JP2019061155A - 電子写真感光体、プロセスカートリッジ、及び画像形成装置 - Google Patents

電子写真感光体、プロセスカートリッジ、及び画像形成装置 Download PDF

Info

Publication number
JP2019061155A
JP2019061155A JP2017186907A JP2017186907A JP2019061155A JP 2019061155 A JP2019061155 A JP 2019061155A JP 2017186907 A JP2017186907 A JP 2017186907A JP 2017186907 A JP2017186907 A JP 2017186907A JP 2019061155 A JP2019061155 A JP 2019061155A
Authority
JP
Japan
Prior art keywords
layer
photosensitive member
electrophotographic photosensitive
particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017186907A
Other languages
English (en)
Inventor
秀弥 勝原
Hideya Katsuhara
秀弥 勝原
剛 岩永
Takeshi Iwanaga
剛 岩永
昌記 平方
Masaki Hirakata
昌記 平方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2017186907A priority Critical patent/JP2019061155A/ja
Publication of JP2019061155A publication Critical patent/JP2019061155A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】電荷漏れの発生を抑制する電子写真感光体の提供。【解決手段】導電性支持体と、導電性支持体上に設けられ、無機粒子が表面処理された表面処理粒子であって相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層の単層体、又は粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体。【選択図】図1

Description

本発明は、電子写真感光体、プロセスカートリッジ、及び画像形成装置に関する。
電子写真法による画像の形成は、例えば、感光体表面を帯電させた後、この感光体表面に画像情報に応じて静電荷像を形成し、次いでこの静電荷像を、トナーを含む現像剤で現像してトナー画像を形成し、このトナー画像を記録媒体表面に転写及び定着することにより行われる。そして、感光体として導電性基体上に有機感光層が形成された有機感光体が用いられている。
ここで、特許文献1には、「導電性支持体上に、少なくとも電荷発生層及び電荷輸送層を有する電子写真感光体において、該電子写真感光体の表面を形成する層に無機フィラ−を含有し、電荷発生層にチタニルフタロシアニンを含有する電子写真感光体。」が開示されている。
特許文献2には、「導電性支持体上に、有機光導電体を含む感光層を有する電子写真感光体において、導電性支持体の表面粗さが0.01μm以上2.0μm以下であり、かつ当該電子写真感光体の最外表面側の層の表面粗さが0.1μm以上0.5μm以下であり、当該最外表面側の層には、平均粒径が0.05〜0.5μmの無機粒子が含有されている電子写真感光体。」が開示されている。
特許文献3には、「電子写真感光体の最表面層に、相対湿度80%の環境下で調湿した場合の示差走査熱量分析において40℃以上200℃以下の範囲の吸熱エネルギー変化量ΔHが0〜20ジュール/gであり、且つ体積平均粒径0.05μm以上2μm以下であるシリカ粒子を含有する電子写真感光体。」が開示されている。
特開平08−095267号公報 特開平08−248663号公報 特許第3844258号公報
画像形成装置において、導電性支持体と、この導電性支持体上に設けられ、無機粒子を含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体が用いられることがある。しかし、この電子写真感光体の表面を帯電し、かつ露光によって静電潜像を形成する際、帯電により発生した電荷が想定した位置よりもずれた位置に輸送される、いわゆる電荷漏れ(電荷リーク)が生じることがあり、想定した静電潜像が形成されないことがあった。そして、その結果形成される画像において黒点等の画像欠陥が生じることがあった。
そこで、本発明の課題は、導電性支持体と、前記導電性支持体上に設けられ、無機粒子として相対湿度90%の環境下での水分吸着率が0.15質量%超えである表面処理粒子のみを含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体に比べ、電荷漏れの発生を抑制する電子写真感光体を提供することである。
上記課題は、以下の本発明によって解決される。即ち、
請求項1に係る発明は、
導電性支持体と、
前記導電性支持体上に設けられ、無機粒子が表面処理された表面処理粒子であって相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、
有する電子写真感光体。
請求項2に係る発明は、
前記表面処理粒子は、相対湿度90%の環境下での水分吸着率が0.1質量%以下である請求項1に記載の電子写真感光体。
請求項3に係る発明は、
前記表面処理粒子は、前記粒子含有層の固形分に対する含有率が30質量%以上80質量%以下である請求項1又は請求項2に記載の電子写真感光体。
請求項4に係る発明は、
前記無機粒子は、シリカ粒子である請求項1〜請求項3のいずれか1項に記載の電子写真感光体。
請求項5に係る発明は、
前記粒子含有層は、無機粒子がシラン化合物により表面処理された粒子である請求項1〜請求項4のいずれか1項に記載の電子写真感光体。
請求項6に係る発明は、
前記粒子含有層は、さらに電荷輸送性材料を含有する電荷輸送層である請求項1〜請求項5のいずれか1項に記載の電子写真感光体。
請求項7に係る発明は、
前記粒子含有層は、結着樹脂としてポリカーボネート樹脂、及びポリアリレート樹脂からなる群より選択される少なくとも一種の樹脂を含有する請求項1〜請求項6のいずれか1項に記載の電子写真感光体。
請求項8に係る発明は、
さらに前記感光層上に設けられた無機表面層を有する請求項1〜請求項7のいずれか1項に記載の電子写真感光体。
請求項9に係る発明は、
請求項1〜請求項8のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に着脱するプロセスカートリッジ。
請求項10に係る発明は、
請求項1〜請求項8のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備える画像形成装置。
請求項1、4、5、6、7、又は8に係る発明によれば、導電性支持体と、前記導電性支持体上に設けられ、無機粒子として相対湿度90%の環境下での水分吸着率が0.15質量%超えである表面処理粒子のみを含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体に比べ、電荷漏れの発生を抑制する電子写真感光体が提供される。
請求項2に係る発明によれば、表面処理粒子の相対湿度90%の環境下での水分吸着率が0.1質量%超えである場合に比べ、電荷漏れの発生を抑制する電子写真感光体が提供される。
請求項3に係る発明によれば、導電性支持体と、前記導電性支持体上に設けられ、無機粒子として相対湿度90%の環境下での水分吸着率が0.15質量%超えである表面処理粒子のみを含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体に比べ、粒子含有層での表面処理粒子の含有率が30質量%以上であっても、電荷漏れの発生を抑制する電子写真感光体が提供される。
請求項9、又は10に係る発明によれば、導電性支持体と、前記導電性支持体上に設けられ、無機粒子として相対湿度90%の環境下での水分吸着率が0.15質量%超えである表面処理粒子のみを含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、有する電子写真感光体を備える場合に比べ、形成される画像での黒点の発生を抑制するプロセスカートリッジ、又は画像形成装置が提供される。
本実施形態に係る電子写真感光体の層構成の一例を示す模式断面図である。 本実施形態に係る電子写真感光体の層構成の他の例を示す模式断面図である。 本実施形態における電子写真感光体の無機表面層の形成に用いる成膜装置の一例を示す概略模式図である。 本実施形態における電子写真感光体の無機表面層の形成に用いるプラズマ発生装置の例を示す概略模式図である。 本実施形態に係る画像形成装置の一例を示す概略構成図である。 図5の画像形成装置においてクリーニングブレードと感光体とが接触する位置を拡大して示す拡大図である。
以下、本発明の一例である実施形態について詳細に説明する。
<電子写真感光体>
本実施形態に係る電子写真感光体(以下単に「感光体」とも称す)は、導電性支持体と、前記導電性支持体上に設けられた感光層と、有する。
そして、感光層は、無機粒子が表面処理された表面処理粒子であって相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層の単層体、又は粒子含有層を少なくとも含む積層体で構成された感光層である。
ここで、電子写真方式の画像形成装置では、感光体の表面に形成された静電荷像を、トナーを含む現像剤により現像してトナー画像を形成し、このトナー画像を感光体から記録媒体の表面に転写した後、トナー画像が定着されることで記録媒体上に画像が形成される。この感光体として、導電性支持体と、この導電性支持体上に設けられ、無機粒子を含有する粒子含有層の単層体、又は粒子含有層を少なくとも含む積層体で構成された感光層と、を有する感光体が用いられている。
しかし、この感光体の表面を帯電し、かつ露光によって静電潜像を形成する際、帯電により発生した電荷が想定した位置よりもずれた位置に輸送される、いわゆる電荷漏れ(電荷リーク)が生じることがあり、想定した静電潜像が形成されないことがあった。そして、その結果形成される画像において黒点等の画像欠陥が生じることがあった。
これに対し、本実施形態によれば、上記の構成を備えることで、電荷漏れの発生が抑制される。
その理由は、以下のように推察される。
感光体中の感光層に含まれる無機粒子は、感光層の外部(例えば大気中)から侵入した水分によって吸湿が生じることがある。また、感光体が感光層上に無機表面層を備えていると、外部(例えば大気中)からの水分の侵入は発生し難いが、その場合でも元々感光層中に含まれている水分の影響で、無機粒子に吸湿が生じることがある。吸湿が生じた無機粒子は抵抗が低下して電荷を伝導し易くなり、その結果露光により発生した電荷が想定した位置よりもずれた位置に輸送される電荷漏れ(電荷リーク)が生じるものと考えられる。
しかし、本実施形態では、感光層中の少なくとも1層を構成する粒子含有層に、無機粒子が表面処理された表面処理粒子であって相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する。つまり、水分を吸湿し難い無機粒子が含まれており、これにより無機粒子における吸湿自体が抑制され、無機粒子の抵抗低下に伴う電荷漏れ(電荷リーク)の発生が抑制される。そして、形成される画像における黒点等の画像欠陥の発生が抑制される。
−無機粒子の水分吸着率−
感光層中の少なくとも1層を構成する粒子含有層に含有される無機粒子は、表面処理された表面処理粒子であり、その相対湿度90%の環境下での水分吸着率は、0.15質量%以下である。水分吸着率は0.1質量%以下がより好ましく、0質量%に近いほど好ましい。
なお、水分吸着率を上記の範囲に制御する方法については後述する。
水分吸着率は、無機粒子(表面処理粒子)を、温度423Kで2時間以上放置した後、相対湿度90%、温度298K(25℃)の環境下に12時間放置し、BELSORP(日本BEL株式会社)にて測定する。
次いで、本実施形態に係る感光体の構成を詳しく説明する。
本実施形態に係る画像形成装置における感光体は、導電性基体上に、感光層に有するものである。なお、感光層上にさらに保護層(無機表面層等)を有していてもよい。
感光層は、電荷発生材料と電荷輸送材料とを同一の感光層に含有して機能を一体化した単層型感光層でもよく、電荷発生層と電荷輸送層とを有する機能が分離された積層型感光層でもよい。感光層が積層型感光層である場合、電荷発生層と電荷輸送層との順序は特に限定されないが、感光体は、導電性基体上に、電荷発生層、及び電荷輸送層をこの順に有する構成が好ましく、さらに最表面層として無機表面層を有する構成がより好ましい。また、感光体は、これらの層以外の層を含んでいてもよい。
なお、相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層は、感光層中のどの層を構成してもよい。つまり、単層型感光層でもよく、積層型感光層における電荷発生層でも、電荷輸送層でもよい。
ただし、感光層において最外表面を構成する層であることが好ましく、具体的には単層型感光層、又は積層型感光層において最外表面を構成する電荷輸送層であることがより好ましい。
図1は、本実施形態に係る画像形成装置における感光体の層構成の一例を示す模式断面図である。感光体107Aは、導電性基体104上に、下引層101が設けられ、その上に電荷発生層102、電荷輸送層103、及び無機表面層106が順次形成された構造を有する。感光体107Aにおいては、電荷発生層102と電荷輸送層103とに機能が分離された感光層105が構成されている。なお、図1に示す態様の感光体107Aでは、電荷発生層102が粒子含有層であっても、電荷輸送層103が粒子含有層であってもよく、また両層が粒子含有層であってもよい。ただし、電荷輸送層103が粒子含有層である態様が好ましい。
また、図2は、本実施形態に係る画像形成装置における感光体の層構成の他の例を示す模式断面図である。図2に示す感光体107Bは、導電性基体104上に、下引層101が設けられ、感光層105及び無機表面層106が順次形成された構造を有する。感光体107Bにおいては、電荷発生材料と電荷輸送材料とを同一の感光層105に含有して機能を一体化した単層型感光層が構成されている。そして、図2に示す感光体107Bでは、単層型の感光層105が粒子含有層である。
なお、本実施形態における感光体は、下引層101を設けてもよいし、設けなくてもよい。また、感光層の外周面側に保護層(例えば無機表面層)を設けてもよいし、設けなくてもよい。
以下、本実施形態における感光体の詳細について説明するが、符号は省略して説明する。
(導電性基体)
導電性基体としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基体としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
導電性基体の表面は、電子写真感光体がレーザプリンタに使用される場合、レーザ光を照射する際に生じる干渉縞を抑制する目的で、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化されていることが好ましい。なお、非干渉光を光源に用いる場合、干渉縞防止の粗面化は、特に必要ないが、導電性基体の表面の凹凸による欠陥の発生を抑制するため、より長寿命化に適する。
粗面化の方法としては、例えば、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、回転する砥石に導電性基体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が挙げられる。
粗面化の方法としては、導電性基体の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基体の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も挙げられる。
陽極酸化による粗面化処理は、金属製(例えばアルミニウム製)の導電性基体を陽極とし電解質溶液中で陽極酸化することにより導電性基体の表面に酸化膜を形成するものである。電解質溶液としては、例えば、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、多孔質陽極酸化膜に対して、酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。
陽極酸化膜の膜厚は、例えば、0.3μm以上15μm以下が好ましい。この膜厚が上記範囲内にあると、注入に対するバリア性が発揮される傾向があり、また繰り返し使用による残留電位の上昇が抑えられる傾向にある。
導電性基体には、酸性処理液による処理又はベーマイト処理を施してもよい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
ベーマイト処理は、例えば90℃以上100℃以下の純水中に5分から60分間浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分から60分間接触させて行う。被膜の膜厚は、0.1μm以上5μm以下が好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。
(下引層)
下引層は、例えば、無機粒子と結着樹脂とを含む層である。
無機粒子としては、例えば、粉体抵抗(体積抵抗率)10Ωcm以上1011Ωcm以下の無機粒子が挙げられる。
これらの中でも、上記抵抗値を有する無機粒子としては、例えば、酸化錫粒子、酸化チタン粒子、酸化亜鉛粒子、酸化ジルコニウム粒子等の金属酸化物粒子がよく、特に、酸化亜鉛粒子が好ましい。
無機粒子のBET法による比表面積は、例えば、10m/g以上がよい。
無機粒子の体積平均粒径は、例えば、50nm以上2000nm以下(好ましくは60nm以上1000nm以下)がよい。
無機粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが好ましく、より好ましくは40質量%以上80質量%以下である。
無機粒子は、表面処理が施されていてもよい。無機粒子は、表面処理の異なるもの、又は、粒子径の異なるものを2種以上混合して用いてもよい。
表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性剤等が挙げられる。特に、シランカップリング剤が好ましく、アミノ基を有するシランカップリング剤がより好ましい。
アミノ基を有するシランカップリング剤としては、例えば、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。
シランカップリング剤は、2種以上混合して使用してもよい。例えば、アミノ基を有するシランカップリング剤と他のシランカップリング剤とを併用してもよい。この他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。
表面処理剤による表面処理方法は、公知の方法であればいかなる方法でもよく、乾式法又は湿式法のいずれでもよい。
表面処理剤の処理量は、例えば、無機粒子に対して0.5質量%以上10質量%以下が好ましい。
ここで、下引層は、無機粒子と共に電子受容性化合物(アクセプター化合物)を含有することが、電気特性の長期安定性、キャリアブロック性が高まる観点からよい。
電子受容性化合物としては、例えば、クロラニル、ブロモアニル等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物;2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)−1,3,4オキサジアゾール等のオキサジアゾール系化合物;キサントン系化合物;チオフェン化合物;3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物;等の電子輸送性物質等が挙げられる。
特に、電子受容性化合物としては、アントラキノン構造を有する化合物が好ましい。アントラキノン構造を有する化合物としては、例えば、ヒドロキシアントラキノン化合物、アミノアントラキノン化合物、アミノヒドロキシアントラキノン化合物等が好ましく、具体的には、例えば、アントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が好ましい。
電子受容性化合物は、下引層中に無機粒子と共に分散して含まれていてもよいし、無機粒子の表面に付着した状態で含まれていてもよい。
電子受容性化合物を無機粒子の表面に付着させる方法としては、例えば、乾式法、又は、湿式法が挙げられる。
乾式法は、例えば、無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させた電子受容性化合物を滴下、乾燥空気や窒素ガスとともに噴霧させて、電子受容性化合物を無機粒子の表面に付着する方法である。電子受容性化合物の滴下又は噴霧するときは、溶剤の沸点以下の温度で行うことがよい。電子受容性化合物を滴下又は噴霧した後、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に制限されない。
湿式法は、例えば、攪拌、超音波、サンドミル、アトライター、ボールミル等により、無機粒子を溶剤中に分散しつつ、電子受容性化合物を添加し、攪拌又は分散した後、溶剤除去して、電子受容性化合物を無機粒子の表面に付着する方法である。溶剤除去方法は、例えば、ろ過又は蒸留により留去される。溶剤除去後には、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に限定されない。湿式法においては、電子受容性化合物を添加する前に無機粒子の含有水分を除去してもよく、その例として溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法が挙げられる。
なお、電子受容性化合物の付着は、表面処理剤による表面処理を無機粒子に施す前又は後に行ってよく、電子受容性化合物の付着と表面処理剤による表面処理と同時に行ってもよい。
電子受容性化合物の含有量は、例えば、無機粒子に対して0.01質量%以上20質量%以下がよく、好ましくは0.01質量%以上10質量%以下である。
下引層に用いる結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂、エポキシ樹脂等の公知の高分子化合物;ジルコニウムキレート化合物;チタニウムキレート化合物;アルミニウムキレート化合物;チタニウムアルコキシド化合物;有機チタニウム化合物;シランカップリング剤等の公知の材料が挙げられる。
下引層に用いる結着樹脂としては、例えば、電荷輸送性基を有する電荷輸送性樹脂、導電性樹脂(例えばポリアニリン等)等も挙げられる。
これらの中でも、下引層に用いる結着樹脂としては、上層の塗布溶剤に不溶な樹脂が好適であり、特に、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂;ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル樹脂、アクリル樹脂、ポリビニルアルコール樹脂及びポリビニルアセタール樹脂からなる群から選択される少なくとも1種の樹脂と硬化剤との反応により得られる樹脂が好適である。
これら結着樹脂を2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
下引層には、電気特性向上、環境安定性向上、画質向上のために種々の添加剤を含んでいてもよい。
添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が挙げられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層に添加してもよい。
添加剤としてのシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。
ジルコニウムキレート化合物としては、例えば、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
チタニウムキレート化合物としては、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
アルミニウムキレート化合物としては、例えば、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。
これらの添加剤は、単独で、又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
下引層は、ビッカース硬度が35以上であることがよい。
下引層の表面粗さ(十点平均粗さ)は、モアレ像抑制のために、使用される露光用レーザ波長λの1/(4n)(nは上層の屈折率)から1/2までに調整されていることがよい。
表面粗さ調整のために下引層中に樹脂粒子等を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が挙げられる。また、表面粗さ調整のために下引層の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が挙げられる。
下引層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた下引層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。
下引層形成用塗布液を調製するための溶剤としては、公知の有機溶剤、例えば、アルコール系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水素溶剤、ケトン系溶剤、ケトンアルコール系溶剤、エーテル系溶剤、エステル系溶剤等が挙げられる。
これらの溶剤として具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等の通常の有機溶剤が挙げられる。
下引層形成用塗布液を調製するときの無機粒子の分散方法としては、例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等の公知の方法が挙げられる。
下引層形成用塗布液を導電性基体上に塗布する方法としては、例えば、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
下引層の膜厚は、例えば、好ましくは15μm以上、より好ましくは20μm以上50μm以下の範囲内に設定される。
(中間層)
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
これらの中でも、中間層は、ジルコニウム原子又はケイ素原子を含有する有機金属化合物を含む層であることが好ましい。
中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
中間層の膜厚は、例えば、好ましくは0.1μm以上3μm以下の範囲に設定される。なお、中間層を下引層として使用してもよい。
(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料;ジブロモアントアントロン等の縮環芳香族顔料;ペリレン顔料;ピロロピロール顔料;フタロシアニン顔料;酸化亜鉛;三方晶系セレン等が挙げられる。
これらの中でも、近赤外域のレーザ露光に対応させるためには、電荷発生材料としては、金属フタロシアニン顔料、又は無金属フタロシアニン顔料を用いることが好ましい。具体的には、例えば、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン;特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン;特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン;特開平4−189873号公報等に開示されたチタニルフタロシアニンがより好ましい。
一方、近紫外域のレーザ露光に対応させるためには、電荷発生材料としては、ジブロモアントアントロン等の縮環芳香族顔料;チオインジゴ系顔料;ポルフィラジン化合物;酸化亜鉛;三方晶系セレン;特開2004−78147号公報、特開2005−181992号公報に開示されたビスアゾ顔料等が好ましい。
450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレー等の非干渉性光源を用いる場合にも、上記電荷発生材料を用いてもよいが、解像度の観点より、感光層を20μm以下の薄膜で用いるときには、感光層中の電界強度が高くなり、基体からの電荷注入による帯電低下、いわゆる黒点と呼ばれる画像欠陥を生じやすくなる。これは、三方晶系セレン、フタロシアニン顔料等のp−型半導体で暗電流を生じやすい電荷発生材料を用いたときに顕著となる。
これに対し、電荷発生材料として、縮環芳香族顔料、ペリレン顔料、アゾ顔料等のn−型半導体を用いた場合、暗電流を生じ難く、薄膜にしても黒点と呼ばれる画像欠陥を抑制し得る。n−型の電荷発生材料としては、例えば、特開2012−155282号公報の段落[0288]〜[0291]に記載された化合物(CG−1)〜(CG−27)が挙げられるがこれに限られるものではない。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
電荷発生層に用いる結着樹脂としては、広範な絶縁性樹脂から選択され、また、結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
なお、電荷発生材料と結着樹脂の配合比は、質量比で10:1から1:10までの範囲内であることが好ましい。
電荷発生層には、その他、周知の添加剤が含まれていてもよい。
電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。電荷発生層の蒸着による形成は、特に、電荷発生材料として縮環芳香族顔料、ペリレン顔料を利用する場合に好適である。
電荷発生層形成用塗布液を調製するための溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等が挙げられる。これら溶剤は、1種を単独で又は2種以上を混合して用いる。
電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式等が挙げられる。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、好ましくは0.3μm以下、更に好ましくは0.15μm以下にすることが有効である。
電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えばブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
電荷発生層の膜厚は、例えば、好ましくは0.1μm以上5.0μm以下、より好ましくは0.2μm以上2.0μm以下の範囲内に設定される。
(電荷輸送層)
電荷輸送層は、例えば、電荷輸送材料と結着樹脂とを含む層である。電荷輸送層は、高分子電荷輸送材料を含む層であってもよい。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等の電子輸送性化合物が挙げられる。電荷輸送材料としては、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物も挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上で用いられるが、これらに限定されるものではない。
電荷輸送材料としては、電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が好ましい。
構造式(a−1)中、ArT1、ArT2、及びArT3は、各々独立に置換若しくは無置換のアリール基、−C−C(RT4)=C(RT5)(RT6)、又は−C−CH=CH−CH=C(RT7)(RT8)を示す。RT4、RT5、RT6、RT7、及びRT8は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
構造式(a−2)中、RT91及びRT92は各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、又は炭素数1以上5以下のアルコキシ基を示す。RT101、RT102、RT111及びRT112は各々独立に、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは無置換のアリール基、−C(RT12)=C(RT13)(RT14)、又は−CH=CH−CH=C(RT15)(RT16)を示し、RT12、RT13、RT14、RT15及びRT16は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を表す。Tm1、Tm2、Tn1及びTn2は各々独立に0以上2以下の整数を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
ここで、構造式(a−1)で示されるトリアリールアミン誘導体、及び前記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(RT7)(RT8)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(RT15)(RT16)」を有するベンジジン誘導体が、電荷移動度の観点で好ましい。
高分子電荷輸送材料としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系の高分子電荷輸送材料は特に好ましい。なお、高分子電荷輸送材料は、単独で使用してよいが、結着樹脂と併用してもよい。
電荷輸送層に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。これらの中でも、結着樹脂としては、ポリカーボネート樹脂又はポリアリレート樹脂が好適である。これらの結着樹脂は1種を単独で又は2種以上で用いる。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
上記の結着樹脂の中でも、電荷輸送層の表面粗さをより低下させ易くし、像流れの発生をより抑制する点から、ポリカーボネート樹脂、及びポリアリレート樹脂が好ましく、さらにはポリカーボネート樹脂(ビスフェノールA、ビスフェノールZ、ビスフェノールC、ビスフェノールTP等の単独重合型、又はその共重合型)がより好ましい。
ポリカーボネート樹脂は、1種を単独で使用してもよく、2種以上併用してもよい。
また、同様の点で、ポリカーボネート樹脂の中でも、ビスフェノールZの単独重合型ポリカーボネート樹脂を含むことがより好ましい。
−無機粒子(表面処理粒子)−
電荷輸送層は、電荷輸送材料及び結着樹脂のほかに、無機粒子が表面処理された表面処理粒子を含む。なお、この表面処理粒子として、少なくとも相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含む。
電荷輸送層(粒子含有層)が表面処理粒子を含むことで、無機表面層の割れが抑制される。具体的には、有機感光層の表面を構成する層に無機粒子を含有させることにより、無機粒子が有機感光層の補強材としての機能を果すことで、有機感光層が変形し難くなり、無機表面層の割れが抑制されると考えられる。また、電荷輸送層(すなわち有機感光層)が無機粒子を含むことで、電界強度が高くなっても電荷輸送層(すなわち有機感光層)の絶縁破壊が起こりにくくなる。
電荷輸送層に用いられる無機粒子としては、シリカ粒子、アルミナ粒子、酸化チタン粒子、チタン酸カリウム、酸化スズ粒子、酸化亜鉛粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、酸化カルシウム粒子、炭酸カルシウム粒子、酸化マグネシウム粒子、などが挙げられる。
無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。
これらの中でも、誘電損率が高く、感光体の電気特性を低減させ難い点、また、無機表面層の割れの発生を抑制する観点から、シリカ粒子が特に好ましい。
以下、電荷輸送層に好適なシリカ粒子について詳細に説明する。
シリカ粒子としては、例えば、乾式シリカ粒子、湿式シリカ粒子が挙げられる。
乾式シリカ粒子としては、シラン化合物を燃焼させて得られる燃焼法シリカ(ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ等が挙げられる。
湿式シリカ粒子としては、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ粒子(アルカリ条件で合成・凝集した沈降法シリカ、酸性条件で合成・凝集したゲル法シリカ粒子等)、酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ粒子(シリカゾル粒子等)、有機シラン化合物(例えばアルコキシシラン等)の加水分解によって得られるゾルゲル法シリカ粒子が挙げられる。
これらの中でも、シリカ粒子としては、残留電位の発生、その他電気特性の悪化による画像欠陥の抑制(細線再現性の悪化の抑制)の観点から、表面のシラノール基が少なく、低い空隙構造を持つ燃焼法シリカ粒子が望ましい。
シリカ粒子は、その表面が表面処理されており、好ましくは疎水化処理剤で表面処理されていることがよい。これにより、シリカ粒子の表面のシラノール基が低減して残留電位の発生が抑制され易くなり、また感光層における電荷漏れの発生が抑制され易くなる。
疎水化処理剤としては、クロロシラン、アルコキシシラン、シラザン等の周知のシラン化合物が挙げられる。
これらの中でも、疎水化処理剤としては、残留電位の発生を抑制し易くする観点及び感光体表面の帯電ムラに起因する画像濃度ムラを抑制する観点から、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物が望ましい。つまり、シリカ粒子の表面には、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を有することがよい。
トリメチルシリル基を持つシラン化合物(トリメチルシラン化合物)としては、例えば、トリメチルクロロシラン、トリメチルメトキシシラン、1,1,1,3,3,3−ヘキサメチルジシラザン等が挙げられる。
デシルシリル基を持つシラン化合物(デシルシラン化合物)としては、例えば、デシルトリクロロシラン、デシルジメチルクロロシラン、デシルトリメトキシシラン等が挙げられる。
フェニル基を持つシラン化合物(フェニルシラン化合物)としては、トリフェニルメトキシシラン、トリフェニルクロロシラン等が挙げられる。
次いで、表面処理方法について説明する。表面処理方法は特に限定されるものではなく、従来公知の方法等を採用することができる。
なお、相対湿度90%の環境下での水分吸着率を前述の範囲に制御する観点から、疎水化処理剤等の表面処理剤との反応時間は長い方が好ましい。また、表面処理剤との反応が促進されやすい環境(例えば、より高温な温度環境等)で行うことが好ましい。
表面処理方法は、例えば乾式での疎水化処理方法(気相法)及び湿式での疎水化処理方法(湿式法)が挙げられる。
気相法は、例えば、無機粒子をせん断力の大きなミキサ等で攪拌(例えばせん断力の大きなミキサ等で攪拌)しながら、直接又は有機溶媒に溶解させた疎水化処理剤を滴下する、又は乾燥空気や窒素ガスとともに噴霧して、疎水化処理剤を無機粒子の表面に付着させる方法が挙げられる。疎水化処理剤を滴下又は噴霧するときは、溶剤の沸点以下の温度で行うことがよい。疎水化処理剤を滴下又は噴霧した後、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に制限されない。
湿式法は、例えば、攪拌、超音波、サンドミル、アトライター、ボールミル等により、無機粒子を溶剤中に分散しつつ、疎水化処理剤を添加し、攪拌又は分散した後、溶剤除去して、疎水化処理剤を無機粒子の表面に付着する方法が挙げられる。溶剤除去方法としては、例えばろ過、蒸留による留去等が挙げられる。溶剤除去後には、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に限定されない。湿式法においては、疎水化処理剤を添加する前に無機粒子の含有水分を除去してもよく、その例として溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法が挙げられる。
なお、水分吸着率をより低減させる観点から、気相法での疎水化処理が好ましく、中でも無機粒子を攪拌しながら、直接又は有機溶媒に溶解させた高温に熱した疎水化処理剤を乾燥空気や窒素ガスとともに噴霧して処理する方法がより好ましい。
疎水化処理されたシリカ粒子の縮合率(シリカ粒子中のSiO4−の結合におけるSi−O−Siの率:以下「疎水化処理剤の縮合率」ともいう)は、例えば、シリカ粒子の表面のシラノール基に対して90%以上が挙げられ、好ましくは91%以上、より好ましくは95%以上である。
疎水化処理剤の縮合率を上記範囲にすると、シリカ粒子のシラノール基がより低減し、残留電位の発生が抑制され易くなる。
疎水化処理剤の縮合率は、NMR(Nuclear Magnetic Resonance)で検出した縮合部のケイ素の全結合可能サイトに対して、縮合したケイ素の割合を示しており、次のようにして測定する。
まず、層中からシリカ粒子を分離する。分離したシリカ粒子に対して、Bruker製AVANCEIII 400でSi CP/MAS NMR分析を行い、SiOの置換数に応じたピーク面積を求め、それぞれ、2置換(Si(OH)(0−Si)−)、3置換(Si(OH)(0−Si)−)、4置換(Si(0−Si)−)の値をQ2,Q3,Q4とし、疎水化処理剤の縮合率は式:(Q2×2+Q3×3+Q4×4)/4×(Q2+Q3+Q4)により算出する。
シリカ粒子の体積抵抗率は、例えば、1011Ω・cm以上がよく、好ましくは1012Ω・cm以上、より好ましくは1013Ω・cm以上である。
シリカ粒子の体積抵抗率を上記範囲にすると、電気特性の低下が抑制される。
シリカ粒子の体積抵抗率は、次のようにして測定する。なお、測定環境は、温度20℃、湿度50%RHとする。
まず、層中からシリカ粒子を分離する。そして、20cmの電極板を配した円形の治具の表面に、測定対象となる分離したシリカ粒子を1mm以上3mm以下程度の厚さになるように載せ、シリカ粒子層を形成する。この上に前記同様の20cmの電極板を載せシリカ粒子層を挟み込む。シリカ粒子間の空隙をなくすため、シリカ粒子層上に載せた電極板の上に4kgの荷重をかけてからシリカ粒子層の厚み(cm)を測定する。シリカ粒子層上下の両電極には、エレクトロメーター及び高圧電源発生装置に接続されている。両電極に電界が予め定められた値となるように高電圧を印加し、このとき流れた電流値(A)を読み取ることにより、シリカ粒子の体積抵抗率(Ω・cm)を計算する。シリカ粒子の体積抵抗率(Ω・cm)の計算式は、下式に示す通りである。
なお、式中、ρはシリカ粒子の体積抵抗率(Ω・cm)、Eは印加電圧(V)、Iは電流値(A)、I0は印加電圧0Vにおける電流値(A)、Lはシリカ粒子層の厚み(cm)をそれぞれ表す。本評価では印加電圧が1000Vの時の体積抵抗率を用いた。
・式:ρ=E×20/(I−I0)/L
シリカ粒子を含む無機粒子の体積平均粒径は、例えば、20nm以上200nm以下が挙げられ、好ましくは40nm以上150nm以下、より好ましくは50nm以上120nm以下、更に好ましくは、50nm以上110nm以下である。
体積平均粒径が上記範囲であることで、無機表面層の割れ、及び残留電位の発生が抑制され易くなる。
無機粒子の体積平均粒径は、次のようにして測定する。以下、シリカ粒子の場合の測定方法を示すが、他の粒子であっても同様の測定方法が採用される。
シリカ粒子の体積平均粒径は、層中からシリカ粒子を分離し、このシリカ粒子の一次粒子100個をSEM(Scanning Electron Microscope)装置により40000倍の倍率で観察し、一次粒子の画像解析によって粒子ごとの最長径、最短径を測定し、この中間値から球相当径を測定する。得られた球相当径の累積頻度における50%径(D50v)を求め、これをシリカ粒子の体積平均粒径として測定する。
無機粒子(表面処理粒子)の含有量は、その種類によって適宜決定されればよいが、無機表面層の割れ、及び残留電位の発生が抑制され易くなるといった点から、電荷輸送層全体(固形分)に対して、例えば、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましく、55質量%以上であることが特に好ましい。
また、無機粒子の含有量の上限値は特に限定されないが、電荷輸送層の特性を確保する等の点から、80質量%以下がよく、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
また、無機粒子の含有量は、電荷輸送材料の含有量よりも多いことが好ましく、例えば電荷輸送層全体(固形分)に対し30質量%以上80質量%以下であることが好ましい。
電荷輸送層には、その他、周知の添加剤が含まれていてもよい。
−電荷輸送層の特性−
電荷輸送層における無機表面層側の表面の表面粗さRa(算術平均表面粗さRa)は、例えば、0.06μm以下が挙げられ、好ましくは0.03μm以下、より好ましくは0.02μm以下である。
この表面粗さRaを上記範囲とすると、無機表面層の平滑性が上がり、クリーニング性が向上する。
なお、表面粗さRaを上記範囲とするには、例えば、層の厚みを厚くする等の方法が挙げられる
この表面粗さRaは、次のように測定する。
まず、無機表面層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、触針式表面粗さ測定機(サーフコム1400A:東京精密社製等)を使用して測定する。その測定条件としては、JIS B0601−1994に準拠し、評価長さLn=4mm、基準長さL=0.8mm、カットオフ値=0.8mmとする。
電荷輸送層の弾性率は、例えば、5GPa以上が挙げられ、6GPa以上が好ましく、6.5GPa以上がより好ましい。
電荷輸送層の弾性率を上記範囲とすると、無機表面層の割れが抑制され易くなる。
なお、電荷輸送層の弾性率を上記範囲とするには、例えば、シリカ粒子の粒径及び含有量を調整する方法、電荷輸送材料の種類及び含有量を調整する方法が挙げられる。
電荷輸送層の弾性率は、次のように測定する。
まず、無機表面層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いて測定する。
電荷輸送層の膜厚は、例えば、10μm以上40μm以下が挙げられ、好ましくは10μm以上35μm以下、より好ましくは15μm以上30μm以下である。
電荷輸送層の膜厚を上記範囲にすると、無機表面層の割れ、及び残留電位の発生が抑制され易くなる。
−電荷輸送層の形成−
電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
電荷輸送層形成用塗布液を調製するための溶剤としては、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類;アセトン、2−ブタノン等のケトン類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類;テトラヒドロフラン、エチルエーテル等の環状又は直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これら溶剤は、単独で又は2種以上混合して用いる。
電荷輸送層形成用塗布液を電荷発生層の上に塗布する際の塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
なお、電荷輸送層形成用塗布液中に粒子(例えばシリカ粒子やフッ素樹脂粒子)を分散させる場合、その分散方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
また、電荷輸送層の形成後、無機表面層の形成の前に、必要に応じて、導電性基体上に形成された有機感光層に含まれる大気を、大気よりも酸素濃度が高い気体で置換する工程を経てもよい。
(保護層)
保護層は、必要に応じて感光層上に設けられる。保護層は、例えば、帯電時の感光層の化学的変化を防止したり、感光層の機械的強度をさらに改善する目的で設けられる。
保護層としては、有機表面層(例えば架橋膜で構成された層)、無機表面層が挙げられ、中でも無機表面層を備えることが好ましい。
以下、無機表面層について説明する。
−無機表面層の組成−
無機表面層は、第13族元素及び酸素を含有する無機材料を含んで構成された層である。
第13族元素及び酸素を含有する無機材料としては、例えば、酸化ガリウム、酸化アルミニウム、酸化インジウム、酸化ホウ素等の金属酸化物、又はこれらの混晶が挙げられる。
これらの中でも、無機材料としては、機械的強度、透光性に優れ、特にn型導電性を有し、その導電制御性に優れるという観点から、特に酸化ガリウムが好ましい。
無機表面層は、少なくとも第13族元素(好ましくはガリウム)及び酸素を含んで構成されていればよく、必要に応じて、水素を含んで構成されていてもよい。水素を含むことで、少なくとも第13族元素(好ましくはガリウム)及び酸素を含んで構成された無機表面層の諸物性が容易に制御され易くなる。例えば、ガリウム、酸素、及び水素を含む無機表面層(例えば、水素を含む酸化ガリウムで構成された無機表面層)において、組成比[O]/[Ga]を1.0から1.5と変化させることで、10Ω・cm以上1014Ω・cmの範囲で体積抵抗率の制御が実現され易くなる。
特に、無機表面層は、第13族元素、酸素、及び水素を含有し、無機表面層を構成する全元素に対する、第13族元素、酸素、及び水素の元素構成比率の和が90原子%以上であることが好ましい。
そして、酸素及び第13族元素の元素組成比(酸素/第13族元素)が1.0以上1.5未満であることが好ましく、1.03以上1.47以下がより好ましく、1.05以上1.45以下がさらに好ましく、1.10以上1.40以下が特に好ましい。
無機表面層を構成する材料の元素組成比(酸素/第13族元素)が、上記範囲であると、感光体の表面における傷に起因する画像欠陥が抑制される。同様の点で、第13族元素はガリウムであることが望ましい。
また、無機表面層を構成する全元素に対する、第13族元素(特にガリウム)、酸素、及び水素の元素構成比率の和は、90原子%以上であることで、例えばN,P,Asなどの15族元素などが混入した場合、これらが第13族元素(特にガリウム)と結合する影響などが抑制され、無機表面層の硬度や電気特性を向上させ得る酸素及び第13族元素(特にガリウム)組成比(酸素/第13族元素(特にガリウム))の適正範囲を見出しやすくなる。上記元素構成比率の和は、上記の観点で、95原子%以上が好ましく、96原子%以上がより好ましく、97原子%以上がさらに好ましい。
無機表面層には、上記無機材料の他、導電型の制御のために、例えば、n型の場合、C、Si、Ge、Snから選ばれる1つ以上の元素を含んでいてもよい。また、例えば、p型の場合、N、Be、Mg、Ca、Srから選ばれる1つ以上の元素を含んでいてもよい。
ここで、無機表面層が、ガリウムと酸素と必要に応じて水素とを含んで構成された場合、機械的強度、透光性、柔軟性に優れ、その導電制御性に優れるという観点から、好適な元素構成比率は以下の通りである。
ガリウムの元素構成比率は、例えば、無機表面層の全構成元素に対して、15原子%以上50原子%以下であることがよく、望ましくは20原子%以上40原子%以下、より望ましくは20原子%以上30原子%以下である。
酸素の元素構成比率は、例えば、無機表面層の全構成元素に対して、30原子%以上70原子%以下であることがよく、望ましくは40原子%以上60原子%以下、より望ましくは45原子%以上55原子%以下である。
水素の元素構成比率は、例えば、無機表面層の全構成元素に対して、10原子%以上40原子%以下であることがよく、望ましくは15原子%以上35原子%以下、より望ましくは20原子%以上30原子%以下である。
ここで、無機表面層における各元素の元素構成比率、原子数比等は、厚み方向の分布も含めてラザフォードバックスキャタリング(以下、「RBS」と称する)により求められる
なお、RBSでは、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラム等を用いる。
なお、RBSの測定条件は、He++イオンビームエネルギーは2.275eV、検出角度160°、入射ビームに対してGrazing Angleは約109°とする。
RBS測定は、具体的には以下のように行う
まず、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。組成比及び膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度が向上する。
ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度の3つの要素のみにより決まる。 測定された組成から密度を計算によって仮定して、これを用いて厚みを算出する。密度の誤差は20%以内である。
なお、水素の元素構成比率は、ハイドロジェンフォワードスキャタリング(以下、「HFS」と称する)により求められる。
HFS測定では、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400を用い、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラムを用いる。そして、HFSの測定条件は、以下の通りである。
・He++イオンビームエネルギー:2.275eV
・検出角度:160°入射ビームに対してGrazing Angle30°
HFS測定は、He++イオンビームに対して検出器が30°に、試料が法線から75°になるようにセットすることにより、試料の前方に散乱する水素のシグナルを拾う。この時検出器をアルミ箔で覆い、水素とともに散乱するHe原子を取り除くことがよい。定量は参照用試料と被測定試料との水素のカウントを阻止能で規格化した後に比較することによって行う。参照用試料としてSi中にHをイオン注入した試料と白雲母を使用する。
白雲母は水素濃度が6.5原子%であることが知られている。
最表面に吸着しているHは、例えば、清浄なSi表面に吸着しているH量を差し引くことによって補正を行う。
なお、無機表面層は、目的に応じて、厚み方向に組成比に分布を有していてもよいし、多層構成からなるものであってもよい。
−無機表面層の特性−
無機表面層の外周面(すなわち、電子写真感光体7の表面)における表面粗さRa(算術平均表面粗さRa)は、例えば、5nm以下が挙げられ、好ましくは4.5nm以下、より好ましくは4nm以下である。
この表面粗さRaを上記範囲とすることで、帯電ムラが抑制される。
なお、表面粗さRaを上記範囲とするには、例えば、電荷輸送層における無機表面層側の表面の表面粗さRaを前述の範囲とする等の方法が挙げられる
また、無機表面層の外周面における表面粗さRaの測定は、無機表面層の外周面について直接測定すること以外は、前述の電荷輸送層における無機表面層側の表面の表面粗さRaの測定方法と同様である。
無機表面層の体積抵抗率は、5.0×10Ωcm以上1.0×1012Ωcm未満が好ましい。無機表面層の体積抵抗率は、像流れの発生をより抑制し易くし、感光体の表面における傷に起因する画像欠陥をより抑制し易くする点で、8.0×10Ωcm以上7.0×1011Ωcm以下がより好ましく、1.0×10Ωcm以上5.0×1011Ωcm以下がさらに好ましく、5.0×10Ωcm以上2.0×1011Ωcm以下が特に好ましい。
この体積抵抗率は、nF社製LCRメーターZM2371を用いて、周波数1kHz、電圧1Vの条件にて測定した抵抗値から、電極面積、試料厚みに基づき算出して求められる。
なお、測定試料は、測定対象となる無機表面層の成膜時の同条件でアルミ基体上に成膜し、その成膜物上に真空蒸着により金電極を形成し得られた試料であってもよいし、又は作製後の電子写真感光体から無機表面層を剥離し、一部エッチングして、これを一対の電極で挟み込んだ試料であってもよい。
無機表面層は、微結晶膜、多結晶膜、非晶質膜などの非単結晶膜であることが望ましい。これらの中でも、非晶質は表面の平滑性で特に望ましいが、微結晶膜は硬度の点でより望ましい。
無機表面層の成長断面は、柱状構造をとっていてもよいが、滑り性の観点からは平坦性の高い構造が望ましく、非晶質が望ましい。
なお、結晶性、非晶質性は、RHEED(反射高速電子線回折)測定により得られた回折像の点や線の有無により判別される。
無機表面層の弾性率は30GPa以上80GPa以下であることがよく、望ましくは40GPa以上65GPa以下である。
この弾性率を上記範囲とすると、無機表面層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
この弾性率は、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いる。下記は測定条件である。
・測定環境:23℃、55%RH
・使用圧子:ダイヤモンド製正三角錐圧子(Berkovic圧子)三角錐圧子
・試験モード:CSMモード
なお、測定試料は、測定対象となる無機表面層の成膜時の同条件で基体上に成膜した試料であってもよいし、又は作製後の電子写真感光体から無機表面層を剥離し、一部エッチングした試料であってもよい。
無機表面層の膜厚は、例えば、0.2μm以上10.0μm以下であることがよく、望ましくは0.4μm以上5.0μm以下である。
この膜厚を上記範囲とすると、無機表面層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
−無機表面層の形成−
保護層の形成には、例えば、プラズマCVD(Chemical Vapor Deposition)法、有機金属気相成長法、分子線エキタピシー法、蒸着、スパッタリング等の公知の気相成膜法が利用される。
以下、無機表面層の形成について、成膜装置の一例を図面に示しつつ具体例を挙げて説明する。なお、以下の説明は、ガリウム、酸素、及び水素を含んで構成された無機表面層の形成方法について示すが、これに限られず、目的とする無機表面層の組成に応じて、周知の形成方法を適用すればよい。
図3は、本実施形態に係る電子写真感光体の無機表面層の形成に用いる成膜装置の一例を示す概略模式図であり、図3(A)は、成膜装置を側面から見た場合の模式断面図を表し、図3(B)は、図3(A)に示す成膜装置のA1−A2間における模式断面図を表す。図3中、210は成膜室、211は排気口、212は基体回転部、213は基体支持部材、214は基体、215はガス導入管、216はガス導入管215から導入したガスを噴射する開口を有するシャワーノズル、217はプラズマ拡散部、218は高周波電力供給部、219は平板電極、220はガス導入管、221は高周波放電管部である。
図3に示す成膜装置において、成膜室210の一端には、不図示の真空排気装置に接続された排気口211が設けられており、成膜室210の排気口211が設けられた側と反対側に、高周波電力供給部218、平板電極219及び高周波放電管部221からなるプラズマ発生装置が設けられている。
このプラズマ発生装置は、高周波放電管部221と、高周波放電管部221内に配置され、放電面が排気口211側に設けられた平板電極219と、高周波放電管部221外に配置され、平板電極219の放電面と反対側の面に接続された高周波電力供給部218とから構成されたものである。なお、高周波放電管部221には、高周波放電管部221内にガスを供給するためのガス導入管220が接続されており、このガス導入管220のもう一方の端は、不図示の第1のガス供給源に接続されている。
なお、図3に示す成膜装置に設けられたプラズマ発生装置の代わりに、図4に示すプラズマ発生装置を用いてもよい。図4は、図3に示す成膜装置において利用されるプラズマ発生装置の他の例を示す概略模式図であり、プラズマ発生装置の側面図である。図4中、222が高周波コイル、223が石英管を表し、220は、図3中に示すものと同様である。このプラズマ発生装置は、石英管223と、石英管223の外周面沿って設けられた高周波コイル222とからなり、石英管223の一方の端は成膜室210(図4中、不図示)と接続されている。また、石英管223のもう一方の端には、石英管223内にガスを導入するためのガス導入管220が接続されている。
図3において、平板電極219の放電面側には、放電面に沿って延びる棒状のシャワーノズル216が接続されており、シャワーノズル216の一端は、ガス導入管215と接続されており、このガス導入管215は成膜室210外に設けられた不図示の第2のガス供給源と接続されている。
また、成膜室210内には、基体回転部212が設けられており、円筒状の基体214が、シャワーノズル216の長手方向と基体214の軸方向とが沿って対面するように基体支持部材213を介して基体回転部212に取りつけられるようになっている。成膜に際しては、基体回転部212が回転することによって、基体214が周方向に回転する。なお、基体214としては、例えば、予め有機感光層まで積層された感光体等が用いられる。
無機表面層の形成は、例えば、以下のように実施する。
まず、酸素ガス(又は、ヘリウム(He)希釈酸素ガス)、ヘリウム(He)ガス、及び必要に応じ水素(H)ガスを、ガス導入管220から高周波放電管部221内に導入すると共に、高周波電力供給部218から平板電極219に、13.56MHzのラジオ波を供給する。この際、平板電極219の放電面側から排気口211側へと放射状に広がるようにプラズマ拡散部217が形成される。ここで、ガス導入管220から導入されたガスは成膜室210を平板電極219側から排気口211側へと流れる。平板電極219は電極の周りをアースシールドで囲んだものでもよい。
次に、トリメチルガリウムガスをガス導入管215、活性化手段である平板電極219の下流側に位置するシャワーノズル216を介して成膜室210に導入することによって、基体214表面にガリウムと酸素と水素とを含む非単結晶膜を成膜する。
基体214としては、例えば、有機感光層が形成された基体を用いる。
無機表面層の成膜時の基体214表面の温度は、有機感光層を有する有機感光体を用いるので、150℃以下が望ましく、100℃以下がより望ましく、30℃以上100℃以下が特に望ましい。
基体214表面の温度が成膜開始当初は150℃以下であっても、プラズマの影響で150℃より高くなる場合には有機感光層が熱で損傷を受ける場合があるため、この影響を考慮して基体214の表面温度を制御することが望ましい。
基体214表面の温度は加熱手段及び冷却手段の少なくとも一方(図中、不図示)によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。基体214を加熱する場合にはヒータを基体214の外側や内側に設置してもよい。基体214を冷却する場合には基体214の内側に冷却用の気体又は液体を循環させてもよい。
放電による基体214表面の温度の上昇を避けたい場合には、基体214表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。
また、トリメチルガリウムガスの代わりにアルミニウムを含む有機金属化合物やジボラン等の水素化物を用いることもでき、これらを2種類以上混合してもよい。
例えば、無機表面層の形成の初期において、トリメチルインジウムをガス導入管215、シャワーノズル216を介して成膜室210内に導入することにより、基体214上に窒素とインジウムとを含む膜を成膜すれば、この膜が、継続して成膜する場合に発生し、有機感光層を劣化させる紫外線を吸収する。このため、成膜時の紫外線の発生による有機感光層へのダメージが抑制される。
また、成膜時におけるドーパントのドーピングの方法としては、n型用としてはSiH,SnHを、p型用としては、ビスシクロペンタジエニルマグネシウム、ジメチルカルシウム、ジメチルストロンチウム、などをガス状態で使用する。また、ドーパント元素を表面層中にドーピングするには、熱拡散法、イオン注入法等の公知の方法を採用してもよい。
具体的には、例えば、少なくとも一つ以上のドーパント元素を含むガスをガス導入管215、シャワーノズル216を介して成膜室210内に導入することによって、n型、p型等の導電型の無機表面層を得る。
図3及び図4を用いて説明した成膜装置では、放電エネルギーにより形成される活性窒素又は活性水素を、活性装置を複数設けて独立に制御してもよいし、NHなど、窒素原子と水素原子を同時に含むガスを用いてもよい。更にHを加えてもよい。また、有機金属化合物から活性水素が遊離生成する条件を用いてもよい。
このようにすることで、基体214表面上には、活性化された、炭素原子、ガリウム原子、窒素原子、水素原子、等が制御された状態で存在する。そして、活性化された水素原子が、有機金属化合物を構成するメチル基やエチル基等の炭化水素基の水素を分子として脱離させる効果を有する。
このため、三次元的な結合を構成する硬質膜(無機表面層)が形成される。
図3及び図4に示す成膜装置のプラズマ発生手段は、高周波発振装置を用いたものであるが、これに限定されるものではなく、例えば、マイクロ波発振装置を用いてもよいし、エレクトロサイクロトロン共鳴方式やヘリコンプラズマ方式の装置を用いてもよい。また、高周波発振装置の場合は、誘導型でも容量型でもよい。
更に、これらの装置を2種類以上組み合わせて用いてもよく、同種の装置を2つ以上用いてもよい。プラズマの照射によって基体214表面の温度上昇を抑制するためには高周波発振装置が望ましいが、熱の照射を抑制する装置を設けてもよい。
2種類以上の異なるプラズマ発生装置(プラズマ発生手段)を用いる場合には、同じ圧力で同時に放電が生起されるようにすることが望ましい。また、放電する領域と、成膜する領域(基体が設置された部分)とに圧力差を設けてもよい。これらの装置は、成膜装置内をガスが導入される部分から排出される部分へと形成されるガス流に対して直列に配置してもよいし、いずれの装置も基体の成膜面に対向するように配置してもよい。
例えば、2種類のプラズマ発生手段をガス流に対して直列に設置する場合、図3に示す成膜装置を例に上げれば、シャワーノズル216を電極として成膜室210内に放電を起こさせる第2のプラズマ発生装置として利用される。この場合、例えば、ガス導入管215を介して、シャワーノズル216に高周波電圧を印加して、シャワーノズル216を電極として成膜室210内に放電を起こさせる。又は、シャワーノズル216を電極として利用する代わりに、成膜室210内の基体214と平板電極219との間に円筒状の電極を設けて、この円筒状電極を利用して、成膜室210内に放電を起こさせる。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧近傍(70000Pa以上110000Pa以下)で行ってもよい。大気圧近傍で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
無機表面層の形成は、例えば、成膜室210に基体上に有機感光層を形成した基体214を設置し、各々組成の異なる混合ガスを導入して、無機表面層を形成する。
また、成膜条件としては、例えば高周波放電により放電する場合、低温で良質な成膜を行うには、周波数として10kHz以上50MHz以下の範囲とすることが望ましい。また、出力は基体214の大きさに依存するが、基体の表面積に対して0.01W/cm以上0.2W/cm以下の範囲とすることが望ましい。基体214の回転速度は0.1rpm以上500rpm以下の範囲が望ましい。
(単層型感光層)
単層型感光層(電荷発生/電荷輸送層)は、例えば、電荷発生材料と電荷輸送材料と、必要に応じて、結着樹脂、及びその他周知の添加剤と、を含む層である。なお、これら材料は、電荷発生層及び電荷輸送層で説明した材料と同様である。
また、単層型感光層は、相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層で構成される。
そして、単層型感光層中、電荷発生材料の含有量は、全固形分に対して0.1質量%以上10質量%以下がよく、好ましくは0.8質量%以上5質量%以下である。また、単層型感光層中、電荷輸送材料の含有量は、全固形分に対して5質量%以上50質量%以下がよい。
単層型感光層の形成方法は、電荷発生層や電荷輸送層の形成方法と同様である。
単層型感光層の膜厚は、例えば、5μm以上50μm以下がよく、好ましくは10μm以上40μm以下である。
[画像形成装置]
次いで、本実施形態に係る画像形成装置の構成を詳しく説明する。
本実施形態に係る画像形成装置は、感光体と、感光体の表面を帯電する帯電手段と、帯電した感光体の表面に静電荷像を形成する静電荷像形成手段と、静電荷像現像剤を供給して、感光体の表面に形成された静電荷像をトナー画像として現像する現像手段と、感光体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、を備える。
なお、記録媒体の表面に転写されたトナー画像を定着する定着手段、感光体の表面を清掃する清掃手段等をさらに備えていてもよい。
そして、感光体として、前述の本実施形態に係る感光体を備える。
ここで、本実施形態に係る画像形成装置は、感光体の表面に形成されたトナー画像を直接記録媒体に転写する直接転写方式の装置;感光体の表面に形成されたトナー画像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する中間転写方式の装置;トナー画像の転写後、帯電前に感光体の表面に除電光を照射して除電する除電装置を備える装置等の周知の画像形成装置が適用される。
中間転写方式の装置の場合、転写装置は、例えば、表面にトナー画像が転写される中間転写体と、感光体の表面に形成されたトナー画像を中間転写体の表面に一次転写する一次転写装置と、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する二次転写装置と、を有する構成が適用される。
なお、本実施形態に係る画像形成装置において、感光体を少なくとも含む部分が画像形成装置用のユニットを構成し、画像形成装置に対して脱着されるカートリッジ構造(プロセスカートリッジ)であってもよい。
以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。
図5は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置10には、図5に示すように、例えば、感光体12が設けられている。感光体12は、円柱状とされ、モータ等の駆動部27にギア等の駆動力伝搬部材(不図示)を介して連結されており、当該駆動部27により、黒点で示す回転軸の周りに回転駆動される。図5に示す例では、矢印A方向に回転駆動される。
なお、感光体12は、前述の本実施形態に係る感光体が用いられる。
感光体12の周辺には、例えば、帯電装置15(帯電手段の一例)、静電荷像形成装置16(静電荷像形成手段の一例)、現像装置18(現像手段の一例)、転写装置31(転写手段の一例)、クリーニング装置22(清掃手段の一例)、及び除電装置24が、感光体12の回転方向に沿って順に配設されている。そして、画像形成装置10には、定着部材26Aと、定着部材26Aに接触して配置される加圧部材26Bと、を有する定着装置26も配設されている。また、画像形成装置10は、各装置(各部)の動作を制御する制御装置36を有している。なお、感光体12、帯電装置15、静電荷像形成装置16、現像装置18、転写装置31、クリーニング装置22を含むユニットが画像形成ユニットに該当する。
画像形成装置10において、少なくとも感光体12は、他の装置と一体化したプロセスカートリッジとして備えてもよい。
[帯電装置]
帯電装置15は、感光体12の表面を帯電する。帯電装置15は、例えば、感光体12表面に接触または非接触で設けられ、感光体12の表面を帯電する帯電部材14、及び帯電部材14に帯電電圧を印加する電源28(帯電部材用の電圧印加部の一例)を備えている。電源28は、帯電部材14に電気的に接続されている。
帯電装置15の帯電部材14としては、例えば、導電性の帯電ロール、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触方式の帯電器が挙げられる。また、帯電部材14としては、例えば、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器又はコロトロン帯電器等のそれ自体公知の帯電器等も挙げられる。
[静電荷像形成装置]
静電荷像形成装置16は、帯電された感光体12の表面に静電荷像を形成する。具体的には、例えば、静電荷像形成装置16は、帯電部材14により帯電された感光体12の表面に、形成する対象となる画像の画像情報に基づいて変調された光Lを照射して、感光体12上に画像情報の画像に応じた静電荷像を形成する。
静電荷像形成装置16としては、例えば、半導体レーザ光、LED光、液晶シャッタ光等の光を像様に露光する光源を持つ光学系機器等が挙げられる。
[現像装置]
現像装置18は、例えば、静電荷像形成装置16による光Lの照射位置より感光体12の回転方向下流側に設けられている。現像装置18内には、現像剤を収容する収容部が設けられている。この収容部には、トナーを有する静電荷像現像剤が収容されている。トナーは、例えば、現像装置18内で帯電された状態で収容されている。
現像装置18は、例えば、トナーを含む現像剤により、感光体12の表面に形成された静電荷像を現像する現像部材18Aと、現像部材18Aに現像電圧を印加する電源32と、を備えている。この現像部材18Aは、例えば、電源32に電気的に接続されている。
現像装置18の現像部材18Aとしては、現像剤の種類に応じて選択されるが、例えば、磁石が内蔵された現像スリーブを有する現像ロールが挙げられる。
現像装置18(電源32を含む)は、例えば、画像形成装置10に設けられた制御装置36に電気的に接続されており、制御装置36により駆動制御されて、現像部材18Aに現像電圧を印加する。現像電圧を印加された現像部材18Aは、現像電圧に応じた現像電位に帯電される。そして、現像電位に帯電された現像部材18Aは、例えば、現像装置18内に収容された現像剤を表面に保持して、現像剤に含まれるトナーを現像装置18内から感光体12表面へと供給する。トナーが供給された感光体12表面では、形成された静電荷像がトナー画像として現像される。
[転写装置]
転写装置31は、例えば、現像部材18Aの配設位置より感光体12の回転方向下流側に設けられている。転写装置31は、例えば、感光体12の表面に形成されたトナー画像を記録媒体30Aへ転写する転写部材20と、転写部材20に転写電圧を印加する電源30と、を備えている。転写部材20は、例えば、円柱状とされており、感光体12との間で記録媒体30Aを挟んで搬送する。転写部材20は、例えば、電源30に電気的に接続されている。
転写部材20としては、例えば、ベルト、ローラ、フィルム、ゴムクリーニングブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器又はコロトロン転写帯電器等のそれ自体公知の非接触型転写帯電器が挙げられる。
転写装置31(電源30を含む)は、例えば、画像形成装置10に設けられた制御装置36に電気的に接続されており、制御装置36により駆動制御されて、転写部材20に転写電圧を印加する。転写電圧を印加された転写部材20は、転写電圧に応じた転写電位に帯電される。
転写部材20の電源30から転写部材20に、感光体12上に形成されたトナー画像を構成するトナーとは逆極性の転写電圧が印加されると、例えば、感光体12と転写部材20との向かい合う領域(図5中、転写領域32A参照)には、感光体12上のトナー画像を構成する各トナーを静電力により感光体12から転写部材20側へと移動させる電界強度の転写電界が形成される。
記録媒体30Aは、例えば、図示を省略する収容部に収容されており、この収容部から図示を省略する複数の搬送部材によって搬送経路34に沿って搬送され、感光体12と転写部材20との向かい合う領域である転写領域32Aに到る。図5中に示す例では、矢印B方向に搬送される。転写領域32Aに到った記録媒体30Aは、例えば、転写部材20に転写電圧が印加されることにより該領域に形成された転写電界によって、感光体12上のトナー画像が転写される。すなわち、例えば、感光体12表面から記録媒体30Aへのトナーの移動により、記録媒体30A上にトナー画像が転写される。そして、感光体12上のトナー画像は、転写電界により記録媒体30A上に転写される。
[クリーニング装置]
クリーニング装置22は、転写領域32Aより感光体12の回転方向下流側に設けられている。クリーニング装置22は、トナー画像を記録媒体30Aに転写した後に、感光体12に付着した残留トナーをクリーニング(清掃)する。クリーニング装置22では、残留トナー以外にも、紙粉等の付着物をクリーニングする。
クリーニング装置22は、クリーニングブレード22Aを有し、クリーニングブレード22Aの先端を感光体12の回転方向と対向する方向に向けて接触させて感光体12の表面の付着物を除去するものである。
ここで、図6を参照して、クリーニング装置22について説明する。
図6は、図5に示すクリーニング装置22におけるクリーニングブレード22Aの設置態様を示す概略構成図である。
図6に示すように、クリーニングブレード22Aの先端は、感光体12の回転方向(矢印方向)と対向する方向を向いており、この状態で感光体12の表面に接触している。
クリーニングブレード22Aと感光体12との間の角度θは、5°以上35°以下に設定されることが好ましく、10°以上25°以下に設定されることがより好ましい。
また、クリーニングブレード22Aの感光体12に対する押し付け圧Nは、0.6gf/mm以上6.0gf/mm以下に設定されることが好ましい。
ここで、上記角度θとは、具体的には、図6に示すように、クリーニングブレード22Aの先端と感光体12との接触部における接線(図6中の一点鎖線)とクリーニングブレード22Aの非変形部とでなす角の角度を指す。
また、上記押し付け圧Nとは、図6に示すように、クリーニングブレード22Aが感光体12に接触する位置において感光体12の中心に向けて押し付ける圧力(gf/mm)である。
なお、本実施形態におけるクリーニングブレード22Aは、弾性を有する板状物である。クリーニングブレード22Aを構成する材料としては、例えば、シリコーンゴム、フッ素ゴム、エチレン・プロピレン・ジエンゴム、ポリウレタンゴム等の弾性材料が用いられ、中でも、耐摩耗性、耐欠け性、耐クリープ性等の機械的性質に優れる、ポリウレタンゴムが好ましい。
クリーニングブレード22Aは、感光体12と接触する面とは反対の面側に支持部材(図6中では不図示)が接合しており、この支持部材により支持されている。この支持部材により、クリーニングブレード22Aが、感光体12に対し上記押し付け圧にて押し付けられる。支持部材としては、アルミニウム、ステンレス等の金属材料が挙げられる。なお、支持部材とクリーニングブレード22Aとの間には、両者の接着を接合するための接着剤等による接着層を有していてもよい。
クリーニング装置は、クリーニングブレード22Aとこれを支持する支持部材以外にも公知の部材を含んでいてもよい。
[除電装置]
除電装置24は、例えば、クリーニング装置22より感光体12の回転方向下流側に設けられている。除電装置24は、トナー画像を転写した後、感光体12の表面を露光して除電する。具体的には、例えば、除電装置24は、画像形成装置10に設けられた制御装置36に電気的に接続されており、制御装置36により駆動制御されて、感光体12の全表面(具体的には例えば画像形成領域の全面)を露光して除電する。
除電装置24としては、例えば、白色光を照射するタングステンランプ、赤色光を照射する発光ダイオード(LED)等の光源を有する装置が挙げられる。
[定着装置]
定着装置26は、例えば、転写領域32Aより記録媒体30Aの搬送経路34の搬送方向下流側に設けられている。定着装置26は、定着部材26Aと、定着部材26Aに接触して配置される加圧部材26Bと、を有し、定着部材26Aと加圧部材26Bとの接触部で記録媒体30A上に転写されたトナー画像を定着する。具体的には、例えば、定着装置26は、画像形成装置10に設けられた制御装置36に電気的に接続されており、制御装置36により駆動制御されて、記録媒体30A上に転写されたトナー画像を熱及び圧力によって記録媒体30Aに定着する。
定着装置26としては、それ自体公知の定着器、例えば熱ローラ定着器、オーブン定着器等が挙げられる。
具体的には、例えば、定着装置26は、定着部材26Aとして、定着ロール又は定着ベルトと、加圧部材26Bとして、加圧ロール又は加圧ベルトとを備える周知の定着装置が適用される。
ここで、搬送経路34に沿って搬送されて感光体12と転写部材20との向かい合う領域(転写領域32A)を通過することによりトナー画像を転写された記録媒体30Aは、例えば、図示を省略する搬送部材によってさらに搬送経路34に沿って定着装置26の設置位置に到り、記録媒体30A上のトナー画像の定着が行われる。
トナー画像の定着によって画像形成された記録媒体30Aは、図示を省略する複数の搬送部材によって画像形成装置10の外部へと排出される。なお、感光体12は、除電装置24による除電後、再度、帯電装置15によって帯電電位に帯電される。
[画像形成装置の動作]
本実施形態に係る画像形成装置10の動作の一例について説明する。なお、画像形成装置10の各種動作は、制御装置36において実行する制御プログラムにより行われる。
画像形成装置10の画像形成動作について説明する。
まず、感光体12の表面が帯電装置15により帯電される。静電荷像形成装置16は、帯電された感光体12の表面を画像情報に基づいて露光する。これにより、感光体12上に画像情報に応じた静電荷像が形成される。現像装置18では、トナーを含む現像剤により、感光体12の表面に形成された静電荷像が現像される。これにより、感光体12の表面に、トナー画像が形成される。
転写装置31では、感光体12の表面に形成されたトナー画像が記録媒体30Aへ転写される。記録媒体30Aに転写されたトナー画像は、定着装置26により定着される。
一方、トナー画像を転写した後の感光体12の表面が、クリーニング装置22におけるクリーニングブレード22Aによりクリーニング(清掃)される、その後除電装置24により除電される。
本実施形態で説明した画像形成装置の構成は一例であり、本実施形態の主旨を逸脱しない範囲内においてその構成を変更してもよいことは言うまでもない。
以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<電子写真感光体の作製>
[表面処理シリカ粒子(A1)の作製/乾式法(気相法)により作製]
未処理(親水性)シリカ粒子「商品名:OX50、アエロジル社製、体積平均粒径:40nm」100質量部を反応容器に入れ、攪拌しながら、30質量部の疎水化処理剤(トリメチルシラン化合物(1,1,1,3,3,3−ヘキサメチルジシラザン(東京化成社製))を噴霧して添加した。その後、300℃で120分反応させることで、疎水化処理された表面処理シリカ粒子(A1)を得た。
[表面処理シリカ粒子(A2)の作製/乾式法(気相法)により作製]
表面処理シリカ粒子(A1)の作製において、反応時間を150分に変更したこと以外は、同様にして疎水化処理された表面処理シリカ粒子(A2)を得た。
[表面処理シリカ粒子(A3)の作製/湿式法により作製]
溶媒(テトラヒドロフラン)中に、未処理(親水性)シリカ粒子「商品名:OX50、アエロジル社製、体積平均粒径:40nm」100質量部、及び疎水化処理剤(トリメチルシラン化合物(1,1,1,3,3,3−ヘキサメチルジシラザン(東京化成社製))30質量部を添加し、12時間反応させ、その後濾取することで、疎水化処理された表面処理シリカ粒子(A3)を得た。
[比較用表面処理シリカ粒子(B1)の作製/乾式法(気相法)により作製]
表面処理シリカ粒子(A1)の作製において、反応時間を60分に変更したこと以外は、同様にして疎水化処理された表面処理シリカ粒子(B1)を得た。
[比較用表面処理シリカ粒子(B2)の作製/乾式法(気相法)により作製]
表面処理シリカ粒子(A1)の作製において、反応時間を45分に変更したこと以外は、同様にして疎水化処理された表面処理シリカ粒子(B2)を得た。
−水分吸着率の測定−
得られた各表面処理シリカ粒子について、相対湿度90%の環境下での水分吸着率を前述の方法で測定した。結果を表1に示す。
[電子写真感光体(A1)の作製]
−下引層の作製−
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m/g)100質量部をテトラヒドロフラン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学工業社製)1.3質量部を添加し、2時間攪拌した。その後、テトラヒドロフランを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理を施した酸化亜鉛(シランカップリング剤表面処理酸化亜鉛)110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行い、アリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60質量部と、硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製)13.5質量部と、ブチラール樹脂(エスレックBM−1、積水化学工業社製)15質量部と、メチルエチルケトン85質量部と、を混合した混合液を得た。この混合液38質量部と、メチルエチルケトン25質量部と、を混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い、分散液を得た。
得られた分散液に、触媒としてジオクチルスズジラウレート:0.005質量部と、シリコーン樹脂粒子(トスパール145、モメンティブ・パフォーマンス・マテリアルズ社製):40質量部と、を添加し、下引層形成用塗布液を得た。この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基体上に塗布し、170℃、40分の乾燥硬化を行い、厚さ19μmの下引層を得た。
−電荷発生層の作製−
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3°、16.0°、24.9°、28.0°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部と、結着樹脂としての塩化ビニル・酢酸ビニル共重合体(VMCH、株式会社NUC製)10質量部と、n−酢酸ブチル200質量部と、からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液に、n−酢酸ブチル175質量部とメチルエチルケトン180質量部とを添加し、攪拌して電荷発生層形成用の塗布液を得た。この電荷発生層形成用の塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
−電荷輸送層の作製−
表面処理シリカ粒子(A1)20質量部に、テトラヒドロフラン95質量部を入れ、20℃の液温に保ちながら電荷輸送材料として(N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−(1,1’−ジフェニル)−4,4’−ジアミン10質量部と、結着樹脂としてビスフェノールZ型−ビフェノール型ポリカーボネート共重合体樹脂(粘度平均分子量:50,000)10質量部と、を加え、12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
この電荷輸送層形成用塗布液を電荷発生層上に塗布して135℃で40分間乾燥し、膜厚が30μmの電荷輸送層を形成し、有機感光体(A1)を得た。
なお、電荷輸送層全体(固形分)に対するシリカ粒子の含有率は50質量%であった。
以上の工程を経て、アルミニウム基体上に、下引層と電荷発生層と電荷輸送層とをこの順に積層形成した有機感光体(A1)を得た。
−無機表面層の形成−
次に、有機感光体(A1)の表面へ、水素を含む酸化ガリウムで構成された無機表面層を形成した。この無機表面層の形成は、図3に示す構成を有する成膜装置を用いて行った。
まず、有機感光体(A1)を成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を圧力が0.1Paになるまで真空排気した。
次に、He希釈40%酸素ガス(流量1.6sccm)と水素ガス(流量50sccm)とを、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図3中不図示)により、13.56MHzのラジオ波を出力150Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(流量1.9sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は5.3Paであった。
この状態で、有機感光体(A1)を500rpmの速度で回転させながら68分間成膜し、有機感光体(A1)の電荷輸送層表面に膜厚1.5μmの無機表面層を形成した。
無機表面層の外周面における表面粗さRaは、1.9nmであった。
以上の工程を経て、導電性基体上に、下引層、電荷発生層、電荷輸送層、無機表面層が順次形成された、電子写真感光体(A1)を得た。
[電子写真感光体(A2)、(A3)、(B1)、(B2)の作製]
電子写真感光体(A1)の作製において、電荷輸送層に用いる表面処理シリカ粒子(A1)を、下記表1に示す表面処理シリカ粒子に変更したこと以外は、同様にして電子写真感光体を得た。
<評価:感光体電気特性(Qleak)>
各例で得られた電子写真感光体に対して、露光用の光(光源:半導体レーザー、波長:780nm、出力:5mW)を、スコロトロン帯電器により−700Vに帯電させた状態で167rpmで回転させている電子写真感光体の表面に走査しながら照射した。その後、電子写真感光体の電位を表面電位計(モデル344、トレックジャパン社製)により測定し、電子写真感光体における電位状態を調べた。I−V特性から得られるQleak値に基づき、以下の基準によって評価した。
−評価基準−
A:Qleakが70V以下
B:Qleakが80V超え110V以下
C:Qleakが110V超え
上記結果から、相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層を感光層中に備える実施例の電子写真感光体では、水分吸着率が0.15質量%を超える比較例の電子写真感光体に比べ、電荷漏れの発生が抑制されることがわかる。
10 画像形成装置
12 感光体
14 帯電部材
15 帯電装置
16 静電荷像形成装置
18 現像装置
20 転写部材
22 クリーニング装置
22A クリーニングブレード
24 除電装置
26 定着装置
30A 記録媒体
31 転写装置
36 制御装置
101 下引層
102 電荷発生層
103 電荷輸送層
104 導電性基体
105 感光層
106 無機表面層
107A、107B 電子写真感光体(感光体)
210 成膜室
211 排気口
212 基体回転部
213 基体支持部材
214 基体
215 ガス導入管
216 シャワーノズル
217 プラズマ拡散部
218 高周波電力供給部
219 平板電極
220 ガス導入管
221 高周波放電管部
222 高周波コイル
223 石英管

Claims (10)

  1. 導電性支持体と、
    前記導電性支持体上に設けられ、無機粒子が表面処理された表面処理粒子であって相対湿度90%の環境下での水分吸着率が0.15質量%以下である表面処理粒子を含有する粒子含有層の単層体、又は前記粒子含有層を少なくとも含む積層体で構成された感光層と、
    有する電子写真感光体。
  2. 前記表面処理粒子は、相対湿度90%の環境下での水分吸着率が0.1質量%以下である請求項1に記載の電子写真感光体。
  3. 前記表面処理粒子は、前記粒子含有層の固形分に対する含有率が30質量%以上80質量%以下である請求項1又は請求項2に記載の電子写真感光体。
  4. 前記無機粒子は、シリカ粒子である請求項1〜請求項3のいずれか1項に記載の電子写真感光体。
  5. 前記粒子含有層は、無機粒子がシラン化合物により表面処理された粒子である請求項1〜請求項4のいずれか1項に記載の電子写真感光体。
  6. 前記粒子含有層は、さらに電荷輸送性材料を含有する電荷輸送層である請求項1〜請求項5のいずれか1項に記載の電子写真感光体。
  7. 前記粒子含有層は、結着樹脂としてポリカーボネート樹脂、及びポリアリレート樹脂からなる群より選択される少なくとも一種の樹脂を含有する請求項1〜請求項6のいずれか1項に記載の電子写真感光体。
  8. さらに前記感光層上に設けられた無機表面層を有する請求項1〜請求項7のいずれか1項に記載の電子写真感光体。
  9. 請求項1〜請求項8のいずれか1項に記載の電子写真感光体を備え、
    画像形成装置に着脱するプロセスカートリッジ。
  10. 請求項1〜請求項8のいずれか1項に記載の電子写真感光体と、
    前記電子写真感光体の表面を帯電する帯電手段と、
    帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
    トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
    前記トナー像を記録媒体の表面に転写する転写手段と、
    を備える画像形成装置。
JP2017186907A 2017-09-27 2017-09-27 電子写真感光体、プロセスカートリッジ、及び画像形成装置 Pending JP2019061155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186907A JP2019061155A (ja) 2017-09-27 2017-09-27 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186907A JP2019061155A (ja) 2017-09-27 2017-09-27 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2019061155A true JP2019061155A (ja) 2019-04-18

Family

ID=66178435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186907A Pending JP2019061155A (ja) 2017-09-27 2017-09-27 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2019061155A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191179A (ja) * 2013-03-27 2014-10-06 Fuji Xerox Co Ltd 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191179A (ja) * 2013-03-27 2014-10-06 Fuji Xerox Co Ltd 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Similar Documents

Publication Publication Date Title
JP6593063B2 (ja) 電子写真感光体、プロセスカートリッジおよび画像形成装置
CN106556977B (zh) 电子照相感光元件、处理盒以及图像形成装置
US10317809B2 (en) Image forming apparatus and unit for image forming apparatus
US9864286B2 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US20190346781A1 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6759949B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
CN106556978B (zh) 电子照相感光元件、处理盒以及图像形成装置
JP6332215B2 (ja) 画像形成装置用ユニット、プロセスカートリッジ、画像形成装置、及び電子写真感光体
JP7206654B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
US20190302632A1 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus
JP6996180B2 (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置、及び画像形成方法
US11880162B2 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019061155A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP7047552B2 (ja) 正帯電型電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2023144994A (ja) 画像形成装置、及び画像形成装置用ユニット
JP7183552B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6794631B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2023048986A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2023144987A (ja) 画像形成装置、及びプロセスカートリッジ
JP2024046538A (ja) 画像形成装置
JP2018081205A (ja) 画像形成装置
JP2024044123A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125