JP2017139459A - 半導体装置、半導体ウエハ、モジュールおよび電子機器とその作製方法 - Google Patents

半導体装置、半導体ウエハ、モジュールおよび電子機器とその作製方法 Download PDF

Info

Publication number
JP2017139459A
JP2017139459A JP2017012924A JP2017012924A JP2017139459A JP 2017139459 A JP2017139459 A JP 2017139459A JP 2017012924 A JP2017012924 A JP 2017012924A JP 2017012924 A JP2017012924 A JP 2017012924A JP 2017139459 A JP2017139459 A JP 2017139459A
Authority
JP
Japan
Prior art keywords
insulator
transistor
oxide
conductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012924A
Other languages
English (en)
Other versions
JP6925809B2 (ja
Inventor
寛美 澤井
Hiromi Sawai
寛美 澤井
下村 明久
Akihisa Shimomura
明久 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017139459A publication Critical patent/JP2017139459A/ja
Application granted granted Critical
Publication of JP6925809B2 publication Critical patent/JP6925809B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H01L29/7869
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • H01L21/8258
    • H01L21/84
    • H01L21/845
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • H01L27/0688
    • H01L27/088
    • H01L27/1203
    • H01L27/1211
    • H01L27/1225
    • H01L27/1248
    • H01L29/66969
    • H01L29/78648
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L27/0629
    • H01L27/092

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Dram (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Plasma & Fusion (AREA)

Abstract

【課題】安定した電気特性を有するトランジスタを有する半導体装置を提供する。【解決手段】第1の絶縁体と、第1の絶縁体上のトランジスタと、トランジスタ上の第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、を有し、トランジスタは、酸化物半導体を有し、第2の絶縁体は、昇温脱離ガス分析を行った場合に、第2の絶縁体の膜の表面温度が50℃から500℃の範囲において、酸素分子に換算しての酸素の脱離量が、1×1014molecules/cm2以上、かつ、1×1016molecules/cm2未満であるような特性を有し、第2の絶縁体は、酸素と窒素とシリコンとを有する半導体装置。【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、発光装置、表示装置、電子機器、照明装置、及びそれらの作製方法に関する。特に、本発明の一態様は、有機エレクトロルミネッセンス(Electroluminescence、以下ELとも記す)現象を利用した発光装置とその作製方法に関する。例えば、LSIや、CPUや、電源回路に搭載されるパワーデバイスや、メモリ、サイリスタ、コンバータ、イメージセンサなどを含む半導体集積回路を部品として搭載した電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。電気光学装置、半導体回路および電子機器は半導体装置を有する場合がある。
近年、半導体装置の開発が進められ、LSIやCPUやメモリが主に用いられている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
酸化物半導体を用いたトランジスタは、アモルファスシリコンを用いたトランジスタよりも動作が速く、多結晶シリコンを用いたトランジスタよりも製造が容易であるものの、電気的特性が変動しやすく信頼性が低いという問題点が知られている。例えば、バイアス−熱ストレス試験(BT試験)前後において、トランジスタのしきい値電圧は変動してしまうことがある。
特開2012−257187号公報
本発明の一態様は、酸化物半導体を用いた半導体装置の信頼性を向上することを目的とする。また、酸化物半導体を用いたトランジスタはノーマリーオンの特性になりやすく、駆動回路内に適切に動作する論理回路を設けることが難しいという問題がある。そこで、本発明の一態様は、酸化物半導体を用いたトランジスタにおいて、ノーマリーオフの特性を得ることを目的とする。
また、信頼性の高いトランジスタを提供することを課題の一とする。または、非導通状態において極めてリーク電流が抑制されたトランジスタを提供することを課題の一とする。
または、信頼性の高い半導体装置を提供することを課題の一とする。または、生産性の高い半導体装置を提供することを課題の一とする。または、歩留まりの高い半導体装置を提供することを課題の一とする。または、占有面積の小さい半導体装置を提供することを課題の一とする。
または、集積度の高い半導体装置を提供することを課題の一とする。または、動作速度の速い半導体装置を提供することを課題の一とする。または、消費電力の小さい半導体装置を提供することを課題の一とする。
または、新規な半導体装置を提供することを課題の一とする。または、該半導体装置を有するモジュールを提供することを課題の一とする。または、該半導体装置、または該モジュールを有する電子機器を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
(1)
本発明の一態様は、第1の絶縁体と、第1の絶縁体上のトランジスタと、トランジスタ上の第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、を有し、トランジスタは、酸化物半導体を有し、第2の絶縁体は、昇温脱離ガス分析を行った場合に、第2の絶縁体の膜の表面温度が50℃から500℃の範囲において、酸素分子に換算しての酸素の脱離量が、1×1014molecules/cm以上、かつ、1×1016molecules/cm未満であるような特性を有し、第2の絶縁体は、酸素と窒素とシリコンとを有することを特徴とする半導体装置である。
(2)
本発明の一態様は、第3の絶縁体の膜厚は、1nm以上、5nm未満である部分を有することを特徴とする(1)に記載の半導体装置。
(3)
本発明の一態様は、第3の絶縁体は、金属と酸素とを含むことを特徴とする(1)または(2)に記載の半導体装置である。
(4)
本発明の一態様は、(1)乃至(3)のいずれか一に記載の半導体装置およびプリント基板を有することを特徴とするモジュールである。
(5)
本発明の一態様は、(1)乃至(3)のいずれか一に記載の半導体装置、(4)に記載のモジュール、およびスピーカーまたは操作キーを有することを特徴とする電子機器である。
(6)
本発明の一態様は、(1)乃至(3)のいずれか一に記載の半導体装置を複数個有し、ダイシング用の領域を有する半導体ウエハである。
(7)
本発明の一態様は、基板上に、第1の絶縁体を形成し、第1の絶縁体上に、酸化物半導体を有するトランジスタを形成し、トランジスタ上に、第2の絶縁体を形成し、第2の絶縁体上に、第3の絶縁体を形成し、第3の絶縁体に酸素を有するプラズマ処理を行うことで、プラズマ中の酸素を過剰酸素として第3の絶縁体中に添加し、熱処理を行うことで、過剰酸素を第2の絶縁体を介して酸化物半導体に移動させることを特徴とする半導体装置の作製方法である。
(8)
本発明の一態様は、モジュールの作製方法であって、モジュールは、(7)に記載の半導体装置の作製方法を用いて作製された半導体装置、およびプリント基板を有することを特徴とするモジュールの作製方法である。
(9)
本発明の一態様は、電子機器の作製方法であって、電子機器は、(7)に記載の半導体装置の作製方法を用いて作製された半導体装置、(8)に記載のモジュールの作製方法を用いて作製されたモジュール、およびスピーカーまたは操作キーを有することを特徴とする電子機器の作製方法である。
酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
または、新規な半導体装置を提供することができる。または、該半導体装置を有するモジュールを提供することができる。または、該半導体装置、または該モジュールを有する電子機器を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、トランジスタの上面図および断面構造を説明する図。 実施の形態に係る、トランジスタの上面図および断面構造を説明する図。 実施の形態に係る、トランジスタの上面図および断面構造を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の作製方法例を説明する図。 実施の形態に係る、半導体装置の回路図。 本発明に係る酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶を説明する図。 酸化物半導体の積層構造におけるバンド図。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図、ならびにCAAC−OSの制限視野電子回折パターンを示す図。 CAAC−OSの断面TEM像、ならびに平面TEM像およびその画像解析像。 nc−OSの電子回折パターンを示す図、およびnc−OSの断面TEM像。 a−like OSの断面TEM像。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 本発明の一態様に係る半導体装置を示すブロック図。 本発明の一態様に係る半導体装置を示す回路図。 本発明の一態様に係る撮像装置を示す平面図。 本発明の一態様に係る撮像装置の画素を示す平面図。 本発明の一態様に係る撮像装置を示す断面図。 本発明の一態様に係る撮像装置を示す断面図。 本発明の一態様に係る、半導体装置を示す回路図、上面図および断面図。 本発明の一態様に係る、半導体装置を示す回路図および断面図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのグラフおよび回路図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのブロック図、回路図および波形図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る半導体ウエハの上面図。 本発明の一態様に係る電子部品の作製工程例を説明するフローチャートおよび斜視模式図。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施例1のTDS分析結果のグラフ。 実施例1のTDS分析結果のグラフ。 実施例1のTDS分析結果のグラフ。 実施例2のSIMS分析結果のグラフ。 実施例2のSIMS分析結果のグラフ。 実施例2のSIMS分析結果のグラフ。 実施例2のSIMS分析結果のグラフ。 実施例2のESR測定結果のグラフ。 実施例2のESR測定結果のグラフ。 実施例2のESR測定結果のまとめのグラフ。 実施例3のSIMS分析結果のグラフ。 実施の形態に係る、半導体装置の断面構造を説明する図。 実施の形態に係る、トランジスタの上面図および断面構造を説明する図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。また、図面において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、本明細書などにおいて、第1、第2等として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、および電子機器は、半導体装置を有する場合がある。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものであって、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものであって、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(又は第1の端子など)とトランジスタのドレイン(又は第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(又は第1の端子など)からトランジスタのドレイン(又は第2の端子など)への電気的パスであり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(又は第2の端子など)からトランジスタのソース(又は第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
(実施の形態1)
本実施の形態では、半導体装置の一形態を、図1乃至図5、図19および図50を用いて説明する。
[構成例]
本発明の一態様である半導体装置(記憶装置)の一例を図1乃至図5、および図19に示す。なお、図19(A)は、図1乃至図3を回路図で表したものである。図4、および図5は、図1乃至図3に示す半導体装置が形成される領域の端部を示す。
<半導体装置の回路構成1>
図1乃至図3、および図19(A)に示す半導体装置は、トランジスタ300と、トランジスタ200、および容量素子100を有している。
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを半導体装置(記憶装置)に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ない半導体装置(記憶装置)とすることが可能となるため、消費電力を十分に低減することができる。
図19(A)において、第1の配線3001はトランジスタ300のソースと電気的に接続され、第2の配線3002はトランジスタ300のドレインと電気的に接続されている。また、第3の配線3003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、第4の配線3004はトランジスタ200のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、第5の配線3005は容量素子100の電極の他方と電気的に接続されている。
図19(A)に示す半導体装置は、トランジスタ300のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、第3の配線3003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードFGに与えられる。即ち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードFGに電荷が保持される(保持)。
トランジスタ200のオフ電流が小さい場合、ノードFGの電荷は長期間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線3002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ300を「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFGにHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジスタ300は「導通状態」となる。一方、ノードFGにLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<Vth_L)となっても、トランジスタ300は「非導通状態」のままである。このため、第2の配線3002の電位を判別することで、ノードFGに保持されている情報を読み出すことができる。
また、図19(A)に示す半導体装置をマトリクス状に配置することで、記憶装置(メモリセルアレイ)を構成することができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。例えば、メモリセルアレイがNOR型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を非導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードFGに与えられた電荷によらずトランジスタ300が「非導通状態」となるような電位、つまり、Vth_Hより低い電位を、情報を読み出さないメモリセルと接続される第5の配線3005に与えればよい。または、例えば、メモリセルアレイがNAND型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を導通状態にすることで、所望のメモリセルの情報をのみ読み出すことができる。この場合、ノードFGに与えられた電荷によらずトランジスタ300が「導通状態」となるような電位、つまり、Vth_Lより高い電位を、情報を読み出さないメモリセルと接続される第5の配線3005に与えればよい。
<半導体装置の回路構成2>
図19(B)に示す半導体装置は、トランジスタ300を有さない点で図19(A)に示した半導体装置と異なる。この場合も図19(A)に示した半導体装置と同様の動作により情報の書き込みおよび保持動作が可能である。
図19(B)に示す半導体装置における、情報の読み出しについて説明する。トランジスタ200が導通状態になると、浮遊状態である第3の配線3003と容量素子100とが導通し、第3の配線3003と容量素子100の間で電荷が再分配される。その結果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量素子100の電極の一方の電位(または容量素子100に蓄積された電荷)によって、異なる値をとる。
例えば、容量素子100の電極の一方の電位をV、容量素子100の容量をC、第3の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×VB0+CV)/(CB+C)となる。したがって、メモリセルの状態として、容量素子100の電極の一方の電位がV1とV0(V1>V0)の2つの状態をとるとすると、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+CV1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=(CB×VB0+CV0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すことができる。
この場合、メモリセルを駆動させるための駆動回路に上記のトランジスタ300を用い、上記のランジスタ200を駆動回路上に積層して配置する構成とすればよい。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の小さいトランジスタを適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフレッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給がない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こりにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といった問題が生じない。即ち、本発明の一態様に係る半導体装置は、従来の不揮発性メモリとは異なり書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが行われるため、高速な動作が可能となる。
<半導体装置の構造1>
本発明の一態様の半導体装置は、図1に示すようにトランジスタ300、トランジスタ200、容量素子100を有する。トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。
トランジスタ300は、基板301、導電体306、絶縁体304、基板301の一部からなる半導体領域302、およびソース領域またはドレイン領域として機能する低抵抗領域308a、および低抵抗領域308bを有する。
トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域302のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域308a、および低抵抗領域308bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域308a、および低抵抗領域308bは、半導体領域302に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体306は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数を定めることで、しきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
また、図1に示すトランジスタ300はチャネルが形成される半導体領域302(基板301の一部)が凸形状を有する。また、半導体領域302の側面および上面を、絶縁体304を介して、導電体306が覆うように設けられている。なお、導電体306は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI(Silicon On Insulator)基板を加工して凸形状を有する半導体膜を形成してもよい。
なお、図1に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、図2に示すようにトランジスタ300の構成を、プレーナ型として設けてもよい。また、図19(B)に示す回路構成とする場合、トランジスタ300を設けなくともよい。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜として機能する。絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
絶縁体324には、例えば、基板301、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
例えば、水素に対するバリア性を有する膜の一例として、CVD(Chemical Vapor Deposition)法、で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS(Thermal Desorption Spectroscopy))などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも比誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、または/およびトランジスタ200と電気的に接続する導電体328、導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線としての機能を有する。なお、後述するが、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図1において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356、および導電体358が形成されている。導電体356、および導電体358は、プラグ、または配線としての機能を有する。なお導電体356、および導電体358は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356、および導電体358は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354上には、絶縁体355、絶縁体210、絶縁体212、および絶縁体214が、順に積層して設けられている。絶縁体355、絶縁体210、絶縁体212、および絶縁体214のいずれかまたは全部に、酸素や水素に対してバリア性のある物質を用いることが好ましい。
絶縁体210には、例えば、基板301、またはトランジスタ300を設ける領域などから、トランジスタ200を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。
例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、例えば、絶縁体212、および絶縁体214には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
絶縁体214上には、絶縁体216を設ける。絶縁体216は、絶縁体320と同様の材料を用いることができる。例えば、絶縁体216として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体210、絶縁体212、絶縁体214、及び絶縁体216には、導電体218、及びトランジスタ200を構成する導電体等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体210、絶縁体212、および絶縁体214と接する領域の導電体218は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ200とは、酸素、水素、および水に対するバリア性を有する層で、完全により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
絶縁体214の上方には、トランジスタ200が設けられている。なお、トランジスタ200の構造は、図6乃至図8を用いて、後述する。また、図1に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、トランジスタ200を導電体218が無い構成としてもよい(図62参照。)。
トランジスタ200の上方には、絶縁体280を設ける。絶縁体280には、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。つまり、絶縁体280には、化学量論的組成よりも酸素が過剰に存在する領域(以下、過剰酸素領域ともいう)が形成されていることが好ましい。特に、トランジスタ200に酸化物半導体を用いる場合、トランジスタ200近傍の層間膜などに、過剰酸素領域を有する絶縁体を設けることで、トランジスタ200の酸素欠損を低減することで、信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS分析において、酸化物の膜の表面温度が50℃から500℃の範囲において、酸素分子に換算しての酸素の脱離量が、1×1014molecules/cm以上、1×1016molecules/cm未満である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
例えばこのような材料として、酸化シリコンまたは酸化窒化シリコンを含む材料を用いることが好ましい。または、金属酸化物を用いることもできる。なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
また、トランジスタ200を覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
絶縁体280上には、絶縁体282、絶縁体284、および絶縁体102が順に積層して設けられている。また、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体282、絶縁体284、および絶縁体102には、導電体244等が埋め込まれている。なお、導電体244は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体244は、導電体328、および導電体330と同様の材料を用いて設けることができる。
絶縁体282、絶縁体284および絶縁体102のいずれか、または全部に、酸素や水素に対してバリア性のある物質を用いることが好ましい。従って、絶縁体282には、絶縁体214と同様の材料を用いることができる。また、絶縁体284には、絶縁体212と同様の材料を用いることができる。また、絶縁体102には、絶縁体210と同様の絶縁体を用いることができる。
例えば、絶縁体282、および絶縁体284には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
また、絶縁体282の膜厚は1nm以上、5nm未満とすることが好ましい。絶縁体282の膜厚を1nm以上、5nm未満とすることで、絶縁体282中および絶縁体282と絶縁体280と、の界面近傍には、化学量論的組成を満たす酸素よりも多くの酸素が導入され、過剰酸素領域が効率よく形成される。
絶縁体102には、容量素子100が設けられる領域から、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。
例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
従って、トランジスタ200、および過剰酸素領域を含む絶縁体280を、絶縁体210、絶縁体212、および絶縁体214の積層構造と、絶縁体282、絶縁体284、および絶縁体102の積層構造により挟む構成とすることができる。また、絶縁体210、絶縁体212、絶縁体214、絶縁体282、絶縁体284、および絶縁体102は、酸素、または、水素、および水などの不純物の拡散を抑制するバリア性を有する。
以上のような構成とすることで絶縁体280、およびトランジスタ200から放出された酸素が、容量素子100、またはトランジスタ300が形成されている層へ拡散することを抑制することができる。または、絶縁体282よりも上方の層、および絶縁体214よりも下方の層から、水素、および水等の不純物が、トランジスタ200へ、拡散することを抑制することができる。
つまり、絶縁体280の過剰酸素領域から酸素を、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給でき、酸素欠損を低減することができる。また、トランジスタ200におけるチャネルが形成される酸化物に、不純物により酸素欠損が形成されることを防止することができる。よって、トランジスタ200におけるチャネルが形成される酸化物を、欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
ここで、図4にスクライブライン近傍の断面図を示す。
例えば、図4(A)に示すように、トランジスタ200を有するメモリセルの外縁に設けられるスクライブライン(図中1点鎖線で示す)と重なる領域近傍において、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280に開口を設ける。また、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280の側面を覆うように、絶縁体282、絶縁体284、および絶縁体102を設ける。従って、該開口において、絶縁体214と絶縁体282とが接し、絶縁体210、絶縁体212、絶縁体214、絶縁体282、絶縁体284、および絶縁体102の積層構造となる。このとき、絶縁体214と絶縁体282とを同材料及び同方法を用いて形成することで、密着性が高い積層構造となる。
当該構造により、絶縁体210、絶縁体212、絶縁体214、絶縁体282、絶縁体284、および絶縁体102で、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280を包み込むことができる。絶縁体210、絶縁体212、絶縁体214、絶縁体282、絶縁体284、および絶縁体102は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体装置をスクライブしても、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280の側面から、水素又は水が浸入して、トランジスタ200に拡散することを防ぐことができる。
また、当該構造により、絶縁体280の過剰酸素が絶縁体282、および絶縁体214の外部に拡散することを防ぐことができる。従って、絶縁体280の過剰酸素は、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給される。当該過剰酸素により、トランジスタ200におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
また、例えば、図4(B)に示すように、スクライブライン(図中1点鎖線で示す)と重なる領域近傍において、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280に開口を設ける。また、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280の側面を覆うように、絶縁体282、および絶縁体284を設ける。さらに、絶縁体212、絶縁体214、絶縁体282、および絶縁体284に開口を設け、絶縁体212、絶縁体214、絶縁体282、および絶縁体284の側面を覆うように、絶縁体102を設ける。
つまり、開口において、絶縁体214と絶縁体282が接する。さらに、その外側では、絶縁体210と絶縁体102とが接する。このとき、絶縁体214と絶縁体282とを同材料及び同方法を用いて形成することで、密着性が高い積層構造となる。また、絶縁体210と絶縁体102とを同材料及び同方法を用いて形成することで、密着性が高い積層構造となる。
当該構造により、トランジスタ200と絶縁体280とを、厳重に密封することができる。従って、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
絶縁体284の上方には、容量素子100、および導電体124が設けられている(図1参照)。容量素子100は、絶縁体102上に設けられ、導電体112と、絶縁体114と、導電体116とを有する。なお、導電体124は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。
導電体112は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
なお、導電体124は、容量素子の電極として機能する導電体112と同様の材料を用いて設けることができる。
導電体124、および導電体112上に、絶縁体114を設ける。絶縁体114には例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設ける。
例えば、絶縁体114を積層構造とする場合、酸化アルミニウムなどの高誘電率(high−k)材料と、酸化窒化シリコンなどの絶縁耐力が大きい材料を用いて、積層構造を設けることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
導電体112上に、絶縁体114を介して、導電体116を設ける。なお、導電体116は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
例えば、図1に示すように、絶縁体114を、導電体112の上面および側面を覆うように設ける。さらに、導電体116を、絶縁体114を介して、導電体112の上面および側面を覆うように設ける。当該構成とすることで、導電体116は、導電体112の側面と、絶縁体114を介して対向する。つまり、導電体112の側面においても、容量として機能するため、容量素子の上面における投影面積当たりの容量を増加させることができる。従って、半導体装置の小面積化、高集積化、微細化が可能となる。
導電体116、および絶縁体114上には、絶縁体120、および絶縁体122が順に積層して設けられている。また、絶縁体120、および絶縁体114には導電体126が埋め込まれている。また、絶縁体122には、導電体128が埋め込まれている。なお、導電体126、および導電体128は、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体126は、導電体328、および導電体330と同様の材料を用いて設けることができる。
絶縁体120、および絶縁体122は、絶縁体320と同様の材料を用いて設けることができる。また、容量素子100を覆う絶縁体120は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
以上が構成例についての説明である。
本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
<変形例1>
また、本実施の形態の変形例として、図2に示すように、絶縁体210を設けなくともよい。また、絶縁体102に替えて、絶縁体103を用いてもよい。絶縁体103は、絶縁体326と同様に絶縁体102よりも、誘電率が低いことが好ましい。例えば、絶縁体103の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体103の比誘電率は、絶縁体102の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、トランジスタ200、および過剰酸素領域を含む絶縁体280を、絶縁体212、および絶縁体214の積層構造と、絶縁体282、および絶縁体284の積層構造により挟む構成とすることができる。また、絶縁体212、絶縁体214、絶縁体282、および絶縁体284は、酸素、または、水素、および水などの不純物の拡散を抑制するバリア性を有する。
従って、絶縁体280、およびトランジスタ200から放出された酸素が、容量素子100、またはトランジスタ300が形成されている層へ拡散することを抑制することができる。または、絶縁体282よりも上方の層、および絶縁体214よりも下方の層から、水素、および水等の不純物が、トランジスタ200へ、拡散することを抑制することができる。
つまり、絶縁体280の過剰酸素領域から酸素を、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給でき、酸素欠損を低減することができる。また、トランジスタ200におけるチャネルが形成される酸化物が不純物により、酸素欠損が形成されることを防止することができる。よって、トランジスタ200におけるチャネルが形成される酸化物を、欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
また、本変形例における、スクライブライン近傍の断面図を図5(A)に示す。
例えば、図5(A)に示すように、スクライブライン(図中1点鎖線で示す)と重なる領域近傍において、絶縁体214と絶縁体282とが接し、絶縁体212、絶縁体214、絶縁体282、および絶縁体284の積層構造となる。このとき、絶縁体214と絶縁体282とを同材料及び同方法を用いて形成することで、密着性が高い積層構造となる。
当該構造により、絶縁体212、絶縁体214、絶縁体282、および絶縁体284で、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280を包み込むことができる。絶縁体212、絶縁体214、絶縁体282、および絶縁体284は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体装置をスクライブしても、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280の側面から、水素又は水が浸入して、トランジスタ200に拡散することを防ぐことができる。
また、当該構造により、絶縁体280の過剰酸素が絶縁体282、および絶縁体214の外部に拡散することを防ぐことができる。従って、絶縁体280の過剰酸素は、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
<変形例2>
また、本実施の形態の変形例として、図3に示すように、絶縁体212、絶縁体214、および絶縁体284を設けなくともよい。
また、トランジスタ200、および過剰酸素領域を含む絶縁体280を、絶縁体210と、絶縁体282、および絶縁体102の積層構造と、により挟む構成とすることができる。また、絶縁体210、絶縁体282、および絶縁体102は、酸素、または、水素、および水などの不純物の拡散を抑制するバリア性を有する。
従って、絶縁体280、およびトランジスタ200から放出された酸素が、容量素子100、またはトランジスタ300が形成されている層へ拡散することを抑制することができる。または、絶縁体282よりも上方の層、および絶縁体210よりも下方の層から、水素、および水等の不純物が、トランジスタ200へ、拡散することを抑制することができる。
つまり、絶縁体280の過剰酸素領域から酸素を、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給でき、酸素欠損を低減することができる。また、トランジスタ200におけるチャネルが形成される酸化物が不純物により、酸素欠損が形成されることを防止することができる。よって、トランジスタ200におけるチャネルが形成される酸化物を、欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
また、本変形例における、スクライブライン近傍の断面図を図5(B)に示す。
例えば、図5(B)に示すように、スクライブライン(図中1点鎖線で示す)と重なる領域近傍において、絶縁体210と絶縁体282とが接し、絶縁体210、絶縁体282、および絶縁体102の積層構造となる。
当該構造により、絶縁体210、絶縁体282、および絶縁体102で、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280を包み込むことができる。絶縁体210、絶縁体282、および絶縁体102は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体装置をスクライブしても、絶縁体216、絶縁体220、絶縁体222、絶縁体224、及び絶縁体280の側面から、水素又は水が浸入して、トランジスタ200に拡散することを防ぐことができる。
また、当該構造により、絶縁体280の過剰酸素が絶縁体282、および絶縁体210の外部に拡散することを防ぐことができる。従って、絶縁体280の過剰酸素は、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
<変形例3>
また、本実施の形態の変形例として、図50に示すように、トランジスタ300をトランジスタ200と同じ構成としてもよい。トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。つまり、トランジスタ300をトランジスタ200と同じ構成とすることで、オフ電流が小さいため長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ない半導体装置(記憶装置)とすることが可能となるため、消費電力を十分に低減することができる。
トランジスタ300をトランジスタ200と同じ構成する場合は、絶縁体324は絶縁体282と同様の材料を用いることが好ましい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態および実施例と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、トランジスタの一形態を、図6乃至図8を用いて説明する。
<トランジスタ構造1>
以下では、本発明の一態様に係るトランジスタの一例について説明する。図6(A)、図6(B)、および図6(C)は、本発明の一態様に係るトランジスタの上面図および断面図である。図6(A)は上面図であり、図6(B)は、図6(A)に示す一点鎖線X1−X2、図6(C)は、一点鎖線Y1−Y2に対応する断面図である。なお、図6(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ200は、基板上に作製しても良い。例えば、基板上に絶縁体214を形成する構成としてもよい。
基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。
トランジスタ200は、ゲート電極として機能する導電体205、および導電体260と、ゲート絶縁層として機能する絶縁体220、絶縁体222、絶縁体224と、および絶縁体250と、チャネルが形成される領域を有する酸化物230と、ソースまたはドレインの一方として機能する導電体240aおよび導電体241aと、ソースまたはドレインの他方として機能する導電体240bおよび導電体241bと、絶縁体270と、過剰酸素を有する絶縁体280と、を有する。
また、酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。なお、トランジスタ200をオンさせると、主として酸化物230bに電流が流れる(チャネルが形成される)。一方、酸化物230aおよび酸化物230cは、酸化物230bとの界面近傍(混合領域となっている場合もある)は電流が流れる場合があるものの、そのほかの領域は絶縁体として機能する場合がある。
なお、図6に示すトランジスタにおいて、図1に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。
導電体205は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等である。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図6では、導電体205a、および導電体205bの2層構造を示したが、当該構成に限定されず、単層でも3層以上の積層構造でもよい。例えば、導電体205aとして、水素に対するバリア性を有する導電体として、窒化タンタル等を用い、導電体205bとして、導電性が高いタングステンを積層するとよい。当該組み合わせを用いることで、配線としての導電性を保持したまま、酸化物230への水素の拡散を抑制することができる。
絶縁体220、および絶縁体224は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体224として過剰酸素を含む(化学量論的組成よりも過剰に酸素を含む)絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を、トランジスタ200を構成する酸化物に接して設けることにより、酸化物中の酸素欠損を補償することができる。なお、絶縁体222と絶縁体224とは、必ずしも同じ材料を用いて形成しなくともよい。
絶縁体222は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などを含む絶縁体を単層または積層で用いることが好ましい。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
なお、絶縁体222が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
絶縁体220及び絶縁体224の間に、high−k材料を含む絶縁体222を有することで、特定の条件で絶縁体222が電子を捕獲し、しきい値電圧を増大させることができる。つまり、絶縁体222が負に帯電する場合がある。
例えば、絶縁体220、および絶縁体224に、酸化シリコンを用い、絶縁体222に、酸化ハフニウム、酸化アルミニウム、酸化タンタルのような電子捕獲準位の多い材料を用いた場合、半導体装置の使用温度、あるいは保管温度よりも高い温度(例えば、125℃以上450℃以下、代表的には150℃以上300℃以下)の下で、導電体205の電位をソース電極やドレイン電極の電位より高い状態を、10ミリ秒以上、代表的には1分以上維持することで、トランジスタ200を構成する酸化物から導電体205に向かって、電子が移動する。この時、移動する電子の一部が、絶縁体222の電子捕獲準位に捕獲される。
絶縁体222の電子捕獲準位に必要な量の電子を捕獲させたトランジスタは、しきい値電圧がプラス側にシフトする。なお、導電体205の電圧の制御によって電子の捕獲する量を制御することができ、それに伴ってしきい値電圧を制御することができる。当該構成を有することで、トランジスタ200は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
また、電子を捕獲する処理は、トランジスタの作製過程におこなえばよい。例えば、トランジスタのソース導電体あるいはドレイン導電体に接続する導電体の形成後、あるいは、前工程(ウエハ処理)の終了後、あるいは、ウエハダイシング工程後、パッケージ後等、工場出荷前のいずれかの段階で行うとよい。いずれの場合にも、その後に125℃以上の温度に1時間以上さらされないことが好ましい。
なお、絶縁体220と絶縁体224とを酸化シリコン、絶縁体222を酸化ハフニウムで構成する場合、絶縁体220および絶縁体224は、CVD法、またはALD(Atomic Layer Deposition)法で形成し、絶縁体222は、スパッタリング法で形成してもよい。なお、絶縁体222の形成に、スパッタリング法を用いることで、絶縁体222が低温で結晶化しやすく、生じる固定電荷量が大きい場合がある。
また、絶縁体220、絶縁体222、絶縁体224の膜厚を適宜調整することで、しきい値電圧を制御することができる。または、非導通時のリーク電流の小さいトランジスタを提供することができる。また、安定した電気特性を有するトランジスタを提供することができる。または、オン電流の大きいトランジスタを提供することができる。または、サブスレッショルドスイング値の小さいトランジスタを提供することができる。または、信頼性の高いトランジスタを提供することができる。
また、絶縁体222には、酸素や水素に対してバリア性のある物質を用いることが好ましい。このような材料を用いて形成した場合、トランジスタ200を構成する酸化物からの酸素の放出や、外部からの水素等の不純物の混入を防ぐことができる。
酸化物230a、酸化物230b、および酸化物230cは、In−M−Zn酸化物(MはAl、Ga、Y、またはSn)等の金属酸化物で形成される。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
以下に、本発明に係る酸化物230について説明する。
酸化物230に用いる酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物が、インジウム、元素M及び亜鉛を有する場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
まず、図20(A)、図20(B)、および図20(C)を用いて、本発明に係る酸化物が有するインジウム、元素M及び亜鉛の原子数比の好ましい範囲について説明する。なお、図20には、酸素の原子数比については記載しない。また、酸化物が有するインジウム、元素M、及び亜鉛の原子数比のそれぞれの項を[In]、[M]、および[Zn]とする。
図20(A)、図20(B)、および図20(C)において、破線は、[In]:[M]:[Zn]=(1+α):(1−α):1の原子数比(−1≦α≦1)となるライン、[In]:[M]:[Zn]=(1+α):(1−α):2の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):3の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):4の原子数比となるライン、および[In]:[M]:[Zn]=(1+α):(1−α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)となるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原子数比となるライン、及び[In]:[M]:[Zn]=5:1:βの原子数比となるラインを表す。
また、二点鎖線は、[In]:[M]:[Zn]=(1+γ):2:(1−γ)の原子数比(−1≦γ≦1)となるラインを表す。また、図20に示す、[In]:[M]:[Zn]=0:2:1の原子数比またはその近傍値の酸化物は、スピネル型の結晶構造をとりやすい。
図20(A)および図20(B)では、本発明の一態様の酸化物が有する、インジウム、元素M、及び亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図21に、[In]:[M]:[Zn]=1:1:1である、InMZnOの結晶構造を示す。また、図21は、b軸に平行な方向から観察した場合のInMZnOの結晶構造である。なお、図21に示すM、Zn、酸素を有する層(以下、(M,Zn)層)における金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則である。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図21に示すように、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、および酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物は、In層が1に対し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[Zn]が大きくなると、酸化物が結晶化した場合、In層に対する(M,Zn)層の割合が増加する。
ただし、酸化物中において、In層が1層に対し、(M,Zn)層の層数が非整数である場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有する場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In層が1に対し、(M,Zn)層が2である層状構造と、(M,Zn)層が3である層状構造とが混在する層状構造となる場合がある。
例えば、酸化物をスパッタリング装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、スピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物中に複数の相が共存する場合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される場合がある。
また、インジウムの含有率を高くすることで、酸化物のキャリア移動度(電子移動度)を高くすることができる。これは、インジウム、元素M及び亜鉛を有する酸化物では、主として重金属のs軌道がキャリア伝導に寄与しており、インジウムの含有率を高くすることにより、s軌道が重なる領域がより大きくなるため、インジウムの含有率が高い酸化物はインジウムの含有率が低い酸化物と比較してキャリア移動度が高くなるためである。
一方、酸化物中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低くなる。従って、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近傍値である原子数比(例えば図20(C)に示す領域C)では、絶縁性が高くなる。
従って、本発明の一態様の酸化物は、キャリア移動度が高く、かつ、粒界が少ない層状構造となりやすい、図20(A)の領域Aで示される原子数比を有することが好ましい。
また、図20(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物は、特に、結晶性が高く、キャリア移動度も高い優れた酸化物である。
なお、酸化物が、層状構造を形成する条件は、原子数比によって一義的に定まらない。原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっても、形成条件により、層状構造になる場合も層状構造にならない場合もある。従って、図示する領域は、酸化物が層状構造を有する原子数比を示す領域であり、領域A乃至領域Cの境界は厳密ではない。
続いて、上記酸化物をトランジスタに用いる場合について説明する。
なお、上記酸化物をトランジスタに用いることで、粒界におけるキャリア散乱等を減少させることができるため、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い酸化物を用いることが好ましい。例えば、酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
なお、高純度真性または実質的に高純度真性である酸化物は、キャリア発生源が少ないため、キャリア密度を低くすることができる。また、高純度真性または実質的に高純度真性である酸化物は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物中の不純物濃度を低減することが有効である。また、酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物中における各不純物の影響について説明する。
酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物において欠陥準位が形成される。このため、酸化物におけるシリコンや炭素の濃度と、酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物において、窒素はできる限り低減されていることが好ましい、例えば、酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物中の水素はできる限り低減されていることが好ましい。具体的には、酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
続いて、該酸化物を2層構造、または3層構造とした場合について述べる。酸化物S1、酸化物S2、および酸化物S3の積層構造、および積層構造に接する絶縁体のバンド図と、酸化物S2および酸化物S3の積層構造、および積層構造に接する絶縁体のバンド図と、について、図22を用いて説明する。
図22(A)は、絶縁体I1、酸化物S1、酸化物S2、酸化物S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。また、図22(B)は、絶縁体I1、酸化物S2、酸化物S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。なお、バンド図は、理解を容易にするため絶縁体I1、酸化物S1、酸化物S2、酸化物S3、及び絶縁体I2の伝導帯下端のエネルギー準位(Ec)を示す。
酸化物S1、酸化物S3は、酸化物S2よりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物S2の伝導帯下端のエネルギー準位と、酸化物S1、酸化物S3の伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。すなわち、酸化物S1、酸化物S3の電子親和力よりも、酸化物S2の電子親和力が大きく、酸化物S1、酸化物S3の電子親和力と、酸化物S2の電子親和力との差は、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。
図22(A)、および図22(B)に示すように、酸化物S1、酸化物S2、酸化物S3において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようなバンド図を有するためには、酸化物S1と酸化物S2との界面、または酸化物S2と酸化物S3との界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物S1と酸化物S2、酸化物S2と酸化物S3が、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物S2がIn−Ga−Zn酸化物の場合、酸化物S1、酸化物S3として、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物S2となる。酸化物S1と酸化物S2との界面、および酸化物S2と酸化物S3との界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
トラップ準位に電子が捕獲されることで、捕獲された電子は固定電荷のように振る舞うため、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。酸化物S1、酸化物S3を設けることにより、トラップ準位を酸化物S2より遠ざけることができる。当該構成とすることで、トランジスタのしきい値電圧がプラス方向にシフトすることを防止することができる。
酸化物S1、酸化物S3は、酸化物S2と比較して、導電率が十分に低い材料を用いる。このとき、酸化物S2、酸化物S2と酸化物S1との界面、および酸化物S2と酸化物S3との界面が、主にチャネル領域として機能する。例えば、酸化物S1、酸化物S3には、図20(C)において、絶縁性が高くなる領域Cで示す原子数比の酸化物を用いればよい。なお、図20(C)に示す領域Cは、[In]:[M]:[Zn]=0:1:0、またはその近傍値である原子数比を示している。
特に、酸化物S2に領域Aで示される原子数比の酸化物を用いる場合、酸化物S1および酸化物S3には、[M]/[In]が1以上、好ましくは2以上である酸化物を用いることが好ましい。また、酸化物S3として、十分に高い絶縁性を得ることができる[M]/([Zn]+[In])が1以上である酸化物を用いることが好適である。
絶縁体250は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などを含む絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体250として、絶縁体224と同様に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減することができる。
また、絶縁体250は、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、窒化シリコンなどの、酸素や水素に対してバリア性のある絶縁膜を用いることができる。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。
なお、絶縁体250は、絶縁体220、絶縁体222、および絶縁体224と同様の積層構造を有していてもよい。絶縁体250が、電子捕獲準位に必要な量の電子を捕獲させた絶縁体を有することで、トランジスタ200は、しきい値電圧をプラス側にシフトすることができる。当該構成を有することで、トランジスタ200は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
また、図6に示すトランジスタにおいて、酸化物230と導電体260の間に、絶縁体250の他にバリア膜を設けてもよい。もしくは、酸化物230cに酸素および水素に対するバリア性があるものを用いてもよい。
例えば、過剰酸素を含む絶縁膜を酸化物230に接して設け、さらに酸素および水素に対するバリア膜で包み込むことで、酸化物を化学量論比組成とほぼ一致するような状態、または化学量論的組成より酸素が多い過飽和の状態とすることができる。また、酸化物230への水素等の不純物の侵入を防ぐことができる。
導電体240a、及び導電体241aと、導電体240b、および導電体241bとは、一方がソース電極として機能し、他方がドレイン電極として機能する。
導電体240a、導電体241aと、導電体240b、及び導電体241bは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を用いることができる。また、図6では2層構造を示したが、単層構造または3層以上の積層構造としてもよい。
例えば、導電体240aおよび導電体240bに、チタン膜を用いて、導電体241a、および導電体241aにアルミニウム膜を積層するとよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、ゲート電極としての機能を有する導電体260a、及び導電体260bは、例えばアルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサイドを用いてもよい。
例えば、導電体260aにアルミニウムを用い、導電体260bにチタン膜を積層する二層構造とするとよい。また、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造としてもよい。
また、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、導電体260は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
または、導電体260と絶縁体250の間に、金属酸化物を配しても良い。該金属酸化物は、例えば、酸化アルミニウムとすることで導電体260から絶縁体250へ窒素の拡散をブロックすることができて好ましい。絶縁体250への窒素の拡散をブロックすることで、ゲート絶縁体としての機能を有する絶縁体250中のNOxの生成を防止することが出来る。NOxはゲート絶縁体中に電子捕獲準位を形成することがあり、トランジスタの信頼性低下の原因の一つとなることがある。
導電体260を覆うように、絶縁体270を設けてもよい。絶縁体280に酸素が脱離する酸化物材料を用いる場合、導電体260が、脱離した酸素により酸化することを防止するため、絶縁体270は、酸素に対してバリア性を有する物質を用いる。
例えば、絶縁体270には、酸化アルミニウムなどの金属酸化物を用いることができる。また絶縁体270は、導電体260の酸化を防止する程度に設けられていればよい。例えば、絶縁体270の膜厚は、1nm以上10nm以下、好ましくは3nm以上7nm以下とする。
従って、導電体260の酸化を抑制し、絶縁体280から、脱離した酸素を効率的に酸化物230へと供給することができる。
また、当該構造は、酸化物230bにおいて、チャネルが形成される領域を、ゲート電極としての機能を有する導電体260の電界によって、電気的に取り囲むことができる構造(s−channel構造と呼ぶ)を有する為、絶縁体250を介して、導電体260と対向する酸化物230bの領域全体にチャネルが形成される場合がある。s−channel構造では、トランジスタのソース−ドレイン間に大電流を流すことができ、オン電流を高くすることができる。また、チャネルが形成される領域に全周から電圧が印加されるため、リーク電流が抑制されたトランジスタを提供することができる。
また、トランジスタ200は、ゲート電極として機能する導電体205、および導電体260のうち、導電体205がない構成としてもよい(図63(A)、(B)および(C)参照。)。
<トランジスタ構造2>
図7には、トランジスタ200に適応できる構造の一例を示す。図7(A)はトランジスタ200の上面図である。なお、図の明瞭化のため、図7(A)において一部の膜は省略されている。また、図7(B)は、図7(A)に示す一点鎖線X1−X2に対応する断面図であり、図7(C)はY1−Y2に対応する断面図である。
なお、図7に示すトランジスタ200において、図6に示したトランジスタ200を構成する構造と同機能を有する構造には、同符号を付記する。
トランジスタ200は、基板上に作製しても良い。例えば、基板上に絶縁体214を形成する構成としてもよい。
図7に示す構造は、絶縁体280に形成された開口部に、酸化物230c、絶縁体250、導電体260が形成されている。また、導電体240a、導電体240b、導電体241a、および導電体241bの一方の端部と、絶縁体280に形成された開口部の端部が一致している。さらに、導電体240a、導電体240b、導電体241a、および導電体241bの三方の端部が、酸化物230a、230bの端部の一部と一致している。従って、導電体240a、導電体240b、導電体241a、および導電体241bは、酸化物230a、230bまたは絶縁体280の開口部と、同時に整形することができる。そのため、マスクおよび工程を削減することができる。また、歩留まりや生産性を向上させることができる。
または、導電体260と絶縁体250の間に、金属酸化物を配しても良い。該金属酸化物は、例えば、酸化アルミニウムとすることで導電体260から絶縁体250へ窒素の拡散をブロックすることができて好ましい。絶縁体250への窒素の拡散をブロックすることで、ゲート絶縁体としての機能を有する絶縁体250中のNOxの生成を防止することが出来る。NOxはゲート絶縁体中に電子捕獲準位を形成することがあり、トランジスタの信頼性低下の原因の一つとなることがある。
さらに、図7に示すトランジスタ200は、導電体240a、導電体240b、導電体241a、および導電体241bと、導電体260と、がほとんど重ならない構造を有するため、導電体260にかかる寄生容量を小さくすることができる。即ち、動作周波数が高いトランジスタ200を提供することができる。
<トランジスタ構造3>
図8には、トランジスタ200に適応できる構造の一例を示す。図8(A)はトランジスタ200の上面図である。なお、図の明瞭化のため、図8(A)において一部の膜は省略されている。また、図8(B)は、図8(A)に示す一点鎖線X1−X2に対応する断面図であり、図8(C)はY1−Y2に対応する断面図である。
なお、図8に示すトランジスタ200において、図6に示したトランジスタ200を構成する構造と同機能を有する構造には、同符号を付記する。
トランジスタ200は、基板上に作製しても良い。例えば、基板上に絶縁体214を形成する構成としてもよい。
基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。
図8に示す構造は、酸化物230に、ソース領域またはドレイン領域の一方として機能する領域245a、およびソース領域またはドレイン領域の他方として機能する領域245bとが設けられている。当該領域は、導電体260をマスクとしてホウ素、リン、アルゴンなどの不純物を酸化物230に添加することによって形成することができる。また、絶縁体280を窒化珪素膜などの水素を含む絶縁体とすることで、水素を酸化物230の一部に拡散させることで形成することができる。そのため、マスクまたは工程を削減することができる。また、歩留まりや生産性を向上させることができる。
または、導電体260と絶縁体250の間に、金属酸化物を配しても良い。該金属酸化物は、例えば、酸化アルミニウムとすることで導電体260から絶縁体250へ窒素の拡散をブロックすることができて好ましい。絶縁体250への窒素の拡散をブロックすることで、ゲート絶縁体としての機能を有する絶縁体250中のNOxの生成を防止することが出来る。NOxはゲート絶縁体中に電子捕獲準位を形成することがあり、トランジスタの信頼性低下の原因の一つとなることがある。
以上、本実施の形態に示す構成、方法などは、他の実施の形態および他の実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、上記構成例で示した半導体装置の作製方法の一例について、図9乃至図18を用いて説明する。
<半導体装置の作製方法>
まず、基板301を準備する。基板301としては、半導体基板を用いる。例えば、単結晶シリコン基板(p型の半導体基板、またはn型の半導体基板を含む)、炭化シリコンや窒化ガリウムを材料とした化合物半導体基板などを用いることができる。また、基板301として、SOI基板を用いてもよい。以下では、基板301として単結晶シリコンを用いた場合について説明する。
続いて、基板301に素子分離層を形成する。素子分離層はLOCOS(Local Oxidation of Silicon)法またはSTI(Shallow Trench Isolation)法等を用いて形成すればよい。
なお、同一基板上にp型のトランジスタとn型のトランジスタを形成する場合、基板301の一部にnウェルまたはpウェルを形成してもよい。例えば、n型の基板301にp型の導電性を付与するホウ素などの不純物元素を添加してpウェルを形成し、同一基板上にn型のトランジスタとp型のトランジスタを形成してもよい。
続いて、基板301上に絶縁体304となる絶縁体を形成する。例えば、表面窒化処理後に酸化処理を行い、シリコンと窒化シリコン界面を酸化して酸化窒化シリコン膜を形成してもよい。例えばNH雰囲気中で700℃にて熱窒化シリコン膜を表面に形成後に酸素ラジカル酸化を行うことで酸化窒化シリコン膜が得られる。
当該絶縁体は、スパッタリング法、CVD法、熱CVD法、MOCVD(Metal Organic CVD)法、PECVD(Plasma Enhanced CVD法、MBE(Molecular Beam Epitaxy)法、ALD法、またはPLD(Pulsed Laser Deposition)法等で成膜することにより形成してもよい。
続いて、導電体306となる導電膜を成膜する。導電膜としては、タンタル、タングステン、チタン、モリブデン、クロム、ニオブ等から選択された金属、またはこれらの金属を主成分とする合金材料若しくは化合物材料を用いることが好ましい。また、リン等の不純物を添加した多結晶シリコンを用いることができる。また、金属窒化物膜と上記の金属膜の積層構造を用いてもよい。金属窒化物としては、窒化タングステン、窒化モリブデン、窒化チタンを用いることができる。金属窒化物膜を設けることにより、金属膜の密着性を向上させることができ、剥離を防止することができる。なお、導電体306の仕事関数を定めることで、トランジスタ300のしきい値電圧を調整することができるため、導電膜の材料は、トランジスタ300に求められる特性に応じて、適宜選択するとよい。
導電膜は、スパッタリング法、蒸着法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)などにより成膜することができる。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
続いて、当該導電膜上にリソグラフィ法等を用いてレジストマスクを形成し、当該導電膜の不要な部分を除去する。その後、レジストマスクを除去することにより、導電体306を形成することができる。
ここで、被加工膜の加工方法について説明する。被加工膜を微細に加工する場合には、様々な微細加工技術を用いることができる。例えば、リソグラフィ法等で形成したレジストマスクに対してスリミング処理を施す方法を用いてもよい。また、リソグラフィ法等でダミーパターンを形成し、当該ダミーパターンにサイドウォールを形成した後にダミーパターンを除去し、残存したサイドウォールをレジストマスクとして用いて、被加工膜をエッチングしてもよい。また、被加工膜のエッチングとして、高いアスペクト比を実現するために、異方性のドライエッチングを用いることが好ましい。また、無機膜または金属膜からなるハードマスクを用いてもよい。
レジストマスクの形成に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
また、レジストマスクとなるレジスト膜を形成する前に、被加工膜とレジスト膜との密着性を改善する機能を有する有機樹脂膜を形成してもよい。当該有機樹脂膜は、例えばスピンコート法などにより、その下方の段差を被覆して表面を平坦化するように形成することができ、当該有機樹脂膜の上方に設けられるレジストマスクの厚さのばらつきを低減できる。また、特に微細な加工を行う場合には、当該有機樹脂膜として、露光に用いる光に対する反射防止膜として機能する材料を用いることが好ましい。このような機能を有する有機樹脂膜としては、例えばBARC(Bottom Anti−Reflection Coating)膜などがある。当該有機樹脂膜は、レジストマスクの除去と同時に除去するか、レジストマスクを除去した後に除去すればよい。
導電体306の形成後、導電体306の側面を覆うサイドウォールを形成してもよい。サイドウォールは、導電体306の厚さよりも厚い絶縁体を成膜した後に、異方性エッチングを施し、導電体306の側面部分のみ当該絶縁体を残存させることにより形成できる。
サイドウォールの形成時に絶縁体304となる絶縁体も同時にエッチングされることにより、導電体306およびサイドウォールの下部に絶縁体304が形成される。または、導電体306を形成した後に導電体306、または導電体306を加工するためのレジストマスクをエッチングマスクとして当該絶縁体をエッチングすることにより絶縁体304を形成してもよい。この場合、導電体306の下部に絶縁体304が形成される。または、当該絶縁体に対してエッチングによる加工を行わずに、そのまま絶縁体304として用いることもできる。
続いて、基板301の導電体306(およびサイドウォール)が設けられていない領域にリンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を添加する。
続いて、絶縁体320を形成した後、上述した導電性を付与する元素の活性化のための加熱処理を行う。
絶縁体320は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよく、積層または単層で設ける。また、酸素と水素を含む窒化シリコン(SiNOH)を用いると、加熱によって脱離する水素の量を多くすることができるため好ましい。また、TEOS(Tetra−Ethyl−Ortho−Silicate)若しくはシラン等と、酸素若しくは亜酸化窒素等とを反応させて形成した段差被覆性の良い酸化シリコンを用いることもできる。
絶縁体320は、例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。特に、当該絶縁体をCVD法、好ましくはプラズマCVD法によって成膜すると、被覆性を向上させることができるため好ましい。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
加熱処理は、希ガスや窒素ガスなどの不活性ガス雰囲気下、または減圧雰囲気下にて、例えば、400℃以上でかつ基板の歪み点未満で行うことができる。
この段階でトランジスタ300が形成される。なお、図19(B)に示す回路構成とする場合、トランジスタ300を設けなくともよい。その場合、基板として使用することができる基板に大きな制限はない。例えば、バリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム、ガリウムヒ素、インジウムヒ素、インジウムガリウムヒ素からなる化合物半導体基板、SOI(Silicon On Insulator)基板、GOI(Germanium on Insulator)基板などを適用することもでき、これらの基板上に半導体素子が設けられたものを、基板として用いてもよい。
また、基板として、可撓性基板を用いてもよい。可撓性基板上にトランジスタを直接作製してもよいし、他の作製基板にトランジスタを作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基板から可撓性基板に剥離、転置するために、作製基板と酸化物半導体を含むトランジスタとの間に剥離層を設けるとよい。
続いて、絶縁体320上に絶縁体322を形成する。絶縁体322は、絶縁体320と同様の材料および方法で作製することができる。また、絶縁体322の上面を、CMP法等を用いて、平坦化を行う(図9(A))。
続いて、絶縁体320、および絶縁体322に、リソグラフィ法などを用いて、低抵抗領域308a、低抵抗領域308bおよび導電体306等に達する開口部を形成する(図9(B))。その後、開口部を埋めるように導電膜を形成する(図9(C))。導電膜の形成は、例えばスパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。
続いて、絶縁体322の上面が露出するように該導電膜に平坦化処理を施すことにより、導電体328a、導電体328b、および導電体328c等を形成する(図10(A))。なお、図中の矢印は、CMP処理を表す。また、明細書中、及び図中において、導電体328a、導電体328b、および導電体328cは、プラグ、または配線としての機能を有し、まとめて導電体328と付記する場合もある。なお、本明細書中において、プラグ、または配線としての機能を有する場合は、同様に取り扱うものとする。
続いて、絶縁体320上に、ダマシン法などを用いて導電体330a、導電体330b、および導電体330cを形成する(図10(B))。
絶縁体324、および絶縁体326は絶縁体320と同様の材料および方法で作製することができる。
絶縁体324には、例えば、基板301、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。
また、絶縁体326は、誘電率が低い絶縁体(Low−k材料)であることが好ましい。例えば、CVD法で形成した酸化シリコンを用いることができる。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、導電体330となる導電膜は、導電体328と同様の材料および方法で作製することができる。
なお、導電体330を積層構造とする場合、絶縁体324と接する導電体として、窒化タンタルなどの、酸素、水素、または水に対してバリア性を有する導電体を用いることが好ましい。例えば、バリア性を有する窒化タンタルは、基板温度250℃、塩素を含まない成膜ガスを用いて、ALD法により成膜することができる。ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える導電体を形成することができる。また、酸素、水素、または水に対してバリア性を有する絶縁体324と、酸素、水素、または水に対してバリア性を有する導電体が接することで、より強固に酸素、水素、または水の拡散を抑制することができる。
次に、絶縁体352、絶縁体354、絶縁体355、導電体358a、導電体358b、および導電体358cを形成する(図10(C))。絶縁体352、および絶縁体354は絶縁体320と同様の材料および方法で作製することができる。また、導電体358はデュアルダマシン法などを用いて、導電体328と同様の材料を用いることができる。
次に、トランジスタ200を形成する。
絶縁体210を形成した後、水素または酸素に対してバリア性を有する絶縁体212、および絶縁体214を形成する。絶縁体210、絶縁体212、及び絶縁体214は、絶縁体320と同様の材料および方法で作製することができる。
例えば、絶縁体210には、基板301、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。
また、絶縁体212は、例えば、水素に対するバリア性を有する膜の一例として、ALD法で形成した酸化アルミニウムを用いることができる。ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える絶縁体を形成することができる。
また、絶縁体214は、例えば、水素に対するバリア性を有する膜の一例として、スパッタリング法で形成した酸化アルミニウムを用いることができる。
続いて、絶縁体214上に絶縁体216を形成する。絶縁体216は、絶縁体210と同様の材料および方法で作製することができる(図11(A))。
次に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216の積層構造において、導電体358a、導電体358b、および導電体358c等と重畳する領域に、凹部を形成する(図11(B))。なお、該凹部は、少なくとも難エッチング材料を用いた絶縁体に開口部が形成される程度の深さを有することが好ましい。ここで、難エッチング材料とは、金属酸化物などのエッチングが困難な材料を指す。難エッチング材料である金属酸化膜の代表例としては、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、及びそれらを含むシリケート(HfSixOy,ZrSixOy等)、並びにそれらの二以上を含む複合酸化物(Hf1‐xAlxOy,Zr1‐xAlxOy等)がある。
続いて、絶縁体355、絶縁体210、絶縁体212、絶縁体214、および絶縁体216の積層構造に、導電体358a、導電体358b、および導電体358cに達する開口部と、配線が形成される溝とを形成する。(図12(A))。
その後、開口部および溝を埋めるように導電膜を形成する(図12(B))。導電膜の形成は、導電体328と同様の材料および方法で作製することができる。続いて、導電膜に平坦化処理を施すことにより、絶縁体216の上面を露出させ、導電体218a、導電体218b、導電体218c、および導電体205を形成する(図13(A))。なお、図中の矢印は、CMP処理を表す。
次に、絶縁体220、絶縁体222、および絶縁体224を形成する。
絶縁体220、絶縁体222、および絶縁体224は、絶縁体320と同様の材料および方法で作製することができる。特に、絶縁体222には、酸化ハフニウムなどのhigh−k材料を用いることが好ましい。
続いて、酸化物230aとなる酸化物と、酸化物230bとなる酸化物を順に成膜する。当該酸化物は、大気に触れさせることなく連続して成膜することが好ましい。
酸化物230bとなる酸化物を成膜後、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下の温度で、不活性ガス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状態で行えばよい。また、加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。加熱処理は、酸化物230bとなる酸化物を成膜した直後に行ってもよいし、酸化物230bとなる酸化物を加工して島状の酸化物230bを形成した後に行ってもよい。加熱処理により、酸化物230aの下方に形成された絶縁体から、酸化物230a、および酸化物230bに酸素が供給され、酸化物中の酸素欠損を低減することができる。
その後、酸化物230bとなる酸化物上に、導電体240a、および導電体240bとなる導電膜を形成する。続いて、上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後、導電膜をマスクとして酸化物の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、島状の酸化物230a、島状の酸化物230b、および島状の導電体の積層構造を形成することができる。
次に、島状の導電膜上に上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、導電体240a、および導電体240bを形成する。
続いて、酸化物230cとなる酸化物、絶縁体250となる絶縁体、および導電体260となる導電膜を順に成膜する。例えば、導電体260となる導電膜は、ALD法により形成した窒化タンタルと、導電率が大きいタングステンを積層して用いることができる。当該導電膜を成膜する際に、塩素を含まない成膜ガスを用いて、形成することが好ましい。酸素、水素、及び水に対してバリア性を有する窒化タンタルを絶縁体250と接して形成することで、絶縁体250に拡散された過剰酸素により、タングステンが酸化することを防止することができる。
続いて、当該導電膜上に、上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去することで、導電体260を形成する。
次に、絶縁体250となる絶縁体、および導電体260上に絶縁体270となる絶縁体を形成する。絶縁体270となる絶縁体は、水素および酸素に対するバリア性を有する材料を用いることが好ましい。続いて、当該絶縁体上に上記と同様の方法によりレジストマスクを形成し、絶縁体270となる絶縁体、絶縁体250となる絶縁体、および酸化物230cとなる酸化物の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、トランジスタ200が形成される。
次に、絶縁体280を形成する。絶縁体280は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。また、絶縁体280となる絶縁体を形成した後、その上面の平坦性を高めるためにCMP法等を用いた平坦化処理を行ってもよい(図13(B))。
なお、絶縁体280に酸素を過剰に含有させるためには、例えば酸素雰囲気下にて絶縁体280の成膜を行えばよい。または、成膜後の絶縁体280に酸素を導入して酸素を過剰に含有する領域を形成してもよく、双方の手段を組み合わせてもよい。
次に、絶縁体280上に絶縁体282を成膜する。絶縁体282は、ALD法により成膜することが好ましい。ALD法は、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法は、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
ALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。
絶縁体282は、ALD法によって、酸化アルミニウムを膜厚1nm以上、5nm未満で形成することが好ましい。
続いて、絶縁体280に、絶縁体282を介して、酸素(少なくとも酸素ラジカル、酸素原子、酸素イオンのいずれかを含む)を導入し、酸素を過剰に含有する領域を形成する。酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、プラズマ処理などを用いることができる。酸素導入処理を、絶縁体282を介して行うことで、絶縁体280を保護した状態で、過剰酸素領域を形成することができる(図14)。なお、図中の矢印は酸素導入処理を示す。
代表的な酸素プラズマ処理は、酸素ガスのグロー放電プラズマで生成されたラジカルで酸化物半導体の表面を処理することであるが、プラズマを生成するガスとしては酸素のみでなく、酸素ガスと希ガスの混合ガスであってもよい。例えば、250℃以上400℃以下、好ましくは300℃以上400℃以下の温度で、酸化性ガスを含む雰囲気、または減圧状態で行えばよい。また、酸素導入処理として、酸素を含むガスを用いることができる。酸素を含むガスとしては、酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。また、酸素導入処理において、酸素を含むガスに希ガスを含ませてもよく、例えば、二酸化炭素と水素とアルゴンの混合ガスを用いることができる。
酸素プラズマ処理により、絶縁体280、およびトランジスタ200の酸化物230が、脱水化、または脱水素化されるとともに、絶縁体280に過剰な酸素を導入することで、過剰酸素領域を形成することができる。また、脱水化、または脱水素化された酸化物230には、酸素欠損が生じ、低抵抗化する。一方で、絶縁体280の過剰な酸素により、酸化物230の酸素欠損が補填される。従って、酸素プラズマ処理により、絶縁体280、および酸化物230の酸素欠損を補填しながら、不純物である水素、または水を除去することができる。したがって、トランジスタ200の電気特性の向上および、電気特性のばらつきを軽減することができる。
プラズマ処理に使用する装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)装置を用いることができる。平行平板型電極を有する容量結合型プラズマ装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なる高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有する装置を用いることができる。高密度プラズマ源を有する装置としては、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)装置、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマ装置、ヘリコン波プラズマ(HWP:Helicon Wave Plasma)装置、表面波プラズマ(SWP:Surface Wave Plasma)装置またはマグネトロンプラズマ(Magnetron Plasma)装置などを用いることができる。
以上の工程を行うことで、絶縁体282中および絶縁体282と絶縁体280と、の界面近傍には、化学量論的組成を満たす酸素よりも多くの酸素が導入され、過剰酸素領域が形成される。該過剰酸素は、絶縁体282をALD法によって、酸化アルミニウムを膜厚1nm以上、5nm未満で形成することによって、絶縁体282中および絶縁体282と絶縁体280と、の界面近傍に効率よく形成することができる。
続いて、加熱処理を行う。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは350℃以上400℃以下の温度で、不活性ガス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状態で行えばよい。また、加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。加熱処理は、ランプ加熱によるRTA装置を用いることもできる(図15)。なお、図中の矢印は加熱処理を示す。
加熱処理により、絶縁体282中および絶縁体282と絶縁体280と、の界面近傍に導入された過剰酸素は、絶縁体280中を拡散する。ここで、絶縁体280は、酸素に対するバリア性を有する絶縁体282、および絶縁体210により、包まれている。従って、絶縁体280に導入された過剰酸素は、外部に放出されることを防ぎ、効率的に酸化物230へ供給される。
また、加熱処理により、絶縁体280の水素が移動し、絶縁体282に取り込まれる。絶縁体282に取り込まれた水素は、絶縁体282中の酸素と反応することで、水が生成する場合がある。生成された水は、絶縁体282上から放出される。従って、絶縁体280の不純物としての水素、及び水を低減することができる。なお、絶縁体282に酸化アルミニウムを用いている場合、絶縁体282が触媒として機能していると考えられる。
酸化物230へ供給された酸素は、酸化物230中の酸素欠損を補償する。従って、トランジスタ200におけるチャネルが形成される酸化物を、欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
また、酸素導入処理と加熱処理は、過剰酸素領域が十分に形成される、または酸素導入処理によるダメージで絶縁体282のバリア性が破壊されない程度に、複数回、繰り返してもよい。
ここで、絶縁体282のバリア性が弱くなった、または破壊された場合、絶縁体284を形成したのち、酸素導入処理と加熱処理を行ってもよい。酸素導入処理を、絶縁体282、および絶縁体284を介して行うことで、絶縁体280を保護した状態で、過剰酸素領域を形成することができる。
なお、絶縁体284として、例えば、バリア性を有する酸化アルミニウム膜を、ALD法により形成することが好ましい。ALD法を用いることで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える絶縁体を形成することができる。
また、絶縁体282に、緻密な膜質の絶縁体284を積層することで、絶縁体280に導入した過剰酸素を、トランジスタ200側に、効果的に封じ込めることができる(図16)。
次に、容量素子100を形成する。まず、絶縁体284上に、絶縁体102を形成する。絶縁体102は、絶縁体210と同様の材料および方法で作製することができる。
例えば、絶縁体102には、容量素子100などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。
次に、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体282、および絶縁体284に、導電体218a、導電体218b、導電体218c、導電体240a、および導電体240b等に達する開口部を形成する。
その後、開口部を埋めるように導電膜を形成し、導電膜に平坦化処理を施すことにより、絶縁体102の上面を露出させ、導電体244a、導電体244b、導電体244c、導電体244d、および導電体244eを形成する。なお、導電膜の形成は、導電体328と同様の材料および方法で作製することができる(図17)。
なお、導電体244を積層構造とする場合、絶縁体104と接する導電体として、窒化タンタルなどの、酸素、水素、または水に対してバリア性を有する導電体を、ALD法を用いて成膜することが好ましい。ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える導電体を形成することができる。また、酸素、水素、または水に対してバリア性を有する絶縁体104と、酸素、水素、または水に対してバリア性を有する導電体244が接することで、より強固に酸素、水素、または水の拡散を抑制することができる。
次に、絶縁体102上に導電体112、および導電体128を形成する。なお、導電体112と、導電体128と、は同様の材料および方法で作製することができる。導電体112、および導電体128を形成するときに、絶縁体102の上面を、絶縁体114の膜厚よりも大きく除去することが好ましい。例えば、オーバーエッチング処理とすることで、絶縁体102の一部も同時に除去することができる。また、オーバーエッチング処理により、導電体112等を形成することで、エッチング残渣を残すことなくエッチングすることができる。
また、当該エッチング処理の途中で、エッチングガスの種類を切り替えることにより、効率よく絶縁体102の一部を除去することができる。
また、例えば、導電体112を形成した後、導電体112をハードマスクとして、絶縁体102の一部を除去してもよい。
また、導電体112を形成した後、導電体112の表面を、クリーニング処理してもよい。クリーニング処理をすることで、エッチング残渣等を除去することができる。
続いて、導電体112の側面、および上面を覆う絶縁体114を成膜する。絶縁体114には例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設ける。
例えば、酸化アルミニウムなどのhigh−k材料と、酸化窒化シリコンなどの絶縁耐力が大きい材料の積層構造とすることが好ましい。当該構成により、容量素子100は、high−k材料により十分な容量を確保でき、絶縁耐力が大きい材料により絶縁耐力が向上するため、容量素子100の静電破壊を抑制し、容量素子100の信頼性を向上させることができる。
続いて、絶縁体114上に導電体116を形成する。なお、導電体116の形成は、導電体112と同様の材料および方法で作製することができる。
導電体116は、絶縁体114を介して、導電体112の側面および上面を覆うように設けられることが好ましい。当該構成により、導電体112の側面は、絶縁体114を介して、導電体116と対向する。従って、投影面積当たりの容量が大きな容量素子を形成することができる。
続いて、容量素子100を覆う絶縁体120を成膜する。絶縁体120となる絶縁体は、絶縁体320等と同様の材料および方法により形成することができる。
絶縁体120上に、導電体128a、導電体128b、導電体128c、および導電体128dを形成する。導電体128は、導電体328と同様の材料及び作製方法を用いて形成すればよい。
続いて、絶縁体120上に、絶縁体122を成膜する(図18)。絶縁体122となる絶縁体は、絶縁体122等と同様の材料および方法により形成することができる。
以上の工程により、本発明の一態様の半導体装置を作製することができる。
上記工程を経て作製することにより、酸化物半導体を有するトランジスタを用いた半導体装置は、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態および実施例と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態においては、先の実施の形態で例示したトランジスタを有する酸化物半導体について、図23乃至図27を用いて以下説明を行う。
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体およびnc−OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さない、などといわれている。
即ち、安定な酸化物半導体を完全な非晶質(completely amorphous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。一方、a−like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定な構造である。不安定であるという点では、a−like OSは、物性的に非晶質酸化物半導体に近い。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一種である。
CAAC−OSをX線回折(XRD:X−Ray Diffraction)によって解析した場合について説明する。例えば、空間群R−3mに分類されるInGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図23(A)に示すように回折角(2θ)が31°近傍にピークが現れる。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSでは、結晶がc軸配向性を有し、c軸がCAAC−OSの膜を形成する面(被形成面ともいう。)、または上面に略垂直な方向を向いていることが確認できる。なお、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、空間群Fd−3mに分類される結晶構造に起因する。そのため、CAAC−OSは、該ピークを示さないことが好ましい。
一方、CAAC−OSに対し、被形成面に平行な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。そして、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図23(B)に示すように明瞭なピークは現れない。一方、単結晶InGaZnOに対し、2θを56°近傍に固定してφスキャンした場合、図23(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、CAAC−OSの被形成面に平行にプローブ径が300nmの電子線を入射させると、図23(D)に示すような回折パターン(制限視野電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図23(E)に示す。図23(E)より、リング状の回折パターンが確認される。したがって、プローブ径が300nmの電子線を用いた電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図23(E)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図23(E)における第2リングは(110)面などに起因すると考えられる。
また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像であってもペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない場合がある。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
図24(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって観察することができる。
図24(A)より、金属原子が層状に配列している領域であるペレットを確認することができる。ペレット一つの大きさは1nm以上のものや、3nm以上のものがあることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。ペレットは、CAAC−OSの被形成面または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
また、図24(B)および図24(C)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図24(D)および図24(E)は、それぞれ図24(B)および図24(C)を画像処理した像である。以下では、画像処理の方法について説明する。まず、図24(B)を高速フーリエ変換(FFT:Fast Fourier Transform)処理することでFFT像を取得する。次に、取得したFFT像において原点を基準に、2.8nm−1から5.0nm−1の間の範囲を残すマスク処理する。次に、マスク処理したFFT像を、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理することで画像処理した像を取得する。こうして取得した像をFFTフィルタリング像と呼ぶ。FFTフィルタリング像は、Cs補正高分解能TEM像から周期成分を抜き出した像であり、格子配列を示している。
図24(D)では、格子配列の乱れた箇所を破線で示している。破線で囲まれた領域が、一つのペレットである。そして、破線で示した箇所がペレットとペレットとの連結部である。破線は、六角形状であるため、ペレットが六角形状であることがわかる。なお、ペレットの形状は、正六角形状とは限らず、非正六角形状である場合が多い。
図24(E)では、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を点線で示し、格子配列の向きの変化を破線で示している。点線近傍においても、明確な結晶粒界を確認することはできない。点線近傍の格子点を中心に周囲の格子点を繋ぐと、歪んだ六角形や、五角形または/および七角形などが形成できる。即ち、格子配列を歪ませることによって結晶粒界の形成を抑制していることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
以上に示すように、CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、CAAC−OSを、CAA crystal(c−axis−aligned a−b−plane−anchored crystal)を有する酸化物半導体と称することもできる。
CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。例えば、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、8×1011cm−3未満、好ましくは1×1011cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上のキャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSをXRDによって解析した場合について説明する。例えば、nc−OSに対し、out−of−plane法による構造解析を行うと、配向性を示すピークが現れない。即ち、nc−OSの結晶は配向性を有さない。
また、例えば、InGaZnOの結晶を有するnc−OSを薄片化し、厚さが34nmの領域に対し、被形成面に平行にプローブ径が50nmの電子線を入射させると、図25(A)に示すようなリング状の回折パターン(ナノビーム電子回折パターン)が観測される。また、同じ試料にプローブ径が1nmの電子線を入射させたときの回折パターン(ナノビーム電子回折パターン)を図25(B)に示す。図25(B)より、リング状の領域内に複数のスポットが観測される。したがって、nc−OSは、プローブ径が50nmの電子線を入射させることでは秩序性が確認されないが、プローブ径が1nmの電子線を入射させることでは秩序性が確認される。
また、厚さが10nm未満の領域に対し、プローブ径が1nmの電子線を入射させると、図25(C)に示すように、スポットが略正六角状に配置された電子回折パターンを観測される場合がある。したがって、厚さが10nm未満の範囲において、nc−OSが秩序性の高い領域、即ち結晶を有することがわかる。なお、結晶が様々な方向を向いているため、規則的な電子回折パターンが観測されない領域もある。
図25(D)に、被形成面と略平行な方向から観察したnc−OSの断面のCs補正高分解能TEM像を示す。nc−OSは、高分解能TEM像において、補助線で示す箇所などのように結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下の大きさであり、特に1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体(micro crystalline oxide semiconductor)と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
このように、nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、ペレット(ナノ結晶)間で結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
図26に、a−like OSの高分解能断面TEM像を示す。ここで、図26(A)は電子照射開始時におけるa−like OSの高分解能断面TEM像である。図26(B)は4.3×10/nmの電子(e)照射後におけるa−like OSの高分解能断面TEM像である。図26(A)および図26(B)より、a−like OSは電子照射開始時から、縦方向に延伸する縞状の明領域が観察されることがわかる。また、明領域は、電子照射後に形状が変化することがわかる。なお、明領域は、鬆または低密度領域と推測される。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
試料として、a−like OS、nc−OSおよびCAAC−OSを準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有する。
なお、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、以下では、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なした。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図27は、各試料の結晶部(22箇所から30箇所)の平均の大きさを調査した例である。なお、上述した格子縞の長さを結晶部の大きさとしている。図27より、a−like OSは、TEM像の取得などに係る電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。図27より、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、電子(e)の累積照射量が4.2×10/nmにおいては1.9nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。図27より、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.3nm程度および1.8nm程度であることがわかる。なお、電子線照射およびTEMの観察は、日立透過電子顕微鏡H−9000NARを用いた。電子線照射条件は、加速電圧を300kV、電流密度を6.7×10/(nm・s)、照射領域の直径を230nmとした。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られない。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満である。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満である。単結晶の密度の78%未満である酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmである。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満である。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満である。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態においては、本発明の一態様に係るトランジスタや上述した記憶装置などの半導体装置を含むCPUの一例について説明する。
<CPUの構成>
図28に示す半導体装置4000は、CPUコア4001、パワーマネージメントユニット4201および周辺回路4202を有する。パワーマネージメントユニット4201は、パワーコントローラ4002、およびパワースイッチ4003を有する。周辺回路4202は、キャッシュメモリを有するキャッシュ4004、バスインターフェース(BUS I/F)4005、及びデバッグインターフェース(Debug I/F)4006を有する。CPUコア4001は、データバス4203、制御装置4007、PC(プログラムカウンタ)4008、パイプラインレジスタ4009、パイプラインレジスタ4100、ALU(Arithmetic logic unit)4101、及びレジスタファイル4102を有する。CPUコア4001と、キャッシュ4004等の周辺回路4202とのデータのやり取りは、データバス4203を介して行われる。
半導体装置(セル)は、パワーコントローラ4002、制御装置4007をはじめ、多くの論理回路に適用することができる。特に、スタンダードセルを用いて構成することができる全ての論理回路に適用することができる。その結果、小型の半導体装置4000を提供できる。また、消費電力低減することが可能な半導体装置4000を提供できる。また、動作速度を向上することが可能な半導体装置4000を提供できる。また、電源電圧の変動を低減することが可能な半導体装置4000を提供できる。
半導体装置(セル)に、pチャネル型Siトランジスタと、先の実施の形態に記載の酸化物半導体(好ましくはIn、Ga、及びZnを含む酸化物)をチャネル形成領域に含むトランジスタとを用い、該半導体装置(セル)を半導体装置4000に適用することで、小型の半導体装置4000を提供できる。また、消費電力低減することが可能な半導体装置4000を提供できる。また、動作速度を向上することが可能な半導体装置4000を提供できる。特に、Siトランジスタはpチャネル型のみとすることで、製造コストを低く抑えることができる。
制御装置4007は、PC4008、パイプラインレジスタ4009、パイプラインレジスタ4100、ALU4101、レジスタファイル4102、キャッシュ4004、バスインターフェース4005、デバッグインターフェース4006、及びパワーコントローラ4002の動作を統括的に制御することで、入力されたアプリケーションなどのプログラムに含まれる命令をデコードし、実行する機能を有する。
ALU4101は、四則演算、論理演算などの各種演算処理を行う機能を有する。
キャッシュ4004は、使用頻度の高いデータを一時的に記憶しておく機能を有する。PC4008は、次に実行する命令のアドレスを記憶する機能を有するレジスタである。なお、図28では図示していないが、キャッシュ4004には、キャッシュメモリの動作を制御するキャッシュコントローラが設けられている。
パイプラインレジスタ4009は、命令データを一時的に記憶する機能を有するレジスタである。
レジスタファイル4102は、汎用レジスタを含む複数のレジスタを有しており、メインメモリから読み出されたデータ、またはALU4101の演算処理の結果得られたデータ、などを記憶することができる。
パイプラインレジスタ4100は、ALU4101の演算処理に利用するデータ、またはALU4101の演算処理の結果得られたデータなどを一時的に記憶する機能を有するレジスタである。
バスインターフェース4005は、半導体装置4000と半導体装置4000の外部にある各種装置との間におけるデータの経路としての機能を有する。デバッグインターフェース4006は、デバッグの制御を行うための命令を半導体装置4000に入力するための信号の経路としての機能を有する。
パワースイッチ4003は、半導体装置4000が有する、パワーコントローラ4002以外の各種回路への、電源電圧の供給を制御する機能を有する。上記各種回路は、幾つかのパワードメインにそれぞれ属しており、同一のパワードメインに属する各種回路は、パワースイッチ4003によって電源電圧の供給の有無が制御される。また、パワーコントローラ4002はパワースイッチ4003の動作を制御する機能を有する。
上記構成を有する半導体装置4000は、パワーゲーティングを行うことが可能である。パワーゲーティングの動作の流れについて、一例を挙げて説明する。
まず、CPUコア4001が、電源電圧の供給を停止するタイミングを、パワーコントローラ4002のレジスタに設定する。次いで、CPUコア4001からパワーコントローラ4002へ、パワーゲーティングを開始する旨の命令を送る。次いで、半導体装置4000内に含まれる各種レジスタとキャッシュ4004が、データの退避を開始する。次いで、半導体装置4000が有するパワーコントローラ4002以外の各種回路への電源電圧の供給が、パワースイッチ4003により停止される。次いで、割込み信号がパワーコントローラ4002に入力されることで、半導体装置4000が有する各種回路への電源電圧の供給が開始される。なお、パワーコントローラ4002にカウンタを設けておき、電源電圧の供給が開始されるタイミングを、割込み信号の入力に依らずに、当該カウンタを用いて決めるようにしてもよい。次いで、各種レジスタとキャッシュ4004が、データの復帰を開始する。次いで、制御装置4007における命令の実行が再開される。
このようなパワーゲーティングは、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において行うことができる。また、短い時間でも電源の供給を停止することができる。このため、空間的に、あるいは時間的に細かい粒度で消費電力の削減を行うことができる。
パワーゲーティングを行う場合、CPUコア4001や周辺回路4202が保持する情報を短期間に退避できることが好ましい。そうすることで、短期間に電源のオンオフが可能となり、省電力の効果が大きくなる。
CPUコア4001や周辺回路4202が保持する情報を短期間に退避するためには、フリップフロップ回路がその回路内でデータ退避できることが好ましい(バックアップ可能なフリップフロップ回路と呼ぶ)。また、SRAMセルがセル内でデータ退避できることが好ましい(バックアップ可能なSRAMセルと呼ぶ)。バックアップ可能なフリップフロップ回路やSRAMセルは、酸化物半導体(好ましくはIn、Ga、及びZnを含む酸化物)をチャネル形成領域に含むトランジスタを有することが好ましい。その結果、トランジスタが低いオフ電流を有することで、バックアップ可能なフリップフロップ回路やSRAMセルは長期間電源供給なしに情報を保持することができる。また、トランジスタが高速なスイッチング速度を有することで、バックアップ可能なフリップフロップ回路やSRAMセルは短期間のデータ退避および復帰が可能となる場合がある。
バックアップ可能なフリップフロップ回路の例について、図29を用いて説明する。
図29に示す半導体装置5000は、バックアップ可能なフリップフロップ回路の一例である。半導体装置5000は、第1の記憶回路5001と、第2の記憶回路5002と、第3の記憶回路5003と、読み出し回路5004と、を有する。半導体装置5000には、電位V1と電位V2の電位差が、電源電圧として供給される。電位V1と電位V2は一方がハイレベルであり、他方がローレベルである。以下、電位V1がローレベル、電位V2がハイレベルの場合を例に挙げて、半導体装置5000の構成例について説明するものとする。
第1の記憶回路5001は、半導体装置5000に電源電圧が供給されている期間において、データを含む信号Dが入力されると、当該データを保持する機能を有する。そして、半導体装置5000に電源電圧が供給されている期間において、第1の記憶回路5001からは、保持されているデータを含む信号Qが出力される。一方、第1の記憶回路5001は、半導体装置5000に電源電圧が供給されていない期間においては、データを保持することができない。すなわち、第1の記憶回路5001は、揮発性の記憶回路と呼ぶことができる。
第2の記憶回路5002は、第1の記憶回路5001に保持されているデータを読み込んで記憶する(あるいは退避する)機能を有する。第3の記憶回路5003は、第2の記憶回路5002に保持されているデータを読み込記憶する(あるいは退避する)機能を有する。読み出し回路5004は、第2の記憶回路5002または第3の記憶回路5003に保持されたデータを読み出して第1の記憶回路5001に記憶する(あるいは復帰する)機能を有する。
特に、第3の記憶回路5003は、半導体装置5000に電源電圧が供給されてない期間においても、第2の記憶回路5002に保持されているデータを読み込記憶する(あるいは退避する)機能を有する。
図29に示すように、第2の記憶回路5002はトランジスタ5102と容量素子5109とを有する。第3の記憶回路5003はトランジスタ5103と、トランジスタ5105と、容量素子5200とを有する。読み出し回路5004はトランジスタ5100と、トランジスタ5108と、トランジスタ5009と、トランジスタ5107と、を有する。
トランジスタ5102は、第1の記憶回路5001に保持されているデータに応じた電荷を、容量素子5109に充放電する機能を有する。トランジスタ5102は、第1の記憶回路5001に保持されているデータに応じた電荷を容量素子5109に対して高速に充放電できることが望ましい。具体的には、トランジスタ5102が、結晶性を有するシリコン(好ましくは多結晶シリコン、更に好ましくは単結晶シリコン)をチャネル形成領域に含むことが望ましい。
トランジスタ5103は、容量素子5109に保持されている電荷に従って導通状態または非導通状態が選択される。トランジスタ5105は、トランジスタ5103が導通状態であるときに、配線5404の電位に応じた電荷を容量素子5200に充放電する機能を有する。トランジスタ5105は、オフ電流が著しく小さいことが望ましい。具体的には、トランジスタ5105が、酸化物半導体(好ましくはIn、Ga、及びZnを含む酸化物)をチャネル形成領域に含むことが望ましい。
各素子の接続関係を具体的に説明すると、トランジスタ5102のソース及びドレインの一方は、第1の記憶回路5001に接続されている。トランジスタ5102のソース及びドレインの他方は、容量素子5109の一方の電極、トランジスタ5103のゲート、及びトランジスタ5108のゲートに接続されている。容量素子5109の他方の電極は、配線5402に接続されている。トランジスタ5103のソース及びドレインの一方は、配線5404に接続されている。トランジスタ5103のソース及びドレインの他方は、トランジスタ5105のソース及びドレインの一方に接続されている。トランジスタ5105のソース及びドレインの他方は、容量素子5200の一方の電極、及びトランジスタ5100のゲートに接続されている。容量素子5200の他方の電極は、配線5403に接続されている。トランジスタ5100のソース及びドレインの一方は、配線5401に接続されている。トランジスタ5100のソース及びドレインの他方は、トランジスタ5108のソース及びドレインの一方に接続されている。トランジスタ5108のソース及びドレインの他方は、トランジスタ5009のソース及びドレインの一方に接続されている。トランジスタ5009のソース及びドレインの他方は、トランジスタ5107のソース及びドレインの一方、及び第1の記憶回路5001に接続されている。トランジスタ5107のソース及びドレインの他方は、配線5400に接続されている。また、図29においては、トランジスタ5009のゲートは、トランジスタ5107のゲートと接続されているが、トランジスタ5009のゲートは、必ずしもトランジスタ5107のゲートと接続されていなくてもよい。
トランジスタ5105に先の実施の形態で例示したトランジスタを適用することができる。トランジスタ5105のオフ電流が小さいために、半導体装置5000は、長期間電源供給なしに情報を保持することができる。トランジスタ5105のスイッチング特性が良好であるために、半導体装置5000は、高速のバックアップとリカバリを行うことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態においては、本発明の一態様に係るトランジスタなどを利用した撮像装置の一例について説明する。
<撮像装置>
以下では、本発明の一態様に係る撮像装置について説明する。
図30(A)は、本発明の一態様に係る撮像装置600の例を示す平面図である。撮像装置600は、画素部610と、画素部610を駆動するための周辺回路660と、周辺回路670、周辺回路680と、周辺回路690と、を有する。画素部610は、p行q列(pおよびqは2以上の整数)のマトリクス状に配置された複数の画素611を有する。周辺回路660、周辺回路670、周辺回路680および周辺回路690は、それぞれ複数の画素611に接続し、複数の画素611を駆動するための信号を供給する機能を有する。なお、本明細書等において、周辺回路660、周辺回路670、周辺回路680および周辺回路690などの全てを指して「周辺回路」または「駆動回路」と呼ぶ場合がある。例えば、周辺回路660は周辺回路の一部といえる。
また、撮像装置600は、光源691を有することが好ましい。光源691は、検出光P1を放射することができる。
また、周辺回路は、少なくとも、論理回路、スイッチ、バッファ、増幅回路、または変換回路の1つを有する。また、周辺回路は、画素部610を形成する基板上に形成してもよい。また、周辺回路の一部または全部にICチップ等の半導体装置を用いてもよい。なお、周辺回路は、周辺回路660、周辺回路670、周辺回路680および周辺回路690のいずれか一以上を省略してもよい。
また、図30(B)に示すように、撮像装置600が有する画素部610において、画素611を傾けて配置してもよい。画素611を傾けて配置することにより、行方向および列方向の画素間隔(ピッチ)を短くすることができる。これにより、撮像装置600における撮像の品質をより高めることができる。
<画素の構成例1>
撮像装置600が有する1つの画素611を複数の副画素612で構成し、それぞれの副画素612に特定の波長域の光を透過するフィルタ(カラーフィルタ)を組み合わせることで、カラー画像表示を実現するための情報を取得することができる。
図31(A)は、カラー画像を取得するための画素611の一例を示す平面図である。図31(A)に示す画素611は、赤(R)の波長域の光を透過するカラーフィルタが設けられた副画素612(以下、「副画素612R」ともいう)、緑(G)の波長域の光を透過するカラーフィルタが設けられた副画素612(以下、「副画素612G」ともいう)および青(B)の波長域の光を透過するカラーフィルタが設けられた副画素612(以下、「副画素612B」ともいう)を有する。副画素612は、フォトセンサとして機能させることができる。
副画素612(副画素612R、副画素612G、および副画素612B)は、配線631、配線647、配線648、配線649、配線650と電気的に接続される。また、副画素612R、副画素612G、および副画素612Bは、それぞれが独立した配線653に接続している。また、本明細書等において、例えばn行目の画素611に接続された配線648、配線649、および配線650を、それぞれ配線648[n]、配線649[n]、および配線650[n]と記載する。また、例えばm列目の画素611に接続された配線653を、配線653[m]と記載する。なお、図31(A)において、m列目の画素611が有する副画素612Rに接続する配線653を配線653[m]R、副画素612Gに接続する配線653を配線653[m]G、および副画素612Bに接続する配線653を配線653[m]Bと記載している。副画素612は、上記配線を介して周辺回路と電気的に接続される。
また、撮像装置600は、隣接する画素611の、同じ波長域の光を透過するカラーフィルタが設けられた副画素612同士がスイッチを介して電気的に接続する構成を有する。図31(B)に、n行(nは1以上p以下の整数)m列(mは1以上q以下の整数)に配置された画素611が有する副画素612と、該画素611に隣接するn+1行m列に配置された画素611が有する副画素612の接続例を示す。図31(B)において、n行m列に配置された副画素612Rと、n+1行m列に配置された副画素612Rがスイッチ601を介して接続されている。また、n行m列に配置された副画素612Gと、n+1行m列に配置された副画素612Gがスイッチ602を介して接続されている。また、n行m列に配置された副画素612Bと、n+1行m列に配置された副画素612Bがスイッチ603を介して接続されている。
なお、副画素612に用いるカラーフィルタは、赤(R)、緑(G)、青(B)に限定されず、それぞれシアン(C)、黄(Y)およびマゼンタ(M)の光を透過するカラーフィルタを用いてもよい。1つの画素611に3種類の異なる波長域の光を検出する副画素612を設けることで、フルカラー画像を取得することができる。
または、それぞれ赤(R)、緑(G)および青(B)の光を透過するカラーフィルタが設けられた副画素612に加えて、黄(Y)の光を透過するカラーフィルタが設けられた副画素612を有する画素611を用いてもよい。または、それぞれシアン(C)、黄(Y)およびマゼンタ(M)の光を透過するカラーフィルタが設けられた副画素612に加えて、青(B)の光を透過するカラーフィルタが設けられた副画素612を有する画素611を用いてもよい。1つの画素611に4種類の異なる波長域の光を検出する副画素612を設けることで、取得した画像の色の再現性をさらに高めることができる。
また、例えば、図31(A)において、赤の波長域の光を検出する副画素612、緑の波長域の光を検出する副画素612、および青の波長域の光を検出する副画素612の画素数比(または受光面積比)は、1:1:1でなくても構わない。例えば、画素数比(受光面積比)を赤:緑:青=1:2:1とするBayer配列としてもよい。または、画素数比(受光面積比)を赤:緑:青=1:6:1としてもよい。
なお、画素611に設ける副画素612は1つでもよいが、2つ以上が好ましい。例えば、同じ波長域の光を検出する副画素612を2つ以上設けることで、冗長性を高め、撮像装置600の信頼性を高めることができる。
また、可視光を吸収または反射して、赤外光を透過するIR(IR:Infrared)フィルタを用いることで、赤外光を検出する撮像装置600を実現することができる。
また、ND(ND:Neutral Density)フィルタ(減光フィルタ)を用いることで、光電変換素子(受光素子)に大光量光が入射した時に生じる出力飽和することを防ぐことができる。減光量の異なるNDフィルタを組み合わせて用いることで、撮像装置のダイナミックレンジを大きくすることができる。
また、前述したフィルタ以外に、画素611にレンズを設けてもよい。ここで、図32の断面図を用いて、画素611、フィルタ654、レンズ655の配置例を説明する。レンズ655を設けることで、副画素612中に設けられた光電変換素子が入射光を効率よく受光することができる。具体的には、図32(A)に示すように、画素611に形成したレンズ655、フィルタ654(フィルタ654R、フィルタ654Gおよびフィルタ654B)、および画素回路630等を通して光656を光電変換素子620に入射させる構造とすることができる。
ただし、一点鎖線で囲んだ領域に示すように、矢印で示す光656の一部が配線657の一部によって遮光されてしまうことがある。したがって、図32(B)に示すように光電変換素子620側にレンズ655およびフィルタ654を配置して、光電変換素子620が光656を効率良く受光させる構造が好ましい。光電変換素子620側から光656を光電変換素子620に入射させることで、検出感度の高い撮像装置600を提供することができる。
図32に示す光電変換素子620として、pn型接合またはpin型の接合が形成された光電変換素子を用いてもよい。
また、光電変換素子620を、放射線を吸収して電荷を発生させる機能を有する物質を用いて形成してもよい。放射線を吸収して電荷を発生させる機能を有する物質としては、セレン、ヨウ化鉛、ヨウ化水銀、ヒ化ガリウム、テルル化カドミウム、カドミウム亜鉛合金等がある。
例えば、光電変換素子620にセレンを用いると、可視光や、紫外光、赤外光に加えて、X線や、ガンマ線といった幅広い波長域にわたって光吸収係数を有する光電変換素子620を実現できる。
ここで、撮像装置600が有する1つの画素611は、図31に示す副画素612に加えて、第1のフィルタを有する副画素612を有してもよい。
<画素の構成例2>
以下では、シリコンを用いたトランジスタと、酸化物半導体を用いたトランジスタと、を用いて画素を構成する一例について説明する。各トランジスタは上記実施の形態に示すものと同様のトランジスタを用いることができる。
図33は、撮像装置を構成する素子の断面図である。図33に示す撮像装置は、シリコン基板605に設けられたシリコンを用いたトランジスタ651、トランジスタ651上に積層して配置された酸化物半導体を用いたトランジスタ652およびトランジスタ658、ならびにシリコン基板605に設けられたフォトダイオード665を含む。各トランジスタおよびフォトダイオード665は、種々のプラグ675および配線671と電気的な接続を有する。また、フォトダイオード665のアノード661は、低抵抗領域663を介してプラグ675と電気的に接続を有する。
また撮像装置は、シリコン基板605に設けられたトランジスタ651およびフォトダイオード665を有する層615と、層615と接して設けられ、配線671を有する層625と、層625と接して設けられ、トランジスタ652およびトランジスタ658を有する層635と、層635と接して設けられ、配線672および配線673を有する層640を備えている。
なお図33の断面図の一例では、シリコン基板605において、トランジスタ651が形成された面とは逆側の面にフォトダイオード665の受光面を有する構成とする。該構成とすることで、各種トランジスタや配線などの影響を受けずに光路を確保することができる。そのため、高開口率の画素を形成することができる。なお、フォトダイオード665の受光面をトランジスタ651が形成された面と同じとすることもできる。
なお、酸化物半導体を用いたトランジスタのみを用いて画素を構成する場合には、層615を、酸化物半導体を用いたトランジスタを有する層とすればよい。または層615を省略し、酸化物半導体を用いたトランジスタのみで画素を構成してもよい。
なお、シリコン基板605は、SOI基板であってもよい。また、シリコン基板605に替えて、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、ヒ化アルミニウムガリウム、リン化インジウム、窒化ガリウムまたは有機半導体を有する基板を用いることもできる。
ここで、トランジスタ651およびフォトダイオード665を有する層615と、トランジスタ652およびトランジスタ658を有する層635と、の間には絶縁体685が設けられる。ただし、絶縁体685の位置は限定されない。また、絶縁体685の下に絶縁体679が設けられ、絶縁体685の上に絶縁体681が設けられる。
絶縁体679乃至絶縁体685に設けられた開口に、導電体691a乃至導電体691eが設けられている。導電体691a、導電体691bおよび導電体691eは、プラグおよび配線として機能する。また、導電体691cは、トランジスタ658のバックゲートとして機能する。また、導電体691dは、トランジスタ652のバックゲートとして機能する。
トランジスタ651のチャネル形成領域近傍に設けられる絶縁体中の水素はシリコンのダングリングボンドを終端し、トランジスタ651の信頼性を向上させる効果がある。一方、トランジスタ652およびトランジスタ658などの近傍に設けられる絶縁体中の水素は、酸化物半導体中にキャリアを生成する要因の一つとなる。そのため、トランジスタ652およびトランジスタ658などの信頼性を低下させる要因となる場合がある。したがって、シリコン系半導体を用いたトランジスタの上層に酸化物半導体を用いたトランジスタを積層して設ける場合、これらの間に水素をブロックする機能を有する絶縁体685を設けることが好ましい。絶縁体685より下層に水素を閉じ込めることで、トランジスタ651の信頼性が向上させることができる。さらに、絶縁体685より下層から、絶縁体685より上層に水素が拡散することを抑制できるため、トランジスタ652およびトランジスタ658などの信頼性を向上させることができる。さらに、導電体691a、導電体691bおよび導電体691eが形成されることにより、絶縁体685に形成されているビアホールを通じて上層に水素が拡散することも抑制できるため、トランジスタ652およびトランジスタ658などの信頼性を向上させることができる。
また、図33の断面図において、層615に設けるフォトダイオード665と、層635に設けるトランジスタとを重なるように形成することができる。そうすると、画素の集積度を高めることができる。すなわち、撮像装置の解像度を高めることができる。
また、撮像装置の一部または全部を湾曲させてもよい。撮像装置を湾曲させることで、像面湾曲や非点収差を低減することができる。よって、撮像装置と組み合わせて用いるレンズなどの光学設計を容易とすることができる。例えば、収差補正のためのレンズ枚数を低減できるため、撮像装置を用いた電子機器などの小型化や軽量化を実現することができる。また、撮像された画像の品質を向上させる事ができる。
本実施の形態に示す構成は、他の実施の形態および実施例に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態においては、本発明の一態様に係るトランジスタなどを利用した表示装置について、図34および図35を用いて説明する。
<表示装置の構成>
表示装置に用いられる表示素子としては液晶素子(液晶表示素子ともいう。)、発光素子(発光表示素子ともいう。)などを用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electroluminescence)、有機ELなどを含む。以下では、表示装置の一例としてEL素子を用いた表示装置(EL表示装置)および液晶素子を用いた表示装置(液晶表示装置)について説明する。
なお、以下に示す表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むICなどを実装した状態にあるモジュールとを含む。
また、以下に示す表示装置は画像表示デバイス、または光源(照明装置含む)を指す。また、コネクター、例えばFPC、TCPが取り付けられたモジュール、TCPの先にプリント配線板を有するモジュールまたは表示素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
図34は、本発明の一態様に係るEL表示装置の一例である。図34(A)に、EL表示装置の画素の回路図を示す。図34(B)は、EL表示装置全体を示す上面図である。また、図34(C)は、図34(B)の一点鎖線M−Nの一部に対応するM−N断面である。
図34(A)は、EL表示装置に用いられる画素の回路図の一例である。
なお、本明細書等においては、能動素子(トランジスタ、ダイオードなど)、受動素子(容量素子、抵抗素子など)などが有するすべての端子について、その接続先を特定しなくても、当業者であれば、発明の一態様を構成することは可能な場合がある。つまり、接続先を特定しなくても、発明の一態様が明確であるといえる。そして、接続先が特定された内容が、本明細書等に記載されている場合、接続先を特定しない発明の一態様が、本明細書等に記載されていると判断することが可能な場合がある。特に、端子の接続先として複数の箇所が想定される場合には、その端子の接続先を特定の箇所に限定する必要はない。したがって、能動素子(トランジスタ、ダイオードなど)、受動素子(容量素子、抵抗素子など)などが有する一部の端子についてのみ、その接続先を特定することによって、発明の一態様を構成することが可能な場合がある。
なお、本明細書等においては、ある回路について、少なくとも接続先を特定すれば、当業者であれば、発明を特定することが可能な場合がある。または、ある回路について、少なくとも機能を特定すれば、当業者であれば、発明を特定することが可能な場合がある。つまり、機能を特定すれば、発明の一態様が明確であるといえる。そして、機能が特定された発明の一態様が、本明細書等に記載されていると判断することが可能な場合がある。したがって、ある回路について、機能を特定しなくても、接続先を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。または、ある回路について、接続先を特定しなくても、機能を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。
図34(A)に示すEL表示装置は、スイッチ素子743と、トランジスタ741と、容量素子742と、発光素子719と、を有する。
なお、図34(A)などは、回路構成の一例であるため、さらに、トランジスタを追加することが可能である。逆に、図34(A)の各ノードにおいて、トランジスタ、スイッチ、受動素子などを追加しないようにすることも可能である。
トランジスタ741のゲートはスイッチ素子743の一端および容量素子742の一方の電極と電気的に接続される。トランジスタ741のソースは容量素子742の他方の電極と電気的に接続され、発光素子719の一方の電極と電気的に接続される。トランジスタ741のドレインは電源電位VDDが与えられる。スイッチ素子743の他端は信号線744と電気的に接続される。発光素子719の他方の電極は定電位が与えられる。なお、定電位は接地電位GNDまたはそれより小さい電位とする。
スイッチ素子743としては、トランジスタを用いると好ましい。トランジスタを用いることで、画素の面積を小さくでき、解像度の高いEL表示装置とすることができる。また、スイッチ素子743として、トランジスタ741と同一工程を経て作製されたトランジスタを用いると、EL表示装置の生産性を高めることができる。なお、トランジスタ741または/およびスイッチ素子743としては、例えば、上述したトランジスタを適用することができる。
図34(B)は、EL表示装置の上面図である。EL表示装置は、基板700と、基板760と、シール材734と、駆動回路735と、駆動回路736と、画素737と、FPC732と、を有する。シール材734は、画素737、駆動回路735および駆動回路736を囲むように基板700と基板760との間に配置される。なお、駆動回路735または/および駆動回路736をシール材734の外側に配置しても構わない。
図34(C)は、図34(B)の一点鎖線M−Nの一部に対応するEL表示装置の断面図である。
図34(C)には、トランジスタ741として、基板700上の導電体705と、導電体705が埋め込まれた絶縁体701、絶縁体701上の絶縁体702と、絶縁体702上の半導体703と、半導体703上の導電体707aおよび導電体707bと、半導体703上の絶縁体706と、絶縁体706上の導電体704を有する構造を示す。なお、トランジスタ741の構造は一例であり、図34(C)に示す構造と異なる構造であっても構わない。
したがって、図34(C)に示すトランジスタ741において、導電体704および導電体705はゲート電極としての機能を有し、絶縁体702および絶縁体706はゲート絶縁体としての機能を有し、導電体707aおよび導電体707bはソース電極またはドレイン電極としての機能を有する。なお、半導体703は、光が当たることで電気特性が変動する場合がある。したがって、導電体705、導電体704のいずれか一以上が遮光性を有すると好ましい。
なお、トランジスタ741上には、過剰酸素領域を有する絶縁体709を有する。また、トランジスタ741は、バリア性を有する絶縁体710、および絶縁体708の間に設ける構造である。
図34(C)には、容量素子742として、絶縁体710上の導電体714cと、導電体714c上の絶縁体714bと、絶縁体714b上の導電体714aと、を有する構造を示す。
容量素子742において、導電体714aは一方の電極として機能し、導電体714cは他方の電極として機能する。
図34(C)に示す容量素子742は、占有面積当たりの容量が大きい容量素子である。したがって、図34(C)は表示品位の高いEL表示装置である。
トランジスタ741および容量素子742上には、絶縁体720が配置される。ここで、絶縁体716および絶縁体720は、トランジスタ741のソースとして機能する領域705aに達する開口部を有してもよい。絶縁体720上には、導電体781が配置される。導電体781は、絶縁体720の開口部を介してトランジスタ741と電気的に接続している。
導電体781上には、導電体781に達する開口部を有する隔壁784が配置される。隔壁784上には、隔壁784の開口部で導電体781と接する発光層782が配置される。発光層782上には、導電体783が配置される。導電体781、発光層782および導電体783の重なる領域が、発光素子719となる。
ここまでは、EL表示装置の例について説明した。次に、液晶表示装置の例について説明する。
図35(A)は、液晶表示装置の画素の構成例を示す回路図である。図35に示す画素は、トランジスタ751と、容量素子762と、一対の電極間に液晶の充填された素子(液晶素子)763とを有する。
トランジスタ751では、ソース、ドレインの一方が信号線765に電気的に接続され、ゲートが走査線764に電気的に接続されている。
容量素子762では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。
液晶素子763では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。なお、上述した容量素子762の他方の電極が電気的に接続する配線に与えられる共通電位と、液晶素子763の他方の電極に与えられる共通電位とが異なる電位であってもよい。
なお、液晶表示装置も、上面図はEL表示装置と同様として説明する。図34(B)の一点鎖線M−Nの一部に対応する液晶表示装置の断面図を図35(B)に示す。図35(B)において、FPC732は、端子731を介して配線733aと接続される。なお、配線733aは、トランジスタ751を構成する導電体または半導体のいずれかと同種の導電体または半導体を用いてもよい。
トランジスタ751は、トランジスタ741についての記載を参照する。また、容量素子762は、容量素子742についての記載を参照する。なお、図35(B)には、図34(C)の容量素子742に対応した容量素子762の構造を示したが、これに限定されない。
なお、トランジスタ751の半導体に酸化物半導体を用いた場合、極めてオフ電流の小さいトランジスタとすることができる。したがって、容量素子762に保持された電荷がリークしにくく、長期間に渡って液晶素子763に印加される電圧を維持することができる。そのため、動きの少ない動画や静止画の表示の際に、トランジスタ751をオフ状態とすることで、トランジスタ751の動作のための電力が不要となり、消費電力の小さい液晶表示装置とすることができる。また、容量素子762の占有面積を小さくできるため、開口率の高い液晶表示装置、または高精細化した液晶表示装置を提供することができる。
トランジスタ751および容量素子762上には、絶縁体721が配置される。ここで、絶縁体721は、トランジスタ751に達する開口部を有する。絶縁体721上には、導電体791が配置される。導電体791は、絶縁体721の開口部を介してトランジスタ751と電気的に接続する。
導電体791上には、配向膜として機能する絶縁体792が配置される。絶縁体792上には、液晶層793が配置される。液晶層793上には、配向膜として機能する絶縁体794が配置される。絶縁体794上には、スペーサ795が配置される。スペーサ795および絶縁体794上には、導電体796が配置される。導電体796上には、基板797が配置される。
なお、液晶の駆動方式としては、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、ECB(Electrically Controlled Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、ゲストホストモード、ブルー相(Blue Phase)モードなどを用いることができる。ただし、これに限定されず、駆動方法として様々なものを用いることができる。
上述した構造を有することで、占有面積の小さい容量素子を有する表示装置を提供することができる、または、表示品位の高い表示装置を提供することができる。または、高精細の表示装置を提供することができる。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様々な素子を有することができる。表示素子、表示装置、発光素子または発光装置は、例えば、白色、赤色、緑色または青色などの発光ダイオード(LED:Light Emitting Diode)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェロメトリック・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していても良い。
EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インクまたは電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部または全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、LEDを用いる場合、LEDの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体などを設けて、LEDを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体との間に、AlN層を設けてもよい。なお、LEDが有するGaN半導体は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDが有するGaN半導体は、スパッタリング法で成膜することも可能である。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、上述の実施の形態で説明したOSトランジスタを適用可能な回路構成の一例について、図36乃至図39を用いて説明する。
図36(A)にインバータの回路図を示す。インバータ800は、入力端子INに与える信号の論理を反転した信号を出力端子OUTに出力する。インバータ800は、複数のOSトランジスタを有する。信号SBGは、OSトランジスタの電気特性を切り替えることができる信号である。
図36(B)に、インバータ800の一例を示す。インバータ800は、OSトランジスタ810、およびOSトランジスタ820を有する。インバータ800は、nチャネル型トランジスタで作製することができるため、CMOS(Complementary Metal Oxide Semiconductor)でインバータ(CMOSインバータ)を作製する場合と比較して、低コストで作製することが可能である。
なおOSトランジスタを有するインバータ800は、Siトランジスタで構成されるCMOS上に配置することもできる。インバータ800は、CMOSの回路に重ねて配置できるため、インバータ800を追加する分の回路面積の増加を抑えることができる。
OSトランジスタ810、820は、フロントゲートとして機能する第1ゲートと、バックゲートとして機能する第2ゲートと、ソースまたはドレインの一方として機能する第1端子と、ソースまたはドレインの他方として機能する第2端子を有する。
OSトランジスタ810の第1ゲートは、第2端子に接続される。OSトランジスタ810の第2ゲートは、信号SBGを供給する配線に接続される。OSトランジスタ810の第1端子は、電圧VDDを与える配線に接続される。OSトランジスタ810の第2端子は、出力端子OUTに接続される。
OSトランジスタ820の第1ゲートは、入力端子INに接続される。OSトランジスタ820の第2ゲートは、入力端子INに接続される。OSトランジスタ820の第1端子は、出力端子OUTに接続される。OSトランジスタ820の第2端子は、電圧VSSを与える配線に接続される。
図36(C)は、インバータ800の動作を説明するためのタイミングチャートである。図36(C)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの信号波形、信号SBGの信号波形、およびOSトランジスタ810の閾値電圧の変化について示している。
信号SBGはOSトランジスタ810の第2ゲートに与えることで、OSトランジスタ810の閾値電圧を制御することができる。
信号SBGは、閾値電圧をマイナスシフトさせるための電圧VBG_A、閾値電圧をプラスシフトさせるための電圧VBG_Bを有する。第2ゲートに電圧VBG_Aを与えることで、OSトランジスタ810は閾値電圧VTH_Aにマイナスシフトさせることができる。また、第2ゲートに電圧VBG_Bを与えることで、OSトランジスタ810は閾値電圧VTH_Bにプラスシフトさせることができる。
前述の説明を可視化するために、図36(A)には、トランジスタの電気特性の一つである、Vg−Idカーブを示す。
上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を電圧VBG_Aのように大きくすることで、図37(A)中の破線840で表される曲線にシフトさせることができる。また、上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を電圧VBG_Bのように小さくすることで、図37(A)中の実線841で表される曲線にシフトさせることができる。図37(A)に示すように、OSトランジスタ810は、信号SBGを電圧VBG_Aあるいは電圧VBG_Bというように切り替えることで、閾値電圧をプラスシフトあるいはマイナスシフトさせることができる。
閾値電圧を閾値電圧VTH_Bにプラスシフトさせることで、OSトランジスタ810は電流が流れにくい状態とすることができる。図37(B)には、この状態を可視化して示す。図37(B)に図示するように、OSトランジスタ810に流れる電流Iを極めて小さくすることができる。そのため、入力端子INに与える信号がハイレベルでOSトランジスタ820はオン状態(ON)のとき、出力端子OUTの電圧を急峻に下降させることができる。
図37(B)に図示したように、OSトランジスタ810に流れる電流が流れにくい状態とすることができるため、図36(C)に示すタイミングチャートにおける出力端子の信号波形831を急峻に変化させることができる。電圧VDDを与える配線と、電圧VSSを与える配線との間に流れる貫通電流を少なくすることができるため、低消費電力での動作を行うことができる。
また、閾値電圧を閾値電圧VTH_Aにマイナスシフトさせることで、OSトランジスタ810は電流が流れやすい状態とすることができる。図37(C)には、この状態を可視化して示す。図37(C)に図示するように、このとき流れる電流Iを少なくとも電流Iよりも大きくすることができる。そのため、入力端子INに与える信号がローレベルでOSトランジスタ820はオフ状態(OFF)のとき、出力端子OUTの電圧を急峻に上昇させることができる。
図37(C)に図示したように、OSトランジスタ810に流れる電流が流れやすい状態とすることができるため、図36(C)に示すタイミングチャートにおける出力端子の信号波形832を急峻に変化させることができる。
なお、信号SBGによるOSトランジスタ810の閾値電圧の制御は、OSトランジスタ820の状態が切り替わる以前、すなわち時刻T1やT2よりも前に行うことが好ましい。例えば、図36(C)に図示するように、入力端子INに与える信号がハイレベルに切り替わる時刻T1よりも前に、閾値電圧VTH_Aから閾値電圧VTH_BにOSトランジスタ810の閾値電圧を切り替えることが好ましい。また、図36(C)に図示するように、入力端子INに与える信号がローレベルに切り替わる時刻T2よりも前に、閾値電圧VTH_Bから閾値電圧VTH_AにOSトランジスタ810の閾値電圧を切り替えることが好ましい。
なお図36(C)のタイミングチャートでは、入力端子INに与える信号に応じて信号SBGを切り替える構成を示したが、別の構成としてもよい。たとえば閾値電圧を制御するための電圧は、フローティング状態としたOSトランジスタ810の第2ゲートに保持させる構成としてもよい。当該構成を実現可能な回路構成の一例について、図38(A)に示す。
図34(A)では、図36(B)で示した回路構成に加えて、OSトランジスタ850を有する。OSトランジスタ850の第1端子は、OSトランジスタ810の第2ゲートに接続される。またOSトランジスタ850の第2端子は、電圧VBG_B(あるいは電圧VBG_A)を与える配線に接続される。OSトランジスタ850の第1ゲートは、信号Sを与える配線に接続される。OSトランジスタ850の第2ゲートは、電圧VBG_B(あるいは電圧VBG_A)を与える配線に接続される。
図38(A)の動作について、図38(B)のタイミングチャートを用いて説明する。
OSトランジスタ810の閾値電圧を制御するための電圧は、入力端子INに与える信号がハイレベルに切り替わる時刻T3よりも前に、OSトランジスタ810の第2ゲートに与える構成とする。信号SをハイレベルとしてOSトランジスタ850をオン状態とし、ノードNBGに閾値電圧を制御するための電圧VBG_Bを与える。
ノードNBGが電圧VBG_Bとなった後は、OSトランジスタ850をオフ状態とする。OSトランジスタ850は、オフ電流が極めて小さいため、オフ状態にし続けることで、ノードNBGを非常にフローティング状態に近い状態にして、一旦ノードNBGに保持させた電圧VBG_Bを保持することができる。そのため、OSトランジスタ850の第2ゲートに電圧VBG_Bを与える動作の回数が減るため、電圧VBG_Bの書き換えに要する分の消費電力を小さくすることができる。
なお図36(B)および図38(A)の回路構成では、OSトランジスタ810の第2ゲートに与える電圧を外部からの制御によって与える構成について示したが、別の構成としてもよい。たとえば閾値電圧を制御するための電圧を、入力端子INに与える信号を基に生成し、OSトランジスタ810の第2ゲートに与える構成としてもよい。当該構成を実現可能な回路構成の一例について、図39(A)に示す。
図39(A)では、図36(B)で示した回路構成において、入力端子INとOSトランジスタ810の第2ゲートとの間にCMOSインバータ860を有する。CMOSインバータ860の入力端子は、入力端子INに接続さえる。CMOSインバータ860の出力端子は、OSトランジスタ810の第2ゲートに接続される。
図39(A)の動作について、図39(B)のタイミングチャートを用いて説明する。図39(B)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの信号波形、CMOSインバータ860の出力波形IN_B、およびOSトランジスタ810の閾値電圧の変化について示している。
入力端子INに与える信号の論理を反転した信号である出力波形IN_Bは、OSトランジスタ810の閾値電圧を制御する信号とすることができる。したがって、図36(A)乃至(C)で説明したように、OSトランジスタ810の閾値電圧を制御できる。例えば、図39(B)における時刻T4となるとき、入力端子INに与える信号がハイレベルでOSトランジスタ820はオン状態となる。このとき、出力波形IN_Bはローレベルとなる。そのため、OSトランジスタ810は電流が流れにくい状態とすることができ、出力端子OUTの電圧を急峻に下降させることができる。
また図39(B)における時刻T5となるとき、入力端子INに与える信号がローレベルでOSトランジスタ820はオフ状態となる。このとき、出力波形IN_Bはハイレベルとなる。そのため、OSトランジスタ810は電流が流れやすい状態とすることができ、出力端子OUTの電圧を急峻に上昇させることができる。
以上説明したように本実施の形態の構成では、OSトランジスタを有するインバータにおける、バックゲートの電圧を入力端子INの信号の論理にしたがって切り替える。当該構成とすることで、OSトランジスタの閾値電圧を制御することができる。入力端子INに与える信号によってOSトランジスタの閾値電圧を制御することで、出力端子OUTの電圧を急峻に変化させることができる。また、電源電圧を与える配線間の貫通電流を小さくすることができる。そのため、低消費電力化を図ることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
(実施の形態9)
本実施の形態では、上述の実施の形態で説明したOSトランジスタを有する複数の回路を有する半導体装置の一例について、図40乃至図46を用いて説明する。
図40(A)は、半導体装置900のブロック図である。半導体装置900は、電源回路901、回路902、電圧生成回路903、回路904、電圧生成回路905および回路906を有する。
電源回路901は、基準となる電圧VORGを生成する回路である。電圧VORGは、単一の電圧ではなく、複数の電圧でもよい。電圧VORGは、半導体装置900の外部から与えられる電圧Vを基に生成することができる。半導体装置900は、外部から与えられる単一の電源電圧を基に電圧VORGを生成できる。そのため半導体装置900は、外部から電源電圧を複数与えることなく動作することができる。
回路902、904および906は、異なる電源電圧で動作する回路である。例えば回路902の電源電圧は、電圧VORGと電圧VSS(VORG>VSS)とを基に印加される電圧である。また、例えば回路904の電源電圧は、電圧VPOGと電圧VSS(VPOG>VORG)とを基に印加される電圧である。また、例えば回路906の電源電圧は、電圧VORGと電圧VSSと電圧VNEG(VORG>VSS>VNEG)とを基に印加される電圧である。なお電圧VSSは、グラウンド電位(GND)と等電位とすれば、電源回路901で生成する電圧の種類を削減できる。
電圧生成回路903は、電圧VPOGを生成する回路である。電圧生成回路903は、電源回路901から与えられる電圧VORGを基に電圧VPOGを生成できる。そのため、回路904を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動作することができる。
電圧生成回路905は、電圧VNEGを生成する回路である。電圧生成回路905は、電源回路901から与えられる電圧VORGを基に電圧VNEGを生成できる。そのため、回路906を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動作することができる。
図40(B)は電圧VPOGで動作する回路904の一例、図40(C)は回路904を動作させるための信号の波形の一例である。
図40(B)では、トランジスタ911を示している。トランジスタ911のゲートに与える信号は、例えば、電圧VPOGと電圧VSSを基に生成される。当該信号は、トランジスタ911を導通状態とする動作時に電圧VPOG、非導通状態とする動作時に電圧VSSとする。電圧VPOGは、図40(C)に図示するように、電圧VORGより大きい。そのため、トランジスタ911は、ソース(S)とドレイン(D)との間をより確実に導通状態にできる。その結果、回路904は、誤動作が低減された回路とすることができる。
図40(D)は電圧VNEGで動作する回路906の一例、図40(E)は回路906を動作させるための信号の波形の一例である。
図40(D)では、バックゲートを有するトランジスタ912を示している。トランジスタ912のゲートに与える信号は、例えば、電圧VORGと電圧VSSを基にして生成される。当該信号は、トランジスタ912を導通状態とする動作時に電圧VORG、非導通状態とする動作時に電圧VSSを基に生成される。また、トランジスタ912のバックゲートに与える信号は、電圧VNEGを基に生成される。電圧VNEGは、図40(E)に図示するように、電圧VSS(GND)より小さい。そのため、トランジスタ912の閾値電圧は、プラスシフトするように制御することができる。そのため、トランジスタ912をより確実に非導通状態とすることができ、ソース(S)とドレイン(D)との間を流れる電流を小さくできる。その結果、回路906は、誤動作が低減され、且つ低消費電力化が図られた回路とすることができる。
なお電圧VNEGは、トランジスタ912のバックゲートに直接与える構成としてもよい。あるいは、電圧VORGと電圧VNEGを基に、トランジスタ912のゲートに与える信号を生成し、当該信号をトランジスタ912のバックゲートに与える構成としてもよい。
また図41(A)、(B)には、図40(D)、(E)の変形例を示す。
図41(A)に示す回路図では、電圧生成回路905と、回路906と、の間に制御回路921によって導通状態が制御できるトランジスタ922を示す。トランジスタ922は、nチャネル型のOSトランジスタとする。制御回路921が出力する制御信号SBGは、トランジスタ922の導通状態を制御する信号である。また回路906が有するトランジスタ912A、912Bは、トランジスタ922と同じOSトランジスタである。
図41(B)のタイミングチャートには、制御信号SBGの電位の変化を示し、トランジスタ912A、912Bのバックゲートの電位の状態をノードNBGの電位の変化で示す。制御信号SBGがハイレベルのときにトランジスタ922が導通状態となり、ノードNBGが電圧VNEGとなる。その後、制御信号SBGがローレベルのときにノードNBGが電気的にフローティングとなる。トランジスタ922は、OSトランジスタであるため、オフ電流が小さい。そのため、ノードNBGが電気的にフローティングであっても、一旦与えた電圧VNEGを保持することができる。
また図42(A)には、上述した電圧生成回路903に適用可能な回路構成の一例を示す。図42(A)に示す電圧生成回路903は、ダイオードD1乃至D5、キャパシタC1乃至C5、およびインバータINVを有する5段のチャージポンプである。クロック信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与えられる。インバータINVの電源電圧を、電圧VORGと電圧VSSとを基に印加される電圧とすると、クロック信号CLKを与えることによって、電圧VORGの5倍の正電圧に昇圧された電圧VPOGを得ることができる。なお、ダイオードD1乃至D5の順方向電圧は0Vとしている。また、チャージポンプの段数を変更することで、所望の電圧VPOGを得ることができる。
また図42(B)には、上述した電圧生成回路905に適用可能な回路構成の一例を示す。図42(B)に示す電圧生成回路905は、ダイオードD1乃至D5、キャパシタC1乃至C5、およびインバータINVを有する4段のチャージポンプである。クロック信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与えられる。インバータINVの電源電圧を、電圧VORGと電圧VSSとを基に印加される電圧とすると、クロック信号CLKを与えることによって、グラウンド、すなわち電圧VSSから電圧VORGの4倍の負電圧に降圧された電圧VNEGを得ることができる。なお、ダイオードD1乃至D5の順方向電圧は0Vとしている。また、チャージポンプの段数を変更することで、所望の電圧VNEGを得ることができる。
なお上述した電圧生成回路903の回路構成は、図42(A)で示す回路図の構成に限らない。電圧生成回路903の変形例を図43(A)乃至(C)、図44(A)、(B)に示す。
図43(A)に示す電圧生成回路903Aは、トランジスタM1乃至M10、キャパシタC11乃至C14、およびインバータINV1を有する。クロック信号CLKは、トランジスタM1乃至M10のゲートに直接、あるいはインバータINV1を介して与えられる。クロック信号CLKを与えることによって、電圧VORGの4倍の正電圧に昇圧された電圧VPOGを得ることができる。なお、段数を変更することで、所望の電圧VPOGを得ることができる。図43(A)に示す電圧生成回路903Aは、トランジスタM1乃至M10をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC11乃至C14に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
また図43(B)に示す電圧生成回路903Bは、トランジスタM11乃至M14、キャパシタC15、C16、およびインバータINV2を有する。クロック信号CLKは、トランジスタM11乃至M14のゲートに直接、あるいはインバータINV2を介して与えられる。クロック信号CLKを与えることによって、電圧VORGの2倍の正電圧に昇圧された電圧VPOGを得ることができる。図43(B)に示す電圧生成回路903Bは、トランジスタM11乃至M14をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC15、C16に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
また図43(C)に示す電圧生成回路903Cは、インダクタI11、トランジスタM15、ダイオードD6、およびキャパシタC17を有する。トランジスタM15は、制御信号ENによって、導通状態が制御される。制御信号ENによって、電圧VORGが昇圧された電圧VPOGを得ることができる。図43(C)に示す電圧生成回路903Cは、インダクタI11を用いて電圧の昇圧を行うため、変換効率の高い電圧の昇圧を行うことができる。
また図44(A)に示す電圧生成回路903Dは、図42(A)に示す電圧生成回路903のダイオードD1乃至D5をダイオード接続したトランジスタM16乃至M20に置き換えた構成に相当する。図44(A)に示す電圧生成回路903Dは、トランジスタM16乃至M20をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC1乃至C5に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
また図44(B)に示す電圧生成回路903Eは、図44(A)に示す電圧生成回路903DのトランジスタM16乃至M20を、バックゲートを有するトランジスタM21乃至M25に置き換えた構成に相当する。図44(B)に示す電圧生成回路903Eは、バックゲートにゲートと同じ電圧を与えることができるため、トランジスタを流れる電流量を増やすことができる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
なお電圧生成回路903の変形例は、図42(B)に示した電圧生成回路905にも適用可能である。この場合の回路図の構成を図45(A)乃至(C)、図46(A)、(B)に示す。図45(A)に示す電圧生成回路905Aは、クロック信号CLKを与えることによって、電圧VSSから電圧VORGの3倍の負電圧に降圧された電圧VNEGを得ることができる。また図45(B)に示す電圧生成回路905Bは、クロック信号CLKを与えることによって、電圧VSSから電圧VORGの2倍の負電圧に降圧された電圧VNEGを得ることができる。
図45(A)乃至(C)、図46(A)、(B)に示す電圧生成回路905A乃至905Eでは、図43(A)乃至(C)、図44(A)、(B)に示す電圧生成回路903A乃至903Eにおいて、各配線に与える電圧を変更すること、あるいは素子の配置を変更した構成に相当する。図45(A)乃至(C)、図46(A)、(B)に示す電圧生成回路905A乃至905Eは、電圧生成回路903A乃至903Eと同様に、効率的に電圧VSSから電圧VNEGへの降圧を図ることができる。
以上説明したように本実施の形態の構成では、半導体装置が有する回路に必要な電圧を内部で生成することができる。そのため半導体装置は、外部から与える電源電圧の種類を削減できる。
本実施の形態に示す構成は、他の実施の形態および実施例に示す構成と適宜組み合わせて用いることができる。
(実施の形態10)
<電子機器>
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いることができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器として、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図47に示す。
図47(A)は携帯型ゲーム機であり、筐体1901、筐体1902、表示部1903、表示部1904、マイクロフォン1905、スピーカー1906、操作キー1907、スタイラス1908等を有する。なお、図47(A)に示した携帯型ゲーム機は、2つの表示部1903と表示部1904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。
図47(B)は携帯データ端末であり、第1筐体1911、第2筐体1912、第1表示部1913、第2表示部1914、接続部1915、操作キー1916等を有する。第1表示部1913は第1筐体1911に設けられており、第2表示部1914は第2筐体1912に設けられている。そして、第1筐体1911と第2筐体1912とは、接続部1915により接続されており、第1筐体1911と第2筐体1912の間の角度は、接続部1915により変更が可能である。第1表示部1913における映像を、接続部1915における第1筐体1911と第2筐体1912との間の角度にしたがって、切り替える構成としてもよい。また、第1表示部1913および第2表示部1914の少なくとも一方に、位置入力装置としての機能が付加された表示装置を用いるようにしてもよい。なお、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。または、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。
図47(C)はノート型パーソナルコンピュータであり、筐体1921、表示部1922、キーボード1923、ポインティングデバイス1924等を有する。
図47(D)は電気冷凍冷蔵庫であり、筐体1931、冷蔵室用扉1932、冷凍室用扉1933等を有する。
図47(E)はビデオカメラであり、第1筐体1941、第2筐体1942、表示部1943、操作キー1944、レンズ1945、接続部1946等を有する。操作キー1944およびレンズ1945は第1筐体1941に設けられており、表示部1943は第2筐体1942に設けられている。そして、第1筐体1941と第2筐体1942とは、接続部1946により接続されており、第1筐体1941と第2筐体1942の間の角度は、接続部1946により変更が可能である。表示部1943における映像を、接続部1946における第1筐体1941と第2筐体1942との間の角度にしたがって切り替える構成としてもよい。
図47(F)は自動車であり、車体1951、車輪1952、ダッシュボード1953、ライト1954等を有する。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
(実施の形態11)
本実施の形態においては、本発明の一態様に係る半導体ウエハ、チップおよび電子部品について説明する。
<半導体ウエハ、チップ>
図48(A)は、ダイシング処理が行なわれる前の基板711の上面図を示している。基板711としては、例えば、半導体基板(「半導体ウエハ」ともいう。)を用いることができる。基板711上には、複数の回路領域712が設けられている。回路領域712には、本発明の一態様に係る半導体装置や、CPU、RFタグ、またはイメージセンサなどを設けることができる。
複数の回路領域712は、それぞれが分離領域713に囲まれている。分離領域713と重なる位置に分離線(「ダイシングライン」ともいう。)714が設定される。分離線714に沿って基板711を切断することで、回路領域712を含むチップ715を基板711から切り出すことができる。図48(B)にチップ715の拡大図を示す。
また、分離領域713に導電層や半導体層を設けてもよい。分離領域713に導電層や半導体層を設けることで、ダイシング工程時に生じうるESDを緩和し、ダイシング工程の歩留まり低下を防ぐことができる。また、一般にダイシング工程は、基板の冷却、削りくずの除去、帯電防止などを目的として、炭酸ガスなどを溶解させて比抵抗を下げた純水を切削部に流しながら行なわれる。分離領域713に導電層や半導体層を設けることで、当該純水の使用量を削減することができる。よって、半導体装置の生産コストを低減することができる。また、半導体装置の生産性を高めることができる。
分離領域713に設ける半導体層としては、バンドギャップが2.5eV以上4.2eV以下、好ましくは2.7eV以上3.5eV以下の材料を用いることが好ましい。このような材料を用いると、蓄積された電荷をゆっくりと放電することができるため、ESDによる電荷の急激な移動が抑えられ、静電破壊を生じにくくすることができる。
<電子部品>
チップ715を電子部品に適用する例について、図49を用いて説明する。なお、電子部品は、半導体パッケージ、またはIC用パッケージともいう。電子部品は、端子取り出し方向や、端子の形状に応じて、複数の規格や名称が存在する。
電子部品は、組み立て工程(後工程)において、上記実施の形態に示した半導体装置と該半導体装置以外の部品が組み合わされて完成する。
図49(A)に示すフローチャートを用いて、後工程について説明する。前工程において上記実施の形態に示した半導体装置を有する素子基板が完成した後、該素子基板の裏面(半導体装置などが形成されていない面)を研削する「裏面研削工程」を行なう(ステップS721)。研削により素子基板を薄くすることで、素子基板の反りなどを低減し、電子部品の小型化を図ることができる。
次に、素子基板を複数のチップ(チップ715)に分離する「ダイシング工程」を行う(ステップS722)。そして、分離したチップを個々ピックアップしてリードフレーム上に接合する「ダイボンディング工程」を行う(ステップS723)。ダイボンディング工程におけるチップとリードフレームとの接合は、樹脂による接合や、テープによる接合など、適宜製品に応じて適した方法を選択する。なお、リードフレームに代えてインターポーザ基板上にチップを接合してもよい。
次いで、リードフレームのリードとチップ上の電極とを、金属の細線(ワイヤー)で電気的に接続する「ワイヤーボンディング工程」を行う(ステップS724)。金属の細線には、銀線や金線を用いることができる。また、ワイヤーボンディングは、ボールボンディングや、ウェッジボンディングを用いることができる。
ワイヤーボンディングされたチップは、エポキシ樹脂などで封止される「封止工程(モールド工程)」が施される(ステップS725)。封止工程を行うことで電子部品の内部が樹脂で充填され、チップに内蔵される回路部やチップとリードを接続するワイヤーを機械的な外力から保護することができ、また水分や埃による特性の劣化(信頼性の低下)を低減することができる。
次いで、リードフレームのリードをめっき処理する「リードめっき工程」を行なう(ステップS726)。めっき処理によりリードの錆を防止し、後にプリント基板に実装する際のはんだ付けをより確実に行うことができる。次いで、リードを切断および成形加工する「成形工程」を行なう(ステップS727)。
次いで、パッケージの表面に印字処理(マーキング)を施す「マーキング工程」を行なう(ステップS728)。そして外観形状の良否や動作不良の有無などを調べる「検査工程」(ステップS729)を経て、電子部品が完成する(ステップS729)。
また、完成した電子部品の斜視模式図を図49(B)に示す。図49(B)では、電子部品の一例として、QFP(Quad Flat Package)の斜視模式図を示している。図49(B)に示す電子部品750は、リード755および半導体装置753を示している。半導体装置753としては、上記実施の形態に示した半導体装置などを用いることができる。
図49(B)に示す電子部品750は、例えばプリント基板752に実装される。このような電子部品750が複数組み合わされて、それぞれがプリント基板752上で電気的に接続されることで電子部品が実装された基板(実装基板754)が完成する。完成した実装基板754は、電子機器などに用いられる。
本実施の形態に示す構成は、他の実施の形態に示す構成および実施例と適宜組み合わせて用いることができる。
なお、以上の実施の形態において、本発明の一態様について述べた。ただし、本発明の一態様は、これらに限定されない。つまり、本実施の形態などでは、様々な発明の態様が記載されているため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様として、トランジスタのチャネル形成領域、ソース領域、ドレイン領域などが、酸化物半導体を有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソース領域、ドレイン領域などは、様々な半導体を有していてもよい。場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソース領域、ドレイン領域などは、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、または、有機半導体などの少なくとも一つを有していてもよい。または例えば、場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソース領域、ドレイン領域などは、酸化物半導体を有していなくてもよい。
本実施例では、ALD法により成膜した酸化アルミニウム膜上に、プラズマ処理を行い、該酸化アルミニウム膜を介して酸化シリコン膜に酸素を導入した試料のTDS分析を行った。
試料は、単結晶シリコンウエハ上に、熱酸化法により酸化シリコン膜を100nmの膜厚で形成した。次に、該酸化膜上にALD法により酸化アルミニウム膜を、試料1乃至5は、1nmの膜厚で成膜し、試料6乃至9は、3nmの膜厚で成膜した。
次に、各試料にプラズマ処理を行った。プラズマ処理は、高密度プラズマ源を有するプラズマ酸化窒化装置を用いた。プラズマ処理条件は、アルゴン(流量900sccm)と酸素(流量40sccm)を用いて、反応室の圧力を666.65Paに保ち、マイクロ波電源電力(4000W)を印加し、試料を配置する基板ステージの温度は400℃に設定した。各試料のプラズマ処理時間を変更した。試料1は10sec、試料2は30sec、試料3および6は60sec、試料4および7は180sec、試料5および8は300sec、試料9は600secとした。
次に、全ての試料の酸化アルミニウム膜をウエットエッチング法によって除去した。ウエットエッチングは、硝酸、酢酸およびリン酸の混合液を用いた。
次に、各試料のTDS分析を行った。TDS分析条件は、昇温ヒーター温度を、測定開始時は50℃、測定終了時は950℃に設定し、昇温速度は32℃/minとした。試料の膜の表面温度は、測定開始時は約50℃で、測定終了時は約540℃であった。測定開始時の試料室の圧力は、1.5×10−7Paであった。
各試料のTDS分析結果を示す。図51および図52は、酸素分子に相当する質量電荷比M/z=32の放出強度の温度依存性を示している。図51(A)乃至(E)は試料1乃至5に対応し、図52(A)乃至(D)は、試料6乃至9に対応する。酸化アルミニウム膜の膜厚1nmの試料1乃至5においては、概ね250℃以上285℃未満に放出ピーク強度を有し、その強度はプラズマ処理時間に依存しないことが解った。一方、酸化アルミニウム膜の膜厚3nmの試料6乃至9においては、概ね220℃以上290℃未満に放出ピーク強度を有し、その強度はプラズマ処理時間に明確に依存していることが解る。即ち、プラズマ処理時間を長くすることで、放出のピーク強度が大きくなる傾向が見られた。
図53(A)および(B)に、酸素分子に相当する質量電荷比M/z=32の放出量のプラズマ処理時間依存性を示す。図53(A)は、酸化アルミニウム膜の膜厚1nmにおける放出量のプラズマ処理時間依存性のグラフであり、放出量のプラズマ処理時間依存性は見られない。プラズマ処理時間を10sec以上行うことで、放出量は、約2×1015molecules/cm放出された。一方、図53(B)は、酸化アルミニウム膜の膜厚3nmにおける放出量のプラズマ処理時間依存性のグラフであり、放出量のプラズマ処理時間依存性が明確に見られた。即ち、プラズマ処理時間を長くすることで、放出量が大きくなる傾向が見られた。放出量は、プラズマ処理時間60secにおいて約5×1014molecules/cm、プラズマ処理時間600secにおいて約4.5×1015molecules/cmであった。
これらのことより、プラズマ処理を行うことによって、酸素をALD法で成膜した酸化アルミニウム膜を介して酸化シリコン膜中または、表面近傍に過剰酸素として導入されることを確認した。また、酸化アルミニウム膜の膜厚3nmにおいては、プラズマ処理時間依存性を有しており、プラズマ処理時間を長くすることでより多くの酸素を過剰酸素として、酸化シリコン膜中または表面近傍に導入されることを確認した。
本実施例では、In−Ga−Zn酸化物を有する試料にプラズマ処理を行い、SIMS分析および電子スピン共鳴(ESR:Electron Spin Resonance)法を用いた分析を行った。
試料は、石英基板上にスパッタ法を用いて、第1のIn−Ga−Zn酸化物を成膜し、第1のIn−Ga−Zn酸化物上にスパッタ法を用いて、第2のIn−Ga−Zn酸化物を成膜した。
次に、電気炉を用いて、窒素雰囲気において550℃の温度で1時間の熱処理を行った後に酸素雰囲気において550℃の温度で1時間の熱処理を行った。
次に、第2のIn−Ga−Zn酸化物上に、試料AおよびCは、CVD法によって第1の成膜条件で酸化窒化シリコン膜を13nmの膜厚で成膜し、試料BおよびDは、CVD法によって第2の成膜条件で酸化窒化シリコン膜を13nmの膜厚で成膜した。
次に試料AおよびBは、ALD法によって、酸化アルミニウム膜を1nmの膜厚で成膜し、試料CおよびDはALD法によって、酸化アルミニウム膜を3nmの膜厚で成膜した。
次に、試料A、B、CおよびDをそれぞれ、8つに分断した。即ち、試料Aは、試料A−1乃至A−8に、試料Bは、試料B−1乃至B−8に、試料Cは、試料C−1乃至C−8に、試料Dは、試料D−1乃至D−8に分断した。
次に、各試料にプラズマ処理を行った。プラズマ処理は、高密度プラズマ源を有するプラズマ酸化窒化装置を用いた。プラズマ処理条件は、アルゴン(流量900sccm)と酸素(流量40sccm)を用いて、反応室の圧力を666.65Paに保ち、マイクロ波電源電力(4000W)を印加し、試料を配置する基板ステージの温度は400℃に設定した。各試料のプラズマ処理時間を変更した。
試料A−1、A−5、B−1、B−5、C−1、C−5、D−1およびD−5は、プラズマ処理を行わなかった。試料A−2、A−6、B−2、B−6、C−2、C−6、D−2およびD−6は、プラズマ処理を60sec行い、試料A−3、A−7、B−3、B−7、C−3、C−7、D−3およびD−7は、プラズマ処理を300sec行い、試料A−4、A−8、B−4、B−8、C−4、C−8、D−4およびD−8は、プラズマ処理を600sec行った。
次に、試料A−1乃至A−4、B−1乃至B−4、C−1乃至C−4、D−1乃至D−4の第2のIn−Ga−Zn酸化物中の水素濃度のSIMS分析を行った。図54(A)は、試料A−1乃至A−4のSIMS分析結果であり、図54(B)は、B−1乃至B−4のSIMS分析結果であり、図55(A)は、C−1乃至C−4のSIMS分析結果であり、図55(B)は、D−1乃至D−4のSIMS分析結果である。
水素濃度のSIMS分析の結果をまとめる。まずは、プラズマ処理を行っていない試料A−1、B−1、C−1およびD−1の第2のIn−Ga−Zn酸化物中の水素濃度について比較する。第1の成膜条件で酸化窒化シリコン膜を成膜した試料A−1およびC−1の方が、第2の成膜条件で酸化窒化シリコン膜を成膜した試料B−1およびD−1よりも水素濃度が高いことがわかった。また、酸化アルミニウム膜の膜厚による第2のIn−Ga−Zn酸化物中の水素濃度の違いは見られなかった。
次に、プラズマ処理を行った試料について第2のIn−Ga−Zn酸化物中の水素濃度について比較する。全ての試料において、第2のIn−Ga−Zn酸化物中の水素濃度が低減されていることを確認した。また、第2のIn−Ga−Zn酸化物中の水素濃度のプラズマ処理時間依存性は明確には確認されなかったが、プラズマ処理60secを行った試料の第2のIn−Ga−Zn酸化物の深さ約20nmより深い膜中における水素濃度は、試料C−2を除き、低い濃度となった。
次に、第2のIn−Ga−Zn酸化物中のフッ素濃度のSIMS分析の結果をまとめる。図56(A)は、試料A−1乃至A−4のSIMS分析結果であり、図56(B)は、B−1乃至B−4のSIMS分析結果であり、図57(A)は、C−1乃至C−4のSIMS分析結果であり、図57(B)は、D−1乃至D−4のSIMS分析結果である。まずは、プラズマ処理を行っていない試料A−1、B−1、C−1およびD−1の第2のIn−Ga−Zn酸化物中のフッ素濃度について比較する。第2の成膜条件で酸化窒化シリコン膜を成膜し、酸化アルミニウム膜の膜厚を1nmとした試料B−1のフッ素濃度が他の試料を比較して若干高いことがわかった。
次に、プラズマ処理を行った試料について第2のIn−Ga−Zn酸化物中のフッ素濃度について比較する。全ての試料において、第2のIn−Ga−Zn酸化物中のフッ素濃度が若干低減されていることを確認した。また、フッ素濃度のプラズマ処理時間依存性は確認されなかった。
以上SIMS分析の結果、プラズマ処理を行うことにより、第2のIn−Ga−Zn酸化物中の水素濃度およびフッ素濃度を低減することができることを確認した。
次に、試料A−5乃至A−8、B−5乃至B−8、C−5乃至C−8、D−5乃至D−8のESR法による分析を行った。第2のIn−Ga−Zn酸化物中の酸素欠損(Vo)に水素原子がトラップされた状態(VoHと呼ぶ)の存在量に対応する、g値が1.93付近(1.89以上1.96以下の範囲)のシグナルを計測した。
ESR測定条件としては、測定温度を室温とし、9.18GHzの高周波電力(マイクロ波パワー)を20mWとし、磁場の向きは作製した試料の膜表面と平行とした。なお、尚、g値が1.93付近のスピン密度の測定下限は、1.10×1017spins/cmである。
図58に酸化アルミニウム膜の膜厚1nmの各試料のESRスペクトルを示す。図59には酸化アルミニウム膜の膜厚3nmの各試料のESRスペクトルを示す。尚、試料A−1およびC−1のESRスペクトルはブロードとなりg値が1.93付近のスピン密度を計測することができなかったが、VoHは存在していると思われる。
図60は、ESRスペクトルから求めたスピン密度のプラズマ処理時間依存性のグラフである。上述のようにプラズマ処理を行わず、かつ第1の成膜条件で酸化窒化シリコン膜を成膜した試料A−1およびC−1は、ESRスペクトルがブロードとなったためにスピン密度の計測はできなかったが、プラズマ処理を行わず、かつ第2の成膜条件で酸化窒化シリコン膜を成膜した試料B−1およびD−1は、約6×1018spins/cmのスピン密度が計測された。プラズマ処理を行った試料は、試料B−2でわずかにスピン密度が計測されたが、それ以外の試料のスピン密度は、測定下限以下となった。このことより、第2のIn−Ga−Zn酸化物上に酸化窒化シリコン膜を成膜することで、第2のIn−Ga−Zn酸化物にプラズマダメージなどを与えて第2のIn−Ga−Zn酸化物中にVoHが発生し、酸化窒化シリコン膜と酸化窒化シリコン膜上の酸化アルミニウム膜を介してプラズマ処理を行うことで、酸素を酸化アルミニウム膜および酸化窒化シリコン膜を通して、第2のIn−Ga−Zn酸化物へ導入し、VoHを修復したと考えられる。即ち、該プラズマ処理は加酸素化能力を有することを確認した。
本実施例では、ALD法により成膜した酸化アルミニウム膜上に、酸素同位体(18O)を用いたプラズマ処理を行い、該酸化アルミニウム膜を介して酸化シリコン膜に酸素を導入した試料のSIMS分析を行った。
試料は、単結晶シリコンウエハ上に、熱酸化法により酸化シリコン膜を100nmの膜厚で形成した。次に、該酸化膜上にALD法により酸化アルミニウム膜を、試料E乃至Gには、1nmの膜厚で成膜し、試料H乃至Jには、3nmの膜厚で成膜した。
次に、各試料にプラズマ処理を行った。プラズマ処理は、高密度プラズマ源を有するプラズマ酸化窒化装置を用いた。プラズマ処理条件は、アルゴン(流量900sccm)と酸素同位体(18O)(流量40sccm)を用いて、反応室内の圧力を666.65Paに保ち、マイクロ波電源電力(4000W)を印加し、試料を配置する基板ステージの温度は400℃に設定した。各試料のプラズマ処理時間を変更した。試料EおよびHはプラズマ処理は行わず、試料FおよびIは60sec、試料GおよびJは300secとした。
図61(A)は、酸化アルミニウム膜の膜厚が1nmの試料の酸素同位体(18O)の深さ方向の濃度プロファイルを示し、図61(B)は、酸化アルミニウム膜の膜厚が3nmの試料の酸素同位体(18O)の深さ方向の濃度プロファイルを示す。これらの結果より、酸素同位体18Oは、プラズマ処理によって、酸化アルミニウム膜を介して酸化シリコン膜中に導入されていることを確認した。酸素同位体18O濃度は、プラズマ処理時間に依存し、プラズマ処理時間が長い方が高い濃度となった。また、酸化アルミニウム膜の膜厚が3nmの試料よりも酸化アルミニウム膜の膜厚が1nmの試料の方が酸素同位体18O濃度が高いことを確認した。
実施例1では、TDS分析によって、プラズマ処理による酸素導入を確認することができたが、本実施例では、酸素同位体18Oを用いてプラズマ処理を行うことで、酸化シリコン膜中へ酸素が導入されていることを確認することができた。
100 容量素子
102 絶縁体
103 絶縁体
104 絶縁体
112 導電体
114 絶縁体
116 導電体
120 絶縁体
122 絶縁体
124 導電体
126 導電体
128 導電体
128a 導電体
128b 導電体
128c 導電体
128d 導電体
200 トランジスタ
205 導電体
205a 導電体
205b 導電体
210 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
218 導電体
218a 導電体
218b 導電体
218c 導電体
220 絶縁体
222 絶縁体
224 絶縁体
230 酸化物
230a 酸化物
230b 酸化物
230c 酸化物
240a 導電体
240b 導電体
241a 導電体
241b 導電体
244 導電体
244a 導電体
244b 導電体
244c 導電体
244d 導電体
244e 導電体
245a 領域
245b 領域
250 絶縁体
260 導電体
260a 導電体
260b 導電体
270 絶縁体
280 絶縁体
282 絶縁体
284 絶縁体
300 トランジスタ
301 基板
302 半導体領域
304 絶縁体
306 導電体
308a 低抵抗領域
308b 低抵抗領域
320 絶縁体
322 絶縁体
324 絶縁体
326 絶縁体
328 導電体
328a 導電体
328b 導電体
328c 導電体
330 導電体
330a 導電体
330b 導電体
330c 導電体
350 絶縁体
352 絶縁体
354 絶縁体
355 絶縁体
356 導電体
358 導電体
358a 導電体
358b 導電体
358c 導電体
600 撮像装置
601 スイッチ
602 スイッチ
603 スイッチ
605 シリコン基板
610 画素部
611 画素
612 副画素
612B 副画素
612G 副画素
612R 副画素
615 層
620 光電変換素子
625 層
630 画素回路
631 配線
635 層
640 層
647 配線
648 配線
649 配線
650 配線
651 トランジスタ
652 トランジスタ
653 配線
654 フィルタ
654B フィルタ
654G フィルタ
654R フィルタ
655 レンズ
656 光
657 配線
658 トランジスタ
660 周辺回路
661 アノード
663 低抵抗領域
665 フォトダイオード
670 周辺回路
671 配線
672 配線
673 配線
675 プラグ
679 絶縁体
680 周辺回路
681 絶縁体
685 絶縁体
690 周辺回路
691 光源
691a 導電体
691b 導電体
691c 導電体
691d 導電体
691e 導電体
700 基板
701 絶縁体
702 絶縁体
703 半導体
704 導電体
705 導電体
705a 領域
706 絶縁体
707a 導電体
707b 導電体
708 絶縁体
709 絶縁体
710 絶縁体
711 基板
712 回路領域
713 分離領域
714 分離線
714a 導電体
714b 絶縁体
714c 導電体
715 チップ
716 絶縁体
719 発光素子
720 絶縁体
721 絶縁体
731 端子
732 FPC
733a 配線
734 シール材
735 駆動回路
736 駆動回路
737 画素
741 トランジスタ
742 容量素子
743 スイッチ素子
744 信号線
750 電子部品
751 トランジスタ
752 プリント基板
753 半導体装置
754 実装基板
755 リード
760 基板
762 容量素子
763 液晶素子
764 走査線
765 信号線
781 導電体
782 発光層
783 導電体
784 隔壁
791 導電体
792 絶縁体
793 液晶層
794 絶縁体
795 スペーサ
796 導電体
797 基板
800 インバータ
810 OSトランジスタ
820 OSトランジスタ
831 信号波形
832 信号波形
840 破線
841 実線
850 OSトランジスタ
860 CMOSインバータ
900 半導体装置
901 電源回路
902 回路
903 電圧生成回路
903A 電圧生成回路
903B 電圧生成回路
903C 電圧生成回路
903D 電圧生成回路
903E 電圧生成回路
904 回路
905 電圧生成回路
905A 電圧生成回路
905E 電圧生成回路
906 回路
911 トランジスタ
912 トランジスタ
912A トランジスタ
912B トランジスタ
921 制御回路
922 トランジスタ
1901 筐体
1902 筐体
1903 表示部
1904 表示部
1905 マイクロフォン
1906 スピーカー
1907 操作キー
1908 スタイラス
1911 筐体
1912 筐体
1913 表示部
1914 表示部
1915 接続部
1916 操作キー
1921 筐体
1922 表示部
1923 キーボード
1924 ポインティングデバイス
1931 筐体
1932 冷蔵室用扉
1933 冷凍室用扉
1941 筐体
1942 筐体
1943 表示部
1944 操作キー
1945 レンズ
1946 接続部
1951 車体
1952 車輪
1953 ダッシュボード
1954 ライト
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
4000 半導体装置
4001 CPUコア
4002 パワーコントローラ
4003 パワースイッチ
4004 キャッシュ
4005 バスインターフェース
4006 デバッグインターフェース
4007 制御装置
4008 PC
4009 パイプラインレジスタ
4100 パイプラインレジスタ
4101 ALU
4102 レジスタファイル
4201 パワーマネージメントユニット
4202 周辺回路
4203 データバス
5000 半導体装置
5001 記憶回路
5002 記憶回路
5003 記憶回路
5004 回路
5009 トランジスタ
5100 トランジスタ
5102 トランジスタ
5103 トランジスタ
5105 トランジスタ
5107 トランジスタ
5108 トランジスタ
5109 容量素子
5200 容量素子
5400 配線
5401 配線
5402 配線
5403 配線
5404 配線

Claims (9)

  1. 第1の絶縁体と、
    前記第1の絶縁体上のトランジスタと、
    前記トランジスタ上の第2の絶縁体と、
    前記第2の絶縁体上の第3の絶縁体と、を有し、
    前記トランジスタは、酸化物半導体を有し、
    前記第2の絶縁体は、昇温脱離ガス分析を行った場合に、前記第2の絶縁体の膜の表面温度が50℃から500℃の範囲において、酸素分子に換算しての酸素の脱離量が、1×1014molecules/cm以上、かつ、1×1016molecules/cm未満であるような特性を有し、
    前記第2の絶縁体は、酸素と窒素とシリコンとを有することを特徴とする半導体装置。
  2. 前記第3の絶縁体の膜厚は、1nm以上、5nm未満である部分を有することを特徴とする請求項1に記載の半導体装置。
  3. 前記第3の絶縁体は、金属と酸素を含むことを特徴とする請求項1または請求項2に記載の半導体装置。
  4. 請求項1乃至請求項3のいずれか一に記載の半導体装置およびプリント基板を有することを特徴とするモジュール。
  5. 請求項1乃至請求項3のいずれか一に記載の半導体装置、請求項4に記載のモジュール、およびスピーカーまたは操作キーを有することを特徴とする電子機器。
  6. 請求項1乃至請求項3のいずれか一に記載の半導体装置を複数個有し、
    ダイシング用の領域を有する半導体ウエハ。
  7. 第1の絶縁体を形成し、
    前記第1の絶縁体上に、酸化物半導体を有するトランジスタを形成し、
    前記トランジスタ上に、第2の絶縁体を形成し、
    前記第2の絶縁体上に、第3の絶縁体を形成し、
    前記第3の絶縁体に酸素を有するプラズマ処理を行うことで、前記プラズマ中の酸素を過剰酸素として前記第3の絶縁体中に添加し、
    熱処理を行うことで、前記過剰酸素を前記第2の絶縁体を介して前記酸化物半導体に移動させることを特徴とする半導体装置の作製方法。
  8. モジュールの作製方法であって、
    前記モジュールは、請求項7に記載の半導体装置の作製方法を用いて作製された半導体装置、およびプリント基板を有することを特徴とするモジュールの作製方法。
  9. 電子機器の作製方法であって、
    前記電子機器は、請求項7に記載の半導体装置の作製方法を用いて作製された半導体装置、請求項8に記載のモジュールの作製方法を用いて作製されたモジュール、およびスピーカーまたは操作キーを有することを特徴とする電子機器の作製方法。
JP2017012924A 2016-01-28 2017-01-27 半導体装置、モジュール、電子機器および半導体ウエハ Active JP6925809B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013926 2016-01-28
JP2016013926 2016-01-28

Publications (2)

Publication Number Publication Date
JP2017139459A true JP2017139459A (ja) 2017-08-10
JP6925809B2 JP6925809B2 (ja) 2021-08-25

Family

ID=59385805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012924A Active JP6925809B2 (ja) 2016-01-28 2017-01-27 半導体装置、モジュール、電子機器および半導体ウエハ

Country Status (2)

Country Link
US (1) US10700212B2 (ja)
JP (1) JP6925809B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096856A (ja) * 2017-11-17 2019-06-20 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020084400A1 (ja) * 2018-10-26 2020-04-30 株式会社半導体エネルギー研究所 金属酸化物の作製方法、半導体装置の作製方法
JP2020120116A (ja) * 2019-01-25 2020-08-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US10916621B2 (en) 2017-09-11 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Capacitor including first electrode, second electrode, and dielectric layer, image sensor, and method for producing capacitor
WO2023189491A1 (ja) * 2022-03-30 2023-10-05 株式会社ジャパンディスプレイ 半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137864A1 (en) 2016-02-12 2017-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6968567B2 (ja) 2016-04-22 2021-11-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2018047492A1 (ja) * 2016-09-07 2018-03-15 ソニーセミコンダクタソリューションズ株式会社 表示装置及び電子機器
JP2019033134A (ja) * 2017-08-04 2019-02-28 株式会社ディスコ ウエーハ生成方法
US11355082B2 (en) 2018-02-01 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11849572B2 (en) * 2019-01-14 2023-12-19 Intel Corporation 3D 1T1C stacked DRAM structure and method to fabricate
US20220173246A1 (en) * 2019-03-15 2022-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243973A (ja) * 2010-04-23 2011-12-01 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US20150014681A1 (en) * 2013-07-12 2015-01-15 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US20150054548A1 (en) * 2013-08-26 2015-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20150053973A1 (en) * 2013-08-23 2015-02-26 Semiconductor Energy Laboratory Co., Ltd. Capacitor and Semiconductor Device
JP2015213165A (ja) * 2014-04-18 2015-11-26 株式会社半導体エネルギー研究所 半導体装置、該半導体装置を有する表示装置
US20150348998A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Display Device Including the Same
US20150348909A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
JP5118811B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 発光装置及び表示装置
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP5118812B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
KR100939998B1 (ko) 2004-11-10 2010-02-03 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI481024B (zh) 2005-01-28 2015-04-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101577231B (zh) 2005-11-15 2013-01-02 株式会社半导体能源研究所 半导体器件及其制造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101747158B1 (ko) 2009-11-06 2017-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치를 제작하기 위한 방법
WO2012017843A1 (en) 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US8956912B2 (en) 2012-01-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9006733B2 (en) 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI562361B (en) 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9859114B2 (en) 2012-02-08 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device with an oxygen-controlling insulating layer
JP6168795B2 (ja) 2012-03-14 2017-07-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2013236068A (ja) 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US9153699B2 (en) * 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US9349418B2 (en) * 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US10361290B2 (en) 2014-03-14 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising adding oxygen to buffer film and insulating film
JP6399386B2 (ja) * 2014-07-02 2018-10-03 株式会社リコー 電気機械変換部材の製造方法、液滴吐出ヘッドの製造方法及び画像形成装置の製造方法
KR102273052B1 (ko) * 2015-01-26 2021-07-06 삼성디스플레이 주식회사 디스플레이 제조 방법
JP2016225602A (ja) 2015-03-17 2016-12-28 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243973A (ja) * 2010-04-23 2011-12-01 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US20150014681A1 (en) * 2013-07-12 2015-01-15 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
JP2015034979A (ja) * 2013-07-12 2015-02-19 株式会社半導体エネルギー研究所 表示装置および表示装置の作製方法
JP2015179810A (ja) * 2013-08-23 2015-10-08 株式会社半導体エネルギー研究所 容量素子及び半導体装置
US20150053973A1 (en) * 2013-08-23 2015-02-26 Semiconductor Energy Laboratory Co., Ltd. Capacitor and Semiconductor Device
KR20150022676A (ko) * 2013-08-23 2015-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 용량 소자 및 반도체 장치
JP2015064921A (ja) * 2013-08-26 2015-04-09 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
US20150054548A1 (en) * 2013-08-26 2015-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2015213165A (ja) * 2014-04-18 2015-11-26 株式会社半導体エネルギー研究所 半導体装置、該半導体装置を有する表示装置
US20150348998A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Display Device Including the Same
US20150348909A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
KR20150138070A (ko) * 2014-05-30 2015-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 상기 반도체 장치를 갖는 표시 장치
KR20150137988A (ko) * 2014-05-30 2015-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법, 및 전자 기기
JP2016006867A (ja) * 2014-05-30 2016-01-14 株式会社半導体エネルギー研究所 半導体装置、該半導体装置を有する表示装置
JP2016006857A (ja) * 2014-05-30 2016-01-14 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、並びに電子機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916621B2 (en) 2017-09-11 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Capacitor including first electrode, second electrode, and dielectric layer, image sensor, and method for producing capacitor
JP2019096856A (ja) * 2017-11-17 2019-06-20 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7229669B2 (ja) 2017-11-17 2023-02-28 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020084400A1 (ja) * 2018-10-26 2020-04-30 株式会社半導体エネルギー研究所 金属酸化物の作製方法、半導体装置の作製方法
JPWO2020084400A1 (ja) * 2018-10-26 2021-11-18 株式会社半導体エネルギー研究所 金属酸化物の作製方法、半導体装置の作製方法
JP7512204B2 (ja) 2018-10-26 2024-07-08 株式会社半導体エネルギー研究所 金属酸化物の作製方法
JP2020120116A (ja) * 2019-01-25 2020-08-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7566468B2 (ja) 2019-01-25 2024-10-15 株式会社半導体エネルギー研究所 半導体装置
WO2023189491A1 (ja) * 2022-03-30 2023-10-05 株式会社ジャパンディスプレイ 半導体装置

Also Published As

Publication number Publication date
JP6925809B2 (ja) 2021-08-25
US10700212B2 (en) 2020-06-30
US20170222056A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6807767B2 (ja) 半導体装置及びその作製方法
JP7204829B2 (ja) 半導体装置
JP6925809B2 (ja) 半導体装置、モジュール、電子機器および半導体ウエハ
JP7083598B2 (ja) 半導体装置、半導体ウエハ、モジュールおよび電子機器
JP6884569B2 (ja) 半導体装置及びその作製方法
JP6845692B2 (ja) 半導体装置
JP6965000B2 (ja) 半導体装置
JP6851814B2 (ja) トランジスタ
JP7399233B2 (ja) 半導体装置
JP6942489B2 (ja) 半導体装置、電子機器、および半導体ウエハ
JP7300042B2 (ja) 半導体装置
WO2017144994A1 (ja) トランジスタおよびその作製方法、半導体ウエハならびに電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6925809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250