the lower current collector plate, and the welding point on the inner surface of the battery case was set at only one center of the lower current collector plate. Otherwise, the battery had the same configuration as in Example 1. This example is referred to as Example 17.
  • Example 17 a ribbon-shaped lead shown in FIG. 5 was used in place of the ring-shaped current collecting lead.
  • the ribbon-shaped lead, the inner surface of the sealing plate, and the upper surface of the upper current collecting plate were joined at four welding points.
  • the shortest length of the current collecting lead connecting the welding point between the current collecting lead and the sealing plate and the welding point between the current collecting lead and the upper current collecting plate is about 7 times the distance between the sealing plate and the upper current collecting plate. It was.
  • Example 1 IV and Reference Example 4 the power density was measured in the same manner as in Example 1. '' Together with the measurement results of Example 1, Table 8 shows the measurement results of Example 17 and Reference Example 4.
  • the output density of Example 1 and Example 17 of the present invention is higher than that of Reference Example 4.
  • the current collecting lead and the upper current collecting plate are welded after the battery is sealed, it is not necessary to provide a bending allowance for the current collecting lead, and the electric resistance of the current collecting lead can be reduced.
  • one end of the current collecting lead is welded in advance to the inner surface of the sealing plate, the other end is welded to the upper current collecting plate, and then the lid is attached to the open end of the battery case.
  • the collection lead is provided with a squeeze allowance It is thought that the output density has decreased due to the large electrical resistance of the current collector leads.
  • the welding point between the lower current collector plate and the inner surface of the battery case is only the center of the lower current collector plate as in Example 17. It is more advantageous to obtain high output when welding at a plurality of points other than the above.
  • the present invention obtains particularly excellent output characteristics by combining the hydrogen storage electrode according to the present invention and the current collecting structure shown in Example 1 or Example 17. Industrial applicability
  • the present invention provides a nickel-metal hydride storage battery including a hydrogen storage electrode in which hydrogen storage alloy powder is applied as an active material, and is excellent in both output characteristics and cycle characteristics. It has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

特に低温の雰囲気下において、高出力密度を有し、且つ、サイクル特性に優れた密閉型ニッケル水素電池を提供する。 ニッケル電極を正極とし、水素吸蔵電極を負極とするニッケル水素電池において、希土類元素とニッケルを含む非希土類金属元素からなる水素吸蔵合金粉末を導電性支持体に担持させた水素吸蔵合金電極であって、前記水素吸蔵合金粉末の質量飽和磁化が2~6emu/gであり、前記水素吸蔵電極の単位面積当たりの水素吸蔵合金粉末担持量が0.06~0.15g/cm2である水素吸蔵電極を備えた密閉型ニッケル水素電池とする。

Description

明細書 ニッケル水素電池
'技術分野 .
本発明は、 水素吸蔵合金粉末を有する水素吸蔵電極を負極とするニッケル水素 電池に関し、 さらに詳しくは出力特性とサイクル特性を改善したニッケル水素電 池に関するものである。 背景技術
近年、 モバイルコンピュータ、 デジタルカメラなどの移動体電子機器を始めと する小型軽量を求められる電動機器が急速に増加する傾向にある。 これらの機器 の電源として、 密閉型ニッケル水素蓄電池はニッケル力ドミゥム電池や鉛蓄電池 等よりも単位体積および単位質量当たりのエネルギーが高く、 耐過充電性、 耐過 放電性に優れるうえ、 環境にクリーンな電源として広く用いられている。 また、 ハイプリッド形電気自動車 (H E V) や従来ニッケル力ドミゥム電池が用いられ ていた電動工具や玩具などの電源のように高出力特性、 かつ、 長寿命が要求され る分野への適用も始まっている。
負荷の大きい H E V、 .電動工具、 電動玩具用電源に適用するためには、 少なく とも充放電サイクル特性を低下させることなく出力特性、特に低温(例えば 0 °C) における出力特性の更なる向上が求められている。 H E Vや電動工具用電源のよ うに特に大きい負荷ががかる用途においては、 低温 (0 °C) において 4 0 0 WZ k g以上、 好ましくは 6 0 O W/ k g以上の出力密度を有することが望ましい。 また、 H E Vのように電池の設置箇所の雰囲気が高くなる虞がある場合、高温(例 えば 4 5 °C) において 4 0 0サイクル以上、 好ましくは 5 0 0サイクル以上のサ イタル寿命を有することが望ましい。
ニッケル水素電池の出力特性は、 主として水素吸蔵電極の放電特性によって左 右される。 従来、 水素吸蔵電極の高率放電特性を向上させるために、 水素吸蔵合 金粉末を予め弱酸性又は高温のアル力リ水溶液に浸漬することによって水素吸蔵 合金粉末を活性化させる方法が提案されている。 例えば、 水素吸蔵合金粉末を、 p H値が 0 . 5〜 5の弱酸性水溶液により表面処理を行う方法が開示されている。 (例えば特許文献 1参照)
特許文献 1 :特開平 7— 7 3 8 7 8号公報 (ページ 3, 段落 0 0 1 1 )
また、 水素吸蔵合金粉末を、 温度 9 0 °C以上、 水酸化ナトリゥム濃度 3 0〜8
0重量%の水酸化ナトリゥム水溶液に浸漬する方法が開示されている。 (例えば 特許文献 2参照)
特許文献 2 :特開 2 0 0 2— 2 5 6 3 0 1号公報 (ページ 3、 段落 0 0 0 9 ) 特許文献 1および特許文献 2によれば、 水素吸蔵合金粉末の表面に形成された 酸化物又は水酸化物の被膜が除去されて清浄な面が創出され、 かつ、 表面に N i を主成分とする層が形成されるために水素吸蔵合金粉末が活性化され、 活性化を 目的とする化成工程を短縮する効果を奏し、 かつ、 水素吸蔵電極の高率放電特性 が向上する。 しカゝし、 該特許文献 1に示されている低温放電特性は、 0 °Cにおい て 1 I t A (該放電レートは、 後記出力特性の評価における放電レートに比べて 小さい) で放電したときの放電容量の大きさ (mA h ) であり、 且つ、.本発明の いう出力特性 (後記のように 1 0秒目電圧 (放電開始後 1 0秒目の電圧) 力 ら求 めた出力特性 (W) は示されていない。 また、 特許文献 2に示されている低温高 率放電特性は、 _ 1 0 °Cで 4 I t A相当の電流で、 放電カツト電圧 0 . 6 V (後 記本発明における放電カット電圧 0 . 8 Vに比べて低い) として放電したときの 放電容量の大きさ (2 5 °Cで放電したときの放電容量に対する比率) であって、 出力特性は示されていない。 このように、 特許文献 1、 特許文献 2共に出力特性 に触れていない。 また、 特許文献 1、 特許文献 2共に水素吸蔵電極の単位面積当 たりの水素吸蔵合金粉末の担持量について触れておらず、 特許文献 1および特許 文献 2をもってしても低温における出力特性向上に対して顕著な効果が得られな い虞が高い。
さらに、 高温下 (例えば 4 5 °C) において充放電を繰り返し行った場合、 常温 にくらベて水素吸蔵合金粉末の腐食反応が促進されたり、 充電時にニッケル電極 において酸素が発生し易くなり、 該酸素によつて水素吸蔵合金粉末の腐食がさら に促進されるという不利な条件であるために、 特許文献 1および特許文献 2の方 法ではサイクル特性の維持を図ることは困難であった。
水素吸蔵電極に水素吸蔵合金粉末に加えてイットリウム (Y) 化合物およびラ ンタン (L a )、 セリウム (C e )、 プラセオデイゥム (P r ) などの軽希土類 の化合物を添加することによって、 出力特性を低下させることなく水素吸蔵合金 粉末の耐食性を高めた水素吸蔵電極が提案されている。 (例えば特許文献 3参照) また、 予めアル力リ水溶液や弱酸性水溶液に浸漬した水素吸蔵合金粉末にホルミ ゥム (H o )、 エルビウム (E r )、 イッテルビウム (Y b )、 ツリウム (T m) の単体やその化合物を含有させることによって水素吸蔵合金の腐蝕を抑制し耐久 性を高めた水素吸蔵電極が提案されている。 (例えば特許文献 4参照)
特許文献 3 :特開平 1 1一 2 6 0 3 6 1号公報
特許文献 4 :特開平 9一 7 5 8 8号公報
特許文献 3、 特許文献 4に記載の添加剤は、 水素吸蔵合金粉末の腐食に対して 優れた防蝕効果を有する。 特に、 E rや Y bの酸化物や水酸化物の粉末を添加す ると水素吸蔵合金粉末の腐食が抑制され、 サイクル特性が顕著に向上する。 しか し、 特許文献 3が出力特性に全く触れていなように、 特許文献 3は出力特性の向 上を目的とするものではない。 また、 特許文献 4は出力特性の向上について触れ ているが、 特許文献 4に示されているのは、 出力密度を従来に比べて積極的に向 上させるのではなく、 水素吸蔵合金粉末に Y化合物を添加したときに、 水素吸蔵 合金表面が高抵抗被膜で覆われてしまうことによって出力密度が低下するのを、 高抵抗被膜で覆われるのを抑制することによつて抑制せんとするものである。 該 特許文献 4に記載の方法では、 特に低温における水素吸蔵電極の反応抵抗を低減 するのが困難であり、 低温における出力特性の向上に対して有効ではない。 ニッケル水素電池においては、 水素吸蔵電極 (負極) の高率放電特性や充電受 け入れ性がニッケル電極 (正極) に比べて劣るので正極との特性のバランスをと るため、 および充電リザーブ、 放電リザーブを確保するために、 負極の容量を正 極の容量に比べて大きくする必要がある。 負極の容量ノ正極の容量の比 (NZ P 比) を 1 . 5〜1 . 7とするのが一般的である。 NZP比を前記範囲内に納め、 かつ、 高容量を確保するために、 従来、 水素吸蔵電極の単位面積当たりの活物質 充填量を 0 . 1 6〜0 . 2 0 g Z c m 2に設定している。
しかし、 従来の電池のように水素吸蔵電極の活物質充填量を大きな値に設定す ると、 特に低温において水素吸蔵電極の反応抵抗が高く、 目的とする出力特^が 得られないことが判明した。 該欠点を克服するためには例えば電解液組成の変更 が考えられる。 ただし、 電解液組成を変更することによって低温において出力特 性の向上を達成できたとしてもサイクル特性など他の特性が低下する虞がある。 水素吸蔵合金からなる負極を用いたアルカリ蓄電池において、 負極の単位面積 当たりの容量を小さく設定 (単位面積当たりの容量 1 0〜4 0 mA h / c m 2) した電池が提案され、 該設定によつて負極の電気抵抗を小さくすることができ、 低温での放電において放電比率(低温で放電したときの容量の実測値 Z電池容量) を向上させた電池が提案されている。 (例えば特許文献 5 )
特許文献 5 :特開平 1 1一 8 6 8 9 8号公報
しかし、特許文献 5に示された放電比率は、 0 °Cにおいて 1 C mA ( 1 I t A) で放電したときの比率であって、 該放電レートは、 後記出力特性の評価における 放電レートに比べて小さく、且つ、前記特許文献 1同様出力特性を示していない。 特許文献 5に示された水素吸蔵電極においては、 水素吸蔵合金そのものの活物質 としての活性が高くないため反応抵抗が大きく、 低温で高率放電を行ったときの 特性向上に対する効果は小さく、 かつ、 初期のサイクルにおいて充電受け入れ性 が劣り充電時に水素発生が多く、 また、 酸素吸収能も劣るために電解液が消費さ れるため力 \ サイクル特性が低下する虡があった。
また、 従来の円筒型ニッケル水素電池は、 図 4に示すように、 一方の端子 (正 極端子) を兼ねる蓋体 (蓋体は、 ハット状のキャップ 6、 封口板 0及びキャップ 6と封口板 0 .で囲まれた空間内に配置された弁体 7からなり、 封口板 0の周縁部 にはガスケット 5が装着され、 有底筒状の電槽 4の開口端を折り曲げることによ つて、 前記蓋体の周縁部がカシメられて、 蓋体と電槽とはガスケット 5を介して 気密に接触している。) を構成する封口板 0と捲回式極群 1の上部端面に取り付 けた上部集電板 (正極集電板) 2が図 5に示すリボン状集電リード 1 2で接続さ れている。 従来の電池においては、 該リボン状集電リード 1 2と封口板 0の内面 との溶接および集電リード 1 2と上部集電板 2の溶接終了後に蓋体を電槽 4の開 放端に装着するために、 集電リードに橈みを設けねばならず、 そのため集電リー ド 1 2と封口板 0の内面との溶接点と、 集電リード 1 2と上部集電板 2との溶接 点を結ぶ集電リードの長さが、 通常、 封口板 0と上部集電板 2の間隔の 6〜7倍 の長さがあり、 このように集電リードが長いために、 集電リード自体の電気抵抗 が大きく、 このことも電池の出力特性が低い一因になっていたと考えられる。 以上記述したように、 過去に水素吸蔵合金粉末の表面改質によって水素吸蔵合 金粉末の活物質としての活性を高めることが試みられているが、 それのみでは、 特に低温において満足できる高出力が得られず、 また、 出力特性の向上を図ろう とするとサイクル特性など他の特性が低下する虞があった。 発明の開示
発明が解決しようとする課題
本発明は、 上記問題点を解決するためにされたものであって、 サイクル特性を 維持しつつ従来提案されていなかつた低温における出力特性に優れた密閉形ニッ ケル水素電池を提供することを目的とする。 課題を解決するための手段
上記の課題を達成するために、 本発明者らは鋭意検討の結果、 その水素吸蔵合 金粉末の質量飽和磁化を特定の値とし、 かつ、 水素吸蔵電極における水素吸蔵合 金粉末の単位面積当たりの充填量を特定の値としたときに、 驚くべきことに水素 吸蔵電極の反応抵抗が非常に小さく、低温において優れた出力特性を有し、かつ、 サイクル特性を維持した前記要求性能を満足するニッケル水素電池が得られるこ とを見出し、 本発明に至った。
本発明者らは、 二ッケル水素電池を高率放電したときの抵抗成分解析を行つた 結果、 ニッケル電極を正極とし、 水素吸蔵電極を負極とするニッケル水素電池に おいて、 負極である水素吸蔵電極の反応抵抗が、 高率放電時の抵抗の大きな部分 を占めることを確認した。
そこで、 本発明者らは、 高率放電時の負極の合金表面における電荷移動速度を 向上すべく、 水素吸蔵合金の表面改質処理について検討したが、 質量飽和磁化を
2 e muZg以上とした水素吸蔵合金粉末を適用したときに反応抵抗を顕著に低 減できることを確認した。
通常の水素吸蔵合金粉末の質量飽和磁化が 0. 1 emu/g未満であるのに比 して、 例えば高温の N a OH水溶液中に浸漬することによって質量飽和磁化を 2 e mu/g以上に高めた水素吸蔵合金粉末の表面には厚さが 100ナノメートノレ (nm) 以上のニッケルに富む相が層状に形成されており、 該相が電極反応の触 媒として作用するので、 該水素吸蔵合金粉末を適用した水素吸蔵電極の反応抵抗 が小さくなることが確認されている。 この効果は常温において顕著である。
しかしながら、 特に低温 (例えば 0°C) において水素吸蔵合金の質量飽和磁化 を高めただけでは、 反応抵抗低減効果に限界があることが分かった。 水素吸蔵合 金粉末の質量飽和磁化の値を 2 em uZgを超えてさらに高めても反応抵抗が顕 著に低減することがないばかり力、 質量飽和磁化を高くすると、 磁性体量の増加 に伴い合金の容量は低下しそれに伴ってサイクル寿命特性が低下するという問題 を有していることも分かった。
種々検討の結果、 質量飽和磁化の値を 2 emu/g以上とした水素吸蔵合金粉 末を適用し、 かつ、 水素吸蔵電極の該水素吸蔵合金粉末の担持量 (以下充填量と もいう) を 0. 1 5 g/cm 2以下とすることで、 水素吸蔵電極の反応抵抗を驚 く程顕著に低減できることが分かつた。
また、 前記水素吸蔵合金粉末の担持量を小さくするに従い、 また、 質量飽和磁 化を大きくするに従いサイクル特性が低下する傾向にあるが、 該担持量を 0. 0 6 g / c m 2以上に設定し、 質量飽和磁化を 6 emu/g以下に設定するとサイ クル特性の低下は小さく、 サイクル特性を好ましいレベルに維持できることが分 かった。
さらに、 集電リードと蓋体の溶接、 集電リードと上部集電板の溶接のうち少な くとも一方の溶接を、 電池を封口した後に行うことによって、 集電リードの長さ を短くすることができ、 該方法によつて作製した電池に前記水素吸蔵電極を適用 することによって、 格段に優れた出力特性を有するニッケル水素電池の実現が可 能であることを見いだした。 本発明はこのような新規な知見に基づいてなされた ものであって、 以下の解決手段によつて前記課題を解決するものである。
(1) 本発明に係るニッケル水素電池は、 ニッケル電極を正極とし、 水素吸蔵電 極を負極とするニッケル水素電池において、 希土類元素とニッケルを含む非希土 類金属元素からなる水素吸蔵合金粉末を導電性支持体に担持させた水素吸蔵電極 であって、 前記水素吸蔵合金粉末の質量飽和磁化が 2〜6 emuZgであり、 前 記水素吸蔵電極の単位面積当たりの水素吸蔵合金粉末担持量が 0. 06 ~ 0. 1 5 g/c m 2である水素吸蔵電極を備えたことを特徴とするニッケル水素電池で ある。 (請求の範囲第 1項参照)
なお、 ここでいう質量飽和磁化の値は、 水素吸蔵合金粉末 0. 3 gを精秤し、 サンプルホルダーに充填して (株) 理研電子製振動試料型磁力計 (モデル BHV 一 30) を用い、 5 kエルステッ ドの磁場をかけて測定した値である。
(2) 本発明に係るニッケル水素電池は、 前記水素吸蔵合金粉末の平均粒径が 1 0〜 35 μπιであることを特徴とする前記 (1) のニッケル水素電池である。 (請 求の範囲第 2項参照)
なお、 ここでいう粉末の粒径は、 マイクロ 卜ラック社製マイクロ トラック ΜΤ 3000を用いてレーザ回折 ·散乱法で測定した値であって、その平均粒径とは、 累積平均径 (d 50) を指し、 粉体の全体積を 1 00%として累積カーブを求め たときにその累積カーブが 50 %になる点の粒径をいう。
(3) 本発明に係るニッケル水素電池は、 前記水素吸蔵電極が、 エルビウム (E r)、 イッテルビウム (Yb) のうちの少なく とも 1種類の希土類元素の水酸化 物を含有することを特徴とする前記 (1) または (2) のいずれか 1項のニッケ ル水素電池である。 (請求の範囲第 3項および第 4項参照)
なお、 £ ]:ゃ¥1)の化合物は、 水酸化アルカリの存在下においては水酸化物と して存在するのであるが、 後記のように酸化物を添加した場合、 添加した酸化物 の全てが電池内において短時間に水酸化物に変化するとは限らない。 従ってここ でいう水酸化物には水酸化物と酸化物の混合物を含むものとする。
(4) 本発明に係るニッケル水素電池は、 捲回式極群を備え、 有底筒状の電槽の 開放端を蓋体で封口してなり、 前記蓋体を構成する封口板の内面と前記極群の上 部捲回端面に取り付けた上部集電板の上面を集電リードを介して接続した密閉形 ニッケル水素電池であって、 前記封口板の内面と集電リードの溶接点およぴ集電 リ一ドと上部集電板の溶接点のうちの少なくとも一方の溶接点を、 封口後の電池 の正極端子と負極端子間に、 外部電源により電池内を経由して通電することによ り溶接したことを特徴とする前記 (1 ) 〜 (3 ) の何れか 1項のニッケル水素電 池である。 (請求の範囲第 5項参照) 発明の効果
本発明の上記 (1 ) および (2 ) の解決手段によれば、 サイクル特性を維持し つつ、 優れた出力特性を有するニッケル水素電池を得ることができる。
本発明の上記 (3 ) の解決手段によれば、 優れた出力特性とサイクル特性を兼 ね備えたニッケル水素電池を得ることができる。
本発明の上記 (4 ) の解決手段によれば、 特に出力特性に優れたニッケル水素 電池を得ることができる。 図面の簡単な説明
図 1は、 本発明に係るニッケル水素電池の構造および集電リードと上部集電板 の溶接方法を模式的に説明する図である。
図 2は、 本発明に係るニッケル水素電池に適用する集電リ一ドの 1例を示す図 である。
図 3は、 本発明に係るニッケル水素電池に適用する上部集電板の 1例を示す図 である。
図 4は、 従来の円筒形二ッケル水素電池の断面構造を模式的に示す図である。 図 5は、 リボン状集電リードを模式的に示す図である。
図 6は、 水素吸蔵電極単極の反応抵抗と水素吸蔵合金粉末の質量飽和磁化およ び単位面積当たりの充填量の関係を示すグラフである。
図 7は、 0 °Cにおけるニッケル水素電池の出力密度およびサイクル寿命と水素 吸蔵合金粉末の質量飽和磁化との関係を示すグラフである。
図 8は、 0 °Cにおけるニッケル水素電池の出力密度およぴサイクル寿命と水素 吸蔵合金粉末の単位面積当たりの充填量の関係を示すグラフである。
図 9は、 0°Cにおけるニッケル水素電池の出力密度およびサイクル寿命と水素 吸蔵合金粉末の平均粒径との関係を示すグラフである。
(符号の説明)
0 封口板 1 極群 2 上部集電板 3 下部集電板
4 電槽 8 主リード 9 補助リード
1 0、 1 1、 14 突起 1 2 リボン状リード
A、 B 外部電源 (電気抵抗溶接機) の出力端子
P 1 集電リードと上部集電板の溶接点
P 2 下部集電板と電槽底内面との溶接点 発明を実施するための最良の形態
本発明に適用する水素吸蔵合金は希土類元素とニッケル (N i ) を含む非希土 類金属元素からなるものであればよく、 その組成は、 特に限定されるものではな レ、。 L a、 C e、 P r、 N dなどの希土類元素とニッケルを主たる成分元素とし て含有し、 AB 5形の結晶構造を有するもの、希土類元素、 マグネシウム (Mg) およびニッケルを主たる成分元素として含有し、 AB 3形や AB 35形の結晶構造 を有するものの何れにも適用できる。
AB 5形の水素吸蔵合金の場合、 MmN i (Mmは希土類元素の混合物であ るミッシュメタルを表す) の N iの一部を C o、 Mn、 A l、 Cu等で置換した 合金が優れたサイクル寿命特性と高い放電容量を持つので好ましい。
本発明に係るニッケル水素電池の水素吸蔵電極は、 水素吸蔵合金粉末をニッケ ルメツキを施した穿孔鋼板などの導電性支持体に担持させたものである。 本発明 に係る水素吸蔵電極に適用する水素吸蔵合金粉末の質量飽和磁化は、 通常の水素 吸蔵合金の質量飽和磁化が 0. 1 emuZg以下であるのに比して 2〜6 emu Zgと高い。 なお、 サイクル特性を維持しつつ水素吸蔵電極の反応抵抗を顕著に 低減するためには該質量飽和磁化を 4〜 6 e mu/gにするのが好ましい。 前記、 質量飽和磁化の値を高めた水素吸蔵合金粉末は、 水素吸蔵合金粉末を例 えば高温のアル力リ水溶液中に浸漬することによって得ることができる。 以下該 浸漬することを表面改質処理と記述する。 高温のアル力リ水溶液に浸漬した後の 水素吸蔵合金粉末を観察すると、 粉末の表面に N iに富む相が層状に形成されて いるのが観察される。 前記質量飽和磁化が 2 emuZg以上の水素吸蔵合金粉末 の表面には N iに富む相が厚さ約 1 00 nm以上の層として形成されている。 該 層が水素吸蔵電極の電極反応を促進させる触媒として作用し、 水素吸蔵電極の高 率放電特性を向上させるものと考えられる。 以下、 前記水素吸蔵合金粉末の表面 に形成された N iに富む相からなる層を触媒層と記述する。
水素吸蔵合金粉末を浸漬処理するのに用いるアルカリ性溶液としては、 電解液 に用いる KOH、 Na OH、 L i O Hなどの水酸化アルカリを 1種又は 2種以上 を混合して用!/、ると溶出元素成分と成分比が電解液と類似するため、 電池にした ときの合金の腐食が進みにくいため好ましいが、 中でも N a OHは合金表面の腐 食速度が L i OHに比べて 2倍以上早いために、 処理時間を短縮できるため好ま しい。 また、 Na OH を適用すると、 K〇Hを適用したときに比べて水素吸蔵 合金の表面に均一で緻密な触媒層が形成されるため力、 高率放電性能、 充放電サ ィクル性能共に優れた水素吸蔵電極を得ることができるので好ましい。
水素吸蔵合金粉末に表面改質処理を行うアル力リ水溶液の濃度は、 特に限定さ れるものではないが、表面改質処理に用いる N a〇H水溶液の N a OHの濃度は、 高い方が腐食の進行を促進する。 N a OHの濃度が 28重量%以上で処理速度が 向上し時間が短縮できるためより好ましく、 Na OHの濃度が 50重量%を越え ると処理液温度を常温に降下させたときに水酸化ナトリゥムの結晶が析出し、 浸 漬処理後に水素吸蔵合金粉末から水酸化ナトリゥムを分離除去することが困難と なる欠点がある。 このことから、 浸漬処理に用いる Na OH 水溶液の N a OH の濃度を 28〜50重量%とすることが好ましい。 また、 該浸漬処理を高温で行 うと浸漬処理速度が速いので好ましい。 表面改質処理に用いる処理液の温度が 9 0 °C未満では、 水素吸蔵合金粉末の表面に生成した酸化物や水酸化物等の不純物 の除去には有効であっても、 本発明において目的とする水素吸蔵合金粉末の表面 に触媒層を形成するためには長時間の浸漬を必要とし、 実用的ではない。 短時間 の処理で触媒層を形成するためには、 処理液の温度を 90〜1 1 0°Cの範囲に設 定するのが好ましい。
これまでの水素吸蔵合金粉末を導電性支持体に担持させた水素吸蔵電極におい ては、 電極の単位面積当たりの水素吸蔵合金粉末の充填量を 0. 1 6〜 0. 20 g/cm 2程度に設定するのが一般的である (該充填量としたものを以下便宜上 現状ともいう)。 これに対して、 本発明においては、 水素吸蔵合金粉末の単位面 積当たりの充填量を 0. 06〜0. 1 5 g/cm 2 と低い値に設定する。 このこ とによって、 水素吸蔵電極の反応抵抗を、 従来に比して極めて顕著に低減するこ とができる。 なお、 サイクル特性の低下を極力抑制するには、 水素吸蔵合金粉末 の単位面積当たりの充填量を 0. 07〜0. 1 5 gZcm 2の範囲に設定するの が好ましく、 0. 09〜0. 1 5 gZc m 2の範囲に設定するのがさらに好まし い。
本発明に係る水素吸蔵電極に適用する水素吸蔵合金粉末の粒径は、 平均粒径が 10〜35 μπιであることが好ましく、 10〜28 μ mとするのがさらに好まし い。 該平均粒径が 1 0 μιτα未満では、 電解液に対する耐食性が劣り、 良好なサイ クル性能が得られない。 一方。 該平均粒径が 35 mを超えると、 母相が大きい ため前記表面層が触媒としての機能を発揮しにくくなり反応抵抗が増加してしま う。 また、 充放電を繰り返したときに微細化して新規な表面が生成するために腐 食が促進されることがある。 水素吸蔵合金粉体を所定の形状で得るためには粉碎 機や分級機が用いられるが、 粉碎方法や分級方法は、 特に限定されるものではな い。
以上、 負極の主要構成成分である負極活物質について詳述したが、 前記水素吸 蔵電極には、 前記主要構成成分の他に、 導電剤、 結着剤、 増粘剤、 防食剤、 フィ ラー等が、 他の構成成分として含有されてもよい。
水素吸蔵合金粉末に Yやランタノイ ドのなかでも D y、 Ho、 E r、 Tm、 Y b、 L u等の所謂重希土類元素の酸化物や水酸化物を添加すると水素吸蔵合金の 腐食が抑制され、 この水素吸蔵電極を用いたニッケル水素電池のサイクル特性が 顕著に向上する。 特に E rまたは Ybの酸化物、 水酸化物の粉末を添加混合する と水素吸蔵合金粉末の腐食に対して優れた防食効果が得られるので好ましい。 な かでも E rの酸化物、 水酸化物の粉末は水素吸蔵電極の反応抵抗を増大させるこ とが殆どないので、 高出力を維持しつつサイクル特性を向上させるのに有効であ る。 これに対して Y の酸化物や水酸化物の粉末を添加すると水素吸蔵電極の反 応抵抗が少し増大し、 出力特性が若干低下するが、 E rの酸化物や水酸化物の粉 末を添加した場合に比べて更に顕著な防食作用を示す。 よって、 高出力特性を重 視する場合には、 E rの酸化物や水酸化物の粉末を添加するのが好ましく、 サイ クル特性を重視する場合には Y bの酸化物や水酸化物の粉末を添加するのが好ま しい。
なお、 顕著な防蝕作用を得るためには、 £ 1:ゃ¥ 1)の酸化物、 水酸化物の粉末 に予め粉砕 ·分級の処理を施すことによって、 水素吸蔵合金粉末に混合添加する E rや Y bの酸化物、 水酸化物粉末を平均粒径 ( d 50) が 0 . 3〜 5 μ mの微 細な粉末とするのが好ましい。 またその添加比率は水素吸蔵合金粉末 1 0 0重量 部に対して 0 . 3〜1 . 5重量部とするのが好ましい。 該比率が 0 . 3重量部未 満では防蝕作用が得られ難く、 1 . 5重量部を超えると水素吸蔵合金粉末の充填 量が少なくなつて容量が低下したり、 水素吸蔵電極の反応抵抗を増大させる虡が あ 。
.また、 添加する E rや Y bの酸化物や水酸化物の純度 (該化合物に含まれる希 土類元素に占める E rや Y bの重量%) は 9 0 %以上とすることが好ましい。 該 純度が 9 0 %未満では添加した化合物の防蝕効果が損なわれる虞がある。
導電助剤としては、 電池性能に悪影響を及ぼさない電子伝導性材料であれば限 定されないが、 通常、 天然黒鉛 (鱗片状黒鉛、 土状黒鉛等)、 人造黒鉛、 カーボ ンブラック、 アセチレンブラック、 ケッチェンブラック、 カーボンゥイス力一、 炭素繊維、 気相成長炭素、 金属 (銅, ニッケル, 金等) 粉、 金属繊維等の導電性 材料を 1種またはそれらの混合物として含ませることができる。 これらの中で、 導電助剤としては、 電子伝導性及び塗工性の観点よりケチェンブラックが望まし い。 導電剤の添加量は、 正極または負極の総重量に対して 0 . 1〜2重量%が導 電性を有しつつ、 負極の容量を大きく低下させないことから好ましい。 特にケッ チェンブラックを 0 . 1〜0 . 5 / mの超微粒子に粉砕して用いると必要炭素量 を削減できるため望ましい。 前記結着剤としては、 通常、 ポリテトラフルォロエチレン (P T F E ) , ポリ エチレン, ポリプロピレン等の熱可塑性樹脂、 エチレン一プロピレンージェンタ 一ポリマー (E P DM) , スルホン化 E P DM、 スチレンブタジエンゴム (S B R)、 フッ素ゴム等のゴム弾性を有するポリマーを 1 種または 2種以上の混合物 として用いることができる。 結着剤の添加量は、 正極または負極の総重量に対し て 0 . 1〜3重量%が好ましぃ。
前記増粘剤としては、 通常、 カルボキシメチルセルロース (C M C )、 メチル セルロース (M C )、 ヒ ドロキシプロピルメチノレセルロース (H P M C ) 等の多 糠類等を 1種または 2種以上の混合物として用いることができる。 増粘剤の添加 量は、 正極または負極の総重量に対して 0 . 1〜 3重量%が好ましい。
フィラーとしては、 電池性能に悪影響を及ぼさない材料であれば何でも良い。 通常、 ポリプロピレン, ポリエチレン等のォレフィン系ポリマー、 炭素等が用い られる。 フィラーの添加量は、 正極または負極の総重量に対して添加量は 5重量 %以下が好ましい。
正極 (ニッケル電極) には、 数重量%の Z nおよび C oを固溶させた水酸化二 ッケル粉末を芯層とし、 その表面を導電性の高次コバルト化合物 (ォキシ水酸化 コノ ノレ ト) で被覆した活物質粉末を適用することが好ましい。 また、 高温 (例え ば 4 5 °C) で充電したときに充電効率を高め、 電解液の分解および該分解にとも なって正極で生じる酸素の発生を抑制するには、 前記活物質粉末に E rや Y b等 希土類元素の酸化物又は水酸化物粉末を数重量%混合添加することが好ましい。 正極および負極は、 前記活物質、 導電剤および結着剤を水やアルコール、 トル ェン等の有機溶媒に混合させた後、 得られた混合液を下記に詳述する導電性支持 体の上に塗布し、 乾燥することによって、 好適に作製される。 前記塗布方法につ いては、 例えば、 アプリケーターロールなどのローラーコーティング、 スクリー ンコーティング、 ドクターブレード方式、 スピンコーティング、 バーコータ等の 手段を用いて任意の厚みおよび任意の形状に塗布することが望ましいが、 これら に限定されるものではない。
導電性支持体としては、 構成された電池において悪影響を及ぼさない電子伝導 体であれば何でもよい。 例えば、 二ッケルゃ二ッケルメツキを行つた鋼板を好適 に用いることが出来、 発泡体、 繊維群の形成体、 凸凹加工を施した 3次元基材の 他に、 パンチング鋼板等の 2次元基材が用いられる。 導電性支持体の厚みは特に 限定される物ではないが、 5〜7 0 0 のものが用いられる。ニッケル電極(正 極) の導電性支持体としては、 アルカリに対する耐食性と耐酸化性に優れている N iを、 集電機能と活物質保持機能に優れた構造である多孔体構造の発泡体とし たものを使用する事が好ましい。水素吸蔵電極(負極) の導電性支持体としては、 安価で、且つ電導性に優れる鉄箔に、耐還元性向上のために N iメツキを施した、 穿孔板 (パンチング体) を使用することが好ましい。 さらに、 該穿孔板のパンチ ング径は 1 . 7 mm以下、 開口率 4 0 %以上であることが好ましく、 これにより 少量の結着剤でも負極活物質と導電性支持体との密着性は優れたものとなる。 焼成炭素、導電性高分子の他に、接着性、導電性および耐酸化性向上の目的で、 導電性支持体の表面に N i粉末やカーボンや白金等を付着させて処理した物を用 いることができる。 これらの材料については表面を酸化処理することも可能であ る。
ニッケル水素電池用セパレータとしては、 優れたハイレート特性を示す多孔膜 ゃ不織布等を、 単独あるいは併用することが好ましい。 該多孔膜ゃ不織布を構成 する材料としては、 例えばポリエチレン (P E ) , ポリプロピレン (P P ) 等に 代表されるポリオレフイン系樹脂や、 ナイロンを挙げることができる。
セパレータの強度を確保し、 電極のセパレータ貫通による内部短絡の発生を防 止し、 ガス透過性を確保する点からセパレータの空孔率を 8 0体積%以下とする のが好ましい。 他方セパレータの電気抵抗を低く抑え、 優れたハイレート特性を 確保する点から空孔率を 2 0体積%以上とするのが好ましい。 また、 セパレータ に親水化処理を施すことが好ましい。
例えば、 ポリエチレン (P E ) などのポリオレフイン系樹脂に、 表面にスルフ オン化処理、 コロナ処理、 P V A処理を施したり、 これらの処理を既に施された ものを混合したものを用いてもよい。
電解液としては、 一般にアルカリ電池等への使用が提案されているものが使用 可能である。 水を溶媒とし、 溶質としてはカリウム (K)、 ナトリウム (N a )、 リチウム (L i ) を単独またはそれら 2種以上の混合物等を挙げることができる がこれらに限定されるものではなレ、。 優れた電池特性を有する電池を得るための 好ましい電解液の 1例としては K O Hを 5〜7 m o 1 / d m 3、 L i O Hを 0 . 1〜0 . 8 m o 1 / d m 3を含む水溶液が挙げられる。
本発明に係るニッケル水素電池は、 電解質を、 例えば、 正極とセパレータと負 極とを積層する前または積層した後に注液し、 最終的に、 外装材で封止すること によって好適に作製される。 また、 正極と負極とがセパレータを介して積層され た発電要素を捲回してなるニッケル水素蓄電池においては、 電解質は、 前記捲回 の前後に発電要素に注液されるのが好ましい。 注液法としては、 常圧で注液する ことも可能であるが、 真空含浸方法や加圧含浸方法や遠心含浸法も使用可能であ る。
本発明に係るニッケル水素電池の外装体の材料としては、 ニッケルメツキした 鉄やステンレススチール、 ポリオレフィン系榭脂等が一例として挙げられる。 本発明に係るニッケル水素電池の構成は、特に限定されるものではなく、正極、 負極および単層又は複層のセパレータを有するコィン電池やボタン電池、 角型電 池、 扁平型電池等があげられるが、 正極、 負極およびセパレータをロール状に捲 回した捲回式極群を有する円筒型電池が、 極板枚数が少なくて、 かつ、 電極の面 積を大きくできるところから好ましい。
本発明に係る円筒形ニッケル水素電池は図 1に示すように、 外面に正極および 負極のうち一方の端子であるキャップ 6を接合した封口板 0の内面と上部集電板 2とをリードで接続している。 本発明においては図丄に示したように、 上部集電 板 2および下部集電板 3を取り付けた極群 1を有底筒状の金属製電槽 4内に収納 し、 所定量の電解液を注液して下部集電板 3と電槽 4の底内面とを電気抵抗溶接 によって接合させた後、 内面にリード (図 2に示した例ではリードは主リード 8 と補助リード 9からなる) を接合し、 外面に電池の一方の端子であるキャップ 6 を接合し、 キャップ内に安全弁の弁体 7を配置し、 周縁にガスケット 5を装着し た封口板 0を上部集電板の上側に載置して、 電槽 4の開放端を折り曲げてガスケ ットを狭持した後、 封口板 0 (またはキャップ 6 ) の外面に電気抵抗溶接機の一 方の出力端子 A (電極棒ともいう) を、 電槽 4の底外面に他方の出力端子 Bを当 接し、 電池内を経由して溶接に必要な電流を通電することによってリードと上部 集電板 2を溶接する。 このように、 電槽の開放端に封口板を予め固定させた状態 でリードと上部集電板 2を溶接するので、 従来のようにリードに橈み代を設ける 必要がなく、 長さの短いリードで封口板と上部集電板を接続させることができ、 従来に比べてリードの電気抵抗を低減することができる。 前記 H E V用電源とし て要求される出力特性を余裕をもってクリア一するには、 集電リードと封口板 0 との溶接点から集電リードと上部集電板 2との溶接点 P 1までを結ぶ集電リ一ド の長さの封口板 0と上部集電板 2との間隔に対する比が 2 . 1以下であることが 好ましく、 1 . 7以下であることがさらに好ましい。 なお、 前記溶接のために電 池内を経由して通電する電流は、 該通電によって電解液が分解されるのを抑制で きるところから交流パルス通電が望ましい。
前記リードの 1例を図 2に示す。 該リードは例えばリング状の主リード 8と補 助リード 9からなり、 主リード 8の一方の端面には、 封口板と電気抵抗溶接によ つて接合するに際して接合を良好ならしめるために複数の突起 (プロジヱクショ ン 1 1を形成し、 他方の端面には補助リード 9を接合させる。 該補助リード 9は リング状の主リード 8のリングから内側に向かって突出した複数の突片 9 ' (突 片はリングの外側に向かって突出していてもよい) を有し、 該突片 9 ' の先端に は、 電気抵抗溶接によつて該突片を上部集電板 2の上面に接合するに際して接合 を良好ならしめるために突起 1 0を設ける。 該突片は図 2に示すように主リード 8の下方に張り出しており、 かつ上下方向の変形に対して弾性を有している。 極 群 1の高さ寸法に誤差 (ばらつき) が生じても、 突辺が下方から押圧されると突 辺自身の弾性によって突起 1 0と上部集電板 2に安定した接圧が得られるので、 リードと上部集電板 2を電気抵抗溶接によつて接合するに際して良好な接合が達 成できる。
前記上部集電板 2は、図 3に示すように、円板状であって、中央に透孔を有し、 中央から放射状に延びる複数のスリット 2— 2を有する。 該スリットは上部集電 板を電気抵抗溶接によって、 極群の捲回端面に接合させるときに無効電流を低減 するのに有効である。 スリットの対向する 2辺に沿って設けた歯 (ゲタの歯) 2 一 3と極群の捲回端面に突出させた極板の長辺端部とが略直交し、 両者が接合さ れる。 該歯と極板の長辺端部が、 該長辺端部の基板の全域に亘つて交わるために は、 上部集電板 2の半径と極群 1の半径がほぼ等しく (但し、 上部集電板が極群 の捲回端面の外側にはみ出さないこと)、 かつ、 上部集電板の円の中心と極群の 捲回端面の円の中心が重なることが好ましい。
前記リードと上部集電板 2は複数の溶接点 (図 1の P 1 ) で接合されることが 好ましい。 溶接点の数は電池のサイズによっても異なり、 特に限定されるもので はないが、 2〜1 6個とするのが好ましく、 4〜 1 6個とするのがさらに好まし い。 また、 極板の各部分から溶接点までの距離に大きな差が生じないようにする ためには、 集電板と同心であって一つまたはそれ以上の複数の円上に溶接点 P 1 を等間隔に配置するのが好ましい。 また、 該溶接点 P 1の上部集電板の中央 (中 心) からの距離と極群 1の半径の大きさの比を 0 . 4〜0 . 7とすると、 該溶接 点が極板の長辺の中央部分に存在し、 集電機能が高まるためか、 高出力特性が得 られるので好ましい。
前記下部集電板 3と電ネ曹 4の底内面とは、 下部集電板の中央以外に図 1に示す ように、 複数の溶接点 P 2で接合されることが好ましい。 下部集電板 3は前記上 部集電板 2同様中央から円板状であって、 中央から放射状に延びる複数のスリッ トを有する。 ただし、 下部集電板 3と電槽 4の内底面の溶接を良好ならしめるた めに、 上部集電板 2と異なり中央と中央以外に複数の突起 1 4を設ける。 該中央 以外の複数の突起 1 4の数は電池のサイズによっても異なり特に限定されるもの ではないが、 下部集電板と電槽 4間の電気抵抗を小さくするためには 2〜1 6個 するのが好ましく、 4〜1 6個とするのがさらに好ましい。 また、 該中央以外の 複数の溶接点 P 2の下部集電板の中央 (中心) からの距離と極群 1の半径の大き さの比を 0 . 5〜0 . 8とすると、 該溶接点が極板の長辺の中央部分に存在し、 集電機能が高まるためか、 高出力特性が得られるので好ましレ、。 実施例
' 以下に、 実施例に基づき本発明をさらに詳細に説明するが、 本発明は以下の記 載により限定されるものではなく、 試験方法や構成する電池の正極材料、 負極材 料、 正極、 負極、 電解質、 セパレータ並びに電池形状等は任意である。 なお、 以 下に記述する実施例の電極の容量の算定において、 ニッケル電極 (正極板) の場 合、容量(mAh) 活物質充填量(g) X 289mAhZg、水素吸蔵電極 (負 極板) の場合、 容量 (mAh) =活物質 (水素吸蔵合金粉末) 充填量 (g) X 2 90 mAh/ gで示される単純な積算値とした。
(水素吸蔵合金粉末の作製)
平均粒径力 20 μ m MmN i 4o C o o.55 A 1 35 Mn o.30 (Mmはミッシュメタ ルを表し、 重量比で L a : C e : P r : Nd = 70 : 22 : 2 : 6の混合物から なる) で示される組成を有する水素吸蔵合金粉末を水素吸蔵合金粉末 Aとし、 該 水素吸蔵合金粉末 Aを濃度 48重量%、 温度 100°Cの Na OH水溶液に浸漬処 理した。 その後、 加圧濾過して処理液と合金を分離した後、 純水を合金重量と同 重量添加して 28 KH zの超音波を 1 0分間かけた。 その後、 緩やかに攪拌しつ つ純水を攪拌槽の下部より注入し、 上部から流出させた。 このように、 攪拌槽中 に純水をフローさせて、 合金粉末から遊離する希土類水酸化物を除去した。 その 後、 pHl 0以下になるまで水洗した後、 加圧濾過した。 この後、 80°C温水に 暴露して水素脱離を行った。 温水を加圧濾過して、 再度の水洗を行い、 合金を 2 5°Cに冷却し、攪拌下 4%過酸化水素を合金重量と同量加え、水素脱離を行って、 電極用水素吸蔵合金を得た。 該浸漬処理の浸漬時間を 1. 3時間、 2. 6時間、 4時間、 5. 3時間の 5水準とし、 各浸漬時間に対応して得られた水素吸蔵合金 粉末をそれぞれ水素吸蔵合金粉末 B、水素吸蔵合金粉末 C、水素吸蔵合金粉末 D 水素吸蔵合金粉末 Eとした。 得られた水素吸蔵合金粉末の質量飽和磁化を表 1に 示す。
表 1
Figure imgf000020_0001
(水素吸蔵電極の単極試験)
前記水素吸蔵合金粉末を適用した水素吸蔵電極の反応抵抗を評価するため、 前 記水素吸蔵合金粉末を A、 B、 C、 D、 Eを適用し、 それぞれの合金粉末につい て単位面積当たりの水素吸蔵合金粉末の充填量が 0. 04 gZcm 2、 0. 06 g / c m \ 0. 07 g / cm 、 0. 09 g / cm 、 0. 1 5 g c m— の 5 水準に、 現状の充填量である 0. l S gZcm 2 0. S O gZcm 2 の 2水準 を加えた合計 7水準として合計 35種類の水素吸蔵電極を作製した。具体的には、 水素吸蔵合金粉末 100重量部に対して、 平均粒径 5 μπιの E r 2 O 3粉末 1重 量部、 スチレンブタジエン共重合体 (SBR) を 0. 65重量部おょぴヒドロキ シプロピルメチルセルロース (HPMC) を 0. 3重量部、 所定量の水を加えて 混練しペース トとした。 該ペース トをブレードコーターを用いて、 厚さ 0. 05 mm、 開口径 1. 5mm、 開口率 40%であって、 鉄にニッケルメツキを施した パンチング鋼板からなる負極基板に塗布した後、 80°Cで乾燥し、 極板の多孔度 (ポロシティ) が 20%になるようにプレス加工をして、 幅 3 Ommの水素吸蔵 電極とした。 なお、 水素吸蔵合金の充填量から算定される容量 { 290mAhZ g X充填量 (g)} が 20 OmA hになるように電極のサイズ (長さ) 寸法を調 整した。
この合金電極を、 スルフォン化処理を施した厚み 1 20 μπιのポリプロピレン の不織布状セパレータを介して幅、 長さともに前記単極試験用水素吸蔵電極より も 1 Omm大きく、 片側当たりの容量が負極板の容量にほぼ等しくしたニッケル 電極を負極の両側に負極を挟むように配置した。 電解液として KOHを 6. 8 m o l /dm 3、 L i OHを 0. 8mo l/dm 3 を含む水溶液を注液し液過剰の 単極試験用セルを作製した。
作製した電池を温度 25 °Cの雰囲気に 1 2時間の保管処理の後、 4mA (0. 02 1 t A) にて 3時間充電し、 引き続き 2 OmA (0. 1 I t A) で 1 0時間 充電した後、 40mA (0. 2 I t A) で参照電極 (HgZHgO電極) に対し て一 0. 6 Vまで放電した後、 20 mA (0. 1 I t A) で 1 2時間充電、 40 mA (0. 2 I tA) で一 0. 6 Vまで放電する操作を 4回繰り返した。 この後、 2 OmA (0. 1 I t A) で 1 2時間充電し、 0°Cで 4 h放置した後、 1000 mA (5 1 t A) 放電を 10秒間行い、 参照電極 (Hg/HgO電極) の電位を 基準にして 0. 001〜10秒目までの負極電位の上昇値から直流抵抗値(πιΩ) を算定した。 該直流抵抗値を水素吸蔵電極単極の反応抵抗値とした。 試験結果を 図 6に示す。
図 6に示すように、 水素吸蔵合金の質量飽和磁化が 0. 0 6 e muZgの場合 には、 水素吸蔵電極の水素吸蔵合金粉末の充填量 (g/cm 2) をいかように変 えても反応抵抗が高い。 また、 水素吸蔵合金の質量飽和磁化が 2 emu/ g以上 であっても、 その充填量が 0. 1 5 g/cm 2を超えると反応抵抗が急速に増大 する。これに対して、水素吸蔵合金の質量飽和磁化が 2 e muZg以上であって、 かつ、 その充填量が 0. 1 5 g/cm 2以下であるとき、 反応抵抗値が安定 (変 動幅が小) して小さくできることが分かった。
この理由は、 必ずしも明らかではないが以下のように考えられる。 水素吸蔵合 金の表面に形成された磁性体が電荷移動に関する反応の触媒として機能するた め、 磁性体量の増加、 すなわち質量飽和磁化の増加に伴い反応抵抗が低減する。 しかしながら、 充填量が増加すると合金量に対する電極面積が相対的に小さくな り、 電解液との界面が小さくなるため、 反応抵抗が増加すると考えられる。 この 為、 水素吸蔵合金の質量飽和磁化が 2 e m u / g以上であり、 かつ充填量が 0. 1 5 g/cm 2以下であるとき顕著に反応抵抗の小さい水素吸蔵電極が得られる ものと考えられる。
(円筒型二ッケル水素電池の作製と電池特性評価)
(正極板の作製)
硫酸二ッケルと硫酸亜鉛および硫酸コバルトを所定比で溶解した水溶液に硫酸 アンモユウムと水酸化ナトリゥム水溶液を添加してアンミン錯体を生成させた。 反応系を激しく撹拌しながら更に苛性ソーダを滴下し、 反応系の pHを 1 1〜1 2に制御して芯層母材となる球状高密度水酸化二ッケル粒子を水酸化二ッケル: 水酸化亜鉛:水酸化コバルト = 88. 45 : 5. 1 2 : 1. 1の比となるように 合成した。
前記高密度水酸化二ッケル粒子を、 水酸化ナトリウムで ρΗ1 1〜 1 2に制御 したアルカリ水溶液に投入した。 該溶液を撹拌しながら、 所定濃度の硫酸コバル ト、 硫酸アンモユウムを含む水溶液を滴下した。 この間、 水酸化ナトリウム水溶 液を適宜滴下して反応浴の pHを 1 1〜1 2の範囲に維持した。 約 1時間 p Hを 1 1〜1 2の範囲に保持し、 水酸化ニッケル粒子表面に C oを含む混合水酸化物 から成る表面層を形成させた。 該混合水酸化物の表面層の比率は芯層母粒子 (以 下単に芯層と記述する) に対して、 4. Ow t%であった。
前記混合水酸化物から成る表面層を有する水酸化ニッケル粒子 50 gを、 温度 1 1 0°Cの 30w t% (l Omo l/dm 3) の水酸化ナトリウム水溶液に投入 し、 充分に攪拌した。 続いて表面層に含まれるコバルトの水酸化物の当量に対し て過剰の K 2 S 2〇sを添加し、 粒子表面から酸素ガスが発生するのを確認した。 得られた粒子をろ過、 水洗、 乾燥し、 活物質粉末とした。
前記活物質粉末および平均粒径 5 μ mの Y b (OH) 3粉末の混合粉末にカル ボキシメチルセルローズ (CMC) 水溶液を添加して、 重量比で前記活物質粉末 : Y b (OH) 3粉末: CMC (固形分) = 100 : 2 : 0. 5のペースト状と し、 該ペーストを 450 g/m 2のニッケル多孔体 (住友電工 (株) 社製ニッケ ルセルメッ ト # 8) に充填した。 その後 80°Cで乾燥した後、 所定の厚みにプレ スし、 幅 48. 5 mm, 長さ 1 100mm、 片方の長辺に沿って巾が 1. 5 mm の活物質無塗工部を設けた容量 650 OmAh (6. 5 Ah) のニッケル正極板 とした。 該正極板を以下に記述する実施例 1〜実施例 3、 実施例 13〜実施例 1 5、 実施例 1 7、 比較例 1、 比較例 2、 参考例 1、 参考例 2、 参考例 4に共通の 正極板として適用した。 (実施例 4〜実施例 1 2、 実施例 1 6、 比較例 3〜比較 例 1 2、 参考例 3については、 負極板の水素吸蔵合金粉末の単位面積当たりの充 填量に応じて、 正極板の厚さ、 長さを調整した。)
(単極試験の反応抵抗と電池特性の相関性)
前記図 6に示した水素吸蔵電極単極の反応抵抗と 0°Cにおける電池の出力特性 との相関性を調べるため、 反応抵抗が安定 (充填量に誤差が生じても反応抵抗の 変動が極小さい) した充填量 0. 07 g/cm 2であって、 水素吸蔵合金粉末の 質量飽和磁化が異なる水素吸蔵電極を用いた円筒形のニッケル水素電池を試作 し、 特性評価を行った。 なお、 出力特性の評価にあわせてサイクル特性について も評価した。 (実施例 1 )
(負極板の作製)
前記水素吸蔵合金粉末 cを適用し、 水素吸蔵合金粉末の単位面積当たりの充填 量が 0. 07 g/cm 2の水素吸蔵電極板を作製した。 具体的には、 水素吸蔵合 金粉末 C 100重量部に対して、 平均粒径 5 μ mの E r 2 O 3粉末 1重量部、 ス チレンブタジエン共重合体を 0. 65重量部おょぴヒ ドロキシプロピルメチルセ ルロース (HPMC) を 0. 3重量部、 所定量の水を加えて混練し、 ペーストと した。 該ペース トを、 ブレードコーターを用いて、 鉄にニッケルメツキを施した パンチング鋼板からなる負極基板に塗布した後、 80°Cで乾燥した後、 極板の多 孔度 (ポロシティ) が 20%になるようにプレス加工をした。 プレス御の極板を 幅 48. 5mm、 長さ 1 1 8 Omm、 片方の長辺に沿って巾が 1. 5mmの活物 質無塗工部を設けた容量 1 1 00 OmAh (1 1. 0 Ah) の負極 (水素吸蔵電 極) とした。 なお、 負極 1 c m 2当たりの水素吸蔵合金粉末の充填量は 0. 07 gとした。
(密閉形ニッケル水素蓄電池の作製)
以下図 1〜図 3を引用しながら本実施例における密閉形二ッケル水素電池の製 作過程を説明する。
(極群の捲回端面への上部集電板、 下部集電板の取り付け)
前記負極板とスルフォン化処理を施した厚み 1 20 μ mのポリプロピレンの不 織布状セパレータと前記正極板とを組み合わせてロール状に卷回して図 1に示す 半径が 1 5. 2 mmの極群 1とした。 該極群 1の一方の捲回端面 (図 1では上側 の捲回端面) に突出させた正極基板の端面に、 図 3に示すニッケルメツキを施し た鋼板からなる厚さ 0. 3mm、 中央に円形の透孔と 8本のスリ ッ ト 2— 2を設 け、 該スリ ッ ト 2— 2の対向する 2辺に高さが 0. 5 mmの下駄 (電極基板への かみ込み部) 2— 3を設けた半径 14. 5 mmの円板状の上部集電板 (正極集電 板) 2を抵抗溶接により接合した。 また、 エッケルメツキを施した鋼板からなる 厚さ 3mm、 上部集電板と同様 8本のスリ ッ トと該スリ ッ トの対向する 2辺 に高さの 0. 5 mmの下駄 (電極へのかみ込み部) を設けた半径 14. 5 mmの 円板状の下部集電板 (負極集電板) 3に、 下部集電板の中央に 1個と下部集電板 の中心から 9 mm離間した位置に 8個合計 9個の突起 (プロジヱクシヨン) を形 成した。 この下部集電板 3を、 捲回式極群 1の他方の捲回端面 (図 1では下側の 捲回端面) に突出させた負極基板の端面に抵抗溶接により接合した。 なお、 下部 集電板の中央の突起の高さを中央以外の 8個の突起の高さに比べて少し低く設定 した。
(下部集電板と電槽底内面の溶接)
ニッケルメツキを施した鋼板からなる有底円筒状の電槽 4を用意し、 前記上部 集電板 2と下部集電板 3を取り付けた極群 1を、 上部集電板 2が電槽 4の開放端 側、下部集電板 3が電槽 4の底に当接するように電槽 4内に収容し、 KOHを 6. 8m o 1 /dm \ 1011を0. 8 m o 1 Z d m 3含む水溶液からなる電解液 を所定量注液した。
注液後、 上部集電板 2と、 電槽 4の底面 (負極端子) に抵抗溶接機の溶接用出 力端子を当接させ、 充電方向および放電方向に同じ電流値で同じ通電時間となる ように通電条件を設定した。 具体的には、 電流値を正極板の容量 (6. 5 Ah) lAh当たり 0. 6 kA/Ah (3. 9 k A)、 通電時間を充電方向に 4. 5 m s e c、 放電方向に 4. 5m s e cに設定し、 該交流パルス通電を 1サイクルと して 2サイクル通電ができるようにセットし、 矩形波からなる交流パルスを通電 した。 この通電により、 下部集電板 3の下面と電槽底の内面とが、 負極集電板の 中心から 1 1mm離間した位置にある 8個の突起で溶接された。
なお、 下部集電板 3の下面と電槽 4の底の内面との溶接点 P 2の下部集電板 3 の中心からの距離と極群 1の半径との比は 0. 7であった。 その後、 電池内に電 流を流さず、抵抗溶接用の電極棒を負極集電板の上面と電槽底の外面に押し当て、 下部集電板 3の下面の中央に形成された突起と電槽底の内面を密着させ、 該突起 を電槽底の内面に電気抵抗溶接により接合した。
(集電リ一ドの作製と蓋体への取り付け及び封口)
集電リードには図 2に示すリング状主リード 8とその一方の長辺 (図 2では主 リード 8の下側) に接合した補助リード 9から成る集電リードを適用した。 前記 主リード 8は厚さ 0. 8mmのニッケル板であって、 巾 2. 5mm、 長さ 66m m、 長辺の一方に高さが 0. 2 mmの突起 1 1を 1 6個備え、 他方の長辺に高さ 0. 2 mmの突起を 16個備える板を内径 20 mmのリング状に丸めたものであ る。 {なお、 図 2は主リード 8の他方の長辺 (下側の長辺) に補助リード 9を取 り付けた状態を示したものであり、他方の長辺に設けた突起は図示していない }。 補助リード 9は、 厚さ 0. 3 mmのニッケル板を加工したものであって、 前記主 リード 8と同じ外径を有するリング状部分と該リング状部分の内側に 1 mm突出 した 8個の切片 9' と該切片 9' の先端にそれぞれ 1個の突起 1 0を備える。 補 助リード 9の前記切片 9' は図 2に示すようにリング部分から下側に張り出さ せ、 パネの機能を持たせてある。
ニッケルメツキを施した鋼板からなり、 中央に直径 0. 8 mmの円形の透孔を 設けた封口板◦を用意し、 該封ロ板 0の内面側に前記主リード 8の一方の長辺を 当接させ、電気抵抗溶接により封口板 0の内面にリング状主リード 8を溶接した。 次に、 電気抵抗溶接によりリング状主リード 8の他方の長辺に補助リード 9のリ ング状部分を溶接した。 封口板 0の外面には弁体 7およびキャップ 6を取り付け 蓋体とした。 封口板 0の周縁を包み込むように封口板 0にガスケット 5を装着し た。 なお、 蓋の半径は 14. 5mm、 キャップの半径は 6. 5mm、 ガスケット のカシメ半径は 1 2. 5mmである。
前記集電リードを取り付けた蓋体を補助リード 9が上部集電板 2に当接するよ うに極群 1の上に載置し、 電槽 4の開放端を力シメて気密に密閉した後、 圧縮し て電池の総高さを調整した。 この際、 前記のように補助リード 9の突片 9' にバ ネの機能を持たせてあるので、 封口板 0の内面と上部集電板の上面との間隔に例 えバラツキがあつたとしても、 補助リード 9と上部集電板 2とを良好に当接させ ることが出来る。
(集電リードと上部集電板の溶接)
蓋体 (正極端子) に電気抵抗溶接機の一方の出力端子 Aを、 電槽 4の底面 (負 極端子) に電気抵抗溶接機の他方の出力端子 Bを当接させ、 充電方向および放電 方向に同じ電流値で同じ通電時間となるように通電条件を設定した。具体的には、 電流値を正極板の容量 (6. 5 Ah) lAh当たり 0. 6 kA/Ah (3. 9 k A)、 通電時間を充電方向に 4. 5m s e c, 放電方向に 4. 5ms e cに設定 し、 該交流パルス通電を 1サイクルとして 2サイクル通電ができるようにセット し、 電池内を経由して矩形波からなる交流パルスを通電した。 このとき開弁圧を 超えてガス発生していないことを確認した。 このようにして集電リードと上部集 電板が 8個の溶接点で溶接し、 蓋体と正極集電板 2が、 集電リードを介して接続 され図 1に示すような密閉形ニッケル水素電池を作製した。
なお、 蓋体 (封口板) の半径は 14. 5 mm キャップの半径は 6. 5 mm ガスケットのカシメ半径は 1 2. 5 mmである。 なお、 該例における 8点の溶接 点 P 1の上部集電板 2の中心からの距離と極群 1の半径との比は 0.6であつた。 なお、 該例における封口板の内面と集電リードの溶接点と、 集電リードと上部集 電板の溶接点を結ぶ集電リ一ドの最短の長さと封口板の内面と上部集電板の上面 の間隔との比は約 1. 4であった。 本発明によれば、 このように、 電池を封口し た後に集電リードと上部集電板を溶接するので、 従来のように集電リ一ドに撓み を設ける必要がなく、 封口板の内面と集電リードの溶接点と、 集電リードと上部 集電板の溶接点を結ぶ集電リ一ドの最短の長さを短くすることができる。 なお、 この該実施例電池の重量は 1 72 gであった。 (因みに、 以下に記述する実施例、 参考例、 比較例に係るニッケル水素電池の電池重量は全て 1 72 gであった。) (化成)
前記密閉形蓄電池を周囲温度 2 5°Cにおいて 1 2時間の放置後、 1 30 mA (0. 02 1 t A) にて 1 20 OmAh充電し、 引き続き 65 OmA (0. I I t A) で 10時間充電した後、 1 300 mA ( 0. 2 I t A) でカツト電圧 1 V まで放電した。 さらに、 650mA (0. 1 I tA) で 1 6時間充電後、 1 30 OmA (0. 2 1 tA) でカット電圧 1. 0Vまで放電し、 該充放電を 1サイク ルとして 4サイクル充放電を行った。 さらに電池を活性化させる目的で、 45°C において 6500mA (l i t A) にて一 Δ Vが 5 mVの変動が発生するまで充 電した後、 6500mA (l l tA) で 1. 0 Vまで放電する充放電を 10サイ クル繰り返した。
(出力密度の測定)
0°Cの雰囲気下において出力密度の測定を行った。 化成済みの電池を 25°C雰 囲気下において、 放電末より 65 OmA (0. 1 I t A) で 5時間充電後、 0 °C 雰囲気に 4時間放置した後、 放電電流 3 OA (4. 6 1 tA相当) で 12秒間放 電したときの放電を開始後 10秒間経過後の電圧を 30 A放電時の 10秒目電圧 とし、 充電電流 6 Aにて該放電の放電電気量に等しい電気量を充電した後、 放電 電流 4 OA (6. 2 1 tA相当) で 1 2秒間放電したときの放電を開始後 1 0秒 間経過後の電圧を 40 A放電時の 10秒目電圧とし、 充電電流 6 Aにて該放電の 放電電気量に等しい電気量を充電した後、 放電電流 5 OA (7. 7 I t A相当) で 1 2秒間放電したときの放電を開始後 1 0秒間経過後の電圧を 50 A放電時の 10秒目電圧とし、 充電電流 6 Aにて該放電の放電電気量に等しい電気量を充電 した後、 放電電流 6 OA (9. 2 1 tA相当) で 1 2秒間放電したときの放電を 開始後 10秒間経過後の電圧を 60 A放電時の 10秒目電圧とした。 各 10秒目 電圧 (測定値) を放電電流に対してプロットし、 最小二乗法で直線近似し、 電流 値を OAに外揷したときの電圧値を E 0とし直線の傾きを RDCとした。 E 0、 R DC及び電池重量を次式に代入して求めた値を 0. 8Vカツト時の 0°Cにおけ る出力密度とした。
出力密度 (WZk g) = (E 0 - 0. 8) +RDCX O. 8 Z電池重量(k g) (充放電サイクル試験)
45 °Cの雰囲気下において充放電サイクル試験を行った。 化成済みの電池を 4 5 °Cの雰囲気にて 4時間放置した後、 充電レート 0. 5 I 八にてー厶 が5!11 Vの変動が発生するまで充電し、 放電レート 0. 5 I tA、 放電カット電圧 1. 0Vとして放電した。 該充放電を 1サイクルとして充放電を繰り返し行い、 放電 容量が、 充放電サイクル試験の 1サイクル目の放電容量の 80%を切ったサイク ル数をもってサイクル寿命とした。
(実施例 2 )
前記負極板の作製において、 表面改質処理の浸漬処理時間を変えた水素吸蔵合 金粉末 B (質量飽和磁化を 2 emu/ g) を適用したこと以外は、 実施例 1と同 様構成のニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出 力密度の測定に供した。 該例を実施例 2とする。 2006/313517
(実施例 3 )
前記負極板の作製において、 表面改質処理の浸漬処理時間を変えた水素吸蔵合 金粉末 D (質量飽和磁化を 6 e mu/g) を適用したこと以外は、 実施例 1と同 様構成のニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出 力密度の測定に供した。 該例を実施例 3とする。
(比較例 1 )
前記負極板の作製において、 表面改質処理を施さない水素吸蔵合金粉末 A (質 量飽和磁化を 0. 06 emu/g) を適用したこと以外は、 実施例 1と同様構成 のニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出力密度 の測定に供した。 該例を比較例 1とする。 (比較例 2 )
前記負極板の作製において、 表面改質処理の浸漬処理時間を変えた水素吸蔵合 金粉末 E (質量飽和磁化を 8 emu/g) を適用したこと以外は、 実施例 1と同 様構成のニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出 力密度の測定に供した。 該例を比較例 2とする。 実施例 1〜実施例 3およぴ比較例 1、比較例 2の試験結果を表 2と図 7に示す。 表 2
Figure imgf000029_0001
表 2、 図 7に示したように、 単極試験における反応抵抗の小さい水素吸蔵電極 を適用した電池の 0°Cにおける出力は高く、 前記反応抵抗と電池の出力特性には 相関性があることが分かった。 図 6および表 2、 図 7に示した結果は、 水素吸蔵 合金粉末の質量飽和磁化を 2 emuZg以上、 その充填量を 0. 1 5 g/cm 2 以下とすることによって高い出力特性を得ることができることを示している。 ただし、 水素吸蔵合金粉末の質量飽和磁化が高くなるほどサイクル特性は低下 し、 質量飽和磁化を 8 emu/gとしたきサイクル寿命が著しく低下することが 分かった。 このことは、 アルカリ浸漬処理によって表面層に腐食層が形成され質 量飽和磁化が高くなるほど、 合金母相が小さくなるため、 水素吸蔵電極の実容量 が算定容量に比べて小さくなり、 充電リザーブ量が減少した為であると考えられ る。 また、 質量飽和磁化が 0. 06 emuZgである水素吸蔵電極を適用した電 池においても、 水素吸蔵合金の利用率が低く過充電に陥り易いためか、 サイクル 寿命が劣ることが分かった。
表 2に示した結果から、 水素吸蔵合金粉末の質量飽和磁化を 2〜6 emu/g とすれば、 サイクル特性においても良好な結果が得られると予想された。 また、 図 7に示したように質量飽和磁化が 2 emu/g未満では、 質量飽和磁化に対し て出力密度、 サイクル特性の傾斜が大きいところから、 質量飽和磁化が少し下方 にずれるだけで出力密度ゃサイクル特性が大きく低下すると予想される。 また、 質量飽和磁化が 6 e mu/ gを超えると質量飽和磁化に対してサイクル特性が大 きく傾斜しているところから、 質量飽和磁化が少し上方にずれるだけで、 サイク ル特性が大きく低下すると予想される。 このように傾斜の大きい領域は、 安定し た品質を得るのが困難であり量産には不向きである。
(水素吸蔵合金粉末の充填量と電池特性の相関性)
(質量飽和磁化が 2 emu /'gの水素吸蔵合金粉末を適用した例) '
(実施例 4 )
前記実施例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 06 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6500mAhとし、 正極板の長さ二負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよぴ正極板の厚さを調整した。 作製した電池の 負極板の長さは 1 26 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 000 OmAhであった。 このこと以外は、 実施例 2と同様構成の ニッケル水素電池を作製し、 実施例 2と同様に充放電サイクル試験、 出力密度の 測定に供した。 該例を実施例 4とする。
(実施例 5)
前記実施例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 09 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよぴ正極板の厚さを調整した。 作製した電池の 負極板の長さは 108 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 290 OmAhであった。 このこと以外は、 実施例 2と同様構成の ニッケル水素電池を作製し、 実施例 2と同様に充放電サイクル試験、 出力密度の 測定に供した。 該例を実施例 5とする。
(実施例 6 )
前記実施例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 1 5 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6500 m Ahとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 8 1 Ommで、 水素吸蔵合金粉末の充填量から算定される負極板 の容量は 1 690 OmAhであった。 このこと以外は、 実施例 2と同様構成の二 ッケル水素電池を作製し、 実施例 2と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を実施例 6とする。
(比較例 3 )
前記実施例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 04 g / c m 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6 50 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 135 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 720 OmAhであった。 このこと以外は、 実施例 2と同様構成の二 ッケル水素電池を作製し、 実施例 2と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を比較例 3とする。
(比較例 4)
前記実施例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 1 8 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率 が同じとなるように正負両極板の長さおよび正極板の厚さを調整した。 作製した 電池の負極板の長さは 75 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 790 OmAhであった。 このこと以外は、 実施例 2と同様構 成のニッケル水素電池を作製し、 実施例 2と同様に充放電サイクル試験、 出力密 度の測定に供した。 該例を比較例 4とする。 実施例 2、 比較例 1に合わせて実施例 4〜実施例 6、 比較例 3、 比較例 4の試 験結果を表 3に示す。
表 3
Figure imgf000032_0001
質量飽和磁化が 2 e mu/ gの水素吸蔵合金粉末を適用した場合、 その充填量 が 0. 1 5 g/cm 3以下の範囲においては、.充填量が増えるに従って出力密度 が徐々に以下するが、 充填量を 0. 1 5 gZc m3から現状の 0. 1 8 g/cm3 に增やすと、 出力密度が大幅に低下している。 このことは、 充填量を 0. 1 5 g /cm 3から 0. 18 g/cm 3 に増やした場合、 放電に際して負極の反応抵抗 が大幅に増大したことによる。 一方、 充填量が 0. 06 g/cpi 3以上の範囲に おいては、 充填量を減らすとサイクル特性が徐々に低下するが、 充填量を 0. 0 4 g/cm 3に減らすとサイクル特性が顕著に低下している。 このことは、 充填 量を 0. 04 g/cm 3に減らすと充電リザーブを確保することが難しくなつた ためと考えられる。
他方、 質量飽和磁化が 0. 06 emu/gの水素吸蔵合金粉末を適用した場合 には充填量を 0. 07 g/cm 3 と低い値に設定したにも拘わらず出力密度が低 い。 表 3に示した結果から、 質量飽和磁化が 2 emu/ gの水素吸蔵合金粉末を 適用し、 その充填量を 0. 06 g/cm 3〜0. 1 5 g/cm 3 とすることによ つて出力密度、 サイクル特性が共に優れたニッケル水素電池がえられることが分 かった。
そのなかでも、 充填量を 0. 07 g/cm 3以上とするとサイクル寿命が 50 0サイクルを超えるので好ましく、 0. 09 g/cm 3以上とするとサイクル寿 命が 600サイクルを超えるので好ましい。
(質量飽和磁化が 4 e mu / gの水素吸蔵合金粉末を適用した例)
(実施例 7)
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 06 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6500mA hとし、 正極板の長さ ==負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 1260mmで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 000 OmAhであった。 このこと以外は、 実施例 1と同様構成の 6313517
ニッケル水素電池を作製し、 実施例 1と同様に充放電サイクノレ試験、 出力密度の 測定に供した。 該例を実施例 7とする。
(実施例 8 )
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 0 9 gZcm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6500mA hとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 108 Omniで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 290 OmAhであった。 このこと以外は、 実施例 1と同様構成の ニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出力密度の 測定に供した。 該例を実施例 8とする。
(実施例 9 )
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 1 5 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよぴ正極板の厚さを調整した。 作製した電池の 負極板の長さは 8 1 Ommで、 水素吸蔵合金粉末の充填量から算定される負極板 の容量は 1 6 90 OmAhであった。 このこと以外は、 実施例 1と同様構成の二 ッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を実施例 9とする。
(比較例 5 )
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 04 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ ==負極板の長さ一 80 (mm) の 06313517
関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 1 35 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 720 OmA hであった。 このこと以外は、 実施例 1と同様構成の二 ッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を比較例 5とする。
(比較例 6 )
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 0. 1 8 gZc m 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率 が同じとなるように正負両極板の長さおよび正極板の厚さを調整した。 作製した 電池の負極板の長さは 75 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 790 OmAhであった。 このこと以外は、 実施例 1と同様構 成のニッケル水素電池を作製し、 実施例 1と同様に充放電サイクル試験、 出力密 度の測定に供した。 該例を比較例 6とする。
(比較例 7 )
前記実施例 1において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 20 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 650 OmAhとし、 正極板の長さ-負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率 が同じとなるように正負両極板の長さおよび正極板の厚さを調整した。 作製した 電池の負極板の長さは 71 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 885 OmAhであった。 このこと以外は、 実施例 1と同様構 成のニッケル水素電池を作製し、 実施例 1と同様に出力密度の測定に供した (出 力密度が劣っていたので充放電サイクル試験には供しなかった。)。 該例を比較 例 7とする。 実施例 1にあわせて実施例 7〜実施例 9、 比較例 5〜比較例 7の試験結果を表 4と図 8に示す。 .
表 4
Figure imgf000036_0001
表 4、 図 8に示した結果によれば、 質量飽和磁化が 4 emuZgの水素吸蔵合 金粉末を適用した場合にも、 質量飽和磁化が 2 e muZgの水素吸蔵合金粉末を 適用した場合と同様に、 その充填量が 0. 1 5 gZc m 3以下の範囲においては 出力密度が徐々に以下するが、 充填量を 0. 1 5 g/cm 3から現状の 0. 1 8 gZc m 3に増やすと、 出力密度が大幅に低下している。 また、 充填量が 0. 0 6 g/cm 3以上の範囲においては、 充填量を減らすとサイクル特性が徐々に低 下するが、 充填量を 0. 04 g/c m 3に減らすとサイクル特性が顕著に低下し ている。 表 4および図 8に示した結果から、 質量飽和磁化が 4 emuZgの水素 吸蔵合金粉末を適用し、 その充填量を 0. 0 6 g/c m 3 〜0. 1 5 gZc m 3 とすることによつて出力密度、 サイクル特性が共に優れた二ッケル水素電池がえ られることが分かった。 そのなかでも、 充填量を 0. 0 7 g/c m 3以上とする とサイクル寿命が 5 0 0サイクルを超えるので好ましく、 0. 0 9 g/c m 3以 上とするとサイクル寿命が 6 0 0サイクルを超えるので好ましい。
(質量飽和磁化が 6 e m u / gの水素吸蔵合金粉末を適用した例)
(実施例 1 0 )
前記実施例 3において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 0 6 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6500mAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 1 260mmで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 000 OmAhであった。 このこと以外は、 実施例 3と同様構成の ニッケル水素電池を作製し、 実施例 3と同様に充放電サイクル試験、 出力密度の 測定に供した。 該例を実施例 10とする。
(実施例 1 1 )
前記実施例 3において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 09 gZcm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 6 50 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 108 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 1 290 OmAhであった。 このこと以外は、 実施例 3と同様構成の ニッケル水素電池を作製し、 実施例 3と同様に充放電サイクル試験、 出力密度の 測定に供した。 該例を実施例 1 1とする。
(実施例 1 2 )
前記実施例 3において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 1 5 g/c m 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 8 1 Ommで、 水素吸蔵合金粉末の充填量から算定される負極板 の容量は 1 6 90 OmAhであった。 このこと以外は、 実施例 3と同様構成の二 ッケル水素電池を作製し、 実施例 3と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を実施例 1 2とする。 (比較例 8 )
前記実施例 3において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 04 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよぴ正極板の厚さを調整した。 作製した電池の 負極板の長さは 1 35 Ommで、 水素吸蔵合金粉末の充填量から算定される負極 板の容量は 720 OmAhであった。 このこと以外は、 実施例 3と同様構成の- ッケル水素電池を作製し、 実施例 3と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を比較例 8とする。
(比較例 9 )
前記実施例 3において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 0. 1 8 g/cm 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 6 50 OmAhとし、 正極板の長さ =負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率 が同じとなるように正負両極板の長さおよび正極板の厚さを調整した。 作製した 電池の負極板の長さは 75 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 790 OmAhであった。 このこと以外は、 実施例 3と同様構 成のニッケル水素電池を作製し、 実施例 3と同様に充放電サイクル試験、 出力密 度の測定に供した。 該例を比較例 9とする。
(質量飽和磁化が 8 e m u Z gの水素吸蔵合金粉末を適用した例)
(比較例 1 0 )
前記比較例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 0. 1 5 g / c m 2 とした。 また、 電池の作製において、 電池の容量、 すなわち 正極容量は 650 OmAhとし、 正極板の長さ ==負極板の長さ一 80 (mm) の 関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率が同じ となるように正負両極板の長さおよび正極板の厚さを調整した。 作製した電池の 負極板の長さは 8 1 Ommで、 水素吸蔵合金粉末の充填量から算定される負極板 の容量は 1 690 OmA hであった。 このこと以外は、 比較例 2と同様構成の二 ッケル水素電池を作製し、 比較例 2と同様に充放電サイクル試験、 出力密度の測 定に供した。 該例を比較例 10とする。
(比較例 1 1 )
前記比較例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 0. 1 8 gZc m 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 650 OmAhとし、 正極板の長さ =負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への挿入比率 が同じとなるように正負両極板の長さおよび正極板の厚さを調整した。 作製した 電池の負極板の長さは 75 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 790 OmAhであった。 このこと以外は、 比較例 2と同様構 成の二ッケル水素電池を作製し、 比較例 2と同様に充放電サイクル試験、 出力密 度の測定に供した。 該例を比較例 1 1とする。
(比較例 1 2 )
前記比較例 2において負極板の水素吸蔵合金粉末の単位面積当たりの充填量を 現状の 0. 20 gZcm 2 とした。 また、 電池の作製において、 電池の容量、 す なわち正極容量は 6500 mAhとし、 正極板の長さ =負極板の長さ一 80 (m m) の関係を保ちながら、 正極板と負極板からなる極板群の電槽缶への揷入比率 が同じとなるように正負両極板の長さおよぴ正極板の厚さを調整した。 作製した 電池の負極板の長さは 71 Ommで、 水素吸蔵合金粉末の充填量から算定される 負極板の容量は 1 885 OmAhであった。 このこと以外は、 比較例 2と同様構 成のニッケル水素電池を作製し、 比較例 2と同様に出力密度の測定に供した (出 力密度が劣っていたので充放電サイクル試験には供しなかった。)。 該例を比較 例 1 2とする。 実施例 3に合わせて、 実施例 10〜実施例 12、 比較例 8〜比較例 1 2の試験 結果を表 5に示す。
表 5
Figure imgf000040_0001
質量飽和磁化が 6 e m u / gの水素吸蔵合金粉末を適用した場合、 質量飽和磁 化が 2 emuZgや 4 e m u Z gの水素吸蔵合金粉末を適用した場合と同様に、 充填量が 0. 1 5 g/cm 3以下の範囲においては出力密度が徐々に以下するが、 充填量を 0. 1 5 g/cm 3から現状の 0. 1 8 g/c m 3に増やすと、 出力密 度が大幅に低下している。 また、 充填量が 0. 06 g/c m 3以上の範囲におい ては、 充填量を減らすとサイクル特性が徐々に低下するが、 充填量を 0. 04 g /c m3に減らすとサイクル特性が顕著に低下している。表 5に示した結果から、 質量飽和磁化が 6 emu/ gの水素吸蔵合金粉末を適用し、 その充填量を 0. 0 6 gZcm 3〜0. 1 5 g / c m 3 とすることによって出力密度、 サイクル特性 が共に優れたニッケル水素電池がえられることが分かった。 そのなかでも、 充填 量を 0. 07 g/cm 3以上とするとサイクル寿命が 500サイクルを超えるの で好ましく、 0. 09 g/cm 3以上とするとサイクル寿命が 550サイクルを 超えるのでさらに好ましい。
質量飽和磁化が 8 em uZgの水素吸蔵合金粉末を適用した場合、 サイクル特 性が劣る。 充填量を増やすとサイクル特性が向上するが、 充填量を現状の 0. 1 8 g / c m 3 と大きくした場合でも、 サイクル寿命が 400サイクルを下回って おり、 かつ、 そのときの出力密度が 40 OW/k gを下回る結果となった。
以上の結果から、 水素吸蔵合金電極における質量飽和磁化を 2 emu/g~6 em uZgとし、 かつ水素吸蔵合金の充填量を 0. 0 6 g/cm 2〜0. 1 5 g Zcm 2 とすると、 水素吸蔵合金電極の反応抵抗を小さくすることができ、 その 水素吸蔵合金電極を用いることで、 高出力であり、 かつ、 サイクル特性に優れた 密閉形ニッケル水素電池が得られることがわかった。 そのなかでも、 好ましくは 充填量を 0. 0 7 g/ cm 2以上、 さらに好ましくは 0. 0 9 g/cm 3以上と すると優れたサイクル特性が得られることが分かった。
(水素吸蔵合金粉末の平均粒径と電池特性との関係)
(実施例 1 3 )
前記負極板の作製において、 水素吸蔵合金粉末の平均粒径を 1 0 μηιとし、 こ のこと以外は、 実施例 1と同様構成のニッケル水素電池を作製し、 実施例 1と同 様に充放電サイクル試験、 出力密度の測定に供した。 該例を実施例 1 3とする。
(実施例 1 4 )
前記負極板の作製において、 水素吸蔵合金粉末の平均粒径を 2 8 とし、 こ のこと以外は、 実施例 1と同様構成のニッケル水素電池を作製し、 実施例 1と同 様に充放電サイクル試験、 出力密度の測定に供した。 該例を実施例 1 4とする。
(実施例 1 5 )
前記負極板の作製において、 水素吸蔵合金粉末の平均粒径を 3 5 μπιとし、 こ のこと以外は、 実施例 1と同様構成のニッケル水素電池を作製し、 実施例 1と同 様に充放電サイクル試験、 出力密度の測定に供した。 該例を実施例 1 5とする。
(参考例 1 )
前記負極板の作製において、 水素吸蔵合金粉末の平均粒径を 5 μ riiとし、 この こと以外は、 実施例 1と同様構成の-ッケル水素電池を作製し、 実施例 1と同様 に充放電サイクル試験、 出力密度の測定に供した。 該例を参考例 1とする。 (参考例 2 )
前記負極板の作製において、 水素吸蔵合金粉末の平均粒径を 5 0 / mとし、 こ のこと以外は、 実施例 1と同様構成の二ッケル水素電池を作製し、 実施例 1と同 様に充放電サイクル試験、 出力密度の測定に供した。 該例を参考例 2とする。 実施例 1の試験結果と合わせて、 実施例 1 3〜実施例 1 5、 参考例 1、 参考例 2の試験結果を表 6と図 9に示す。
表 6
Figure imgf000042_0001
表 6、 図 9に示すように水素吸蔵合金の平均粒径が小さいほど高い出力特性を 示すが、 5 mの電池ではサイクル寿命特性が極端に低下してしまった。 また、 平均粒径が 2 8〜3 5 μ ηιを超えると 0 °Cにおける出力密度の落ち込みが大きく なり、 平均粒径が 5 0 μ mの時は出力特性が著しく低下してしまった。 このこと は、 水素吸蔵合金の平均粒径が小さくなるにつれ、 合金の表面積が増加すること により水素脱離反応の場が増加し反応抵抗が低下するため出力が高くなるが、 平 均粒径が小さくなりすぎると水素吸蔵合金の腐食反応が促進されてしまうため、 サイクル寿命が低下したものと考えられる。
また、 必ずしも明らかではないが、 平均粒径が 5 0 μ ιηの時は表面積が小さく なることによる反応抵抗の低下に加えて、 同じ質量飽和磁化の磁性体量を有して いても、 水素吸蔵合金の平均粒径が大きいために、 触媒層が厚くなつてしまう。 そのため反応すべき合金母相と触媒作用のある磁性体との距離が遠くなつてしま い、 効果的に触媒作用が発揮されず反応抵抗の低減効果が小さくなつてしまった ことが考えられる。
0 °Cにおいて 5 0 0 W/ k g以上の出力密度が得られるところから水素吸蔵合 金粉末の平均粒径を 3 5 以下とするのが好ましく、 6 0 O W/ k g以上の出 力密度が得られるところから水素吸蔵合金粉末の平均粒径を 2 8 μ πι以下とする のがさらに好ましい。
以上のことから、 優れた出力特性とサイクル特性を兼ね備えた-ッケル水素電 池とするためには、 水素吸蔵合金粉末の平均粒径を 1 0 M m〜3 5 i mとするの が好ましく、 1 0 ^ 111〜2 8 z mとするのがさらに好ましレ、。
(水素吸蔵電極への E r酸化物粉末、 Y b酸化物粉末の添加効果)
(実施例 1 6 )
前記水素吸蔵電極の単極試験用セルおよび前記実施例 1において円筒形ニッケ ル電池の負極の作製の過程で表面改質処理した水素吸蔵合金粉末 1 0 0重量部に E r O 粉末に替えて平均粒径 5 μ mの Y b 2 O 3粉末 1重量部を添加混合し た。 このこと以外は単極試験用セルを前記同様に作製し、 同様の方法にて反応抵 抗を測定した。 また、 E r 23粉末に替えて平均粒径 5 μ mの Y b 2 O 3粉末を 添加混合したこと以外は円筒形ニッケル水素電池を前記実施例 1と同様に作製 し、 同様の試験に供した。 該例を実施例 1 6とする。
(参考例 3 )
前記水素吸蔵電極の単極試験用セルおよび前記実施例 1において円筒形ニッケ ル電池の負極の作製の過程で表面改質処理した水素吸蔵合金粉末に E r 2 0 3粉 末を添加混合しなかった。 このこと以外は単極試験用セルを前記同様に作製し、 同様の方法にて反応抵抗を測定した。 また、 水素吸蔵合金粉末に E r 2 O 粉末 を添加混合しなかつたこと以外は、 円筒形二ッケル水素電池を前記実施例 1と同 様に作製し、 同様の試験に供した。 該例を参考例 3とする。 前記実施例 1および実施例 1と同じ水素吸蔵合金粉末 Cを適用した水素吸蔵電 極の単極試験結果と合わせて、 実施例 1 6および参考例 3の試験結果を表 7に示 す。 表 7
Figure imgf000044_0001
表 7に示すように、 水素吸蔵合金電極に希土類化合物を添カ卩しないとき、 電池 のサイクル寿命が著しく低い。 このことは、 E rおよび Y bの酸化物を添加する と水素吸蔵合金の腐食が抑制され負極容量の劣化が遅くなった為であると考えら れる。 このように、 前記水素吸蔵合金電極において水素吸蔵合金粉末に E rおよ び Y bの酸化物粉末を添加することで優れたサイクル寿命特性を有する電池が得 られた。
また、 表 7に示すように水素吸蔵合金電極の反応抵抗および電池の出力特性に ついて比較を行うと、 E r O を添加したときは、 無添加に比べて反応抵抗の 増大および出力特性の低下が認められた。 これに対して、 Y b 2〇 ;添加を添加 した場合には大きくはないが、 反応抵抗の増大および出力特性の低下が認められ た。 但し、 E r 2 O 3を添加したときに比べてサイクル特性向上の効果が勝って いた。 このことから、 E rおよび Y bの何れの酸化物、 水酸化物の添加も有効で あるが、 高出力密度を重視する場合には E rを、 出力密度を若干犠牲にしてもサ ィクル寿命を重視するばあいには Y bを添加することが好ましい。
なお、 前記実施例には挙げていないが、 添加する希土類元素の化合物が E rと Y bの両方を含み (E rと Y bの各々の化合物の混合物または E rと Y bを含む 複合化物のも何れでもよい)、 希土類化合物に含まれる希土類元素に占める E r と Y bの和が 9 0重量%以上とすることによつても水素吸蔵合粉末を活物質とす る水素吸蔵電極の出力性能を低下させることなく、 サイクル特性を向上させるこ とができる。 2006/313517
(集電用リ一ドの形状、 下部集電板と電槽内面の溶接点数の影響)
(実施例 1 7 )
前記実施例 1において、 下部集電板の中央にのみ 1個の溶接用の突起を設け電 槽底の内面の溶接点を下部集電板の中央 1箇所のみとした。 それ以外は実施例 1 と同じ構成の電池とした。 該例を実施例 1 7とする。
(参考例 4 ) '
前記実施例 1 7において、 リング状集電リ一ドに替えて図 5に示すリボン状リ —ドを用いた。 該リボン状リードは厚さが 0 . 6 mm、 巾 1 5 m m、 長さ 2 5 m mのニッケル板製とした。 蓋体を電池に組み込む前 (封口前) に該リボン状リ一 ドと封口板の内面、 上部集電板の上面とをそれぞれ 4点の溶接点で接合させた。 集電リードと封口板の溶接点と、 集電リードと上部集電板の溶接点を結ぶ集電リ ードの最短長さは、 封口板と上部集電板の間隔の約 7倍であった。 該例を参考例
4とする。 実施例 1 Ί、 参考例 4を前記実施例 1と同様に出力密度を測定した。 ''実施例 1 の測定結果と合わせて、 実施例 1 7、 参考例 4の測定結果を表 8に示す。
表 8
Figure imgf000045_0001
表 8に示すように、 本発明の実施例 1および実施例 1 7は、 参考例 4に比べて 出力密度が高い。 本発明電池の場合は、 電池を封口後に集電リードと上部集電板 を溶接しているので、 集電リードに撓み代を設ける必要がなく集電リードの電気 抵抗を小さくすることが出来たのに対して、 従来の通り集電リードの一端を予め 封口板の内面に溶接し、 他端を上部集電板に溶接しておき、 その後蓋体を電槽の 開放端に装着する方法で作製した参考例 4の場合は、 集電リードに橈み代を設け なければならず、 集電リードの電気抵抗が大きいために出力密度が低くなったと 考えられる。 また、 実施例 1 7のように下部集電板と電槽内面との溶接点を下部 集電板の中央のみとするよりも実施例 1のように下部集電板の中央に加えて中央 以外の複数の点でも溶接したほうが高出力を得る上で有利である。 本発明は、 本 発明に係る前記水素吸蔵電極と実施例 1や実施例 1 7に示した集電構造を組み合 わせることによって特に優れた出力特性を得るものである。 産業上の利用可能性
以上詳述したように、 本発明は、 水素吸蔵合金粉末を活物質に適用した水素吸 蔵電極を備えるニッケル水素蓄電池であって、 出力特性、 サイクル特性の両方に 優れたニッケル水素蓄電池を提供するものであり、 産業上の利用可能性の高いも のである。

Claims

請求の範囲
1. ニッケル電極を正極とし、 水素吸蔵電極を負極とするニッケル水素電池にお いて、 希土類元素とニッケルを含む非希土類金属元素からなる水素吸蔵合金粉末 を導電性支持体に担持させた水素吸蔵電極であって、 前記水素吸蔵合金粉末の質 量飽和磁化が 2〜6 e muZgであり、 前記水素吸蔵電極の単位面積当たりの水 素吸蔵合金粉末担持量が 0. 06〜0. 1 5 g/c m 2である水素吸蔵電極を備 えたことを特徴とするニッケル水素電池。
2. 前記水素吸蔵合金粉末の平均粒径が 1 0〜 35 μ mであることを特徴とする 請求の範囲第 1項に記載の二ッケル水素電池。
3. 前記水素吸蔵電極が、 エルビウム (E r)、 イッテルビウム (Yb) のうち の少なくとも 1種類の希土類元素の水酸化物を含有することを特徴とする請求の 範囲第 1項に記載のニッケル水素電池。
4. 前記水素吸蔵電極が、 エルビウム (E r)、 イッテルビウム (Yb) のうち の少なくとも 1種類の希土類元素の水酸化物を含有することを特徴とする請求の 範囲第 2項に記載のニッケル水素電池。
5. 捲回式極群を備え、 有底筒状の電槽の開放端を蓋体で封口してなり、 前記蓋 体を構成する封口板の内面と前記極群の上部捲回端面に取り付けた上部集電板の 上面を集電リ一ドを介して接続した密閉形二ッケル水素電池であつて、 前記封口 板の内面と集電リードの溶接点および集電リードと上部集電板の溶接点のうちの 少なくとも一方の溶接点を、 封口後の電池の正極端子と負極端子間に、 外部電源 により電池内を経由して通電することにより溶接したことを特徴とする請求の範 囲第 1項〜第 4項の何れか 1項に記載の二ッケル水素電池。
PCT/JP2006/313517 2005-07-04 2006-06-30 ニッケル水素電池 WO2007004703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800241247A CN101213690B (zh) 2005-07-04 2006-06-30 镍氢电池
US11/988,205 US7867655B2 (en) 2005-07-04 2006-06-30 Nickel metal-hydride battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005195371A JP5119577B2 (ja) 2005-07-04 2005-07-04 ニッケル水素電池
JP2005-195371 2005-07-04

Publications (1)

Publication Number Publication Date
WO2007004703A1 true WO2007004703A1 (ja) 2007-01-11

Family

ID=37604560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313517 WO2007004703A1 (ja) 2005-07-04 2006-06-30 ニッケル水素電池

Country Status (4)

Country Link
US (1) US7867655B2 (ja)
JP (1) JP5119577B2 (ja)
CN (1) CN101213690B (ja)
WO (1) WO2007004703A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239906A1 (en) * 2007-11-09 2010-09-23 Tetsuya Ozaki Nickel-metal hydride battery and method for producing hydrogen storage alloy
WO2020012809A1 (ja) * 2018-07-11 2020-01-16 株式会社豊田自動織機 ニッケル金属水素化物電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164115A (ja) * 2007-12-14 2009-07-23 Panasonic Corp 電極材料の評価方法、電極の製造方法および電極の製造装置
US20120189889A1 (en) * 2011-01-24 2012-07-26 Dukjung Kim Secondary battery
US9905887B2 (en) * 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
CN104798245B (zh) 2012-11-20 2017-06-23 日本电气株式会社 锂离子二次电池
JP6422111B2 (ja) * 2014-06-27 2018-11-14 Fdk株式会社 ニッケル水素二次電池
US20160172676A1 (en) * 2014-12-10 2016-06-16 Basf Corporation Metal Hydride Compositions and Lithium Ion Batteries
KR102499324B1 (ko) * 2015-10-30 2023-02-13 삼성에스디아이 주식회사 이차전지용 권취장치
US10403903B2 (en) 2016-06-10 2019-09-03 Greatbatch Ltd. Low-rate battery design
JP7140662B2 (ja) * 2018-12-06 2022-09-21 トヨタ自動車株式会社 負極活物質の製造方法、負極の製造方法、およびアルカリ蓄電池の製造方法
CN116031546A (zh) * 2022-12-29 2023-04-28 东莞新能源科技有限公司 电池及电池组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097588A (ja) * 1995-06-21 1997-01-10 Yuasa Corp 水素吸蔵電極
JPH11102689A (ja) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池およびその製造方法
JPH11162505A (ja) * 1997-11-28 1999-06-18 Toshiba Corp ニッケル水素電池
JP2004247288A (ja) * 2003-01-20 2004-09-02 Yuasa Corp 密閉型ニッケル水素蓄電池とその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283197A (ja) * 1993-03-30 1994-10-07 Shin Kobe Electric Mach Co Ltd 密閉形ニッケル−水素電池およびその活性化法
JP3547927B2 (ja) * 1996-07-10 2004-07-28 三洋電機株式会社 アルカリ蓄電池およびその製造方法
JP3489960B2 (ja) * 1997-04-01 2004-01-26 松下電器産業株式会社 アルカリ蓄電池
JP3279994B2 (ja) * 1998-03-20 2002-04-30 信越化学工業株式会社 水素吸蔵合金粉末及びアルカリ蓄電池用負極
JP4556315B2 (ja) * 2000-10-06 2010-10-06 株式会社Gsユアサ アルカリ蓄電池
KR100431101B1 (ko) * 2000-12-27 2004-05-12 마쯔시다덴기산교 가부시키가이샤 전극용 합금분말 및 그 제조방법
JP4432285B2 (ja) * 2001-06-29 2010-03-17 株式会社ジーエス・ユアサコーポレーション アルカリ蓄電池用ニッケル電極活物質、アルカリ蓄電池用ニッケル電極およびアルカリ蓄電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097588A (ja) * 1995-06-21 1997-01-10 Yuasa Corp 水素吸蔵電極
JPH11102689A (ja) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池およびその製造方法
JPH11162505A (ja) * 1997-11-28 1999-06-18 Toshiba Corp ニッケル水素電池
JP2004247288A (ja) * 2003-01-20 2004-09-02 Yuasa Corp 密閉型ニッケル水素蓄電池とその製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239906A1 (en) * 2007-11-09 2010-09-23 Tetsuya Ozaki Nickel-metal hydride battery and method for producing hydrogen storage alloy
US9634324B2 (en) * 2007-11-09 2017-04-25 Gs Yuasa International Ltd. Nickel-metal hydride battery and method for producing hydrogen storage alloy
WO2020012809A1 (ja) * 2018-07-11 2020-01-16 株式会社豊田自動織機 ニッケル金属水素化物電池

Also Published As

Publication number Publication date
US20090130551A1 (en) 2009-05-21
US7867655B2 (en) 2011-01-11
CN101213690A (zh) 2008-07-02
CN101213690B (zh) 2011-01-26
JP2007012572A (ja) 2007-01-18
JP5119577B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5119577B2 (ja) ニッケル水素電池
JP5119578B2 (ja) ニッケル水素電池およびその製造方法
JP5257823B2 (ja) 水素吸蔵電極の製造方法及びニッケル水素電池の製造方法
JP2001217000A (ja) ニッケル・水素二次電池
JP4678130B2 (ja) 密閉型ニッケル水素蓄電池とその製造法
JP5959003B2 (ja) ニッケル水素二次電池及びニッケル水素二次電池用の負極
JP5629187B2 (ja) アルカリ蓄電池用正極体およびその製造方法
JP5557385B2 (ja) プロトンを挿入種とする蓄電デバイス
JP6057369B2 (ja) ニッケル水素二次電池
JP2002025604A (ja) アルカリ二次電池
JP5061582B2 (ja) 電池
JPH08264174A (ja) 水素貯蔵合金陰極およびその製造方法
US10950848B2 (en) Positive electrode and alkaline secondary battery including the same
JP5309479B2 (ja) アルカリ蓄電池
JP2005310605A (ja) 水素吸蔵合金電極とその製造方法およびニッケル水素蓄電池
JP4839433B2 (ja) 密閉形ニッケル水素化物二次電池
JP2000299123A (ja) ニッケル水素二次電池
JP2004281195A (ja) 水素吸蔵合金電極及びこれを用いたニッケル水素蓄電池
JP2000188106A (ja) アルカリ二次電池
JP2000188105A (ja) アルカリ二次電池
JP2000200599A (ja) アルカリ二次電池
JP2000195509A (ja) アルカリ二次電池
JP2000277122A (ja) 円筒形電池
JP2000021397A (ja) アルカリ二次電池
JP2004006101A (ja) 水素吸蔵合金電極およびそれを用いたニッケル水素蓄電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024124.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780842

Country of ref document: EP

Kind code of ref document: A1