JP2017167362A - 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 - Google Patents
電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 Download PDFInfo
- Publication number
- JP2017167362A JP2017167362A JP2016052882A JP2016052882A JP2017167362A JP 2017167362 A JP2017167362 A JP 2017167362A JP 2016052882 A JP2016052882 A JP 2016052882A JP 2016052882 A JP2016052882 A JP 2016052882A JP 2017167362 A JP2017167362 A JP 2017167362A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photosensitive member
- electrophotographic photosensitive
- protective layer
- inorganic protective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14704—Cover layers comprising inorganic material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/75—Details relating to xerographic drum, band or plate, e.g. replacing, testing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G21/00—Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
- G03G21/16—Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
- G03G21/18—Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements using a processing cartridge, whereby the process cartridge comprises at least two image processing means in a single unit
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/0436—Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
- G03G5/0503—Inert supplements
- G03G5/0507—Inorganic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/087—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and being incorporated in an organic bonding material
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
【課題】像流れの発生を抑制し、画像ボケの発生を抑制する電子写真感光体の提供。【解決手段】導電性基体1と、導電性基体1上に設けられた有機感光層(例えば電荷発生層2及び電荷輸送層3、又は単層型の有機感光層6)であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、有機感光層上に設けられた無機保護層5であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である無機保護層と、を備えた電子写真感光体である。【選択図】図1
Description
本発明は、電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法に関する。
特許文献1には、導電性基体上に、感光層と表面層とをこの順に積層して構成され、前記表面層を構成する元素のうち、13族元素、酸素及び水素の全元素量に対する各構成比の和が0.95以上であり、かつ、前記酸素及び13族元素の元素組成比(酸素/13族元素)が1.1以上1.5以下である電子写真感光体が記載されている。
特許文献2には、基体と、感光層と、酸素及びガリウムを含有する保護層であって、外周面側に存在する第1の領域、及び、前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体が記載されている。
特許文献3には、導電性基体と、前記導電性基体上に設けられた有機感光層と、前記有機感光層上に設けられた無機保護層であって、前記有機感光層側から、第1層、第2層、及び第3層をこの順で有し、ρ3≦ρ1<ρ2(ρ1:前記第1層の体積抵抗率(Ωcm)、ρ2:前記第2層の体積抵抗率(Ωcm)、ρ3:前記第3層の体積抵抗率(Ωcm))の関係を満たす無機保護層と、を備えた電子写真感光体が記載されている。
特許文献4には、導電性基体と、前記導電性基体上に設けられた有機感光層であって、下記無機保護層と接する面側の領域に少なくとも電荷輸送材料及びシリカ粒子を含む有機感光層と、前記有機感光層上にその表面に接して設けられた無機保護層と、を備えた電子写真感光体が記載されている。
本発明の課題は、無機保護層を備える電子写真感光体において、無機保護層の酸素及び第13族元素の元素組成比(酸素/第13族元素)が1.0未満、若しくは1.5以上である場合、又は無機保護層の体積抵抗率が、5.0×107Ωcm未満、若しくは1.0×1012Ωcm以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生を抑制し、画像ボケの発生を抑制する電子写真感光体を提供することである。
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である無機保護層と、
を備えた電子写真感光体である。
請求項1に係る発明は、
導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である無機保護層と、
を備えた電子写真感光体である。
請求項2に係る発明は、
導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である無機保護層と、
を備えた電子写真感光体である。
導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である無機保護層と、
を備えた電子写真感光体である。
請求項3に係る発明は、
前記第13族元素が、ガリウムである請求項1又は請求項2に記載の電子写真感光体である。
前記第13族元素が、ガリウムである請求項1又は請求項2に記載の電子写真感光体である。
請求項4に係る発明は、
前記有機感光層が、電荷発生層と、電荷輸送材料、結着樹脂、及びシリカ粒子を含む電荷輸送層と、を前記導電性基体上にこの順で有する感光層である請求項1〜請求項3のいずれか1項に記載の電子写真感光体である。
前記有機感光層が、電荷発生層と、電荷輸送材料、結着樹脂、及びシリカ粒子を含む電荷輸送層と、を前記導電性基体上にこの順で有する感光層である請求項1〜請求項3のいずれか1項に記載の電子写真感光体である。
請求項5に係る発明は、
前記シリカ粒子の含有量が、前記有機感光層の前記表面を構成する層の全体に対して30質量%以上70質量%以下である請求項1〜請求項4のいずれか1項に記載の電子写真感光体である。
前記シリカ粒子の含有量が、前記有機感光層の前記表面を構成する層の全体に対して30質量%以上70質量%以下である請求項1〜請求項4のいずれか1項に記載の電子写真感光体である。
請求項6に係る発明は、
請求項1〜請求項5のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に脱着するプロセスカートリッジである。
請求項1〜請求項5のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に脱着するプロセスカートリッジである。
請求項7に係る発明は、
請求項1〜請求項5のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備え、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成装置である。
請求項1〜請求項5のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備え、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成装置である。
請求項8に係る発明は、
請求項1〜請求項5のいずれか1項に記載の電子写真感光体の表面を帯電する帯電工程と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像工程と、
前記トナー像を記録媒体の表面に転写する転写工程と、
を有し、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成方法である。
請求項1〜請求項5のいずれか1項に記載の電子写真感光体の表面を帯電する帯電工程と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像工程と、
前記トナー像を記録媒体の表面に転写する転写工程と、
を有し、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成方法である。
請求項1に係る発明によれば、無機保護層の酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0未満、又は1.5以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項2に係る発明によれば、無機保護層の体積抵抗率が、5.0×107Ωcm未満、又は1.0×1012Ωcm以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項2に係る発明によれば、無機保護層の体積抵抗率が、5.0×107Ωcm未満、又は1.0×1012Ωcm以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項3に係る発明によれば、酸素及びガリウムの元素組成比(酸素/ガリウム)が1.0未満、又は1.5以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項4に係る発明によれば、無機保護層の酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0未満、若しくは1.5以上である場合、又は無機保護層の体積抵抗率が、5.0×107Ωcm未満、若しくは1.0×1012Ωcm以上である場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項5に係る発明によれば、有機感光層の表面を構成する層のシリカ粒子の含有量が、30質量%未満、又は70質量%を超える場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制される電子写真感光体が提供される。
請求項6、7、又は8に係る発明によれば、無機保護層の酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0未満、若しくは1.5以上である電子写真感光体、又は無機保護層の体積抵抗率が、5.0×107Ωcm未満、若しくは1.0×1012Ωcm以上である電子写真感光体を備えた場合に比べて、電子写真感光体が1秒あたり8.0回以上の回転数で使用される場合であっても、像流れの発生が抑制され、画像ボケの発生が抑制されるプロセスカートリッジ、画像形成装置、又は画像形成方法が提供される。
以下、本発明の実施形態について、詳細に説明する。
[電子写真感光体]
第1の実施形態に係る電子写真感光体は、導電性基体と、導電性基体上に設けられた有機感光層と、有機感光層上に設けられた無機保護層と、を備える。
有機感光層は、有機感光層の表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、無機保護層は、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ、前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である。
第1の実施形態に係る電子写真感光体は、導電性基体と、導電性基体上に設けられた有機感光層と、有機感光層上に設けられた無機保護層と、を備える。
有機感光層は、有機感光層の表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、無機保護層は、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ、前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である。
第2の実施形態に係る電子写真感光体は、導電性基体と、導電性基体上に設けられた有機感光層と、有機感光層上に設けられた無機保護層と、を備える。
有機感光層は、有機感光層の表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、無機保護層は、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ、体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である。
有機感光層は、有機感光層の表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、無機保護層は、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ、体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である。
第1の実施形態、及び第2の実施形態(本明細書中において、第1の実施形態、及び第2の実施形態に共通する事項については、「本実施形態」と称する)に係る電子写真感光体は、具体的には、有機感光層が単層型の有機感光層の場合、有機感光層は、電荷発生材料、電荷輸送材料、結着樹脂、及びシリカ粒子を含む。
一方、有機感光層が機能分離型の有機感光層の場合、有機感光層は、電荷発生層と、電荷輸送層と、を導電性基体上にこの順で有する有機感光層であることが好ましく、この電荷輸送層は、電荷輸送材料、結着樹脂、及びシリカ粒子を含む。但し、電荷輸送層が2層以上で構成される場合、表面を構成する層(電荷輸送層の最上層)の電荷輸送層が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成される。
一方、有機感光層が機能分離型の有機感光層の場合、有機感光層は、電荷発生層と、電荷輸送層と、を導電性基体上にこの順で有する有機感光層であることが好ましく、この電荷輸送層は、電荷輸送材料、結着樹脂、及びシリカ粒子を含む。但し、電荷輸送層が2層以上で構成される場合、表面を構成する層(電荷輸送層の最上層)の電荷輸送層が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成される。
ここで、従来、有機感光層上に、無機保護層を形成する技術が知られている。
しかしながら、有機感光層は柔軟性を有し、変形し易い傾向がある一方で、無機保護層は硬質ではあるが靭性に劣る傾向がある。このため、無機保護層の下地層となる有機感光層が変形すると、無機保護層に割れが生じることがある。電子写真感光体は、その表面に接して配される部材(例えば中間転写体)等から機械的な負荷が掛かり易いため、このような現象が生じやすくなると考えられる。
しかしながら、有機感光層は柔軟性を有し、変形し易い傾向がある一方で、無機保護層は硬質ではあるが靭性に劣る傾向がある。このため、無機保護層の下地層となる有機感光層が変形すると、無機保護層に割れが生じることがある。電子写真感光体は、その表面に接して配される部材(例えば中間転写体)等から機械的な負荷が掛かり易いため、このような現象が生じやすくなると考えられる。
そこで、有機感光層の表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成させることにより、シリカ粒子が有機感光層の補強材としての機能を果す。そして、有機感光層が変形し難くなると考えられ、無機保護層の割れが抑制されると考えられる。
しかし、例えば、現像工程において、現像手段からキャリアが飛散し、飛散したキャリアが電子写真感光体に付着した場合、電子写真感光体に付着したままキャリアが転写位置に到達する。そして、転写位置では、キャリアが電子写真感光体と転写手段と間に挟まった状態で、押圧力を受ける。このため、無機保護層は、有機感光層にシリカ粒子を含有している場合でも、打痕等の割れが発生する場合がある。また、電子写真感光体と転写手段との間でキャリアが擦れて、スジ状の傷等の割れが生じる場合がある。
ところで、画像形成装置は、高速化、小型化が要求されており、例えば、画像形成速度(プロセススピード)を低下させることなく、小型化された画像形成装置(以下、「高速・小型化された画像形成装置」とも称する)が求められている。高速・小型化された画像形成装置とするために、例えば、画像形成装置に備える電子写真感光体の直径を、従来よりも小さく設計する場合がある。例えば、従来の画像形成装置における電子写真感光体の回転数は、電子写真感光体の1秒当たり8回未満/秒である。その一方で、高速・小型化された画像形成装置における電子写真感光体は、直径が小さく設計されているため、電子写真感光体の回転数は、例えば1秒当たり8回以上/秒となり、従来よりも大きくなる。
ここで、シリカ粒子を含有する有機感光層上に無機保護層が形成された電子写真感光体(以下、「無機保護層を有する電子写真感光体」とも称する)が、従来の画像形成装置に適用された場合、無機保護層に割れが発生していたとしても、画像ボケの発生は認識されない。
しかしながら、無機保護層を有する電子写真感光体が、高速・小型化された画像形成装置に適用された場合、無機保護層に生じた割れに対応する領域で画像ボケが発生することが分かってきた。この現象は、例えば、無機保護層に生じた割れ(特に面内に発生した割れ)に電荷が蓄積するために生じるものと考えられる。
しかしながら、無機保護層を有する電子写真感光体が、高速・小型化された画像形成装置に適用された場合、無機保護層に生じた割れに対応する領域で画像ボケが発生することが分かってきた。この現象は、例えば、無機保護層に生じた割れ(特に面内に発生した割れ)に電荷が蓄積するために生じるものと考えられる。
電子写真感光体の1秒当たりの回転数が小さい場合は、一連の画像を形成する工程(画像形成サイクル)の繰り返しにおいて、帯電、除電のサイクルが均衡していると考えられる。そのため、無機保護層に割れが生じたとしても、割れが発生した領域に電荷が蓄積されることが抑制される。
一方で、電子写真感光体の1秒当たりの回転数が大きい場合は、画像形成サイクルの繰り返しによって、帯電、除電のサイクルが均衡し難くなるため、無機保護層に生じた割れに電荷が蓄積し易くなる。そして、電荷蓄積によって、潜像の形成に乱れが生じることで、無機保護層に生じた割れに対応する領域で画像ボケが生じるものと考えられる。
一方で、電子写真感光体の1秒当たりの回転数が大きい場合は、画像形成サイクルの繰り返しによって、帯電、除電のサイクルが均衡し難くなるため、無機保護層に生じた割れに電荷が蓄積し易くなる。そして、電荷蓄積によって、潜像の形成に乱れが生じることで、無機保護層に生じた割れに対応する領域で画像ボケが生じるものと考えられる。
他方で、シリカ粒子は、無機粒子の中でも、電荷蓄積サイトになり難い無機粒子ではあるが、シリカ粒子を含有する有機感光層は、シリカ粒子を含有しない有機感光層に比べ、体積抵抗率が高くなり易い。そのため、電子写真感光体の1秒当たりの回転数が大きくなる(例えば、8回以上/秒)と、画像形成サイクルの繰り返しによって、有機感光層に残留電位が生じ易くなる。そして、残留電位が生じることで、画像ボケが発生し易くなる場合がある。
これに対し、第1の実施形態の電子写真感光体は、無機保護層が、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、第13族元素、酸素、及び水素の元素構成比率の和が90原子%以上であり、かつ酸素及び第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である。
また、第2の実施形態の電子写真感光体は、無機保護層の体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である。
また、第2の実施形態の電子写真感光体は、無機保護層の体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である。
第1の実施形態の電子写真感光体において、無機保護層を構成する材料として、元素組成比(酸素/第13族元素)が1.5未満の範囲であると、酸素欠損が生じているため、無機保護層の面内で電子が移動し易くなる。そのため、無機保護層は電荷の蓄積が抑制されることにより、無機保護層に生じた割れにも電荷の蓄積が抑制される。その結果、第1の実施形態の電子写真感光体が、電子写真感光体の回転数として、1秒当たり、例えば8.0回以上で回転する画像形成装置に適用され、電子写真感光体の無機保護層に割れが生じた場合であっても、画像ボケの発生が抑制される。
一方で、電子が移動しすぎると、画像ボケは抑制されるものの、電荷を固定化しにくくなるため、像流れ発生の原因となり易い。しかし、元素組成比(酸素/第13族元素)が1.0以上の範囲であることで、電子が過度に移動することが抑制されているため、像流れの発生も抑制される。
一方で、電子が移動しすぎると、画像ボケは抑制されるものの、電荷を固定化しにくくなるため、像流れ発生の原因となり易い。しかし、元素組成比(酸素/第13族元素)が1.0以上の範囲であることで、電子が過度に移動することが抑制されているため、像流れの発生も抑制される。
また、第2の実施形態の電子写真感光体は、無機保護層の体積抵抗率が、1.0×1012Ωcm未満である。無機保護層の体積抵抗率がこの範囲を満たすことで、無機保護層の面内の抵抗が小さくなるため、無機保護層に生じた割れへの電荷蓄積が抑制される。そのため、第2の実施形態の電子写真感光体が、電子写真感光体の回転数として、1秒当たり、例えば8.0回以上で回転する画像形成装置に適用され、電子写真感光体の無機保護層に割れが生じた場合であっても、画像ボケの発生が抑制される。
一方で、無機保護層の体積抵抗率が小さすぎると、電荷を固定化しにくくなるため、像流れの原因となり易い。しかし、無機保護層の体積抵抗率が5.0×107Ωcm以上の範囲であることで、抵抗が低すぎることがなく、像流れの発生も抑制される。
一方で、無機保護層の体積抵抗率が小さすぎると、電荷を固定化しにくくなるため、像流れの原因となり易い。しかし、無機保護層の体積抵抗率が5.0×107Ωcm以上の範囲であることで、抵抗が低すぎることがなく、像流れの発生も抑制される。
以上から、第1の実施形態、及び第2の実施形態に係る電子写真感光体では、上記構成により、像流れの発生が抑制され、画像ボケの発生が抑制されると推測される。
以下、本実施形態に係る電子写真感光体について図面を参照しつつ詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとし、重複する説明は省略する。
図1は、本実施形態に係る電子写真感光体の一例を示す模式断面図である。図2乃至図4はそれぞれ本実施形態に係る電子写真感光体の他の一例を示す模式断面図である。
図1は、本実施形態に係る電子写真感光体の一例を示す模式断面図である。図2乃至図4はそれぞれ本実施形態に係る電子写真感光体の他の一例を示す模式断面図である。
図1に示す電子写真感光体7Aは、いわゆる機能分離型感光体(又は積層型感光体)であり、導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、及び無機保護層5が順次形成された構造を有するものである。電子写真感光体7Aにおいては、電荷発生層2及び電荷輸送層3により有機感光層が構成されている。
そして、電荷輸送層3が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、電荷輸送層3が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
図2に示す電子写真感光体7Bは、図1に示す電子写真感光体7Aと同様に電荷発生層2と電荷輸送層3とに機能が分離され、さらに電荷輸送層3が機能分離された機能分離型感光体である。また、図3に示す電子写真感光体7Cは、電荷発生材料と電荷輸送材料とを同一の層(単層型有機感光層6(電荷発生/電荷輸送層))に含有するものである。
図2に示す電子写真感光体7Bにおいては、導電性基体4上に下引層1が設けられ、その上に、電荷発生層2、電荷輸送層3B、電荷輸送層3A及び無機保護層5が順次形成された構造を有するものである。電子写真感光体7Bにおいては、電荷輸送層3A、電荷輸送層3B及び電荷発生層2により有機感光層が構成されている。
そして、電荷輸送層3Aが、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。なお、電荷輸送層3Bは、少なくとも電荷輸送材料を含んで構成され、シリカ粒子を含んでいてもよく、含んでいなくてもよい。
そして、電荷輸送層3Aが、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。なお、電荷輸送層3Bは、少なくとも電荷輸送材料を含んで構成され、シリカ粒子を含んでいてもよく、含んでいなくてもよい。
図3に示す電子写真感光体7Cにおいては、導電性基体4上に下引層1が設けられ、その上に単層型有機感光層6、無機保護層5が順次形成された構造を有するものである。
そして、単層型有機感光層6が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、単層型有機感光層6が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
図4に示す電子写真感光体7Dは、図1に示す電子写真感光体7Aと同様に導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、及び無機保護層5が順次形成された構造を有するものである。ただし、電子写真感光体7Dにおいては、無機保護層5が3層で構成されており、有機感光層(電荷輸送層3)側から、第3の層(界面層)5A、第2の層(中間層)5B、及び第1の層(最表層)5Cがこの順で積層されている。
そして、電荷輸送層3が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
そして、電荷輸送層3が、電荷輸送材料、結着樹脂、及びシリカ粒子を含んで構成されている。
なお、図1乃至図4に示す電子写真感光体において、下引層1は設けてもよいし、設けなくてもよい。
以下、代表例として図1に示す電子写真感光体7Aに基づいて、各要素について説明する。なお、符号は省略して説明する場合がある。
(導電性基体)
導電性基体としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基体としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
導電性基体としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基体としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
導電性基体の表面は、電子写真感光体がレーザプリンタに使用される場合、レーザ光を照射する際に生じる干渉縞を抑制する目的で、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化されていることが好ましい。なお、非干渉光を光源に用いる場合、干渉縞防止の粗面化は、特に必要ないが、導電性基体の表面の凹凸による欠陥の発生を抑制するため、より長寿命化に適する。
粗面化の方法としては、例えば、研磨剤を水に懸濁させて導電性基体に吹き付けることによって行う湿式ホーニング、回転する砥石に導電性基体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が挙げられる。
粗面化の方法としては、導電性基体の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基体の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も挙げられる。
陽極酸化による粗面化処理は、金属製(例えばアルミニウム製)の導電性基体を陽極とし電解質溶液中で陽極酸化することにより導電性基体の表面に酸化膜を形成するものである。電解質溶液としては、例えば、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、多孔質陽極酸化膜に対して、酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。
陽極酸化膜の膜厚は、例えば、0.3μm以上15μm以下が好ましい。この膜厚が上記範囲内にあると、注入に対するバリア性が発揮される傾向があり、また繰り返し使用による残留電位の上昇が抑えられる傾向にある。
導電性基体には、酸性処理液による処理又はベーマイト処理を施してもよい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
ベーマイト処理は、例えば90℃以上100℃以下の純水中に5分から60分間浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分から60分間接触させて行う。被膜の膜厚は、0.1μm以上5μm以下が好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。
(下引層)
下引層は、例えば、無機粒子と結着樹脂とを含む層である。
下引層は、例えば、無機粒子と結着樹脂とを含む層である。
無機粒子としては、例えば、粉体抵抗(体積抵抗率)102Ωcm以上1011Ωcm以下の無機粒子が挙げられる。
これらの中でも、上記抵抗値を有する無機粒子としては、例えば、酸化錫粒子、酸化チタン粒子、酸化亜鉛粒子、酸化ジルコニウム粒子等の金属酸化物粒子がよく、特に、酸化亜鉛粒子が好ましい。
これらの中でも、上記抵抗値を有する無機粒子としては、例えば、酸化錫粒子、酸化チタン粒子、酸化亜鉛粒子、酸化ジルコニウム粒子等の金属酸化物粒子がよく、特に、酸化亜鉛粒子が好ましい。
無機粒子のBET法による比表面積は、例えば、10m2/g以上がよい。
無機粒子の体積平均粒径は、例えば、50nm以上2000nm以下(望ましくは60nm以上1000nm以下)がよい。
無機粒子の体積平均粒径は、例えば、50nm以上2000nm以下(望ましくは60nm以上1000nm以下)がよい。
無機粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが好ましく、より望ましくは40質量%以上80質量%以下である。
無機粒子は、表面処理が施されていてもよい。無機粒子は、表面処理の異なるもの、又は、粒子径の異なるものを2種以上混合して用いてもよい。
表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性剤等が挙げられる。特に、シランカップリング剤が好ましく、アミノ基を有するシランカップリング剤がより好ましい。
アミノ基を有するシランカップリング剤としては、例えば、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。
シランカップリング剤は、2種以上混合して使用してもよい。例えば、アミノ基を有するシランカップリング剤と他のシランカップリング剤とを併用してもよい。この他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。
表面処理剤による表面処理方法は、公知の方法であればいかなる方法でもよく、乾式法又は湿式法のいずれでもよい。
表面処理剤の処理量は、例えば、無機粒子に対して0.5質量%以上10質量%以下が好ましい。
ここで、下引層は、無機粒子と共に電子受容性化合物(アクセプター化合物)を含有することが、電気特性の長期安定性、キャリアブロック性が高まる観点からよい。
電子受容性化合物としては、例えば、クロラニル、ブロモアニル等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物;2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)−1,3,4オキサジアゾール等のオキサジアゾール系化合物;キサントン系化合物;チオフェン化合物;3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物;等の電子輸送性物質等が挙げられる。
特に、電子受容性化合物としては、アントラキノン構造を有する化合物が好ましい。アントラキノン構造を有する化合物としては、例えば、ヒドロキシアントラキノン化合物、アミノアントラキノン化合物、アミノヒドロキシアントラキノン化合物等が好ましく、具体的には、例えば、アントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が好ましい。
特に、電子受容性化合物としては、アントラキノン構造を有する化合物が好ましい。アントラキノン構造を有する化合物としては、例えば、ヒドロキシアントラキノン化合物、アミノアントラキノン化合物、アミノヒドロキシアントラキノン化合物等が好ましく、具体的には、例えば、アントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が好ましい。
電子受容性化合物は、下引層中に無機粒子と共に分散して含まれていてもよいし、無機粒子の表面に付着した状態で含まれていてもよい。
電子受容性化合物を無機粒子の表面に付着させる方法としては、例えば、乾式法、又は、湿式法が挙げられる。
乾式法は、例えば、無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させた電子受容性化合物を滴下、乾燥空気や窒素ガスとともに噴霧させて、電子受容性化合物を無機粒子の表面に付着する方法である。電子受容性化合物の滴下又は噴霧するときは、溶剤の沸点以下の温度で行うことがよい。電子受容性化合物を滴下又は噴霧した後、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に制限されない。
湿式法は、例えば、攪拌、超音波、サンドミル、アトライター、ボールミル等により、無機粒子を溶剤中に分散しつつ、電子受容性化合物を添加し、攪拌又は分散した後、溶剤除去して、電子受容性化合物を無機粒子の表面に付着する方法である。溶剤除去方法は、例えば、ろ過又は蒸留により留去される。溶剤除去後には、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に限定されない。湿式法においては、電子受容性化合物を添加する前に無機粒子の含有水分を除去してもよく、その例として溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法が挙げられる。
なお、電子受容性化合物の付着は、表面処理剤による表面処理を無機粒子に施す前又は後に行ってよく、電子受容性化合物の付着と表面処理剤による表面処理と同時に行ってもよい。
電子受容性化合物の含有量は、例えば、無機粒子に対して0.01質量%以上20質量%以下がよく、望ましくは0.01質量%以上10質量%以下である。
下引層に用いる結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂、エポキシ樹脂等の公知の高分子化合物;ジルコニウムキレート化合物;チタニウムキレート化合物;アルミニウムキレート化合物;チタニウムアルコキシド化合物;有機チタニウム化合物;シランカップリング剤等の公知の材料が挙げられる。
下引層に用いる結着樹脂としては、例えば、電荷輸送性基を有する電荷輸送性樹脂、導電性樹脂(例えばポリアニリン等)等も挙げられる。
下引層に用いる結着樹脂としては、例えば、電荷輸送性基を有する電荷輸送性樹脂、導電性樹脂(例えばポリアニリン等)等も挙げられる。
これらの中でも、下引層に用いる結着樹脂としては、上層の塗布溶剤に不溶な樹脂が好適であり、特に、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂;ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル樹脂、アクリル樹脂、ポリビニルアルコール樹脂及びポリビニルアセタール樹脂からなる群から選択される少なくとも1種の樹脂と硬化剤との反応により得られる樹脂が好適である。
これら結着樹脂を2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
これら結着樹脂を2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
下引層には、電気特性向上、環境安定性向上、画質向上のために種々の添加剤を含んでいてもよい。
添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が挙げられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層に添加してもよい。
添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が挙げられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層に添加してもよい。
添加剤としてのシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。
ジルコニウムキレート化合物としては、例えば、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
チタニウムキレート化合物としては、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
アルミニウムキレート化合物としては、例えば、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。
これらの添加剤は、単独で、又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
下引層は、ビッカース硬度が35以上であることがよい。
下引層の表面粗さ(十点平均粗さ)は、モアレ像抑制のために、使用される露光用レーザ波長λの1/(4n)(nは上層の屈折率)から1/2までに調整されていることがよい。
表面粗さ調整のために下引層中に樹脂粒子等を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が挙げられる。また、表面粗さ調整のために下引層の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が挙げられる。
下引層の表面粗さ(十点平均粗さ)は、モアレ像抑制のために、使用される露光用レーザ波長λの1/(4n)(nは上層の屈折率)から1/2までに調整されていることがよい。
表面粗さ調整のために下引層中に樹脂粒子等を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が挙げられる。また、表面粗さ調整のために下引層の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が挙げられる。
下引層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた下引層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。
下引層形成用塗布液を調製するための溶剤としては、公知の有機溶剤、例えば、アルコール系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水素溶剤、ケトン系溶剤、ケトンアルコール系溶剤、エーテル系溶剤、エステル系溶剤等が挙げられる。
これらの溶剤として具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等の通常の有機溶剤が挙げられる。
これらの溶剤として具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等の通常の有機溶剤が挙げられる。
下引層形成用塗布液を調製するときの無機粒子の分散方法としては、例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等の公知の方法が挙げられる。
下引層形成用塗布液を導電性基体上に塗布する方法としては、例えば、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
下引層の膜厚は、例えば、望ましくは15μm以上、より望ましくは20μm以上50μm以下の範囲内に設定される。
(中間層)
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
これらの中でも、中間層は、ジルコニウム原子又はケイ素原子を含有する有機金属化合物を含む層であることが好ましい。
中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
中間層の膜厚は、例えば、望ましくは0.1μm以上3μm以下の範囲に設定される。なお、中間層を下引層として使用してもよい。
(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料;ジブロモアントアントロン等の縮環芳香族顔料;ペリレン顔料;ピロロピロール顔料;フタロシアニン顔料;酸化亜鉛;三方晶系セレン等が挙げられる。
これらの中でも、近赤外域のレーザ露光に対応させるためには、電荷発生材料としては、金属フタロシアニン顔料、又は無金属フタロシアニン顔料を用いることが好ましい。具体的には、例えば、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン;特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン;特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン;特開平4−189873号公報等に開示されたチタニルフタロシアニンがより好ましい。
一方、近紫外域のレーザ露光に対応させるためには、電荷発生材料としては、ジブロモアントアントロン等の縮環芳香族顔料;チオインジゴ系顔料;ポルフィラジン化合物;酸化亜鉛;三方晶系セレン;特開2004−78147号公報、特開2005−181992号公報に開示されたビスアゾ顔料等が好ましい。
450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレー等の非干渉性光源を用いる場合にも、上記電荷発生材料を用いてもよいが、解像度の観点より、感光層を20μm以下の薄膜で用いるときには、感光層中の電界強度が高くなり、基体からの電荷注入による帯電低下、いわゆる黒点と呼ばれる画像欠陥を生じやすくなる。これは、三方晶系セレン、フタロシアニン顔料等のp−型半導体で暗電流を生じやすい電荷発生材料を用いたときに顕著となる。
これに対し、電荷発生材料として、縮環芳香族顔料、ペリレン顔料、アゾ顔料等のn−型半導体を用いた場合、暗電流を生じ難く、薄膜にしても黒点と呼ばれる画像欠陥を抑制し得る。n−型の電荷発生材料としては、例えば、特開2012−155282号公報の段落[0288]〜[0291]に記載された化合物(CG−1)〜(CG−27)が挙げられるがこれに限られるものではない。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
電荷発生層に用いる結着樹脂としては、広範な絶縁性樹脂から選択され、また、結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
なお、電荷発生材料と結着樹脂の配合比は、質量比で10:1から1:10までの範囲内であることが好ましい。
電荷発生層には、その他、周知の添加剤が含まれていてもよい。
電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。電荷発生層の蒸着による形成は、特に、電荷発生材料として縮環芳香族顔料、ペリレン顔料を利用する場合に好適である。
電荷発生層形成用塗布液を調製するための溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等が挙げられる。これら溶剤は、1種を単独で又は2種以上を混合して用いる。
電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式等が挙げられる。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、更に望ましくは0.15μm以下にすることが有効である。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、更に望ましくは0.15μm以下にすることが有効である。
電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えばブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
電荷発生層の膜厚は、例えば、望ましくは0.1μm以上5.0μm以下、より望ましくは0.2μm以上2.0μm以下の範囲内に設定される。
(電荷輸送層)
−電荷輸送層の組成−
電荷輸送層は、電荷輸送材料と、結着樹脂と、シリカ粒子とを含んで構成される。
−電荷輸送層の組成−
電荷輸送層は、電荷輸送材料と、結着樹脂と、シリカ粒子とを含んで構成される。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等の電子輸送性化合物が挙げられる。電荷輸送材料としては、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物も挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上で用いられるが、これらに限定されるものではない。
電荷輸送材料としては、電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が好ましい。
構造式(a−1)中、ArT1、ArT2、及びArT3は、各々独立に置換若しくは無置換のアリール基、−C6H4−C(RT4)=C(RT5)(RT6)、又は−C6H4−CH=CH−CH=C(RT7)(RT8)を示す。RT4、RT5、RT6、RT7、及びRT8は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
構造式(a−2)中、RT91及びRT92は各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、又は炭素数1以上5以下のアルコキシ基を示す。RT101、RT102、RT111及びRT112は各々独立に、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは無置換のアリール基、−C(RT12)=C(RT13)(RT14)、又は−CH=CH−CH=C(RT15)(RT16)を示し、RT12、RT13、RT14、RT15及びRT16は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を表す。Tm1、Tm2、Tn1及びTn2は各々独立に0以上2以下の整数を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
ここで、構造式(a−1)で示されるトリアリールアミン誘導体、及び前記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C6H4−CH=CH−CH=C(RT7)(RT8)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(RT15)(RT16)」を有するベンジジン誘導体が、電荷移動度の観点で好ましい。
高分子電荷輸送材料としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系の高分子電荷輸送材料は特に好ましい。なお、高分子電荷輸送材料は、単独で使用してよいが、結着樹脂と併用してもよい。
本実施形態において、シリカ粒子の含有量は、無機保護層の割れ発生を抑制する点から、電荷輸送層全体に対して30質量%以上であることがよい。同様の点から40質量%以上であることがよく、50質量%以上であることが望ましい。また、上限値は特に限定されないが、電荷輸送層の特性を確保する等の点から、70質量%以下がよく、65質量%以下であることが望ましく、60質量%以下であることがより望ましい。
シリカ粒子としては、例えば、乾式シリカ粒子、湿式シリカ粒子が挙げられる。
乾式シリカ粒子としては、シラン化合物を燃焼させて得られる燃焼法シリカ(ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカが挙げられる。
湿式シリカ粒子としては、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ粒子(アルカリ条件で合成・凝集した沈降法シリカ、酸性条件で合成・凝集したゲル法シリカ粒子)、酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ粒子(シリカゾル粒子)、有機シラン化合物(例えばアルコキシシラン)の加水分解によって得られるゾルゲル法シリカ粒子が挙げられる。
これらの中でも、シリカ粒子としては、残留電位の発生、その他電気特性の悪化による画像欠陥の抑制(細線再現性の悪化の抑制)の観点から、表面のシラノール基が少なく、低い空隙構造を持つ燃焼法シリカ粒子が望ましい。
乾式シリカ粒子としては、シラン化合物を燃焼させて得られる燃焼法シリカ(ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカが挙げられる。
湿式シリカ粒子としては、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ粒子(アルカリ条件で合成・凝集した沈降法シリカ、酸性条件で合成・凝集したゲル法シリカ粒子)、酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ粒子(シリカゾル粒子)、有機シラン化合物(例えばアルコキシシラン)の加水分解によって得られるゾルゲル法シリカ粒子が挙げられる。
これらの中でも、シリカ粒子としては、残留電位の発生、その他電気特性の悪化による画像欠陥の抑制(細線再現性の悪化の抑制)の観点から、表面のシラノール基が少なく、低い空隙構造を持つ燃焼法シリカ粒子が望ましい。
シリカ粒子の体積平均粒径は、例えば、20nm以上200nm以下であることがよく、望ましくは40nm以上150nm以下、より望ましくは50nm以上120nm以下、さらに望ましくは、50nm以上110nm以下である。
体積平均粒径が上記範囲であるシリカ粒子と、粘度平均分子量が50000未満の結着樹脂とを組み合わせて用いると、電荷輸送層の表面粗さがより低下し易くなり、像流れの発生がより抑制し易くなる。
体積平均粒径が上記範囲であるシリカ粒子と、粘度平均分子量が50000未満の結着樹脂とを組み合わせて用いると、電荷輸送層の表面粗さがより低下し易くなり、像流れの発生がより抑制し易くなる。
シリカ粒子の体積平均粒径は、層中からシリカ粒子を分離し、このシリカ粒子の一次粒子100個をSEM(Scanning Electron Microscope)装置により40000倍の倍率で観察し、一次粒子の画像解析によって粒子ごとの最長径、最短径を測定し、この中間値から球相当径を測定する。得られた球相当径の累積頻度における50%径(D50v)を求め、これをシリカ粒子の体積平均粒径として測定する。
シリカ粒子は、その表面が疎水化処理剤で表面処理されていることがよい。これにより、シリカ粒子の表面のシラノール基が低減し、残留電位の発生が抑制され易くなる。
疎水化処理剤としては、クロロシラン、アルコキシシラン、シラザン等の周知のシラン化合物が挙げられる。
これらの中でも、疎水化処理剤としては、残留電位の発生を抑制し易くする観点から、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物が望ましい。つまり、シリカ粒子の表面には、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を有することがよい。
トリメチルシリル基を持つシラン化合物としては、例えば、トリメチルクロロシラン、トリメチルメトキシシラン、1,1,1,3,3,3−ヘキサメチルジシラザン等が挙げられる。
デシルシリル基を持つシラン化合物としては、例えば、デシルトリクロロシラン、デシルジメチルクロロシラン、デシルトリメトキシシラン等が挙げられる。
フェニル基を持つシラン化合物としては、トリフェニルメトキシシラン、トリフェニルクロロシラン等が挙げられる。
疎水化処理剤としては、クロロシラン、アルコキシシラン、シラザン等の周知のシラン化合物が挙げられる。
これらの中でも、疎水化処理剤としては、残留電位の発生を抑制し易くする観点から、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物が望ましい。つまり、シリカ粒子の表面には、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を有することがよい。
トリメチルシリル基を持つシラン化合物としては、例えば、トリメチルクロロシラン、トリメチルメトキシシラン、1,1,1,3,3,3−ヘキサメチルジシラザン等が挙げられる。
デシルシリル基を持つシラン化合物としては、例えば、デシルトリクロロシラン、デシルジメチルクロロシラン、デシルトリメトキシシラン等が挙げられる。
フェニル基を持つシラン化合物としては、トリフェニルメトキシシラン、トリフェニルクロロシラン等が挙げられる。
疎水化処理されたシリカ粒子の縮合率(シリカ粒子中のSiO4−の結合におけるSi−O−Siの率:以下「疎水化処理剤の縮合率」とも称する)は、例えば、シリカ粒子の表面のシラノール基に対して90%以上がよく、望ましくは91%以上、より望ましくは95%以上である。
疎水化処理剤の縮合率を上記範囲にすると、シリカ粒子のシラノール基がより低減し、残留電位の発生が抑制され易くなる。
疎水化処理剤の縮合率を上記範囲にすると、シリカ粒子のシラノール基がより低減し、残留電位の発生が抑制され易くなる。
疎水化処理剤の縮合率は、NMRで検出した縮合部のケイ素の全結合可能サイトに対して、縮合したケイ素の割合を示しており、次のようにして測定する。
まず、層中からシリカ粒子を分離する。分離したシリカ粒子に対して、Bruker製AVANCEIII 400でSi CP/MAS NMR分析を行い、SiOの置換数に応じたピーク面積を求め、それぞれ、2置換(Si(OH)2(0−Si)2−)、3置換(Si(OH)(0−Si)3−)、4置換(Si(0−Si)4−)の値をQ2,Q3,Q4とし、疎水化処理剤の縮合率は式:(Q2×2+Q3×3+Q4×4)/4×(Q2+Q3+Q4)により算出する。
まず、層中からシリカ粒子を分離する。分離したシリカ粒子に対して、Bruker製AVANCEIII 400でSi CP/MAS NMR分析を行い、SiOの置換数に応じたピーク面積を求め、それぞれ、2置換(Si(OH)2(0−Si)2−)、3置換(Si(OH)(0−Si)3−)、4置換(Si(0−Si)4−)の値をQ2,Q3,Q4とし、疎水化処理剤の縮合率は式:(Q2×2+Q3×3+Q4×4)/4×(Q2+Q3+Q4)により算出する。
シリカ粒子の体積抵抗率は、例えば、1011Ωcm以上がよく、望ましくは1012Ωcm以上、より望ましくは1013Ωcm以上である。
シリカ粒子の体積抵抗率を上記範囲にすると、電気特性の低下が抑制される。
シリカ粒子の体積抵抗率を上記範囲にすると、電気特性の低下が抑制される。
シリカ粒子の体積抵抗率は、次のようにして測定する。なお、測定環境は、温度20℃、湿度50%RHとする。
まず、層中からシリカ粒子を分離する。そして、20cm2の電極板を配した円形の治具の表面に、測定対象となる分離したシリカ粒子を1mm以上3mm以下程度の厚さになるように載せ、シリカ粒子層を形成する。この上に前記同様の20cm2の電極板を載せシリカ粒子層を挟み込む。シリカ粒子間の空隙をなくすため、シリカ粒子層上に載せた電極板の上に4kgの荷重をかけてからシリカ粒子層の厚み(cm)を測定する。シリカ粒子層上下の両電極には、エレクトロメーター及び高圧電源発生装置に接続されている。両電極に電界が予め定められた値となるように高電圧を印加し、このとき流れた電流値(A)を読み取ることにより、シリカ粒子の体積抵抗率(Ωcm)を計算する。シリカ粒子の体積抵抗率(Ωcm)の計算式は、下式に示す通りである。
なお、式中、ρはシリカ粒子の体積抵抗率(Ωcm)、Eは印加電圧(V)、Iは電流値(A)、I0は印加電圧0Vにおける電流値(A)、Lはシリカ粒子層の厚み(cm)をそれぞれ表す。本評価では印加電圧が1000Vの時の体積抵抗率を用いた。
・式:ρ=E×20/(I−I0)/L
まず、層中からシリカ粒子を分離する。そして、20cm2の電極板を配した円形の治具の表面に、測定対象となる分離したシリカ粒子を1mm以上3mm以下程度の厚さになるように載せ、シリカ粒子層を形成する。この上に前記同様の20cm2の電極板を載せシリカ粒子層を挟み込む。シリカ粒子間の空隙をなくすため、シリカ粒子層上に載せた電極板の上に4kgの荷重をかけてからシリカ粒子層の厚み(cm)を測定する。シリカ粒子層上下の両電極には、エレクトロメーター及び高圧電源発生装置に接続されている。両電極に電界が予め定められた値となるように高電圧を印加し、このとき流れた電流値(A)を読み取ることにより、シリカ粒子の体積抵抗率(Ωcm)を計算する。シリカ粒子の体積抵抗率(Ωcm)の計算式は、下式に示す通りである。
なお、式中、ρはシリカ粒子の体積抵抗率(Ωcm)、Eは印加電圧(V)、Iは電流値(A)、I0は印加電圧0Vにおける電流値(A)、Lはシリカ粒子層の厚み(cm)をそれぞれ表す。本評価では印加電圧が1000Vの時の体積抵抗率を用いた。
・式:ρ=E×20/(I−I0)/L
結着樹脂としては、例えば、具体的には、ポリカーボネート樹脂(ビスフェノールA、ビスフェノールZ、ビスフェノールC、ビスフェノールTP等の単独重合型、又はその共重合型)、ポリアリレート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン共重合体、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アクリル共重合体、アチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリビニルブチラール樹脂、ポリフェニレンエーテル樹脂などが挙げられる。これらの結着樹脂は1種を単独で又は2種以上で用いる。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
上記の結着樹脂の中でも、電荷輸送層の表面粗さをより低下させ易くし、像流れの発生をより抑制する点から、ポリカーボネート樹脂(ビスフェノールA、ビスフェノールZ、ビスフェノールC、ビスフェノールTP等の単独重合型、又はその共重合型)が好ましい。ポリカーボネート樹脂は、1種を単独で使用してもよく、2種以上併用してもよい。また、同様の点で、ポリカーボネート樹脂の中でも、ビスフェノールZの単独重合型ポリカーボネート樹脂を含むことがより好ましい。
−電荷輸送層の特性−
電荷輸送層における無機保護層側の表面の表面粗さRa(算術平均表面粗さRa)は、例えば、0.06μm以下がよく、望ましくは0.03μm以下、より望ましくは0.02μm以下である。
この表面粗さRaを上記範囲とすると、無機保護層の平滑性が上がり、クリーニング性が向上する。
なお、表面粗さRaを上記範囲とするには、例えば、層の厚みを厚くする等の方法が挙げられる
電荷輸送層における無機保護層側の表面の表面粗さRa(算術平均表面粗さRa)は、例えば、0.06μm以下がよく、望ましくは0.03μm以下、より望ましくは0.02μm以下である。
この表面粗さRaを上記範囲とすると、無機保護層の平滑性が上がり、クリーニング性が向上する。
なお、表面粗さRaを上記範囲とするには、例えば、層の厚みを厚くする等の方法が挙げられる
この表面粗さRaは、次のように測定する。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、触針式表面粗さ測定機(サーフコム1400A:東京精密社製等)を使用して測定する。その測定条件としては、JIS B0601−1994に準拠し、評価長さLn=4mm、基準長さL=0.8mm、カットオフ値=0.8mmとする。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、触針式表面粗さ測定機(サーフコム1400A:東京精密社製等)を使用して測定する。その測定条件としては、JIS B0601−1994に準拠し、評価長さLn=4mm、基準長さL=0.8mm、カットオフ値=0.8mmとする。
電荷輸送層の弾性率は、例えば、5GPa以上が好ましく、6GPa以上がより好ましく、6.5GPa以上が更に好ましい。
電荷輸送層の弾性率を上記範囲とすると、無機保護層における凹部の発生、無機保護層の割れが抑制され易くなる。
なお、電荷輸送層の弾性率を上記範囲とするには、例えば、シリカ粒子の粒径及び含有量を調整する方法、電荷輸送材料の種類及び含有量を調整する方法が挙げられる。
電荷輸送層の弾性率を上記範囲とすると、無機保護層における凹部の発生、無機保護層の割れが抑制され易くなる。
なお、電荷輸送層の弾性率を上記範囲とするには、例えば、シリカ粒子の粒径及び含有量を調整する方法、電荷輸送材料の種類及び含有量を調整する方法が挙げられる。
電荷輸送層の弾性率は、次のように測定する。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いて測定する。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いて測定する。
電荷輸送層の膜厚は、例えば、10μm以上40μm以下がよく、望ましくは10μm以上35μm以下、より望ましくは15μm以上30μm以下である。
電荷輸送層の膜厚を上記範囲にすると、無機保護層の割れ、及び残留電位の発生が抑制され易くなる。
電荷輸送層の膜厚を上記範囲にすると、無機保護層の割れ、及び残留電位の発生が抑制され易くなる。
−電荷輸送層の形成−
電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
電荷輸送層形成用塗布液を電荷発生層上に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。
なお、電荷輸送層形成用塗布液中に粒子(例えばシリカ粒子やフッ素樹脂粒子)を分散させる場合、その分散方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
(無機保護層)
−無機保護層の組成−
本実施形態の電子写真感光体における無機保護層は、次に示す材料で構成されている。
すなわち、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、第13族元素、酸素、及び水素の元素構成比率の和が90原子%以上である。
特に、第1の実施形態の電子写真感光体における無機保護層を構成する材料は、酸素及び第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である。この元素組成比は、1.03以上1.47以下が望ましく、1.05以上1.45以下がより望ましく、1.10以上1.40以下がさらに望ましい。無機保護層を構成する材料の元素組成比(酸素/第13族元素)が、上記範囲であると、像流れの発生が抑制され、画像ボケの発生が抑制される。同様の点で、第13族元素はガリウムであることが望ましい。
−無機保護層の組成−
本実施形態の電子写真感光体における無機保護層は、次に示す材料で構成されている。
すなわち、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、第13族元素、酸素、及び水素の元素構成比率の和が90原子%以上である。
特に、第1の実施形態の電子写真感光体における無機保護層を構成する材料は、酸素及び第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である。この元素組成比は、1.03以上1.47以下が望ましく、1.05以上1.45以下がより望ましく、1.10以上1.40以下がさらに望ましい。無機保護層を構成する材料の元素組成比(酸素/第13族元素)が、上記範囲であると、像流れの発生が抑制され、画像ボケの発生が抑制される。同様の点で、第13族元素はガリウムであることが望ましい。
なお、シリカ粒子が含有されていない有機感光層に接して、元素組成比が小さい(例えば、1.2以下)無機保護層を設けた電子写真感光体の場合、元素組成比が小さいために、無機保護層中の面内で電子が流れやすくなることにより、像流れが発生することがある。これに対し、本実施形態の電子写真感光体では、有機感光層にシリカ粒子を含有することで、有機感光層の体積抵抗率が上昇するため、元素組成比が小さい場合でも、像流れの発生が抑制される。
また、元素組成比が小さくなると、無機保護層の弾性率が低下する傾向がある。そのため、シリカ粒子が含有されていない有機感光層に接して無機保護層を設ける場合、元素組成比が大きくなるように(例えば、1.2超)無機保護層を形成していた。これに対し、有機感光層にシリカ粒子を含有させることで、有機感光層の弾性率が増加するため、元素組成比が小さい無機保護層を形成することが可能になる。
また、元素組成比が小さくなると、無機保護層の弾性率が低下する傾向がある。そのため、シリカ粒子が含有されていない有機感光層に接して無機保護層を設ける場合、元素組成比が大きくなるように(例えば、1.2超)無機保護層を形成していた。これに対し、有機感光層にシリカ粒子を含有させることで、有機感光層の弾性率が増加するため、元素組成比が小さい無機保護層を形成することが可能になる。
ここで、元素組成比(酸素/第13族元素(特にガリウム))が上記範囲であると、体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満の範囲を満たし易くなる。この点で、第2の実施形態の電子写真感光体における無機保護層を構成する材料は、第1の実施形態の電子写真感光体における無機保護層を構成する材料と同様の材料であることがよい。
また、無機表面層を構成する全元素に対する、第13族元素(特にガリウム)、酸素、及び水素の元素構成比率の和は、90原子%以上であることで、例えばN,P,Asなどの15族元素などが混入した場合、これらが第13族元素(特にガリウム)と結合する影響などが抑制され、無機表面層の硬度や電気特性を向上させ得る酸素及び第13族元素(特にガリウム)組成比(酸素/第13族元素(特にガリウム))の適正範囲を見出しやすくなる。上記元素構成比率の和は、上記の観点で、95原子%以上が望ましく、96原子%以上がより望ましく、97原子%以上がさらに望ましい。
無機保護層には、上記無機材料の他、導電型の制御のために、例えば、n型の場合、C、Si、Ge、Snから選ばれる1つ以上の元素を含んでいてもよい。また、例えば、p型の場合、N、Be、Mg、Ca、Srから選ばれる1つ以上の元素を含んでいてもよい。
ここで、無機保護層が、ガリウムと酸素と必要に応じて水素とを含んで構成された場合、機械的強度、透光性、柔軟性に優れ、その導電制御性に優れるという観点から、好適な元素構成比率は以下の通りである。
ガリウムの元素構成比率は、例えば、無機保護層の全構成元素に対して、15原子%以上50原子%以下であることがよく、望ましくは20原子%以上40原子%以下、より望ましくは20原子%以上30原子%以下である。
酸素の元素構成比率は、例えば、無機保護層の全構成元素に対して、30原子%以上70原子%以下であることがよく、望ましくは40原子%以上60原子%以下、より望ましくは45原子%以上55原子%以下である。
水素の元素構成比率は、例えば、無機保護層の全構成元素に対して、10原子%以上40原子%以下であることがよく、望ましくは15原子%以上35原子%以下、より望ましくは20原子%以上30原子%以下である。
ガリウムの元素構成比率は、例えば、無機保護層の全構成元素に対して、15原子%以上50原子%以下であることがよく、望ましくは20原子%以上40原子%以下、より望ましくは20原子%以上30原子%以下である。
酸素の元素構成比率は、例えば、無機保護層の全構成元素に対して、30原子%以上70原子%以下であることがよく、望ましくは40原子%以上60原子%以下、より望ましくは45原子%以上55原子%以下である。
水素の元素構成比率は、例えば、無機保護層の全構成元素に対して、10原子%以上40原子%以下であることがよく、望ましくは15原子%以上35原子%以下、より望ましくは20原子%以上30原子%以下である。
ここで、無機保護層における各元素の元素構成比率、原子数比等は、厚み方向の分布も含めてラザフォードバックスキャタリング(以下、「RBS」と称する)により求められる
なお、RBSでは、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラム等を用いる。
なお、RBSの測定条件は、He++イオンビームエネルギーは2.275eV、検出角度160°、入射ビームに対してGrazing Angleは約109°とする。
なお、RBSでは、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラム等を用いる。
なお、RBSの測定条件は、He++イオンビームエネルギーは2.275eV、検出角度160°、入射ビームに対してGrazing Angleは約109°とする。
RBS測定は、具体的には以下のように行う
まず、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。組成比及び膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度が向上する。
ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度の3つの要素のみにより決まる。 測定された組成から密度を計算によって仮定して、これを用いて厚みを算出する。密度の誤差は20%以内である。
まず、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。組成比及び膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度が向上する。
ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度の3つの要素のみにより決まる。 測定された組成から密度を計算によって仮定して、これを用いて厚みを算出する。密度の誤差は20%以内である。
なお、水素の元素構成比率は、ハイドロジェンフォワードスキャタリング(以下、「HFS」と称する)により求められる。
HFS測定では、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400を用い、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラムを用いる。そして、HFSの測定条件は、以下の通りである。
・He++イオンビームエネルギー:2.275eV
・検出角度:160°入射ビームに対してGrazing Angle30°
HFS測定では、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400を用い、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラムを用いる。そして、HFSの測定条件は、以下の通りである。
・He++イオンビームエネルギー:2.275eV
・検出角度:160°入射ビームに対してGrazing Angle30°
HFS測定は、He++イオンビームに対して検出器が30°に、試料が法線から75°になるようにセットすることにより、試料の前方に散乱する水素のシグナルを拾う。この時検出器をアルミ箔で覆い、水素とともに散乱するHe原子を取り除くことがよい。定量は参照用試料と被測定試料との水素のカウントを阻止能で規格化した後に比較することによって行う。参照用試料としてSi中にHをイオン注入した試料と白雲母を使用する。
白雲母は水素濃度が6.5原子%であることが知られている。
最表面に吸着しているHは、例えば、清浄なSi表面に吸着しているH量を差し引くことによって補正を行う。
白雲母は水素濃度が6.5原子%であることが知られている。
最表面に吸着しているHは、例えば、清浄なSi表面に吸着しているH量を差し引くことによって補正を行う。
−無機保護層の特性−
前述のように、第2の実施形態の電子写真感光体における無機保護層の体積抵抗率は、5.0×107Ωcm以上1.0×1012Ωcm未満である。無機保護層の体積抵抗率は、像流れの発生をより抑制し易くし、画像ボケの発生をより抑制し易くする点で、8.0×107Ωcm以上7.0×1011Ωcm以下が望ましく、1.0×108Ωcm以上5.0×1011Ωcm以下がより望ましく、5.0×108Ωcm以上2.0×1011Ωcm以下がさらに望ましい。
また、第1の実施形態の電子写真感光体における無機保護層の体積抵抗率は、第2の実施形態の電子写真感光体における無機保護層の体積抵抗率の範囲を満たすことが望ましい。
前述のように、第2の実施形態の電子写真感光体における無機保護層の体積抵抗率は、5.0×107Ωcm以上1.0×1012Ωcm未満である。無機保護層の体積抵抗率は、像流れの発生をより抑制し易くし、画像ボケの発生をより抑制し易くする点で、8.0×107Ωcm以上7.0×1011Ωcm以下が望ましく、1.0×108Ωcm以上5.0×1011Ωcm以下がより望ましく、5.0×108Ωcm以上2.0×1011Ωcm以下がさらに望ましい。
また、第1の実施形態の電子写真感光体における無機保護層の体積抵抗率は、第2の実施形態の電子写真感光体における無機保護層の体積抵抗率の範囲を満たすことが望ましい。
この体積抵抗率は、nF社製LCRメーターZM2371を用いて、周波数1kHz、電圧1Vの条件にて測定した抵抗値から、電極面積、試料厚みに基づき算出して求められる。
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件でアルミ基体上に成膜し、その成膜物上に真空蒸着により金電極を形成し得られた試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングして、これを一対の電極で挟み込んだ試料であってもよい。
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件でアルミ基体上に成膜し、その成膜物上に真空蒸着により金電極を形成し得られた試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングして、これを一対の電極で挟み込んだ試料であってもよい。
無機保護層は、微結晶膜、多結晶膜、非晶質膜などの非単結晶膜であることが望ましい。これらの中でも、非晶質は表面の平滑性で特に望ましいが、微結晶膜は硬度の点でより望ましい。
無機保護層の成長断面は、柱状構造をとっていてもよいが、滑り性の観点からは平坦性の高い構造が望ましく、非晶質が望ましい。
なお、結晶性、非晶質性は、RHEED(反射高速電子線回折)測定により得られた回折像の点や線の有無により判別される。
無機保護層の成長断面は、柱状構造をとっていてもよいが、滑り性の観点からは平坦性の高い構造が望ましく、非晶質が望ましい。
なお、結晶性、非晶質性は、RHEED(反射高速電子線回折)測定により得られた回折像の点や線の有無により判別される。
無機保護層の弾性率は30GPa以上80GPa以下であることがよく、望ましくは40GPa以上65GPa以下である。
この弾性率を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
この弾性率は、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いる。下記は測定条件である。
・測定環境:23℃、55%RH
・使用圧子:ダイヤモンド製正三角錐圧子(Berkovic圧子)三角錐圧子
・試験モード:CSMモード
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件で基体上に成膜した試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングした試料であってもよい。
この弾性率を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
この弾性率は、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いる。下記は測定条件である。
・測定環境:23℃、55%RH
・使用圧子:ダイヤモンド製正三角錐圧子(Berkovic圧子)三角錐圧子
・試験モード:CSMモード
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件で基体上に成膜した試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングした試料であってもよい。
無機保護層の膜厚は、例えば、0.2μm以上10.0μm以下であることがよく、望ましくは0.4μm以上5.0μm以下である。
この膜厚を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
この膜厚を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
−無機保護層の形成−
保護層の形成には、例えば、プラズマCVD(Chemical Vapor Deposition)法、有機金属気相成長法、分子線エキタピシー法、蒸着、スパッタリング等の公知の気相成膜法が利用される。
保護層の形成には、例えば、プラズマCVD(Chemical Vapor Deposition)法、有機金属気相成長法、分子線エキタピシー法、蒸着、スパッタリング等の公知の気相成膜法が利用される。
以下、無機保護層の形成について、成膜装置の一例を図面に示しつつ具体例を挙げて説明する。なお、以下の説明は、ガリウム、酸素、及び水素を含んで構成された無機保護層の形成方法について示すが、これに限られず、目的とする無機保護層の組成に応じて、周知の形成方法を適用すればよい。
図5は、本実施形態に係る電子写真感光体の無機保護層の形成に用いる成膜装置の一例を示す概略模式図であり、図5(A)は、成膜装置を側面から見た場合の模式断面図を表し、図5(B)は、図5(A)に示す成膜装置のA1−A2間における模式断面図を表す。図5中、210は成膜室、211は排気口、212は基体回転部、213は基体支持部材、214は基体、215はガス導入管、216はガス導入管215から導入したガスを噴射する開口を有するシャワーノズル、217はプラズマ拡散部、218は高周波電力供給部、219は平板電極、220はガス導入管、221は高周波放電管部である。
図5に示す成膜装置において、成膜室210の一端には、不図示の真空排気装置に接続された排気口211が設けられており、成膜室210の排気口211が設けられた側と反対側に、高周波電力供給部218、平板電極219及び高周波放電管部221からなるプラズマ発生装置が設けられている。
このプラズマ発生装置は、高周波放電管部221と、高周波放電管部221内に配置され、放電面が排気口211側に設けられた平板電極219と、高周波放電管部221外に配置され、平板電極219の放電面と反対側の面に接続された高周波電力供給部218とから構成されたものである。なお、高周波放電管部221には、高周波放電管部221内にガスを供給するためのガス導入管220が接続されており、このガス導入管220のもう一方の端は、不図示の第1のガス供給源に接続されている。
このプラズマ発生装置は、高周波放電管部221と、高周波放電管部221内に配置され、放電面が排気口211側に設けられた平板電極219と、高周波放電管部221外に配置され、平板電極219の放電面と反対側の面に接続された高周波電力供給部218とから構成されたものである。なお、高周波放電管部221には、高周波放電管部221内にガスを供給するためのガス導入管220が接続されており、このガス導入管220のもう一方の端は、不図示の第1のガス供給源に接続されている。
なお、図5に示す成膜装置に設けられたプラズマ発生装置の代わりに、図6に示すプラズマ発生装置を用いてもよい。図6は、図5に示す成膜装置において利用されるプラズマ発生装置の他の例を示す概略模式図であり、プラズマ発生装置の側面図である。図6中、222が高周波コイル、223が石英管を表し、220は、図5中に示すものと同様である。このプラズマ発生装置は、石英管223と、石英管223の外周面に沿って設けられた高周波コイル222とからなり、石英管223の一方の端は成膜室210(図6中、不図示)と接続されている。また、石英管223のもう一方の端には、石英管223内にガスを導入するためのガス導入管220が接続されている。
図5において、平板電極219の放電面側には、放電面に沿って延びる棒状のシャワーノズル216が接続されており、シャワーノズル216の一端は、ガス導入管215と接続されており、このガス導入管215は成膜室210外に設けられた不図示の第2のガス供給源と接続されている。
また、成膜室210内には、基体回転部212が設けられており、円筒状の基体214が、シャワーノズル216の長手方向と基体214の軸方向とが沿って対面するように基体支持部材213を介して基体回転部212に取りつけられるようになっている。成膜に際しては、基体回転部212が回転することによって、基体214が周方向に回転する。なお、基体214としては、例えば、予め有機感光層まで積層された感光体等が用いられる。
また、成膜室210内には、基体回転部212が設けられており、円筒状の基体214が、シャワーノズル216の長手方向と基体214の軸方向とが沿って対面するように基体支持部材213を介して基体回転部212に取りつけられるようになっている。成膜に際しては、基体回転部212が回転することによって、基体214が周方向に回転する。なお、基体214としては、例えば、予め有機感光層まで積層された感光体等が用いられる。
無機保護層の形成は、例えば、以下のように実施する。
まず、酸素ガス(又は、ヘリウム(He)希釈酸素ガス)、ヘリウム(He)ガス、及び必要に応じ水素(H2)ガスを、ガス導入管220から高周波放電管部221内に導入すると共に、高周波電力供給部218から平板電極219に、13.56MHzのラジオ波を供給する。この際、平板電極219の放電面側から排気口211側へと放射状に広がるようにプラズマ拡散部217が形成される。ここで、ガス導入管220から導入されたガスは成膜室210を平板電極219側から排気口211側へと流れる。平板電極219は電極の周りをアースシールドで囲んだものでもよい。
まず、酸素ガス(又は、ヘリウム(He)希釈酸素ガス)、ヘリウム(He)ガス、及び必要に応じ水素(H2)ガスを、ガス導入管220から高周波放電管部221内に導入すると共に、高周波電力供給部218から平板電極219に、13.56MHzのラジオ波を供給する。この際、平板電極219の放電面側から排気口211側へと放射状に広がるようにプラズマ拡散部217が形成される。ここで、ガス導入管220から導入されたガスは成膜室210を平板電極219側から排気口211側へと流れる。平板電極219は電極の周りをアースシールドで囲んだものでもよい。
次に、トリメチルガリウムガスをガス導入管215、活性化手段である平板電極219の下流側に位置するシャワーノズル216を介して成膜室210に導入することによって、基体214表面にガリウムと酸素と水素とを含む非単結晶膜を成膜する。
基体214としては、例えば、有機感光層が形成された基体を用いる。
基体214としては、例えば、有機感光層が形成された基体を用いる。
無機保護層の成膜時の基体214表面の温度は、有機感光層を有する有機感光体を用いるので、150℃以下が望ましく、100℃以下がより望ましく、30℃以上100℃以下が特に望ましい。
基体214表面の温度が成膜開始当初は150℃以下であっても、プラズマの影響で150℃より高くなる場合には有機感光層が熱で損傷を受ける場合があるため、この影響を考慮して基体214の表面温度を制御することが望ましい。
基体214表面の温度は加熱手段、冷却手段(図中、不図示)等によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。基体214を加熱する場合にはヒータを基体214の外側や内側に設置してもよい。基体214を冷却する場合には基体214の内側に冷却用の気体又は液体を循環させてもよい。
放電による基体214表面の温度の上昇を避けたい場合には、基体214表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。
基体214表面の温度が成膜開始当初は150℃以下であっても、プラズマの影響で150℃より高くなる場合には有機感光層が熱で損傷を受ける場合があるため、この影響を考慮して基体214の表面温度を制御することが望ましい。
基体214表面の温度は加熱手段、冷却手段(図中、不図示)等によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。基体214を加熱する場合にはヒータを基体214の外側や内側に設置してもよい。基体214を冷却する場合には基体214の内側に冷却用の気体又は液体を循環させてもよい。
放電による基体214表面の温度の上昇を避けたい場合には、基体214表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。
また、トリメチルガリウムガスの代わりにアルミニウムを含む有機金属化合物やジボラン等の水素化物を用いることもでき、これらを2種類以上混合してもよい。
例えば、無機保護層の形成の初期において、トリメチルインジウムをガス導入管215、シャワーノズル216を介して成膜室210内に導入することにより、基体214上に窒素とインジウムとを含む膜を成膜すれば、この膜が、継続して成膜する場合に発生し、有機感光層を劣化させる紫外線を吸収する。このため、成膜時の紫外線の発生による有機感光層へのダメージが抑制される。
例えば、無機保護層の形成の初期において、トリメチルインジウムをガス導入管215、シャワーノズル216を介して成膜室210内に導入することにより、基体214上に窒素とインジウムとを含む膜を成膜すれば、この膜が、継続して成膜する場合に発生し、有機感光層を劣化させる紫外線を吸収する。このため、成膜時の紫外線の発生による有機感光層へのダメージが抑制される。
また、成膜時におけるドーパントのドーピングの方法としては、n型用としてはSiH3,SnH4を、p型用としては、ビスシクロペンタジエニルマグネシウム、ジメチルカルシウム、ジメチルストロンチウム、などをガス状態で使用する。また、ドーパント元素を表面層中にドーピングするには、熱拡散法、イオン注入法等の公知の方法を採用してもよい。
具体的には、例えば、少なくとも一つ以上のドーパント元素を含むガスをガス導入管215、シャワーノズル216を介して成膜室210内に導入することによって、n型、p型等の導電型の無機保護層を得る。
具体的には、例えば、少なくとも一つ以上のドーパント元素を含むガスをガス導入管215、シャワーノズル216を介して成膜室210内に導入することによって、n型、p型等の導電型の無機保護層を得る。
図5及び図6を用いて説明した成膜装置では、放電エネルギーにより形成される活性窒素又は活性水素を、活性装置を複数設けて独立に制御してもよいし、NH3など、窒素原子と水素原子を同時に含むガスを用いてもよい。さらにH2を加えてもよい。また、有機金属化合物から活性水素が遊離生成する条件を用いてもよい。
このようにすることで、基体214表面上には、活性化された、炭素原子、ガリウム原子、窒素原子、水素原子、等が制御された状態で存在する。そして、活性化された水素原子が、有機金属化合物を構成するメチル基やエチル基等の炭化水素基の水素を分子として脱離させる効果を有する。
このため、三次元的な結合を構成する硬質膜(無機保護層)が形成される。
このようにすることで、基体214表面上には、活性化された、炭素原子、ガリウム原子、窒素原子、水素原子、等が制御された状態で存在する。そして、活性化された水素原子が、有機金属化合物を構成するメチル基やエチル基等の炭化水素基の水素を分子として脱離させる効果を有する。
このため、三次元的な結合を構成する硬質膜(無機保護層)が形成される。
図5及び図6に示す成膜装置のプラズマ発生手段は、高周波発振装置を用いたものであるが、これに限定されるものではなく、例えば、マイクロ波発振装置を用いたり、エレクトロサイクロトロン共鳴方式やヘリコンプラズマ方式の装置を用いてもよい。また、高周波発振装置の場合は、誘導型でも容量型でもよい。
さらに、これらの装置を2種類以上組み合わせて用いてもよく、あるいは、同種の装置を2つ以上用いてもよい。プラズマの照射によって基体214表面の温度上昇を抑制するためには高周波発振装置が望ましいが、熱の照射を抑制する装置を設けてもよい。
さらに、これらの装置を2種類以上組み合わせて用いてもよく、あるいは、同種の装置を2つ以上用いてもよい。プラズマの照射によって基体214表面の温度上昇を抑制するためには高周波発振装置が望ましいが、熱の照射を抑制する装置を設けてもよい。
2種類以上の異なるプラズマ発生装置(プラズマ発生手段)を用いる場合には、同じ圧力で同時に放電が生起されるようにすることが望ましい。また、放電する領域と、成膜する領域(基体が設置された部分)とに圧力差を設けてもよい。これらの装置は、成膜装置内をガスが導入される部分から排出される部分へと形成されるガス流に対して直列に配置してもよいし、いずれの装置も基体の成膜面に対向するように配置してもよい。
例えば、2種類のプラズマ発生手段をガス流に対して直列に設置する場合、図5に示す成膜装置を例に上げれば、シャワーノズル216を電極として成膜室210内に放電を起こさせる第2のプラズマ発生装置として利用される。この場合、例えば、ガス導入管215を介して、シャワーノズル216に高周波電圧を印加して、シャワーノズル216を電極として成膜室210内に放電を起こさせる。あるいは、シャワーノズル216を電極として利用する代わりに、成膜室210内の基体214と平板電極219との間に円筒状の電極を設けて、この円筒状電極を利用して、成膜室210内に放電を起こさせる。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧近傍(70000Pa以上110000Pa以下)で行ってもよい。大気圧近傍で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧近傍(70000Pa以上110000Pa以下)で行ってもよい。大気圧近傍で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
無機保護層の形成は、例えば、成膜室210に基体上に有機感光層を形成した基体214を設置し、各々組成の異なる混合ガスを導入して、無機保護層を形成する。
また、成膜条件としては、例えば高周波放電により放電する場合、低温で良質な成膜を行うには、周波数として10kHz以上50MHz以下の範囲とすることが望ましい。また、出力は基体214の大きさに依存するが、基体の表面積に対して0.01W/cm2以上0.2W/cm2以下の範囲とすることが望ましい。基体214の回転速度は0.1rpm以上500rpm以下の範囲が望ましい。
以上、電子写真感光体として有機感光層が機能分離型で、電荷輸送層が単層型の例を説明したが、図2に示される電子写真感光体(有機感光層が機能分離型で、電荷輸送層が複層型の例)の場合、無機保護層5と接する電荷輸送層3Aは図1に示す電子写真感光体の電荷輸送層3と同じ構成とする一方で、無機保護層5と接しない電荷輸送層3Bは周知の電荷輸送層と同じ構成とすることがよい。
但し、電荷輸送層3Aの膜厚は、1μm以上15μm以下とすることがよい。また、電荷輸送層3Bの膜厚は、15μm以上29μm以下とすることがよい。
但し、電荷輸送層3Aの膜厚は、1μm以上15μm以下とすることがよい。また、電荷輸送層3Bの膜厚は、15μm以上29μm以下とすることがよい。
一方、図3に示される電子写真感光体(有機感光層が単層型の例)の場合、単層型有機感光層6(電荷発生/電荷輸送層)は、電子写真感光体の電荷輸送層3と電荷発生材料を含む以外は同じ構成とすることがよい。
但し、単層型有機感光層6中の電荷発生材料の含有量は、単層型有機感光層全体に対して、25質量%以上50質量%以下とすることがよい。
また、単層型有機感光層6の膜厚は、15μm以上30μm以下とすることがよい。
但し、単層型有機感光層6中の電荷発生材料の含有量は、単層型有機感光層全体に対して、25質量%以上50質量%以下とすることがよい。
また、単層型有機感光層6の膜厚は、15μm以上30μm以下とすることがよい。
さらに、無機保護層は、目的に応じて、厚み方向に組成比に分布を有していてもよいし、多層構成からなるものであってもよい。
例えば、図4に示される電子写真感光体(無機保護層が、第3の層、第2の層、及び第1の層の3層で構成されている例)の場合、第1の実施形態としては、各層において、第13族元素(特にガリウム)及び酸素の元素組成比(酸素/第13族元素(特にガリウム))は、1.0以上1.5未満である。この元素組成比は、1.03以上1.47以下が望ましく、1.05以上1.45以下がより望ましく、1.10以上1.40以下がさらに望ましい。
図示はしないが、無機保護層が2層の場合も同様に、各層の第13族元素(特にガリウム)及び酸素の元素組成比が上記範囲である。
例えば、図4に示される電子写真感光体(無機保護層が、第3の層、第2の層、及び第1の層の3層で構成されている例)の場合、第1の実施形態としては、各層において、第13族元素(特にガリウム)及び酸素の元素組成比(酸素/第13族元素(特にガリウム))は、1.0以上1.5未満である。この元素組成比は、1.03以上1.47以下が望ましく、1.05以上1.45以下がより望ましく、1.10以上1.40以下がさらに望ましい。
図示はしないが、無機保護層が2層の場合も同様に、各層の第13族元素(特にガリウム)及び酸素の元素組成比が上記範囲である。
また、第2の実施形態としては、第3の層、第2の層、及び第1の層の各層において、体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である。像流れの発生をより抑制し易くし、画像ボケの発生をより抑制し易くする点で、8.0×107Ωcm以上7.0×1011Ωcm以下が望ましく、1.0×108Ωcm以上5.0×1011Ωcm以下がより望ましく、5.0×108Ωcm以上2.0×1011Ωcm以下がさらに望ましい。
図示はしないが、無機保護層が2層の場合も同様に、各層の体積抵抗率が上記範囲である。
図示はしないが、無機保護層が2層の場合も同様に、各層の体積抵抗率が上記範囲である。
無機保護層の膜厚は、無機保護層が単層の場合と同様に、例えば、0.2μm以上10.0μm以下(望ましくは0.4μm以上5.0μm以下)であることがよい。そして、各層の厚みは、例えば、以下の範囲であることがよい。
第3の層の膜厚は、例えば、0.05μm以上1.0μm以下がよく、望ましくは0.1μmを超え0.4μm以下、より望ましくは0.15μm以上0.3μm以下である。
第2の層の膜厚は、例えば、0.05μm以上4.5μm以下がよく、望ましくは0.1μm以上4.0μm以下である。
第1の層の膜厚は、例えば、0.05μm以上2.0μm以下がよく、望ましくは0.2μm以上1.5μm以下、より望ましくは0.5μm以上1.0μm以下である。
第3の層の膜厚は、例えば、0.05μm以上1.0μm以下がよく、望ましくは0.1μmを超え0.4μm以下、より望ましくは0.15μm以上0.3μm以下である。
第2の層の膜厚は、例えば、0.05μm以上4.5μm以下がよく、望ましくは0.1μm以上4.0μm以下である。
第1の層の膜厚は、例えば、0.05μm以上2.0μm以下がよく、望ましくは0.2μm以上1.5μm以下、より望ましくは0.5μm以上1.0μm以下である。
なお、各層における各元素の元素構成比率、原子数比等は、厚み方向の分布も含めて、既述のラザフォードバックスキャタリング(以下、「RBS」と称する)により求められる
また、無機保護層の形成において、各層は、その目的とする元素組成比、又は体積抵抗率に応じて、各々組成の異なる混合ガスを導入して、連続的に形成してもよいし、別個独立に行ってもよい。また、各層は、その目的とする元素組成比、又は体積抵抗率に応じて、成膜条件を選択すればよい。
[画像形成装置(及びプロセスカートリッジ)]
本実施形態に係る画像形成装置/画像形成方法について説明する。
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段と、帯電した電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、トナー像を記録媒体の表面に転写する転写手段と、を備える。そして、電子写真感光体として、上記本実施形態に係る電子写真感光体が適用される。また、電子写真感光体の回転数が、1秒当たり8.0回以上である。
本実施形態に係る画像形成装置/画像形成方法について説明する。
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段と、帯電した電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、トナー像を記録媒体の表面に転写する転写手段と、を備える。そして、電子写真感光体として、上記本実施形態に係る電子写真感光体が適用される。また、電子写真感光体の回転数が、1秒当たり8.0回以上である。
本実施形態に係る画像形成装置では、電子写真感光体の表面を帯電する帯電工程と、帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像工程と、前記トナー像を記録媒体の表面に転写する転写工程と、を有する画像形成方法(本実施形態に係る画像形成方法)が実施される。そして、電子写真感光体の回転数が、1秒当たり8.0回以上である。
本実施形態に係る画像形成装置は、記録媒体の表面に転写されたトナー像を定着する定着手段を備える装置;電子写真感光体の表面に形成されたトナー像を直接記録媒体に転写する直接転写方式の装置;電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する中間転写方式の装置;トナー像の転写後、帯電前の電子写真感光体の表面をクリーニングするクリーニング手段を備えた装置;トナー像の転写後、帯電前に電子写真感光体の表面に除電光を照射して除電する除電手段を備える装置;電子写真感光体の温度を上昇させ、相対温度を低減させるための電子写真感光体加熱部材を備える装置等の周知の画像形成装置が適用される。
中間転写方式の装置の場合、転写手段は、例えば、表面にトナー像が転写される中間転写体と、電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。
本実施形態に係る画像形成装置は、乾式現像方式の画像形成装置、湿式現像方式(液体現像剤を利用した現像方式)の画像形成装置のいずれであってもよい。
なお、本実施形態に係る画像形成装置において、例えば、電子写真感光体を備える部分が、画像形成装置に対して脱着されるカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る電子写真感光体を備えるプロセスカートリッジが好適に用いられる。なお、プロセスカートリッジには、電子写真感光体以外に、例えば、帯電手段、静電潜像形成手段、現像手段、転写手段からなる群から選択される少なくとも一つを備えてもよい。
以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。
図7は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置100は、図7に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9(静電潜像形成手段の一例)と、転写装置40(一次転写装置)と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。図示しないが、中間転写体50に転写されたトナー像を記録媒体(例えば用紙)に転写する二次転写装置も有している。なお、中間転写体50、転写装置40(一次転写装置)、及び二次転写装置(不図示)が転写手段の一例に相当する。なお、画像形成装置100において、制御装置60(制御手段の一例)は、画像形成装置100内の各装置及び各部材の動作を制御する装置であり、各装置及び各部材と接続されて配置されている。
本実施形態に係る画像形成装置100は、図7に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9(静電潜像形成手段の一例)と、転写装置40(一次転写装置)と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。図示しないが、中間転写体50に転写されたトナー像を記録媒体(例えば用紙)に転写する二次転写装置も有している。なお、中間転写体50、転写装置40(一次転写装置)、及び二次転写装置(不図示)が転写手段の一例に相当する。なお、画像形成装置100において、制御装置60(制御手段の一例)は、画像形成装置100内の各装置及び各部材の動作を制御する装置であり、各装置及び各部材と接続されて配置されている。
本実施形態に係る画像形成装置100において、電子写真感光体7の回転数は、1秒当たり8.0回以上である。なお、電子写真感光体7の回転数の上限は、特に限定されないが、例えば、1秒当たり17.7回以下であることがよい。
具体的には、電子写真感光体7は、駆動モータ30(駆動部の一例)にギア等の駆動力伝搬部材(不図示)を介して連結されている。駆動モータ30は、画像形成装置100内の各装置及び各部材の動作を制御する制御装置60に電気的に接続されており、制御装置60により駆動制御され、電子写真感光体7を1秒当たり8.0回以上の回転数で回転駆動させる。
具体的には、電子写真感光体7は、駆動モータ30(駆動部の一例)にギア等の駆動力伝搬部材(不図示)を介して連結されている。駆動モータ30は、画像形成装置100内の各装置及び各部材の動作を制御する制御装置60に電気的に接続されており、制御装置60により駆動制御され、電子写真感光体7を1秒当たり8.0回以上の回転数で回転駆動させる。
図7におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8(帯電手段の一例)、現像装置11(現像手段の一例)、及びクリーニング装置13(クリーニング手段の一例)を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材の一例)131を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。なお、クリーニング部材は、クリーニングブレード131の態様ではなく、導電性又は絶縁性の繊維状部材であってもよく、これを単独で、又はクリーニングブレード131と併用してもよい。
なお、図7には、画像形成装置として、潤滑材14を電子写真感光体7の表面に供給する繊維状部材132(ロール状)、及び、クリーニングを補助する繊維状部材133(平ブラシ状)を備えた例を示してあるが、これらは必要に応じて配置される。
次に、画像形成装置100の画像形成動作について説明する。
まず、1秒当たり8.0回以上の回転数で回転する電子写真感光体7の表面が帯電装置8により帯電される。露光装置9は、帯電された電子写真感光体7の表面を画像情報に基づいて露光する。これにより、電子写真感光体7上に画像情報に応じた静電潜像が形成される。現像装置11では、トナーを含む現像剤により、電子写真感光体7の表面に形成された静電潜像が現像される。これにより、電子写真感光体7の表面に、トナー画像が形成される。電子写真感光体7の表面に形成されたトナー画像が中間転写体50へ転写される。そして、中間転写体50へ転写されたトナー画像は、図示しない二次転写装置で、記録媒体に転写される。記録媒体に転写されたトナー画像は、図示しない定着装置により定着される。一方、トナー画像を転写した後の電子写真感光体7の表面は、クリーニング装置13によりクリーニングされる。
まず、1秒当たり8.0回以上の回転数で回転する電子写真感光体7の表面が帯電装置8により帯電される。露光装置9は、帯電された電子写真感光体7の表面を画像情報に基づいて露光する。これにより、電子写真感光体7上に画像情報に応じた静電潜像が形成される。現像装置11では、トナーを含む現像剤により、電子写真感光体7の表面に形成された静電潜像が現像される。これにより、電子写真感光体7の表面に、トナー画像が形成される。電子写真感光体7の表面に形成されたトナー画像が中間転写体50へ転写される。そして、中間転写体50へ転写されたトナー画像は、図示しない二次転写装置で、記録媒体に転写される。記録媒体に転写されたトナー画像は、図示しない定着装置により定着される。一方、トナー画像を転写した後の電子写真感光体7の表面は、クリーニング装置13によりクリーニングされる。
以下、本実施形態に係る画像形成装置の各構成について説明する。
−帯電装置−
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
−露光装置−
露光装置9としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体の分光感度領域内とする。半導体レーザの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザ光源も有効である。
露光装置9としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体の分光感度領域内とする。半導体レーザの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザ光源も有効である。
−現像装置−
現像装置11としては、例えば、現像剤を接触又は非接触させて現像する一般的な現像装置が挙げられる。現像装置11としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて電子写真感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。
現像装置11としては、例えば、現像剤を接触又は非接触させて現像する一般的な現像装置が挙げられる。現像装置11としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて電子写真感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。
現像装置11に使用される現像剤は、トナー単独の一成分系現像剤であってもよいし、トナーとキャリアとを含む二成分系現像剤であってもよい。また、現像剤は、磁性であってもよいし、非磁性であってもよい。これら現像剤は、周知のものが適用される。
−クリーニング装置−
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
−転写装置−
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
−中間転写体−
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等を含むベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等を含むベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
−制御装置−
制御装置60は、装置全体の制御及び各種演算を行うコンピュータとして構成されている。具体的には、制御装置60は、例えば、CPU(中央処理装置; Central Processing Unit)、各種プログラムを記憶したROM(Read Only Memory)、プログラムの実行時にワークエリアとして使用されるRAM(Random Access Memory)、各種情報を記憶する不揮発性メモリ、及び入出力インターフェース(I/O)を備えている。CPU、ROM、RAM、不揮発性メモリ、及びI/Oの各々は、バスを介して接続されている。そして、I/Oには、電子写真感光体7(駆動モータ30を含む)、帯電装置8、露光装置9、現像装置11、転写装置40等の画像形成装置100の各部が接続されている。
制御装置60は、装置全体の制御及び各種演算を行うコンピュータとして構成されている。具体的には、制御装置60は、例えば、CPU(中央処理装置; Central Processing Unit)、各種プログラムを記憶したROM(Read Only Memory)、プログラムの実行時にワークエリアとして使用されるRAM(Random Access Memory)、各種情報を記憶する不揮発性メモリ、及び入出力インターフェース(I/O)を備えている。CPU、ROM、RAM、不揮発性メモリ、及びI/Oの各々は、バスを介して接続されている。そして、I/Oには、電子写真感光体7(駆動モータ30を含む)、帯電装置8、露光装置9、現像装置11、転写装置40等の画像形成装置100の各部が接続されている。
なお、CPUは、例えば、ROMや不揮発性メモリに記憶されているプログラム(例えば、画像形成シーケンスや回復シーケンス等)の制御プログラム)実行し、画像形成装置100の各部の動作を制御する。RAMは、ワークメモリとして使用される。ROMや不揮発性メモリには、例えば、CPUが実行するプログラムやCPUの処理に必要なデータ等が記憶されている。なお、制御プログラムや各種データは、記憶部等の他の記憶装置に記憶されていてもよいし、通信部を介して外部から取得されてもよい。
また、制御装置60には、各種ドライブが接続されていてもよい。各種ドライブとしては、フレキシブルディスク、光磁気ディスク、CD−ROM、DVD−ROM、USB(Universal Serial Bus)メモリなどのコンピュータ読み取り可能な可搬性の記録媒体からデータを読み込んだり、記録媒体に対してデータを書き込んだりする装置が挙げられる。各種ドライブを備える場合には、可搬性の記録媒体に制御プログラムを記録しておいて、これを対応するドライブで読み込んで実行してもよい。
図8は、本実施形態に係る画像形成装置の他の一例を示す概略構成図である。
図8に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
図8に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
なお、本実施形態に係る画像形成装置100は、上記構成に限られず、例えば、電子写真感光体7の周囲であって、転写装置40よりも電子写真感光体7の回転方向下流側でクリーニング装置13よりも電子写真感光体の回転方向上流側に、残留したトナーの極性を揃え、クリーニングブラシで除去しやすくするための第1除電装置を設けた形態であってもよいし、クリーニング装置13よりも電子写真感光体の回転方向下流側で帯電装置8よりも電子写真感光体の回転方向上流側に、電子写真感光体7の表面を除電する第2除電装置を設けた形態であってもよい。
また、本実施形態に係る画像形成装置100は、上記構成に限られず、周知の構成、例えば、電子写真感光体7に形成したトナー像を直接記録媒体に転写する直接転写方式の画像形成装置を採用してもよい。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において「部」は質量部を意味する。
[シリカ粒子の準備・作製]
−シリカ粒子(1)−
未処理(親水性)シリカ粒子「商品名:OX50(製造元 アエロジル社製)」100質量部に、疎水化処理剤としてトリメトキシシラン(「商品名:1,1,1,3,3,3−ヘキサメチルジシラザン(製造元 東京化成社製)」)30質量部を添加し、24時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(1)とした。このシリカ粒子(1)の縮合率は、93%であった。
−シリカ粒子(1)−
未処理(親水性)シリカ粒子「商品名:OX50(製造元 アエロジル社製)」100質量部に、疎水化処理剤としてトリメトキシシラン(「商品名:1,1,1,3,3,3−ヘキサメチルジシラザン(製造元 東京化成社製)」)30質量部を添加し、24時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(1)とした。このシリカ粒子(1)の縮合率は、93%であった。
<実施例1>
−下引層の作製−
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100質量部をテトラヒドロフラン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学工業社製)1.3質量部を添加し、2時間攪拌した。その後テトラヒドロフランを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行いアリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60質量部と硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製):13.5質量部とブチラール樹脂(エスレック BM−1、積水化学工業社製)15質量部をメチルエチルケトン85質量部に溶解した溶液38質量部とメチルエチルケトン:25質量部とを混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、シリコーン樹脂粒子(トスパール145、モメンティブ・パフォーマンス・マテリアルズ社製):40質量部を添加し、下引層形成用塗布液を得た。この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基体上に塗布し、170℃、40分の乾燥硬化を行い厚さ19μmの下引層を得た。
−下引層の作製−
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100質量部をテトラヒドロフラン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学工業社製)1.3質量部を添加し、2時間攪拌した。その後テトラヒドロフランを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行いアリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60質量部と硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製):13.5質量部とブチラール樹脂(エスレック BM−1、積水化学工業社製)15質量部をメチルエチルケトン85質量部に溶解した溶液38質量部とメチルエチルケトン:25質量部とを混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、シリコーン樹脂粒子(トスパール145、モメンティブ・パフォーマンス・マテリアルズ社製):40質量部を添加し、下引層形成用塗布液を得た。この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基体上に塗布し、170℃、40分の乾燥硬化を行い厚さ19μmの下引層を得た。
−電荷発生層の作製−
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3°、16.0°、24.9°、28.0°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体(VMCH、日本ユニカー社製)10質量部、n−酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175質量部、メチルエチルケトン180質量部を添加し、攪拌して電荷発生層形成用の塗布液を得た。この電荷発生層形成用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3°、16.0°、24.9°、28.0°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体(VMCH、日本ユニカー社製)10質量部、n−酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175質量部、メチルエチルケトン180質量部を添加し、攪拌して電荷発生層形成用の塗布液を得た。この電荷発生層形成用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
−電荷輸送層の作製−
シリカ粒子(1)50質量部に、テトラヒドロフラン250質量部を入れ、20℃の液温に保ちながら4−(2,2−ジフェニルエチル)−4’,4’’−ジメチル−トリフェニルアミン25質量部、結着樹脂として、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:30000)25質量部を加え、12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
シリカ粒子(1)50質量部に、テトラヒドロフラン250質量部を入れ、20℃の液温に保ちながら4−(2,2−ジフェニルエチル)−4’,4’’−ジメチル−トリフェニルアミン25質量部、結着樹脂として、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:30000)25質量部を加え、12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
この電荷輸送層形成用塗布液を電荷発生層上に塗布して135℃で40分間乾燥し、膜厚が30μmの電荷輸送層を形成し、電子写真感光体を得た。
以上の工程を経て、アルミニウム基体上に、下引層と電荷発生層と電荷輸送層とをこの順に積層形成した有機感光体(1)を得た。
−無機保護層の形成−
次に、有機感光体(1)の表面へ、水素を含む酸化ガリウムで構成された無機保護層を形成した。この無機保護層の形成は、図5に示す構成を有する成膜装置を用いて行った。
次に、有機感光体(1)の表面へ、水素を含む酸化ガリウムで構成された無機保護層を形成した。この無機保護層の形成は、図5に示す構成を有する成膜装置を用いて行った。
まず、有機感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。なお、この真空排気は、上記高濃度酸素含有気体の置換終了後、5分以内に行った。
次に、He希釈40%酸素ガス(流量1.6sccm)、及び水素ガス(流量50sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力150Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(流量1.9sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は5.3Paであった。
この状態で、有機感光体(1)を500rpmの速度で回転させながら68分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚1.5μmの無機保護層を形成した。
次に、He希釈40%酸素ガス(流量1.6sccm)、及び水素ガス(流量50sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力150Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(流量1.9sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は5.3Paであった。
この状態で、有機感光体(1)を500rpmの速度で回転させながら68分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚1.5μmの無機保護層を形成した。
以上の工程を経て、導電性基体上に、下引層、電荷発生層、電荷輸送層、無機保護層が順次形成された、実施例1の電子写真感光体を得た。
<実施例2〜5、8〜9、11、比較例1〜3>
表1に従って、シリカ粒子の含有量、無機保護層の元素組成比、体積抵抗率、厚み(膜厚)を変更した以外は、実施例1と同様にして、実施例2〜5、実施例8〜9、実施例11、及び比較例1〜3の電子写真感光体を得た。なお、シリカ粒子の質量%は、電荷輸送層全体を100として表1の値となるように電荷輸送層の組成を調整した。
表1に従って、シリカ粒子の含有量、無機保護層の元素組成比、体積抵抗率、厚み(膜厚)を変更した以外は、実施例1と同様にして、実施例2〜5、実施例8〜9、実施例11、及び比較例1〜3の電子写真感光体を得た。なお、シリカ粒子の質量%は、電荷輸送層全体を100として表1の値となるように電荷輸送層の組成を調整した。
<実施例6>
無機保護層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が3層で形成された実施例6の電子写真感光体を得た。
無機保護層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が3層で形成された実施例6の電子写真感光体を得た。
−第3の層(界面層)の形成−
まず、有機感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。
次に、He希釈40%酸素ガス(3.5sccm)、及びH2ガス(100sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力200Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(5sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は10Paであった。
この状態で、有機感光体(1)を100rpmの速度で回転させながら15分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚0.2μmの界面層を形成した。
まず、有機感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。
次に、He希釈40%酸素ガス(3.5sccm)、及びH2ガス(100sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力200Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(5sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は10Paであった。
この状態で、有機感光体(1)を100rpmの速度で回転させながら15分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚0.2μmの界面層を形成した。
−第2の層(中間層)の形成−
次に、高周波放電を停止し、He希釈40%酸素ガス(10sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層を形成した有機感光体(1)100rpmの速度で回転させながら60分間成膜し、界面層上に、膜厚0.8μmの中間層を形成した。
次に、高周波放電を停止し、He希釈40%酸素ガス(10sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層を形成した有機感光体(1)100rpmの速度で回転させながら60分間成膜し、界面層上に、膜厚0.8μmの中間層を形成した。
−第1の層(最表層)の形成−
次に、高周波放電を停止し、成膜室210内の圧力(5Pa)、He希釈40%酸素ガス(2.2sccm)、H2ガス(300sccm)トリメチルガリウムガス(3.2sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層及び中間層を順次形成した有機感光体(1)を100rpmの速度で回転させながら55分間成膜し、中間層上に、膜厚0.5μmの最表面層を形成した。
次に、高周波放電を停止し、成膜室210内の圧力(5Pa)、He希釈40%酸素ガス(2.2sccm)、H2ガス(300sccm)トリメチルガリウムガス(3.2sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層及び中間層を順次形成した有機感光体(1)を100rpmの速度で回転させながら55分間成膜し、中間層上に、膜厚0.5μmの最表面層を形成した。
<実施例7>
無機保護層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が2層で形成された実施例7の電子写真感光体を得た。
無機保護層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が2層で形成された実施例7の電子写真感光体を得た。
−第2の層(界面層)の形成−
まず、有機感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。
次に、He希釈40%酸素ガス(3.5sccm)、及びH2ガス(100sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力200Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(5sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は10Paであった。
この状態で、有機感光体(1)を100rpmの速度で回転させながら15分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚1.0μmの界面層を形成した。
まず、有機感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。
次に、He希釈40%酸素ガス(3.5sccm)、及びH2ガス(100sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図5中不図示)により、13.56MHzのラジオ波を出力200Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(5sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は10Paであった。
この状態で、有機感光体(1)を100rpmの速度で回転させながら15分間成膜し、有機感光体(1)の電荷輸送層表面に膜厚1.0μmの界面層を形成した。
−第1の層(最表層)の形成−
次に、高周波放電を停止し、成膜室210内の圧力(5Pa)、He希釈40%酸素ガス(2.2sccm)、H2ガス(300sccm)トリメチルガリウムガス(3.2sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層及び中間層を順次形成した有機感光体(1)を100rpmの速度で回転させながら55分間成膜し、中間層上に、膜厚0.5μmの最表面層を形成した。
次に、高周波放電を停止し、成膜室210内の圧力(5Pa)、He希釈40%酸素ガス(2.2sccm)、H2ガス(300sccm)トリメチルガリウムガス(3.2sccm)に変更した後、再び高周波放電を開始した。
この状態で、界面層及び中間層を順次形成した有機感光体(1)を100rpmの速度で回転させながら55分間成膜し、中間層上に、膜厚0.5μmの最表面層を形成した。
<実施例10>
電荷輸送層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が単層で形成された実施例10の電子写真感光体を得た。
シリカ粒子(1)25質量部に、テトラヒドロフラン250質量部を入れ、20℃の液温に保ちながら4−(2,2−ジフェニルエチル)−4’,4’’−ジメチル−トリフェニルアミン25質量部、結着樹脂として、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:30000)50質量部を加え、12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
この電荷輸送層形成用塗布液を電荷発生層上に塗布して135℃で40分間乾燥し、膜厚が30μmの電荷輸送層を形成し、電子写真感光体を得た。
電荷輸送層の形成において、以下のように変更した以外は、実施例1と同様にして、無機保護層が単層で形成された実施例10の電子写真感光体を得た。
シリカ粒子(1)25質量部に、テトラヒドロフラン250質量部を入れ、20℃の液温に保ちながら4−(2,2−ジフェニルエチル)−4’,4’’−ジメチル−トリフェニルアミン25質量部、結着樹脂として、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:30000)50質量部を加え、12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
この電荷輸送層形成用塗布液を電荷発生層上に塗布して135℃で40分間乾燥し、膜厚が30μmの電荷輸送層を形成し、電子写真感光体を得た。
<比較例4>
表1に従って、無機保護層の元素組成比、体積抵抗率を変更した以外は、実施例6と同様にして、比較例4の電子写真感光体を得た。
表1に従って、無機保護層の元素組成比、体積抵抗率を変更した以外は、実施例6と同様にして、比較例4の電子写真感光体を得た。
<参考例1>
比較例4で作製した電子写真感光体と同様の操作手順で、参考例1の電子写真感光体を作製した。
比較例4で作製した電子写真感光体と同様の操作手順で、参考例1の電子写真感光体を作製した。
(評価)
各実施例及び、各比較例で得られた電子写真感光体について、下記に示す割れの評価、画像ボケの評価、及び像流れの評価の各評価を行った。各評価は、各実施例及び、各比較例における下記に示す各評価は、各例で得られた電子写真感光体を、富士ゼロックス社製「DocuCentre−V C7775」(感光体の1秒当たりの回転数、10.7回)に取り付けて行った。
また、参考例1における下記に示す各評価は、参考例1の電子写真感光体を富士ゼロックス社製「DocuCentre−IV C5575」(感光体の1秒当たりの回転数、7.3回)に取り付けて行った。
各実施例及び、各比較例で得られた電子写真感光体について、下記に示す割れの評価、画像ボケの評価、及び像流れの評価の各評価を行った。各評価は、各実施例及び、各比較例における下記に示す各評価は、各例で得られた電子写真感光体を、富士ゼロックス社製「DocuCentre−V C7775」(感光体の1秒当たりの回転数、10.7回)に取り付けて行った。
また、参考例1における下記に示す各評価は、参考例1の電子写真感光体を富士ゼロックス社製「DocuCentre−IV C5575」(感光体の1秒当たりの回転数、7.3回)に取り付けて行った。
−割れの評価−
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して30万枚出力した。その後、光学顕微鏡(キーエンス社製:VK9500)を用いて、有機感光体の中央部の0.5cm(周方向)×3cm(軸方向)の範囲、及び有機感光体の両端から6.5cm中央に寄った場所において、0.5cm×3cmの範囲の視野観察し、単位面積(1cm×1cm)当たりの割れ傷を算出した。評価基準は以下のとおりである。
−評価基準−
A:割れ傷が5個/cm2以下(画像欠陥にならないレベル)
B:割れ傷が5個/cm2超え15個/cm2以下(画像欠陥にならないレベル)
C:割れ傷が15個/cm2超え100個/cm2以下
(画像欠陥にならないレベルだが、60万枚以上プリントすると、画像欠陥に発展する恐れがあるレベル)
D:割れ傷が100個/cm2超え
(画像欠陥に発展する恐れがあるレベル)
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して30万枚出力した。その後、光学顕微鏡(キーエンス社製:VK9500)を用いて、有機感光体の中央部の0.5cm(周方向)×3cm(軸方向)の範囲、及び有機感光体の両端から6.5cm中央に寄った場所において、0.5cm×3cmの範囲の視野観察し、単位面積(1cm×1cm)当たりの割れ傷を算出した。評価基準は以下のとおりである。
−評価基準−
A:割れ傷が5個/cm2以下(画像欠陥にならないレベル)
B:割れ傷が5個/cm2超え15個/cm2以下(画像欠陥にならないレベル)
C:割れ傷が15個/cm2超え100個/cm2以下
(画像欠陥にならないレベルだが、60万枚以上プリントすると、画像欠陥に発展する恐れがあるレベル)
D:割れ傷が100個/cm2超え
(画像欠陥に発展する恐れがあるレベル)
−画像ボケの評価−
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して画像を30万枚出力した後、A3サイズにて画像濃度30%のハーフトーン画像を出力した。このハーフトーン画像について、感光体表面の領域に対応する領域に、画像ボケが発生しているか否かを、Vitiny(VT−101)を用いて倍率27倍にて観察し、以下の基準に従って画像評価を行った。
なお、測定範囲は、用紙画像中央部の3cm(周方向)×3cm(軸方向)の範囲、及び用紙画像部の両端から1.5cm中央に寄った場所において、3cm×3cmの範囲とし、これら3箇所の合計値を画像ボケ個数として取り扱った。
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して画像を30万枚出力した後、A3サイズにて画像濃度30%のハーフトーン画像を出力した。このハーフトーン画像について、感光体表面の領域に対応する領域に、画像ボケが発生しているか否かを、Vitiny(VT−101)を用いて倍率27倍にて観察し、以下の基準に従って画像評価を行った。
なお、測定範囲は、用紙画像中央部の3cm(周方向)×3cm(軸方向)の範囲、及び用紙画像部の両端から1.5cm中央に寄った場所において、3cm×3cmの範囲とし、これら3箇所の合計値を画像ボケ個数として取り扱った。
−評価基準−
A:観察範囲内で、画像ボケやドット乱れの個数が0個。
B:観察範囲内で、画像ボケやドット乱れの個数が1個〜3個。
C:観察範囲内で、画像ボケやドット乱れの個数が4個〜10個。
D:観察範囲内で、画像ボケやドット乱れの個数が11個以上。
A:観察範囲内で、画像ボケやドット乱れの個数が0個。
B:観察範囲内で、画像ボケやドット乱れの個数が1個〜3個。
C:観察範囲内で、画像ボケやドット乱れの個数が4個〜10個。
D:観察範囲内で、画像ボケやドット乱れの個数が11個以上。
−像流れの評価−
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して5000枚プリントした後、14時間同じ環境にて放置し、14時間経過後に画像濃度40%の全面ハーフトーン画像でプリントし、放置後の1枚目から10枚目、及び50枚目の画像流れを確認した。
評価基準は以下の通りである。
−評価基準−
A:放置後1枚目の画像のドットが乱れていない。
B:放置後1枚目の画像ドットが乱れているが、放置後プリント2枚目から10枚目までにはドット乱れが回復する。(すぐに回復するので、画像品質として問題ないレベル
C:放置後のプリント10枚のプリントではドットが乱れているが、50枚目までにはドット乱れが回復する。
D:放置後のプリント50枚のプリントでもドットが乱れており、100枚目においても、ドットがまだ僅かに乱れているか、或いは連続プリント5000枚出力時においてもドットが僅かに乱れている。
22℃、55%RH環境下、画像密度(エリアカバレッジ)5%のチャート画像をA4用紙に連続して5000枚プリントした後、14時間同じ環境にて放置し、14時間経過後に画像濃度40%の全面ハーフトーン画像でプリントし、放置後の1枚目から10枚目、及び50枚目の画像流れを確認した。
評価基準は以下の通りである。
−評価基準−
A:放置後1枚目の画像のドットが乱れていない。
B:放置後1枚目の画像ドットが乱れているが、放置後プリント2枚目から10枚目までにはドット乱れが回復する。(すぐに回復するので、画像品質として問題ないレベル
C:放置後のプリント10枚のプリントではドットが乱れているが、50枚目までにはドット乱れが回復する。
D:放置後のプリント50枚のプリントでもドットが乱れており、100枚目においても、ドットがまだ僅かに乱れているか、或いは連続プリント5000枚出力時においてもドットが僅かに乱れている。
上記結果から、本実施例では、比較例に比べ、像流れ、及び画像ボケの評価結果が良好であることがわかる。
1 下引層、2 電荷発生層、3、3A、3B 電荷輸送層、4 導電性基体、5、5A、5B、5C 無機保護層、7、7A、7B、7C、7D 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、30 駆動モータ、40 転写装置、50 中間転写体、60 制御装置、100 画像形成装置、120 画像形成装置、131 クリーニングブレード、132 繊維状部材(ロール状)、133 繊維状部材(平ブラシ状)、300 プロセスカートリッジ、210 成膜室、211 排気口、212 基体回転部、213 基体支持部材、214 基体、215、220 ガス導入管、216 シャワーノズル、217 プラズマ拡散部、218 高周波電力供給部、219 平板電極、221 高周波放電管部、222 高周波コイル、223 石英管、
Claims (8)
- 導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ前記酸素及び前記第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満である無機保護層と、
を備えた電子写真感光体。 - 導電性基体と、
前記導電性基体上に設けられた有機感光層であって、表面を構成する層に、電荷輸送材料、結着樹脂、及びシリカ粒子を含む有機感光層と、
前記有機感光層上に設けられた無機保護層であって、第13族元素、酸素、及び水素を含有し、無機保護層を構成する全元素に対する、前記第13族元素、前記酸素、及び前記水素の元素構成比率の和が90原子%以上であり、かつ体積抵抗率が、5.0×107Ωcm以上1.0×1012Ωcm未満である無機保護層と、
を備えた電子写真感光体。 - 前記第13族元素が、ガリウムである請求項1又は請求項2に記載の電子写真感光体。
- 前記有機感光層が、電荷発生層と、電荷輸送材料、結着樹脂、及びシリカ粒子を含む電荷輸送層と、を前記導電性基体上にこの順で有する感光層である請求項1〜請求項3のいずれか1項に記載の電子写真感光体。
- 前記シリカ粒子の含有量が、前記有機感光層の前記表面を構成する層の全体に対して30質量%以上70質量%以下である請求項1〜請求項4のいずれか1項に記載の電子写真感光体。
- 請求項1〜請求項5のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に脱着するプロセスカートリッジ。 - 請求項1〜請求項5のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備え、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成装置。 - 請求項1〜請求項5のいずれか1項に記載の電子写真感光体の表面を帯電する帯電工程と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像工程と、
前記トナー像を記録媒体の表面に転写する転写工程と、
を有し、
前記電子写真感光体の回転数が、1秒当たり8.0回以上である画像形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016052882A JP2017167362A (ja) | 2016-03-16 | 2016-03-16 | 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 |
US15/206,020 US9864286B2 (en) | 2016-03-16 | 2016-07-08 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
CN201610815920.8A CN107203101A (zh) | 2016-03-16 | 2016-09-09 | 电子照相感光体、处理盒和成像装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016052882A JP2017167362A (ja) | 2016-03-16 | 2016-03-16 | 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017167362A true JP2017167362A (ja) | 2017-09-21 |
Family
ID=59847550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016052882A Pending JP2017167362A (ja) | 2016-03-16 | 2016-03-16 | 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9864286B2 (ja) |
JP (1) | JP2017167362A (ja) |
CN (1) | CN107203101A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019061091A (ja) * | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | 画像形成装置、及び画像形成装置用ユニット |
JP2019197188A (ja) * | 2018-05-11 | 2019-11-14 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190302632A1 (en) * | 2018-04-03 | 2019-10-03 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10213919A (ja) * | 1997-01-30 | 1998-08-11 | Canon Inc | 電子写真感光体、該電子写真感光体を有するプロセスカ−トリッジ及び電子写真装置 |
JP2008268266A (ja) * | 2007-04-16 | 2008-11-06 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP2010181820A (ja) * | 2009-02-09 | 2010-08-19 | Fuji Xerox Co Ltd | 電子写真感光体、並びにこれを用いたプロセスカートリッジ、及び画像形成装置 |
JP2011028218A (ja) * | 2009-06-26 | 2011-02-10 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2011069983A (ja) * | 2009-09-25 | 2011-04-07 | Fuji Xerox Co Ltd | 酸化物材料、電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2014006351A (ja) * | 2012-06-22 | 2014-01-16 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2014191179A (ja) * | 2013-03-27 | 2014-10-06 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4743000B2 (ja) * | 2006-06-07 | 2011-08-10 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
-
2016
- 2016-03-16 JP JP2016052882A patent/JP2017167362A/ja active Pending
- 2016-07-08 US US15/206,020 patent/US9864286B2/en active Active
- 2016-09-09 CN CN201610815920.8A patent/CN107203101A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10213919A (ja) * | 1997-01-30 | 1998-08-11 | Canon Inc | 電子写真感光体、該電子写真感光体を有するプロセスカ−トリッジ及び電子写真装置 |
JP2008268266A (ja) * | 2007-04-16 | 2008-11-06 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP2010181820A (ja) * | 2009-02-09 | 2010-08-19 | Fuji Xerox Co Ltd | 電子写真感光体、並びにこれを用いたプロセスカートリッジ、及び画像形成装置 |
JP2011028218A (ja) * | 2009-06-26 | 2011-02-10 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2011069983A (ja) * | 2009-09-25 | 2011-04-07 | Fuji Xerox Co Ltd | 酸化物材料、電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2014006351A (ja) * | 2012-06-22 | 2014-01-16 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2014191179A (ja) * | 2013-03-27 | 2014-10-06 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019061091A (ja) * | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | 画像形成装置、及び画像形成装置用ユニット |
JP2019197188A (ja) * | 2018-05-11 | 2019-11-14 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
US9864286B2 (en) | 2018-01-09 |
CN107203101A (zh) | 2017-09-26 |
US20170269486A1 (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9341963B2 (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP6593063B2 (ja) | 電子写真感光体、プロセスカートリッジおよび画像形成装置 | |
US10001714B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
US10317809B2 (en) | Image forming apparatus and unit for image forming apparatus | |
US9864286B2 (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP2017062369A (ja) | 画像形成装置 | |
US20190346781A1 (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP6759949B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP6332215B2 (ja) | 画像形成装置用ユニット、プロセスカートリッジ、画像形成装置、及び電子写真感光体 | |
CN106556978B (zh) | 电子照相感光元件、处理盒以及图像形成装置 | |
JP6996180B2 (ja) | 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法 | |
JP7206654B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP2018049066A (ja) | 画像形成装置 | |
US9740115B1 (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
US11880162B2 (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP7047552B2 (ja) | 正帯電型電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP7183552B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP2018081205A (ja) | 画像形成装置 | |
JP2019061155A (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP2023048986A (ja) | 電子写真感光体、プロセスカートリッジ及び画像形成装置 | |
JP2023144994A (ja) | 画像形成装置、及び画像形成装置用ユニット | |
JP2023136995A (ja) | 電子写真感光体、プロセスカートリッジ及び画像形成装置 | |
JP2024044123A (ja) | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191023 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200421 |