JP2017125030A - 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法 - Google Patents

変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法 Download PDF

Info

Publication number
JP2017125030A
JP2017125030A JP2017027808A JP2017027808A JP2017125030A JP 2017125030 A JP2017125030 A JP 2017125030A JP 2017027808 A JP2017027808 A JP 2017027808A JP 2017027808 A JP2017027808 A JP 2017027808A JP 2017125030 A JP2017125030 A JP 2017125030A
Authority
JP
Japan
Prior art keywords
difficile
seq
toxin
amino acid
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027808A
Other languages
English (en)
Other versions
JP6321239B2 (ja
Inventor
アンダーソン,アナリーザ・シビル
Sybil Anderson Annaliesa
ドナルド,ロバート・ジー・ケイ
Robert G K Donald
フリント,マイケル・ジェームズ
James Flint Michael
ヤンゼン,カトリン・ウーテ
Ute Jansen Kathrin
カリヤーン,ナレンダー・ケイ
Narender K Kalyan
ミニンニ,テリ・エル
L Mininni Terri
モラン,ジャスティン・キース
Keith Moran Justin
ルッペン,マーク・イー
E Ruppen Mark
シドゥ,マニンダー・ケイ
Maninder K Sidhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth LLC filed Critical Wyeth LLC
Publication of JP2017125030A publication Critical patent/JP2017125030A/ja
Application granted granted Critical
Publication of JP6321239B2 publication Critical patent/JP6321239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/085Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/40Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum bacterial
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1282Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

【課題】変異体クロストリジウム・ディフィシル毒素Aおよび/または変異体クロストリジウム・ディフィシル毒素Bが含まれる免疫原性組成物に関する。【解決手段】変異体毒素には、対応する野生型のC.ディフィシル毒素と比較して少なくとも1個の変異を有するグルコシルトランスフェラーゼドメインおよび少なくとも1個の変異を有するシステインプロテアーゼドメインが含まれる。その変異体毒素にはさらに、化学的に架橋されている少なくとも1個のアミノ酸が含まれていてよい。別の側面において、本発明は、前記の免疫原性組成物に結合する抗体またはその結合断片に関する。さらなる側面において、本発明は、前記のもののいずれかをコードする単離されたヌクレオチド配列および前記の組成物のいずれかの使用の方法に関する。【選択図】図25

Description

関連出願への相互参照
本出願は、2011年4月22に出願された米国仮特許出願第61/478,474号
、および2011年4月25日に出願された米国仮特許出願第61/478,899号の
利益を主張する。前記の出願の全内容は参照により本明細書にそのまま援用される。
本発明は、変異体クロストリジウム・ディフィシル(Clostridium dif
ficile)毒素に関する組成物およびその方法に関する。
クロストリジウム・ディフィシル(C.ディフィシル)は、ヒトにおける胃腸疾患と関
係しているグラム陽性嫌気性細菌である。C.ディフィシルのコロニー形成は、通常は結
腸において天然の腸管内菌叢が抗生物質による処置により減少した場合に起こる。感染は
、グルコシル化毒素である毒素Aおよび毒素B(それぞれ308および270kDa)の
分泌により抗生物質関連下痢および時として偽膜性大腸炎につながる可能性があり、それ
はC.ディフィシルの主な病毒性因子である。
毒素Aおよび毒素Bは、19kbの病原性遺伝子座(PaLoc)内でそれぞれ遺伝子
tcdAおよびtcdBによりコードされている。C.ディフィシルの非病原性株は、代
わりの115塩基対の配列により置き換えられたこの遺伝子座を有する。
毒素Aおよび毒素Bは両方とも強力な細胞毒である。これらのタンパク質は、Rho/
Rac/Rasファミリーの低分子量GTPアーゼを不活性化する相同性のグルコシルト
ランスフェラーゼである。結果として起こるシグナル伝達の崩壊は、細胞間結合の喪失、
アクチン細胞骨格の調節不全、および/またはアポトーシスを引き起こし、結果としてク
ロストリジウム・ディフィシル感染(CDI)と関係する重度の分泌性下痢をもたらす。
過去10年で、病院、養護ホーム、および他の長期療養施設におけるC.ディフィシル
の大流行の数および重症度は劇的に増大した。この増大における重要な要因には、高病毒
性(hypervirulent)病原性株の出現、増大した抗生物質の使用、向上した
検出法、および健康管理施設における空気伝染性の芽胞への曝露の増大が含まれる。
メトロニダゾールおよびバンコマイシンは、C.ディフィシル関連疾患(CDAD)の
抗生物質処置に関するケアの現在受け入れられている標準である。しかし、そのような処
置を受ける患者の約20%はCDIの第1エピソードの後に感染の再発を経験し、それら
の患者の約50%に至るまでが追加の再発に苦しむ。再発の処置は非常に重要な課題であ
り、再発の大部分は通常は前のエピソードの1ヶ月以内に起こる。
従って、C.ディフィシルに向けられた免疫原性および/または療法組成物ならびにそ
の方法に関する必要性が存在する。
これらのおよび他の目的が本明細書における発明により提供される。
1側面において、本発明は、変異体C.ディフィシル毒素Aが含まれる免疫原性組成物
に関する。その変異体C.ディフィシル毒素Aには、対応する野生型のC.ディフィシル
毒素Aと比較して少なくとも1個の変異を有するグルコシルトランスフェラーゼドメイン
および少なくとも1個の変異を有するシステインプロテアーゼドメインが含まれる。1態
様において、その変異体C.ディフィシル毒素Aの少なくとも1個のアミノ酸が化学的に
架橋されている。
1側面において、本発明はSEQ ID NO:4で示されるアミノ酸配列が含まれる
単離されたポリペプチドに関し、ここで1位のメチオニン残基は場合により存在せず、こ
こでそのポリペプチドには1−エチル−3−(3−ジメチルアミノプロピル)カルボジイ
ミド(EDC)およびN−ヒドロキシスクシンイミド(NHS)により化学的に修飾され
た少なくとも1個のアミノ酸側鎖が含まれる。
1態様において、その変異体C.ディフィシル毒素の少なくとも1個のアミノ酸が化学
的に架橋されている。
1態様において、その少なくとも1個のアミノ酸はホルムアルデヒド、1−エチル−3
−(3−ジメチルアミノプロピル)カルボジイミド(EDC)、N−ヒドロキシスクシネ
ート、またはEDCおよびNHSの組み合わせにより化学的に架橋される。
1態様において、その免疫原性組成物はそれぞれの抗毒素中和抗体またはその結合断片
により認識される。
1態様において、その免疫原性組成物は、対応する野生型のC.ディフィシル毒素と比
較して減少した細胞毒性を示す。
別の側面において、本発明は変異体C.ディフィシル毒素Aが含まれる免疫原性組成物
に関し、それには対応する野生型のC.ディフィシル毒素Aと比較して285位および2
87位においてアミノ酸置換を有するSEQ ID NO:29を有するグルコシルトラ
ンスフェラーゼドメインならびに158位においてアミノ酸置換を有するSEQ ID
NO:32を有するシステインプロテアーゼドメインが含まれ、ここでその変異体C.デ
ィフィシル毒素Aの少なくとも1個のアミノ酸が化学的に架橋されている。
さらなる側面において、本発明はSEQ ID NO:4が含まれる変異体C.ディフ
ィシル毒素Aが含まれる免疫原性組成物に関し、ここでその変異体C.ディフィシル毒素
Aの少なくとも1個のアミノ酸が化学的に架橋されている。
さらに別の側面において、本発明は、SEQ ID NO:4、SEQ ID NO:
5、SEQ ID NO:6、SEQ ID NO:7、またはSEQ ID NO:8
が含まれる免疫原性組成物に関する。
1側面において、本発明は変異体C.ディフィシル毒素Bが含まれる免疫原性組成物に
関する。その変異体C.ディフィシル毒素Bには、対応する野生型のC.ディフィシル毒
素Bと比較して少なくとも1個の変異を有するグルコシルトランスフェラーゼドメインお
よび少なくとも1個の変異を有するシステインプロテアーゼドメインが含まれる。
別の側面において、本発明はSEQ ID NO:6で示されるアミノ酸配列が含まれ
る単離されたポリペプチドに関し、ここで1位のメチオニン残基は場合により存在せず、
ここでそのポリペプチドには1−エチル−3−(3−ジメチルアミノプロピル)カルボジ
イミド(EDC)およびN−ヒドロキシスクシンイミド(NHS)により化学的に修飾さ
れたアミノ酸側鎖が含まれる。
別の側面において、本発明は変異体C.ディフィシル毒素Bが含まれる免疫原性組成物
に関し、それには対応する野生型のC.ディフィシル毒素Bと比較して286位および2
88位においてアミノ酸置換を有するSEQ ID NO:31を有するグルコシルトラ
ンスフェラーゼドメインならびに155位においてアミノ酸置換を有するSEQ ID
NO:33を有するシステインプロテアーゼドメインが含まれ、ここでその変異体C.デ
ィフィシル毒素Bの少なくとも1個のアミノ酸が化学的に架橋されている。
さらなる側面において、本発明はSEQ ID NO:6が含まれる変異体C.ディフ
ィシル毒素Bが含まれる免疫原性組成物に関し、ここでその変異体C.ディフィシル毒素
Bの少なくとも1個のアミノ酸が化学的に架橋されている。
1側面において、本発明はSEQ ID NO:4が含まれる変異体C.ディフィシル
毒素AおよびSEQ ID NO:6が含まれる変異体C.ディフィシル毒素Bが含まれ
る免疫原性組成物に関し、ここでその変異体C.ディフィシル毒素のそれぞれの少なくと
も1個のアミノ酸が化学的に架橋されている。
さらなる側面において、本発明は前述の変異体C.ディフィシル毒素のいずれかをコー
ドするポリヌクレオチドが含まれる組み換え細胞またはその子孫に関し、ここでその細胞
は毒素をコードする内在性のポリヌクレオチドを欠いている。
別の側面において、本発明は、変異体C.ディフィシル毒素が含まれる免疫原性組成物
に特異的な抗体またはその抗体結合断片に関する。
1側面において、本発明は、哺乳類においてC.ディフィシル感染症を処置する方法に
関する。その方法には、その哺乳類にSEQ ID NO:4が含まれる変異体C.ディ
フィシル毒素AおよびSEQ ID NO:6が含まれる変異体C.ディフィシル毒素B
が含まれる免疫原性組成物を投与することが含まれ、ここでその変異体C.ディフィシル
毒素のそれぞれの少なくとも1個のアミノ酸がホルムアルデヒドにより架橋されている。
別の側面において、その哺乳類においてC.ディフィシル感染症を処置する方法には、
その哺乳類にSEQ ID NO:4が含まれる変異体C.ディフィシル毒素AおよびS
EQ ID NO:6が含まれる変異体C.ディフィシル毒素Bが含まれる免疫原性組成
物を投与することが含まれ、ここでその変異体C.ディフィシル毒素のそれぞれの少なく
とも1個のアミノ酸が1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド
および/またはN−ヒドロキシスクシンイミド(NHS)により架橋されている。
1側面において、本発明は哺乳類においてC.ディフィシル感染症に対する免疫応答を
誘導する方法に関する。その方法には、その哺乳類にSEQ ID NO:4が含まれる
変異体C.ディフィシル毒素AおよびSEQ ID NO:6が含まれる変異体C.ディ
フィシル毒素Bが含まれる免疫原性組成物を投与することが含まれ、ここでその変異体C
.ディフィシル毒素のそれぞれの少なくとも1個のアミノ酸がホルムアルデヒドにより架
橋されている。
別の側面において、哺乳類においてC.ディフィシル感染症に対する免疫応答を誘導す
る方法には、その哺乳類にSEQ ID NO:4が含まれる変異体C.ディフィシル毒
素AおよびSEQ ID NO:6が含まれる変異体C.ディフィシル毒素Bが含まれる
免疫原性組成物を投与することが含まれ、ここでその変異体C.ディフィシル毒素のそれ
ぞれの少なくとも1個のアミノ酸が1−エチル−3−(3−ジメチルアミノプロピル)カ
ルボジイミドおよび/またはN−ヒドロキシスクシンイミド(NHS)により架橋されて
いる。
1態様において、その処置の方法または免疫応答を誘導する方法は、それを必要とする
哺乳類においてである。
1態様において、その処置の方法または免疫応答を誘導する方法には、再発性C.ディ
フィシル感染症を有していた哺乳類が含まれる。
1態様において、その処置の方法または免疫応答を誘導する方法には、その組成物を非
経口投与することが含まれる。
1態様において、その処置の方法または免疫応答を誘導する方法には、さらにアジュバ
ントが含まれる免疫原性組成物が含まれる。
1態様において、そのアジュバントには水酸化アルミニウムゲルおよびCpGオリゴヌ
クレオチドが含まれる。別の態様において、そのアジュバントにはISCOMATRIX
が含まれる。
1態様において、その単離されたポリペプチドには、グリシンにより化学的に修飾され
ているそのポリペプチドのアスパラギン酸残基の少なくとも1個の側鎖またはそのポリペ
プチドのグルタミン酸残基の少なくとも1個の側鎖が含まれる。
1態様において、その単離されたポリペプチドには、そのポリペプチドのアスパラギン
酸残基の側鎖およびそのポリペプチドのリシン残基の側鎖の間の少なくとも1個の架橋;
ならびにそのポリペプチドのグルタミン酸残基の側鎖およびそのポリペプチドのリシン残
基の側鎖の間の少なくとも1個の架橋が含まれる。
1態様において、その単離されたポリペプチドには、そのポリペプチドの少なくとも1
個のリシン残基の側鎖に連結されたベータ−アラニン部分が含まれる。
1態様において、その単離されたポリペプチドには、そのポリペプチドのアスパラギン
酸残基の側鎖に、またはそのポリペプチドのグルタミン酸残基の側鎖に連結されたグリシ
ン部分が含まれる。
1態様において、その単離されたポリペプチドにはSEQ ID NO:4で示される
アミノ酸配列が含まれ、ここで1位のメチオニン残基は場合により存在せず、ここでその
ポリペプチドの少なくとも1個のリシン残基の側鎖はベータ−アラニン部分に連結されて
いる。
1態様において、その単離されたポリペプチドにはSEQ ID NO:6で示される
アミノ酸配列が含まれ、ここで1位のメチオニン残基は場合により存在せず、ここでその
ポリペプチドの少なくとも1個のリシン残基の側鎖はベータ−アラニン部分に連結されて
いる。
1態様において、その単離されたポリペプチドには、アスパラギン酸残基の側鎖に、ま
たはグルタミン酸残基の側鎖に連結された、そのポリペプチドの第2のリシン残基の側鎖
が含まれる。
1態様において、その単離されたポリペプチドには、グリシン部分に連結されたそのポ
リペプチドのアスパラギン酸残基の側鎖またはグルタミン酸残基の側鎖が含まれる。
1態様において、その単離されたポリペプチドは少なくとも約100μg/mlのEC
50を有する。
1側面において、その免疫原性組成物にはSEQ ID NO:4で示されるアミノ酸
配列を有する単離されたポリペプチド(ここで1位のメチオニン残基は場合により存在し
ない)およびSEQ ID NO:6で示されるアミノ酸配列を有する単離されたポリペ
プチド(ここで1位のメチオニン残基は場合により存在しない)が含まれ、ここでそのポ
リペプチドは1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC
)およびN−ヒドロキシスクシンイミド(NHS)により化学的に修飾された少なくとも
1個のアミノ酸側鎖を有する。
1態様において、そのポリペプチドには以下のいずれかの少なくとも1つが含まれる:
a)a)そのポリペプチドのリシン残基の側鎖に連結された少なくとも1個のベータ−ア
ラニン部分;b)そのポリペプチドのリシン残基の側鎖およびアスパラギン酸残基の側鎖
の間の少なくとも1個の架橋;ならびにc)そのポリペプチドのリシン残基の側鎖および
グルタミン酸残基の側鎖の間の少なくとも1個の架橋。
1態様において、その単離されたポリペプチドは少なくとも約100μg/mlのEC
50を有する。
1側面において、その免疫原性組成物にはSEQ ID NO:4で示されるアミノ酸
配列を有する単離されたポリペプチド(ここで1位のメチオニン残基は場合により存在し
ない)およびSEQ ID NO:6で示されるアミノ酸配列を有する単離されたポリペ
プチド(ここで1位のメチオニン残基は場合により存在しない)が含まれ、a)ここでS
EQ ID NO:4の少なくとも1個のリシン残基の側鎖はベータ−アラニン部分に連
結されており、そしてb)SEQ ID NO:6の少なくとも1個のリシン残基の側鎖
はベータ−アラニン部分に連結されている。
1態様において、その免疫原性組成物には、アスパラギン酸残基の側鎖に、またはグル
タミン酸残基の側鎖に連結されているSEQ ID NO:4の第2のリシン残基の側鎖
が含まれ、ここでSEQ ID NO:6の第2のリシン残基はアスパラギン酸残基の側
鎖に、またはグルタミン酸残基の側鎖に連結されている。
1態様において、その免疫原性組成物には、グリシン部分に連結されているSEQ I
D NO:4で示されるアミノ酸配列を有するポリペプチドのアスパラギン酸残基の側鎖
またはグルタミン酸残基の側鎖が含まれ、ここで1位のメチオニン残基は場合により存在
しない。
1態様において、その免疫原性組成物には、グリシン部分に連結されているSEQ I
D NO:6で示されるアミノ酸配列を有するポリペプチドのアスパラギン酸残基の側鎖
またはグルタミン酸残基の側鎖が含まれ、ここで1位のメチオニン残基は場合により存在
しない。
1態様において、その単離されたポリペプチドは少なくとも約100μg/mlのEC
50を有する。
1側面において、そのその免疫原性組成物には、SEQ ID NO:84で示される
アミノ酸配列を有する単離されたポリペプチドおよびSEQ ID NO:86で示され
るアミノ酸配列を有する単離されたポリペプチドが含まれ、ここでそれぞれのポリペプチ
ドには以下:a)そのポリペプチドのアスパラギン酸残基の側鎖およびそのポリペプチド
のリシン酸残基の側鎖の間の少なくとも1個の架橋;b)そのポリペプチドのグルタミン
酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋
;c)そのポリペプチドの少なくとも1個のリシン残基の側鎖に連結されたベータ−アラ
ニン部分;ならびにd)そのポリペプチドの少なくとも1個のアスパラギン酸残基の側鎖
に、またはそのポリペプチドの少なくとも1個のグルタミン酸残基の側鎖に連結されたグ
リシン部分が含まれる。
図1:CLUSTALWアラインメント、初期設定のパラメーターを用いた、株630、VPI10463、R20291、CD196からの野生型C.ディフィシル毒素A、およびSEQ ID NO:4を有する変異体毒素Aの配列アラインメント。 図2:CLUSTALWアラインメント、初期設定のパラメーターを用いた、株630、VPI10463、R20291、CD196からの野生型C.ディフィシル毒素B、およびSEQ ID NO:6を有する変異体毒素Bの配列アラインメント。 図3:野生型毒素陰性C.ディフィシル株の同定を示すグラフ。13のC.ディフィシル株の培養液を毒素Aに関するELISAにより試験した。図説されているように、7つの株が毒素Aを発現しており、6つの株(株1351、3232、7322、5036、4811およびVPI 11186)は発現していなかった。 図4AおよびB:三重変異体A(SEQ ID NO:4)、二重変異体B(SEQ ID NO:5)、および三重変異体B(SEQ ID NO:6)はUDP−14C−グルコースを用いるインビトログルコシル化アッセイにおいてRac1またはRhoA GTPアーゼをグルコシル化せず;一方で10μg〜1ngの野生型毒素BはRac1をグルコシル化することを説明するSDS−PAGEの結果。 図5:野生型毒素AおよびB(それぞれSEQ ID NO:1および2)の切断された断片の観察と比較した、変異体毒素AおよびB(それぞれSEQ IDNO:4および6)におけるシステインプロテアーゼ活性の抑止(abrogation)を示すウェスタンブロット。実施例13参照。 図6:三重変異体毒素AおよびB(それぞれSEQ ID NO:4および6)はIMR−90細胞におけるインビトロ細胞毒性アッセイにより高濃度(例えば約100μg/ml)で試験した際に残存する細胞毒性を示すことを示すグラフ。 図7:三重変異体毒素B(SEQ ID NO:6)および七重変異体毒素B(SEQ ID NO:8)に関してEC50値が類似していることを示すグラフ。 図8:ATPレベル(RLU)を三重変異体TcdA(SEQ ID NO:4)(上のパネル)および三重変異体TcdB(SEQ ID NO:6)(下のパネル)の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。変異体毒素AおよびBの残存する細胞毒性は、変異体毒素Aに特異的な中和抗体(上のパネル−pAb AおよびmAb A3−25+A60−22)および変異体毒素Bに特異的な中和抗体(下のパネル−pAb B)により完全に抑止され得る。 図9:処理の72時間後におけるIMR−90細胞の形態の画像。パネルAはモック処理した対照細胞を示す。パネルBはホルマリンで不活性化した変異体TcdB(SEQ ID NO:6)による処理後の細胞の形態を示す。パネルCはEDCで不活性化した変異体TcdB(SEQ ID NO:6)による処理後の細胞の形態を示す。パネルDは野生型毒素B(SEQ ID NO:2)による処理後の細胞の形態を示す。パネルEは三重変異体TcdB(SEQ ID NO:6)による処理後の細胞の形態を示す。類似の結果がTcdA処理に関して観察された。 図10:実施例25(試験muCdiff2010−06)で記述されるような中和抗体の力価を示すグラフ。 図11:実施例26(試験muCdiff2010−07)で記述されるような中和抗体の力価を示すグラフ。 図12:実施例27(試験hamC.difficile2010−02)で記述されるようなハムスターにおける4回の免疫処置後の毒素AおよびBに対する中和抗体応答を示すグラフ。 図13:実施例27(試験hamC.difficile2010−02)で記述されるような、ハムスターにおける化学的に不活性化された遺伝子変異体毒素およびList Biologicalトキソイドによるワクチン接種後の中和抗体応答を示すグラフ。 図14:実施例28(試験hamC.difficile2010−02、続き)で記述される、免疫処置されていない対照と比較した3つの免疫処置されたハムスターの群に関する生存曲線。 図15:実施例29で記述されるような、ハムスターにおけるC.ディフィシル変異体毒素の異なる配合物に対する相対的中和抗体応答を示すグラフ(試験hamC.difficile2010−03)。 図16A〜B:実施例30で記述されるような、カニクイザル・マカク(cynomolgus macaques)における化学的に不活性化された遺伝子変異体毒素AおよびB(それぞれSEQ ID NO:4および6)に対する強い相対的中和抗体応答を示すグラフ。 図16A〜B:実施例30で記述されるような、カニクイザル・マカク(cynomolgus macaques)における化学的に不活性化された遺伝子変異体毒素AおよびB(それぞれSEQ ID NO:4および6)に対する強い相対的中和抗体応答を示すグラフ。 図17:A3−25 mAb IgEの軽(VL)および重(HL)鎖の可変領域のアミノ酸配列。シグナルペプチドは強調され;CDRはイタリック体にされて下線が引かれ;定常領域は太字にされて下線が引かれている(完全な配列は示されていない)。 図18:細胞生存度の指標として(相対光単位−RLUにより定量化される)ATPレベルを用いる毒素中和アッセイにおける個々の毒素Aモノクローナル抗体の力価測定を示すグラフ。毒素(4×EC50)対照と比較して、mAb A80−29、A65−33、A60−22およびA3−25は濃度と共に増大する毒素Aへの中和作用を有していたが、陽性ウサギ抗毒素A対照のレベルまでではなかった。mAb A50−10、A56−33、およびA58−46は毒素Aを中和しなかった。細胞のみの対照は1〜1.5×10RLUであった。 図19:毒素B mAbの8個のエピトープの群のBiaCoreによるマッピング。 図20A〜C:毒素A mAbの組み合わせの相乗的中和活性:異なる希釈度の中和抗体A60−22、A65−33、およびA80−29の、増大する濃度のA3−25 mAbへの添加は、その希釈度に関わらず毒素Aの中和を相乗的に増大させた。毒素Aのみ(4×EC50)の対照のRLUが図説されており(0.3×10未満)、図20Bおよび図20Cで示されているグラフにおいて表されているように、細胞のみの対照は2〜2.5×10RLUであった。 図20A〜C:毒素A mAbの組み合わせの相乗的中和活性:異なる希釈度の中和抗体A60−22、A65−33、およびA80−29の、増大する濃度のA3−25 mAbへの添加は、その希釈度に関わらず毒素Aの中和を相乗的に増大させた。毒素Aのみ(4×EC50)の対照のRLUが図説されており(0.3×10未満)、図20Bおよび図20Cで示されているグラフにおいて表されているように、細胞のみの対照は2〜2.5×10RLUであった。 図20A〜C:毒素A mAbの組み合わせの相乗的中和活性:異なる希釈度の中和抗体A60−22、A65−33、およびA80−29の、増大する濃度のA3−25 mAbへの添加は、その希釈度に関わらず毒素Aの中和を相乗的に増大させた。毒素Aのみ(4×EC50)の対照のRLUが図説されており(0.3×10未満)、図20Bおよび図20Cで示されているグラフにおいて表されているように、細胞のみの対照は2〜2.5×10RLUであった。 図21:毒素B mAbの相乗的中和活性:mAb 8−26、B60−2およびB59−3による毒素Bの中和を図21Aにおいて図説する。毒素Bの中和は、B8−26をB59−3の希釈物と組み合わせた後に相乗的に増大する(図21B)。 図21:毒素B mAbの相乗的中和活性:mAb 8−26、B60−2およびB59−3による毒素Bの中和を図21Aにおいて図説する。毒素Bの中和は、B8−26をB59−3の希釈物と組み合わせた後に相乗的に増大する(図21B)。 図22:Rac1 GTPアーゼの発現は遺伝子変異体毒素B(SEQ ID NO:6)抽出物において24時間から96時間まで低減しているが、野生型毒素B(SEQ ID NO:2)で処理した抽出物では低減していないことを示すウェスタンブロット。そのブロットは、Rac1が毒素Bで処理した抽出物においてグルコシル化されているが、遺伝子変異体毒素Bで処理した抽出物ではグルコシル化されていないことも示している。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図23A〜K:ATPレベル(RLU)をC.ディフィシル培養液およびハムスター血清のプール(■);それぞれの株からの粗製の毒素(培養回収物)およびハムスター血清のプール(●);精製された毒素(List Biologicalsから得た市販の毒素)およびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素(◆)、対照の増大する濃度に対してプロットした、インビトロ細胞毒性試験からの結果を表すグラフ。それぞれの株からの毒素を4×EC50値で細胞に添加した。図23は、変異体TcdA(SEQ ID NO:4)および変異体TcdB(SEQ ID NO:6)(ここでその変異体毒素は例えば本明細書で記述される実施例29、表15に従ってEDCにより不活性化された)が含まれる免疫原性組成物が、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を誘導したことを示す:2007886(図23A);2006017(図23B);2007070(図23C);2007302(図23D);2007838(図23E);2007886(図23F);2009292(図23G);2004013(図23H);2009141(図23I);2005022(図23J);2006376(図23K)。 図24:結果として少なくとも3種類の可能性のあるタイプの修飾:架橋、グリシン付加体、およびベータ−アラニン付加体をもたらす、変異体C.ディフィシル毒素の典型的なEDC/NHS不活性化の図説。パネルAは架橋を図説する。三重変異体毒素のカルボキシル残基がEDCおよびNHSの付加により活性化される。その活性化されたエステルが第1級アミンと反応して安定なアミド結合を形成し、結果として分子内および分子間架橋をもたらす。パネルBはグリシン付加体の形成を図説する。不活性化後、残存する活性化されたエステルはグリシンが付加されて安定なアミド結合を形成することにより急冷される(quenched)。パネルCはベータ−アラニン付加体の形成を図説する。3モルのNHSが1モルのEDCと反応して活性化されたベータ−アラニンを形成することができる。次いでこれが第1級アミンと反応して安定なアミド結合を形成する。 図25:結果として以下のタイプの修飾:(A)架橋、(B)グリシン付加体、および(C)ベータ−アラニン付加体の少なくとも1種類をもたらす、変異体C.ディフィシル毒素の典型的なEDC/NHS不活性化の図説。
配列の簡潔な記述
SEQ ID NO:1は、野生型C.ディフィシル630毒素A(TcdA)に関す
るアミノ酸配列を示す。
SEQ ID NO:2は、野生型C.ディフィシル630毒素B(TcdB)に関す
るアミノ酸配列を示す。
SEQ ID NO:3は、SEQ ID NO:1と比較して285および287位
において変異を有する変異体TcdAに関するアミノ酸配列を示す。
SEQ ID NO:4は、SEQ ID NO:1と比較して285、287、およ
び700位において変異を有する変異体TcdAに関するアミノ酸配列を示す。
SEQ ID NO:5は、SEQ ID NO:2と比較して286および288位
において変異を有する変異体TcdBに関するアミノ酸配列を示す。
SEQ ID NO:6は、SEQ ID NO:2と比較して286、288、およ
び698位において変異を有する変異体TcdBに関するアミノ酸配列を示す。
SEQ ID NO:7は、SEQ ID NO:1と比較して269、272、28
5、287、460、462、および700位において変異を有する変異体TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:8は、SEQ ID NO:2と比較して270、273、28
6、288、461、463、および698位において変異を有する変異体TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:9は、野生型C.ディフィシル630毒素A(TcdA)をコー
ドするDNA配列を示す。
SEQ ID NO:10は、野生型C.ディフィシル630毒素B(TcdB)をコ
ードするDNA配列を示す。
SEQ ID NO:11は、SEQ ID NO:3をコードするDNA配列を示す

SEQ ID NO:12は、SEQ ID NO:4をコードするDNA配列を示す
SEQ ID NO:13は、SEQ ID NO:5をコードするDNA配列を示す

SEQ ID NO:14は、SEQ ID NO:6をコードするDNA配列を示す
SEQ ID NO:15は、野生型C.ディフィシルR20291 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:16は、SEQ ID NO:15をコードするDNA配列を示
す。
SEQ ID NO:17は、野生型C.ディフィシルCD196 TcdAに関する
アミノ酸配列を示す。
SEQ ID NO:18は、SEQ ID NO:17をコードするDNA配列を示
す。
SEQ ID NO:19は、野生型C.ディフィシルVPI10463 TcdAに
関するアミノ酸配列を示す。
SEQ ID NO:20は、SEQ ID NO:19をコードするDNA配列を示
す。
SEQ ID NO:21は、野生型C.ディフィシルR20291 TcdBに関す
るアミノ酸配列を示す。
SEQ ID NO:22は、SEQ ID NO:21をコードするDNA配列を示
す。
SEQ ID NO:23は、野生型C.ディフィシルCD196 TcdBに関する
アミノ酸配列を示す。
SEQ ID NO:24は、SEQ ID NO:23をコードするDNA配列を示
す。
SEQ ID NO:25は、野生型C.ディフィシルVPI10463 TcdBに
関するアミノ酸配列を示す。
SEQ ID NO:26は、SEQ ID NO:25をコードするDNA配列を示
す。
SEQ ID NO:27は、野生型C.ディフィシルVPI10463の病原性遺伝
子座のDNA配列を示す。
SEQ ID NO:28は、SEQ ID NO:1の残基101〜293に関する
アミノ酸配列を示す。
SEQ ID NO:29は、SEQ ID NO:1の残基1〜542に関するアミ
ノ酸配列を示す。
SEQ ID NO:30は、SEQ ID NO:2の残基101〜293に関する
アミノ酸配列を示す。
SEQ ID NO:31は、SEQ ID NO:2の残基1〜543に関するアミ
ノ酸配列を示す。
SEQ ID NO:32は、SEQ ID NO:1の残基543〜809に関する
アミノ酸配列を示す。
SEQ ID NO:33は、SEQ ID NO:2の残基544〜767に関する
アミノ酸配列を示す。
SEQ ID NO:34は変異体TcdAに関するアミノ酸配列を示し、ここで残基
101、269、272、285、287、460、462、541、542、543、
589、655、および700はあらゆるアミノ酸であることができる。
SEQ ID NO:35は変異体TcdBに関するアミノ酸配列を示し、ここで10
2、270、273、286、288、384、461、463、520、543、54
4、587、600、653、698、および751はあらゆるアミノ酸であることがで
きる。
SEQ ID NO:36は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変軽鎖に関するアミノ酸配列を示す。
SEQ ID NO:37は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変重鎖に関するアミノ酸配列を示す。
SEQ ID NO:38は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変軽鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:39は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変軽鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:40は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変軽鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:41は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変重鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:42は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変重鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:43は、C.ディフィシルTcdAの中和抗体(A3−25 m
Ab)の可変重鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:44は、SEQ ID NO:3をコードするDNA配列を示す

SEQ ID NO:45は、SEQ ID NO:4をコードするDNA配列を示す
SEQ ID NO:46は、SEQ ID NO:5をコードするDNA配列を示す

SEQ ID NO:47は、SEQ ID NO:6をコードするDNA配列を示す
SEQ ID NO:48は、免疫刺激オリゴヌクレオチドODN CpG 2455
5のヌクレオチド配列を示す。
SEQ ID NO:49は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖に関するアミノ酸配列を示す。
SEQ ID NO:50は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:51は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:52は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:53は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:54は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変重鎖の定常領域に関するアミノ酸配列を示す。
SEQ ID NO:55は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変軽鎖に関するアミノ酸配列を示す。
SEQ ID NO:56は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変軽鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:57は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変軽鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:58は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変軽鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:59は、C.ディフィシルTcdB中和抗体(B8−26 mA
b)の可変軽鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:60は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖に関するアミノ酸配列を示す。
SEQ ID NO:61は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:62は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:63は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:64は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:65は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変重鎖の定常領域に関するアミノ酸配列を示す。
SEQ ID NO:66は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変軽鎖に関するアミノ酸配列を示す。
SEQ ID NO:67は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変軽鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:68は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変軽鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:69は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変軽鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:70は、C.ディフィシルTcdB中和抗体(B59−3 mA
b)の可変軽鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:71は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖に関するアミノ酸配列を示す。
SEQ ID NO:72は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:73は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:74は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:75は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:76は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変重鎖の定常領域に関するアミノ酸配列を示す。
SEQ ID NO:77は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変軽鎖に関するアミノ酸配列を示す。
SEQ ID NO:78は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変軽鎖のシグナルペプチドに関するアミノ酸配列を示す。
SEQ ID NO:79は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変軽鎖のCDR1に関するアミノ酸配列を示す。
SEQ ID NO:80は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変軽鎖のCDR2に関するアミノ酸配列を示す。
SEQ ID NO:81は、C.ディフィシルTcdB中和抗体(B9−30 mA
b)の可変軽鎖のCDR3に関するアミノ酸配列を示す。
SEQ ID NO:82は変異体TcdBに関するアミノ酸配列を示し、ここで10
2、270、273、286、288、384、461、463、520、543、54
4、587、600、653、698、および751位の残基はあらゆるアミノ酸である
ことができる。
SEQ ID NO:83は、SEQ ID NO:1と比較して269、272、2
85、287、460、462、および700位において変異を有する変異体TcdAに
関するアミノ酸配列を示し、ここで1位のメチオニンは存在しない。
SEQ ID NO:84は、SEQ ID NO:1と比較して285、287、お
よび700位において変異を有する変異体C.ディフィシル毒素Aに関するアミノ酸配列
を示し、ここで1位のメチオニンは存在しない。
SEQ ID NO:85は、SEQ ID NO:2と比較して270、273、2
86、288、461、463、および698位において変異を有する変異体C.ディフ
ィシル毒素Bに関するアミノ酸配列を示し、ここで1位のメチオニンは存在しない。
SEQ ID NO:86は、SEQ ID NO:2と比較して286、288、お
よび698位において変異を有する変異体C.ディフィシル毒素Bに関するアミノ酸配列
を示し、ここで1位のメチオニンは存在しない。
SEQ ID NO:87は野生型C.ディフィシル2004013 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:88は野生型C.ディフィシル2004111 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:89は野生型C.ディフィシル2004118 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:90は野生型C.ディフィシル2004205 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:91は野生型C.ディフィシル2004206 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:92は野生型C.ディフィシル2005022 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:93は野生型C.ディフィシル2005088 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:94は野生型C.ディフィシル2005283 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:95は野生型C.ディフィシル2005325 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:96は野生型C.ディフィシル2005359 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:97は野生型C.ディフィシル2006017 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:98は野生型C.ディフィシル2007070 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:99は野生型C.ディフィシル2007217 TcdAに関す
るアミノ酸配列を示す。
SEQ ID NO:100は野生型C.ディフィシル2007302 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:101は野生型C.ディフィシル2007816 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:102は野生型C.ディフィシル2007838 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:103は野生型C.ディフィシル2007858 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:104は野生型C.ディフィシル2007886 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:105は野生型C.ディフィシル2008222 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:106は野生型C.ディフィシル2009078 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:107は野生型C.ディフィシル2009087 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:108は野生型C.ディフィシル2009141 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:109は野生型C.ディフィシル2009292 TcdAに関
するアミノ酸配列を示す。
SEQ ID NO:110は野生型C.ディフィシル2004013 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:111は野生型C.ディフィシル2004111 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:112は野生型C.ディフィシル2004118 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:113は野生型C.ディフィシル2004205 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:114は野生型C.ディフィシル2004206 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:115は野生型C.ディフィシル2005022 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:116は野生型C.ディフィシル2005088 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:117は野生型C.ディフィシル2005283 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:118は野生型C.ディフィシル2005325 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:119は野生型C.ディフィシル2005359 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:120は野生型C.ディフィシル2006017 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:121は野生型C.ディフィシル2006376 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:122は野生型C.ディフィシル2007070 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:123は野生型C.ディフィシル2007217 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:124は野生型C.ディフィシル2007302 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:125は野生型C.ディフィシル2007816 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:126は野生型C.ディフィシル2007838 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:127は野生型C.ディフィシル2007858 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:128は野生型C.ディフィシル2007886 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:129は野生型C.ディフィシル2008222 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:130は野生型C.ディフィシル2009078 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:131は野生型C.ディフィシル2009087 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:132は野生型C.ディフィシル2009141 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:133は野生型C.ディフィシル2009292 TcdBに関
するアミノ酸配列を示す。
SEQ ID NO:134は野生型C.ディフィシル014 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:135は野生型C.ディフィシル015 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:136は野生型C.ディフィシル020 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:137は野生型C.ディフィシル023 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:138は野生型C.ディフィシル027 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:139は野生型C.ディフィシル029 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:140は野生型C.ディフィシル046 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:141は野生型C.ディフィシル014 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:142は野生型C.ディフィシル015 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:143は野生型C.ディフィシル020 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:144は野生型C.ディフィシル023 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:145は野生型C.ディフィシル027 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:146は野生型C.ディフィシル029 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:147は野生型C.ディフィシル046 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:148は野生型C.ディフィシル001 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:149は野生型C.ディフィシル002 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:150は野生型C.ディフィシル003 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:151は野生型C.ディフィシル004 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:152は野生型C.ディフィシル070 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:153は野生型C.ディフィシル075 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:154は野生型C.ディフィシル077 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:155は野生型C.ディフィシル081 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:156は野生型C.ディフィシル117 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:157は野生型C.ディフィシル131 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:158は野生型C.ディフィシル001 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:159は野生型C.ディフィシル002 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:160は野生型C.ディフィシル003 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:161は野生型C.ディフィシル004 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:162は野生型C.ディフィシル070 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:163は野生型C.ディフィシル075 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:164は野生型C.ディフィシル077 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:165は野生型C.ディフィシル081 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:166は野生型C.ディフィシル117 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:167は野生型C.ディフィシル131 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:168は野生型C.ディフィシル053 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:169は野生型C.ディフィシル078 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:170は野生型C.ディフィシル087 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:171は野生型C.ディフィシル095 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:172は野生型C.ディフィシル126 TcdAに関するアミ
ノ酸配列を示す。
SEQ ID NO:173は野生型C.ディフィシル053 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:174は野生型C.ディフィシル078 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:175は野生型C.ディフィシル087 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:176は野生型C.ディフィシル095 TcdBに関するアミ
ノ酸配列を示す。
SEQ ID NO:177は野生型C.ディフィシル126 TcdBに関するアミ
ノ酸配列を示す。
本発明者らは、驚くべきことに、数ある中でも、変異体C.ディフィシル毒素Aおよび
毒素Bならびにその方法を発見した。その変異体は、部分的に、免疫原性であり、且つそ
れぞれの毒素の野生型の形態と比較して低減した細胞毒性を示すことを特徴とする。本発
明は、その免疫原性部分、その生物学的均等物、および前記のもののいずれかをコードす
る核酸配列が含まれる単離されたポリヌクレオチドにも関する。
本明細書で記述される免疫原性組成物は意外にもC.ディフィシル毒素に対する新規の
中和抗体を誘発する能力を示し、それらはC.ディフィシルの攻撃に対する能動的および
/または受動的防御を与える能力を有する可能性がある。その新規の抗体は、毒素Aおよ
び毒素Bの様々なエピトープに対して向けられている。本発明者らはさらに、その中和モ
ノクローナル抗体の少なくとも2種類の組み合わせは毒素Aおよび毒素Bのそれぞれのイ
ンビトロでの中和において意外にも相乗作用を示し得ることを発見した。
本明細書で記述される本発明の組成物は、哺乳類において、その組成物を投与されなか
った哺乳類と比較して、C.ディフィシル感染症、C.ディフィシル関連疾患(CDAD
)、症候群、病気、症状、および/またはそれらの合併症を処置する、予防する、それら
の危険性を低下させる、それらの発生率を低下させる、それらの重症度を低下させる、お
よび/またはそれらの発症を遅らせるために用いることができる。
さらに、本発明者らは、その変異体C.ディフィシル毒素Aおよび毒素Bを安定して発
現することができる組み換え無芽胞性C.ディフィシル細胞ならびにその同じものを生成
するための新規の方法を発見した。
免疫原性組成物
1側面において、本発明は変異体C.ディフィシル毒素が含まれる免疫原性組成物に関
する。その変異体C.ディフィシル毒素には、対応する野生型C.ディフィシル毒素と比
較してグルコシルトランスフェラーゼドメインにおいて少なくとも1個の変異およびシス
テインプロテアーゼドメインにおいて少なくとも1個の変異を有するアミノ酸配列が含ま
れる。
用語“野生型”は、本明細書で用いられる際、天然にある形態を指す。例えば、野生型
のポリペプチドまたはポリヌクレオチド配列は、天然の源から単離することができ、人の
操作により意図的に改変されていない、生物中に存在する配列である。本発明は、前記の
もののいずれかをコードする核酸配列が含まれる単離されたポリヌクレオチドにも関する
。加えて、本発明は、哺乳類において、その組成物を投与されなかった哺乳類と比較して
、C.ディフィシル感染症、C.ディフィシル関連疾患、症候群、病気、症状、および/
またはそれらの合併症を処置する、予防する、それらの危険性を低下させる、それらの重
症度を低下させる、それらの発生率を低下させる、および/またはそれらの発症を遅らせ
るための前記の組成物のいずれかの使用、ならびに前記の組成物を調製するための方法に
関する。
本明細書で用いられる際、“免疫原性組成物”または“免疫原”は、その組成物が投与
された哺乳類において免疫応答を誘発する組成物を指す。
“免疫応答”は、受容患者におけるC.ディフィシル毒素に対して向けられた有益な体
液性(抗体に媒介される)および/または細胞性(抗原特異的T細胞またはそれらの分泌
産物により媒介される)応答の発現を指す。免疫応答は、体液性、細胞性、または両方で
あってよい。
その免疫応答は、免疫原性組成物、免疫原の投与により誘導される能動的な応答である
ことができる。あるいは、その免疫応答は抗体または抗原刺激された(primed)T
細胞の投与により誘導される受動的な応答であることができる。
体液性(抗体に媒介される)免疫応答の存在は、例えば当該技術で既知の細胞に基づく
アッセイ、例えば中和抗体アッセイ、ELISA等により決定することができる。
細胞性免疫応答は、典型的にはクラスIまたはクラスII MHC分子と会合したポリ
ペプチドエピトープを提示して抗原特異的CD4+Tヘルパー細胞および/またはCD8
+細胞傷害性T細胞を活性化することにより誘発される。その応答には、単球、マクロフ
ァージ、NK細胞、好塩基球、樹状細胞、星状細胞、小神経膠細胞、好酸球または先天免
疫の他の構成要素も含まれ得る。細胞に媒介される免疫学的応答の存在は、当該技術で既
知の増殖アッセイ(CD4+T細胞)またはCTL(細胞傷害性Tリンパ球)アッセイに
より決定することができる。
1態様において、免疫原性組成物はワクチン組成物である。本明細書で用いられる際、
“ワクチン組成物”は、その組成物が投与された哺乳類において免疫応答を誘発する組成
物である。そのワクチン組成物は、免疫された哺乳類をその後の免疫因子または免疫学的
に交差反応性の因子による負荷に対して保護することができる。保護は、同じ条件下でワ
クチン接種していない哺乳類と比較した場合に症状または感染における低減に関して完全
または部分的であり得る。
本明細書で記述される免疫原性組成物は交差反応性であり、それはその組成物が由来す
る株と異なる別のC.ディフィシル株により産生される毒素に対して有効な免疫応答(例
えば体液性免疫応答)を誘発することができる特徴を有することを意味する。例えば、本
明細書で記述される(例えばC.ディフィシル630に由来する)免疫原性組成物は、C
.ディフィシルの多数の株により産生される毒素(例えばC.ディフィシルR20291
およびVPI10463により産生される毒素)に結合することができる交差反応性抗体
を誘発することができる。例えば実施例37を参照。交差反応性は細菌性免疫原の交差防
御能力を示しており、逆もまた同様である。
用語“交差防御”は、本明細書で用いられる際、免疫原性組成物により誘導される免疫
応答の、同じ属の異なる細菌株または種による感染を予防する、または弱める能力を指す
。例えば、本明細書で記述される(例えばC.ディフィシル630に由来する)免疫原性
組成物は、哺乳類において630以外の株(例えばC.ディフィシルR20291)によ
り引き起こされるC.ディフィシル感染症を弱めるように、および/またはC.ディフィ
シル疾患を弱めるように、哺乳類において有効な免疫応答を誘導することができる。
その免疫原性組成物または免疫原が免疫応答を誘発する典型的な哺乳類には、あらゆる
哺乳類、例えばマウス、ハムスター、霊長類、およびヒトのような哺乳類が含まれる。好
ましい態様において、その免疫原性組成物または免疫原は、その組成物が投与されたヒト
において免疫応答を誘発する。
上記で記述したように、毒素A(TcdA)および毒素B(TcdB)はRho/Ra
c/Rasファミリーの低分子量GTPアーゼを不活性化する相同性のグルコシルトラン
スフェラーゼである。TcdAおよびTcdBの哺乳類標的細胞への作用は、GTPアー
ゼの受容体に媒介されるエンドサイトーシス、膜移行、自己タンパク質分解性プロセシン
グ、およびモノグルコシル化の多段階機構に依存する。これらの機能活性の多くはその毒
素の一次配列内の別個の領域に帰せられており、その毒素は画像化されて(imaged
)これらの分子が構造において類似していることが示されている。
TcdAに関する野生型遺伝子は、約308kDaの推定分子量を有し、約2710ア
ミノ酸を有するタンパク質をコードする約8130ヌクレオチドを有する。本明細書で用
いられる際、野生型C.ディフィシルTcdAにはあらゆる野生型C.ディフィシル株か
らのC.ディフィシルTcdAが含まれる。野生型C.ディフィシルTcdAには、例え
ばGAPまたはBESTFITプログラムにより初期設定のギャップウェイト(gap
weights)を用いて最適に整列させた際にSEQ ID NO:1(完全長)に対
して少なくとも約90%、91%、92%、93%、94%、95%、96%、97%、
好ましくは約98%、より好ましくは約99%、または最も好ましくは約100%の同一
性を有する野生型C.ディフィシルTcdAのアミノ酸配列が含まれてよい。
好ましい態様において、野生型C.ディフィシルTcdAにはSEQ ID NO:1
で示されるアミノ酸配列が含まれ、それはC.ディフィシル株630からのTcdAに関
する野生型アミノ酸配列を記述している(GenBankアクセス番号YP_00108
7137.1および/またはCAJ67494.1においても開示されている)。C.デ
ィフィシル株630は当該技術においてPCR−リボタイプ012株であるものとして知
られている。SEQ ID NO:9はC.ディフィシル株630からのTcdAに関す
る野生型遺伝子を記述しており、それはGenBankアクセス番号NC_009089
.1においても開示されている。
野生型C.ディフィシルTcdAの別の例には、SEQ ID NO:15で示される
アミノ酸配列が含まれ、それはC.ディフィシル株R20291からのTcdAに関する
野生型アミノ酸配列を記述している(GenBankアクセス番号YP_0032170
88.1においても開示されている)。C.ディフィシル株R20291は当該技術にお
いて高病毒性株およびPCR−リボタイプ027株であるものとして知られている。C.
ディフィシル株R20291からのTcdAに関するアミノ酸配列は、SEQ ID N
O:1に対して約98%の同一性を有する。SEQ ID NO:16はC.ディフィシ
ル株R20291からのTcdAに関する野生型遺伝子を記述しており、それはGenB
ankアクセス番号NC_013316.1においても開示されている。
野生型C.ディフィシルTcdAの追加の例には、SEQ ID NO:17で示され
るアミノ酸配列が含まれ、それはC.ディフィシル株CD196からのTcdAに関する
野生型アミノ酸配列を記述している(GenBankアクセス番号CBA61156.1
においても開示されている)。CD196は最近のカナダでの大流行からの株であり、そ
れは当該技術においてPCR−リボタイプ027株として知られている。C.ディフィシ
ル株CD196からのTcdAに関するアミノ酸配列は、SEQ ID NO:1に対し
て約98%の同一性を有し、C.ディフィシル株R20291からのTcdAに対して約
100%の同一性を有する。SEQ ID NO:18はC.ディフィシル株CD196
からのTcdAに関する野生型遺伝子を記述しており、それはGenBankアクセス番
号FN538970.1においても開示されている。
野生型C.ディフィシルTcdAに関するアミノ酸配列のさらなる例にはSEQ ID
NO:19が含まれ、それはC.ディフィシル株VPI10463からのTcdAに関
する野生型アミノ酸配列を記述している(GenBankアクセス番号CAA63564
.1においても開示されている)。C.ディフィシル株VPI10463からのTcdA
に関するアミノ酸配列は、SEQ ID NO:1に対して約100%(99.8%)の
同一性を有する。SEQ ID NO:20はC.ディフィシル株VPI10463から
のTcdAに関する野生型遺伝子を記述しており、それはGenBankアクセス番号X
92982.1においても開示されている。
野生型C.ディフィシルTcdAの追加の例には、疾病管理予防センター(CDC、ジ
ョージア州アトランタ)から得ることができる野生型C.ディフィシル株からのTcdA
が含まれる。本発明者らは、CDCから得ることが出来る野生型C.ディフィシル株から
のTcdAのアミノ酸配列には、最適に整列させた際に、SEQ ID NO:1(C.
ディフィシル630からのTcdA)のアミノ酸残基1〜821に対して少なくとも約9
9.3〜100%の同一性が含まれることを発見した。表1参照。
本発明者らは、野生型C.ディフィシル株からのTcdAのアミノ酸配列には、最適に
整列させた際に(例えば完全長配列を最適に整列させた際に)、SEQ ID NO:1
に対して少なくとも約90%、91%、92%、93%、94%、95%、96%、97
%、98%、99%、約100%までの同一性が含まれ得ることも発見した。
表1:CDCから得られた野生型C.ディフィシル株および最適に整列させた際のそれ
ぞれの野生型C.ディフィシル株からのTcdAのアミノ酸残基1〜821のSEQ I
D NO:1のアミノ酸残基1〜821に対するパーセント同一性。
Figure 2017125030
従って、1態様において、その野生型C.ディフィシルTcdAのアミノ酸配列には、
例えばGAPまたはBESTFITプログラムにより初期設定のギャップウェイトを用い
て最適に整列させた際にSEQ ID NO:1の残基1〜900の間の等しい長さの配
列に対して少なくとも約90%、91%、92%、93%、94%、95%、96%、9
7%、好ましくは約98%、より好ましくは約99%、または最も好ましくは約100%
の同一性を有する、少なくとも約500、600、700、または800個の連続した残
基の配列が含まれる。例には、上記で記述された株(例えばR20291、CD196等
)および表1において列挙された株が含まれる。
別の態様において、その野生型C.ディフィシルTcdAのアミノ酸配列には、最適に
整列させた際にSEQ ID NO:87〜109から選択されるいずれかの配列に対し
て少なくとも約90%、91%、92%、93%、94%、95%、96%、好ましくは
約97%、好ましくは約98%、より好ましくは約99%、または最も好ましくは約10
0%の同一性を有する配列が含まれる。表1−a参照。
Figure 2017125030
Figure 2017125030
TcdBに関する野生型遺伝子は、約270kDaの推定分子量を有し、約2366ア
ミノ酸を有するタンパク質をコードする約7098ヌクレオチドを有する。本明細書で用
いられる際、野生型C.ディフィシルTcdBにはあらゆる野生型C.ディフィシル株か
らのC.ディフィシルTcdBが含まれる。野生型C.ディフィシルTcdBには、例え
ばGAPまたはBESTFITプログラムにより初期設定のギャップウェイトを用いて最
適に整列させた際にSEQ ID NO:2に対して少なくとも約90%、91%、92
%、93%、94%、95%、96%、97%、好ましくは約98%、より好ましくは約
99%、または最も好ましくは約100%の同一性を有する野生型のアミノ酸配列が含ま
れてよい。好ましい態様において、野生型C.ディフィシルTcdBにはSEQ ID
NO:2で示されるアミノ酸配列が含まれ、それはC.ディフィシル株630からのTc
dBに関する野生型アミノ酸配列を記述している(GenBankアクセス番号YP_0
01087135.1および/またはCAJ67492においても開示されている)。S
EQ ID NO:10はC.ディフィシル株630からのTcdBに関する野生型遺伝
子を記述しており、それはGenBankアクセス番号NC_009089.1において
も開示されている。
野生型C.ディフィシルTcdBの別の例には、SEQ ID NO:21で示される
アミノ酸配列が含まれ、それはC.ディフィシル株R20291からのTcdBに関する
野生型アミノ酸配列を記述している(GenBankアクセス番号YP_0032170
86.1および/またはCBE02479.1においても開示されている)。C.ディフ
ィシル株R20291からのTcdBに関するアミノ酸配列は、SEQ ID NO:2
に対して約92%の同一性を有する。SEQ ID NO:22はC.ディフィシル株R
20291からのTcdBに関する野生型遺伝子を記述しており、それはGenBank
アクセス番号NC_013316.1においても開示されている。
野生型C.ディフィシルTcdBの追加の例には、SEQ ID NO:23で示され
るアミノ酸配列が含まれ、それはC.ディフィシル株CD196からのTcdBに関する
野生型アミノ酸配列を記述している(GenBankアクセス番号YP_0032136
39.1および/またはCBA61153.1においても開示されている)。SEQ I
D NO:24はC.ディフィシル株CD196からのTcdBに関する野生型遺伝子を
記述しており、それはGenBankアクセス番号NC_013315.1においても開
示されている。C.ディフィシル株CD196からのTcdBに関するアミノ酸配列は、
SEQ ID NO:2に対して約92%の同一性を有する。
野生型C.ディフィシルTcdBに関するアミノ酸配列のさらなる例にはSEQ ID
NO:25が含まれ、それはC.ディフィシル株VPI10463からのTcdBに関
する野生型アミノ酸配列を記述している(GenBankアクセス番号P18177およ
び/またはCAA37298においても開示されている)。C.ディフィシル株VPI1
0463からのTcdBに関するアミノ酸配列は、SEQ ID NO:2に対して10
0%の同一性を有する。SEQ ID NO:26はC.ディフィシル株VPI1046
3からのTcdBに関する野生型遺伝子を記述しており、それはGenBankアクセス
番号X53138.1においても開示されている。
野生型C.ディフィシルTcdBの追加の例には、疾病管理予防センター(CDC、ジ
ョージア州アトランタ)から得ることができる野生型C.ディフィシル株からのTcdB
が含まれる。本発明者らは、CDCから得ることが出来る野生型C.ディフィシル株から
のTcdBのアミノ酸配列には、最適に整列させた際に、SEQ ID NO:2(C.
ディフィシル630からのTcdB)のアミノ酸残基1〜821に対して少なくとも約9
6〜100%の同一性が含まれることを発見した。表2参照。
表2:CDCから得られた野生型C.ディフィシル株および最適に整列させた際のそれ
ぞれの野生型C.ディフィシル株からのTcdBのアミノ酸残基1〜821のSEQ I
D NO:2のアミノ酸残基1〜821に対するパーセント同一性。
Figure 2017125030
従って、1態様において、野生型C.ディフィシルTcdBのアミノ酸配列には、例え
ばGAPまたはBESTFITプログラムにより初期設定のギャップウェイトを用いて最
適に整列させた際にSEQ ID NO:2の残基1〜900の間の等しい長さの配列に
対して少なくとも約90%、91%、92%、93%、94%、95%、96%、好まし
くは約97%、好ましくは約98%、より好ましくは約99%、または最も好ましくは約
100%の同一性を有する、少なくとも約500、600、700、または800個の連
続した残基の配列が含まれる。例には、上記で記述された株(例えばR20291、CD
196等)および表2において列挙された株が含まれる。
別の態様において、その野生型C.ディフィシルTcdBのアミノ酸配列には、最適に
整列させた際にSEQ ID NO:110〜133から選択されるいずれかの配列に対
して少なくとも約90%、91%、92%、93%、94%、95%、96%、好ましく
は約97%、好ましくは約98%、より好ましくは約99%、または最も好ましくは約1
00%の同一性を有する配列が含まれる。表2−a参照。
Figure 2017125030
Figure 2017125030
毒素AおよびBに関する遺伝子(tcdAおよびtcdB)は3個の追加の小さいオー
プンリーディングフレーム(ORF)であるtcdD、tcdE、およびtcdCが含ま
る19.6kbの遺伝子座(病原性遺伝子座、PaLoc)の一部であり、病毒性の役に
立っていると考えることができる。PaLocは毒素産生株において安定且つ保存されて
いることが知られている。それは現在までに分析されている全ての毒素産生株において同
じ染色体組込み部位に存在する。非毒素産生株ではその病原性遺伝子座(PaLoc)は
存在しない。従って、本明細書で記述される野生型C.ディフィシル株の1つの特徴は、
病原性遺伝子座の存在である。本明細書で記述される野生型C.ディフィシル株の別の好
ましい特徴は、TcdAおよびTcdB両方の産生である。
1態様において、その野生型C.ディフィシル株は、C.ディフィシル630またはV
PI10463の病原性遺伝子座に少なくとも約90%、91%、92%、93%、94
%、95%、96%、97%、好ましくは約98%、より好ましくは約99%、または最
も好ましくは約100%同一である病原性遺伝子座を有する株である。C.ディフィシル
VPI10463の全病原性遺伝子座配列は、EMBLデータベースにおいて配列アクセ
ス番号X92982で登録されており、SEQ ID NO:26においても示されてい
る。PaLocが参照株VPI10463のPaLocと同一である株は、毒素タイプ(
toxinotype)0と呼ばれる。毒素タイプI〜VII、IX、XII〜XV、お
よびXVIII〜XXIVの株は、それらの毒素遺伝子における変動にも関わらず、Tc
dAおよびTcdB両方を産生する。
その毒素のN末端に、グルコシルトランスフェラーゼドメインが位置する。その毒素の
グルコシルトランスフェラーゼ活性はその毒素の細胞毒性機能と関係している。機序また
は理論により束縛されるわけではないが、両方の毒素におけるグルコシルトランスフェラ
ーゼ活性は、Rho/Rac/Rasスーパーファミリーの低分子量GTP結合タンパク
質のモノグルコシル化を触媒すると信じられている。これらのGTP結合タンパク質のグ
ルコシル化後、細胞生理は劇的に修正され、結果としてその毒素に感染した宿主細胞の構
造的完全性の喪失および必須のシグナル伝達経路の崩壊がもたらされる。マンガン、ウリ
ジン二リン酸(UDP)、およびグルコース結合に関わるAsp−Xaa−Asp(DX
D)モチーフは、そのグルコシルトランスフェラーゼドメインの典型的な特徴である。機
序または理論により束縛されるわけではないが、触媒活性に重要な残基、例えばDXDモ
チーフは、既知の“歴史上の”株、例えば630からのTcdBおよび高病毒性株、例え
ばR20291からのTcdBの間で異なっていないと信じられる。そのDXDモチーフ
は、SEQ ID NO:1の番号付けに従う野生型C.ディフィシルTcdAの残基2
85〜287に、およびSEQ ID NO:2の番号付けに従う野生型C.ディフィシ
ルTcdBの残基286〜288に位置している。
グローバルアラインメントアルゴリズム(例えば配列分析プログラム)は当該技術にお
いて既知であり、2個以上のアミノ酸毒素配列を最適に整列させてその毒素に特定のシグ
ナチャーモチーフ(signature motif)(例えばグルコシルトランスフェ
ラーゼドメイン中のDXD、下記で記述されるシステインプロテアーゼドメイン中のDH
C等)が含まれるかどうかを決定するために用いることができる。最適に整列させた配列
(単数または複数)を、それぞれの参照配列(例えばTcdAに関するSEQ ID N
O:1またはTcdBに関するSEQ ID NO:2)に対して比較して、そのシグナ
チャーモチーフの存在を決定する。“最適なアラインメント”は、最も高いパーセント同
一性の点数を与えるアラインメントを指す。そのようなアラインメントは、既知の配列分
析プログラムを用いて実施することができる。1態様において、初期設定のパラメーター
の下でのCLUSTALアラインメント(例えばCLUSTALW)がクエリ配列を参照
配列に対して比較することにより適切な野生型毒素を同定するために用いられる。保存さ
れたアミノ酸残基の相対的番号付けは、その整列させた配列内の小さい挿入または欠失(
例えば5個アミノ酸以下)を説明するため、その参照アミノ酸配列の残基の番号付けに基
づく。
本明細書で用いられる際、用語“の番号付けに従い”は、所与のアミノ酸またはポリヌ
クレオチド配列を参照配列と比較する際の参照配列の残基の番号付けを指す。言い換えれ
ば、所与のポリマーの数または残基の位置は、所与のアミノ酸またはポリヌクレオチド配
列内のその残基の実際の数値的位置によるのではなく、その参照配列に関して示される。
例えば、所与のアミノ酸配列、例えば高病毒性野生型C.ディフィシル株のアミノ酸配
列を、2つの配列の間の残基の一致を最適化するために必要に応じてギャップを導入する
ことにより参照配列(例えば歴史上の野生型C.ディフィシル株、例えば630の配列)
に対して整列させることができる。これらの場合では、そのギャップが存在するが、所与
のアミノ酸またはポリヌクレオチド配列中の残基の番号付けはそれを整列させた参照配列
に関してなされる。本明細書で用いられる際、“参照配列”は、配列比較に関する基準と
して用いられる定められた配列を指す。
別途記載しない限り、本明細書におけるTcdAのアミノ酸位置に対する全ての言及は
、SEQ ID NO:1の番号付けを指す。別途記載しない限り、本明細書におけるT
cdBのアミノ酸位置に対する全ての言及は、SEQ ID NO:2の番号付けを指す
TcdAのグルコシルトランスフェラーゼドメインは、本明細書で用いられる際、野生
型C.ディフィシルTcdA、例えばSEQ ID NO:1の典型的な残基1、101
、または102で開始してよく、典型的な残基542、516、または293で終了して
よい。DXDモチーフ領域が含まれる限り、TcdAの残基1〜542のあらゆる最小の
残基の位置を最大の残基の位置と組み合わせてグルコシルトランスフェラーゼドメインに
関する配列を定めることができる。例えば、1態様において、TcdAのグルコシルトラ
ンスフェラーゼドメインにはSEQ ID NO:27が含まれ、それはSEQ ID
NO:1の残基101〜293と同一であり、それにはDXDモチーフ領域が含まれる。
別の態様において、TcdAのグルコシルトランスフェラーゼドメインにはSEQ ID
NO:28が含まれ、それはSEQ ID NO:1の残基1〜542と同一である。
TcdBのグルコシルトランスフェラーゼドメインは、本明細書で用いられる際、野生
型C.ディフィシルTcdB、例えばSEQ ID NO:2の典型的な残基1、101
、または102で開始してよく、典型的な残基543、516、または293で終了して
よい。DXDモチーフ領域が含まれる限り、TcdBの残基1〜543のあらゆる最小の
残基の位置を最大の残基の位置と組み合わせてグルコシルトランスフェラーゼドメインに
関する配列を定めることができる。例えば、1態様において、TcdBのグルコシルトラ
ンスフェラーゼドメインにはSEQ ID NO:29が含まれ、それはSEQ ID
NO:2の残基101〜293と同一であり、それにはDXDモチーフ領域が含まれる。
別の態様において、TcdBのグルコシルトランスフェラーゼドメインにはSEQ ID
NO:30が含まれ、それはSEQ ID NO:2の残基1〜543と同一である。
理論または機序により束縛されるわけではないが、TcdAおよび/またはTcdBの
N末端がそのグルコシルトランスフェラーゼドメインに関する自己タンパク質分解性プロ
セスにより切断されて移行し、宿主細胞の細胞質ゾル中に放出され、そこでそれはRac
/Ras/Rho GTPアーゼと相互作用することができると信じられている。野生型
C.ディフィシルTcdAはL542およびS543の間で切断されることが示されてい
る。野生型C.ディフィシルTcdBはL543およびG544の間で切断されることが
示されている。
システインプロテアーゼドメインはその毒素の自己触媒的タンパク質分解活性と関係し
ている。システインプロテアーゼドメインはグルコシルトランスフェラーゼドメインの下
流に位置しており、触媒三つ組(catalytic triad)アスパラギン酸、ヒ
スチジン、およびシステイン(DHC)、例えば野生型TcdAのD589、H655、
およびC700、ならびに野生型TcdBのD587、H653、およびC698を特徴
とし得る。機序または理論により束縛されるわけではないが、その触媒三つ組は“歴史上
の”株、例えば630からの毒素および高病毒性株、例えばR20291からのTcdB
の間で保存されていると信じられている。
TcdAのシステインプロテアーゼドメインは、本明細書で用いられる際、野生型Tc
dA、例えばSEQ ID NO:1の典型的な残基543で開始してよく、典型的な残
基809、769、768、または767で終了してよい。触媒三つ組DHCモチーフ領
域が含まれる限り、野生型TcdAの543〜809のあらゆる最小の残基の位置を最大
の残基の位置と組み合わせてシステインプロテアーゼドメインに関する配列を定めること
ができる。例えば、1態様において、TcdAのシステインプロテアーゼドメインにはS
EQ ID NO:32が含まれ、それはSEQ ID NO:32の残基47、113
、および158に位置するDHCモチーフ領域を有し、それはそれぞれSEQ ID N
O:1の番号付けに従う野生型TcdAのD589、H655、およびC700に対応す
る。SEQ ID NO:32はSEQ ID NO:1、TcdAの残基543〜80
9と同一である。
TcdBのシステインプロテアーゼドメインは、本明細書で用いられる際、野生型Tc
dB、例えばSEQ ID NO:2の典型的な残基544で開始してよく、典型的な残
基801、767、755、または700で終了してよい。触媒三つ組DHCモチーフ領
域が含まれる限り、野生型TcdBの544〜801のあらゆる最小の残基の位置を最大
の残基の位置と組み合わせてシステインプロテアーゼドメインに関する配列を定めること
ができる。例えば、1態様において、TcdBのシステインプロテアーゼドメインにはS
EQ ID NO:33が含まれ、それにはSEQ ID NO:33の残基44、11
0、および115に位置するDHCモチーフ領域が含まれ、それはそれぞれSEQ ID
NO:2の番号付けに従う野生型TcdBのD587、H653、およびC698に対
応する。SEQ ID NO:33はSEQ ID NO:2、TcdBの残基544〜
767と同一である。別の態様において、TcdBのシステインプロテアーゼドメインに
はSEQ ID NO:2、TcdBの残基544〜801が含まれる。
本発明において、その免疫原性組成物には変異体C.ディフィシル毒素が含まれる。用
語“変異体”は、本明細書で用いられる際、対応する野生型の構造または配列と、その対
応する野生型の構造と比較して架橋を有することにより、および/または例えばGAPま
たはBESTFITプログラムにより初期設定のギャップウェイトを用いて最適に整列さ
せた際に対応する野生型の配列と比較して少なくとも1個の変異を有することにより異な
る構造または配列を示す分子を指す。用語“変異体”には、本明細書で用いられる際、さ
らに対応する野生型分子と異なる機能的特性(例えば抑止されたグルコシルトランスフェ
ラーゼおよび/または抑止されたシステインプロテアーゼ活性)を示す分子が含まれる。
上記で記述された野生型株のいずれかからのC.ディフィシル毒素を、それから変異体
C.ディフィシル毒素を生成する源として用いることができる。好ましくは、C.ディフ
ィシル630がそれから変異体C.ディフィシル毒素を生成する源である。
その変異は、通常はその位置に位置する野生型アミノ酸残基の置換、欠失、切り詰め(
truncation)または修飾を含んでよい。好ましくは、その変異は非保存的アミ
ノ酸置換である。本発明は、本明細書で記述される変異体毒素のいずれかをコードする核
酸配列を含む単離されたポリヌクレオチドも意図している。
“非保存的”アミノ酸置換は、本明細書で用いられる際、次の表3に従うあるクラスか
らのアミノ酸の別のクラスからのアミノ酸との交換を指す:
Figure 2017125030
非保存的アミノ酸置換の例には、アスパラギン酸残基(Asp、D)がアラニン残基(
Ala、A)により置き換えられる置換が含まれる。他の例には、アスパラギン酸残基(
Asp、D)のアスパラギン残基(Asn、N)による置き換え;アルギニン(Arg、
R)、グルタミン酸(Glu、E)、リシン(Lys、K)、および/またはヒスチジン
(His、H)残基のアラニン残基(Ala、A)による置き換えが含まれる。
保存的置換は、例えば表3に従う同じクラスからのアミノ酸の間での交換を指す。
本発明の変異体毒素は、例えば部位特異的変異誘発、変異原(例えば紫外線)を用いる
変異誘発等のような、変異を調製するための当該技術で既知の技法により調製することが
できる。好ましくは、部位特異的変異誘発が用いられる。あるいは、目的配列を有する核
酸分子を直接合成することができる。そのような化学合成法は、当該技術で既知である。
本発明において、その変異体C.ディフィシル毒素には、対応する野生型C.ディフィ
シル毒素と比較してグルコシルトランスフェラーゼドメイン中に少なくとも1個の変異が
含まれる。1態様において、そのグルコシルトランスフェラーゼドメインには少なくとも
2個の変異が含まれる。好ましくは、その変異はその毒素のグルコシルトランスフェラー
ゼ酵素活性を対応する野生型C.ディフィシル毒素のグルコシルトランスフェラーゼ酵素
活性と比較して低下させる、または抑止する。
変異を起こすことができるTcdAのグルコシルトランスフェラーゼドメイン中の典型
的なアミノ酸残基には、野生型C.ディフィシルTcdAと比較して、SEQ ID N
O:1の番号付けに従って、以下の少なくとも1個またはそれらのあらゆる組み合わせが
含まれる:W101、D269、R272、D285、D287、E460、R462、
S541、およびL542。
TcdAのグルコシルトランスフェラーゼドメインにおける典型的な変異には、野生型
C.ディフィシルTcdAと比較して、以下の少なくとも1種類またはそれらのあらゆる
組み合わせが含まれる:W101A、D269A、R272A、D285A、D287A
、E460A、R462A、S541A、およびL542G。好ましい態様において、T
cdAのグルコシルトランスフェラーゼドメインには、野生型C.ディフィシルTcdA
と比較して、L542G変異が含まれる。別の好ましい態様において、TcdAのグルコ
シルトランスフェラーゼドメインには、野生型C.ディフィシルTcdAと比較して、D
285AおよびD287A変異が含まれる。
変異を起こすことができるTcdBのグルコシルトランスフェラーゼドメイン中の典型
的なアミノ酸残基には、野生型C.ディフィシル毒素Bと比較して、SEQ ID NO
:2の番号付けに従って、以下の少なくとも1個またはそれらのあらゆる組み合わせが含
まれる:W102、D270、R273、D286、D288、N384、D461、K
463、W520、およびL543。
TcdBのグルコシルトランスフェラーゼドメインにおける典型的な変異には、野生型
C.ディフィシルTcdBと比較して、以下の少なくとも1種類またはそれらのあらゆる
組み合わせが含まれる:W102A、D270A、D270N、R273A、D286A
、D288A、N384A、D461A、D461R、K463A、K463E、W52
0A、およびL543A。好ましい態様において、TcdBのグルコシルトランスフェラ
ーゼドメインには、野生型C.ディフィシルTcdBと比較して、L543Aが含まれる
。別の好ましい態様において、TcdBのグルコシルトランスフェラーゼドメインには、
野生型C.ディフィシルTcdBと比較して、D286AおよびD288A変異が含まれ
る。
本明細書において上記で記述された変異のいずれも、システインプロテアーゼドメイン
における変異と組み合わせることができる。本発明において、その変異体C.ディフィシ
ル毒素には、対応する野生型C.ディフィシル毒素と比較してシステインプロテアーゼド
メイン中に少なくとも1個の変異が含まれる。好ましくは、その変異はその毒素のシステ
インプロテアーゼ活性を対応する野生型C.ディフィシル毒素のシステインプロテアーゼ
活性と比較して低下させる、または抑止する。
変異を起こすことができるTcdAのシステインプロテアーゼドメイン中の典型的なア
ミノ酸残基には、野生型C.ディフィシルTcdAと比較して、SEQ ID NO:1
の番号付けに従って、以下の少なくとも1個またはそれらのあらゆる組み合わせが含まれ
る:S543、D589、H655、およびC700。TcdAのグルコシルトランスフ
ェラーゼドメインにおける典型的な変異には、野生型C.ディフィシルTcdAと比較し
て、以下の少なくとも1種類またはそれらのあらゆる組み合わせが含まれる:S543A
、D589A、D589N、H655A、C700A。好ましい態様において、TcdA
のシステインプロテアーゼドメインには、野生型C.ディフィシルTcdAと比較して、
C700A変異が含まれる。
変異を起こすことができるTcdBのシステインプロテアーゼドメイン中の典型的なア
ミノ酸残基には、野生型C.ディフィシルTcdBと比較して、SEQ ID NO:2
の番号付けに従って、以下の少なくとも1個またはそれらのあらゆる組み合わせが含まれ
る:G544、D587、H653、およびC698。TcdBのグルコシルトランスフ
ェラーゼドメインにおける典型的な変異には、野生型C.ディフィシルTcdBと比較し
て、以下の少なくとも1種類またはそれらのあらゆる組み合わせが含まれる:G544A
、D587A、D587N、H653A、C698A。好ましい態様において、TcdB
のシステインプロテアーゼドメインには、野生型C.ディフィシルTcdBと比較して、
C698A変異が含まれる。変異を起こすことができるTcdBのシステインプロテアー
ゼドメイン中の追加のアミノ酸残基には、野生型C.ディフィシルTcdBと比較して、
K600および/またはR751が含まれる。典型的な変異には、K600Eおよび/ま
たはR751Eが含まれる。
従って、本発明の変異体C.ディフィシル毒素には、対応する野生型C.ディフィシル
毒素と比較して変異を有するグルコシルトランスフェラーゼドメインおよび変異を有する
システインプロテアーゼドメインが含まれる。
典型的な変異体C.ディフィシルTcdAには、対応する野生型C.ディフィシル毒素
Aと比較して285位および287位においてアミノ酸置換を有するSEQ ID NO
:29が含まれるグルコシルトランスフェラーゼドメインならびに158位においてアミ
ノ酸置換を有するSEQ ID NO:32を含むシステインプロテアーゼドメインが含
まれる。例えば、そのような変異体C.ディフィシルTcdAにはSEQ ID NO:
4で示されるアミノ酸配列が含まれ、ここで最初のメチオニンは場合により存在しない。
別の態様において、その変異体C.ディフィシル毒素AにはSEQ ID NO:84で
示されるアミノ酸配列が含まれる。
変異体C.ディフィシル毒素Aのさらなる例にはSEQ ID NO:7で示されるア
ミノ酸配列が含まれ、それはSEQ ID NO:1と比較してD269A、R272A
、D285A、D287A、E460A、R462A、およびC700A変異を有し、こ
こで最初のメチオニンは場合により存在しない。別の態様において、その変異体C.ディ
フィシル毒素Aには、SEQ ID NO:83で示されるアミノ酸配列が含まれる。
別の典型的な変異体TcdAにはSEQ ID NO:34が含まれ、ここで101、
269、272、285、287、460、462、541、542、543、589、
655、および700位の残基はあらゆるアミノ酸であってよい。
一部の態様において、その変異体C.ディフィシル毒素は対応する野生型C.ディフィ
シル毒素と比較して低下した、または抑止された自己タンパク質分解性プロセシングを示
す。例えば、変異体C.ディフィシルTcdAには、対応する野生型C.ディフィシルT
cdAと比較して、以下の残基:S541、L542および/またはS543の1個にお
ける変異またはそれらのあらゆる組み合わせが含まれていてよい。好ましくは、その変異
体C.ディフィシルTcdAには、対応する野生型C.ディフィシルTcdAと比較して
、以下の変異:S541A、L542G、およびS543Aの少なくとも1種類またはそ
れらのあらゆる組み合わせが含まれる。
別の典型的な変異体C.ディフィシルTcdAには、対応する野生型C.ディフィシル
TcdAと比較して、S541A、L542、S543およびC700変異が含まれる。
典型的な変異体C.ディフィシルTcdBには、対応する野生型C.ディフィシル毒素
Bと比較して286位および288位においてアミノ酸置換を有するSEQ ID NO
:31を含むグルコシルトランスフェラーゼドメインならびに155位においてアミノ酸
置換を有するSEQ ID NO:33を含むシステインプロテアーゼドメインが含まれ
る。例えば、そのような変異体C.ディフィシルTcdBにはSEQ ID NO:6で
示されるアミノ酸配列が含まれ、ここで最初のメチオニンは場合により存在しない。別の
態様において、その変異体C.ディフィシル毒素AにはSEQ ID NO:86で示さ
れるアミノ酸配列が含まれる。
変異体C.ディフィシル毒素Bのさらなる例にはSEQ ID NO:8で示されるア
ミノ酸配列が含まれ、それはSEQ ID NO:2、SEQ ID NO:8と比較し
てD270A、R273A、D286A、D288A、D461A、K463A、および
C698A変異を有し、ここで最初のメチオニンは場合により存在しない。別の態様にお
いて、その変異体C.ディフィシル毒素Aには、SEQ ID NO:85で示されるア
ミノ酸配列が含まれる。
別の典型的な変異体TcdBにはSEQ ID NO:35が含まれ、ここで101、
269、272、285、287、460、462、541、542、543、589、
655、および700位の残基はあらゆるアミノ酸であってよい。
別の例として、変異体C.ディフィシルTcdBには、対応する野生型C.ディフィシ
ルTcdBと比較して543および/または544位における変異が含まれていてよい。
好ましくは、その変異体C.ディフィシルTcdBには、対応する野生型C.ディフィシ
ルTcdBと比較して、L543および/またはG544変異が含まれる。より好ましく
は、その変異体C.ディフィシルTcdBには、対応する野生型C.ディフィシルTcd
Bと比較して、L543Aおよび/またはG544A変異が含まれる。
別の典型的な変異体C.ディフィシルTcdBには、対応する野生型C.ディフィシル
TcdBと比較してL543G、G544AおよびC698変異が含まれる。
1側面において、本発明は、SEQ ID NO:2の番号付けに従うアミノ酸残基1
〜1500からのいずれかの位置において変異を有し、典型的な変異体C.ディフィシル
毒素Bを定める、単離されたポリペプチドに関する。例えば、1態様において、その単離
されたポリペプチドは、SEQ ID NO:2のアミノ酸残基830〜990に変異を
含む。変異に関する典型的な位置には、SEQ ID NO:2の番号付けに従う970
位および976位が含まれる。好ましくは、その残基830〜990の変異は置換である
。1態様において、その変異は非保存的置換であり、ここでAsp(D)および/または
Glu(E)アミノ酸残基が例えばリシン(K)、アルギニン(R)、およびヒスチジン
(H)のような酸性化の際に中和されないアミノ酸残基により置き換えられている。典型
的な変異にはSEQ ID NO:2のE970K、E970R、E970H、E976
K、E976R、E976Hが含まれ、変異体C.ディフィシル毒素Bが定められる。
別の側面において、本発明は、SEQ ID NO:1の番号付けに従うアミノ酸残基
1〜1500からのいずれかの位置において変異を有し、典型的な変異体C.ディフィシ
ル毒素Aを定める、単離されたポリペプチドに関する。例えば、1態様において、その単
離されたポリペプチドは、SEQ ID NO:1のアミノ酸残基832〜992に変異
を含む。変異に関する典型的な位置には、SEQ ID NO:1の番号付けに従う97
2および978位が含まれる。好ましくは、その残基832〜992の変異は置換である
。1態様において、その変異は非保存的置換であり、ここでAsp(D)および/または
Glu(E)アミノ酸残基が例えばリシン(K)、アルギニン(R)、およびヒスチジン
(H)のような酸性化の際に中和されないアミノ酸残基により置き換えられている。典型
的な変異にはSEQ ID NO:1のD972K、D972R、D972H、D978
K、D978R、D978Hが含まれ、変異体C.ディフィシル毒素Aが定められる。
本発明のポリペプチドには、一部の場合において宿主細胞に媒介されるプロセスの結果
として最初のメチオニン残基が含まれていてよい。例えば組み換え生成手順において用い
られる宿主細胞および/またはその宿主細胞の発酵もしくは増殖条件に依存して、翻訳開
始コドンによりコードされるN末端のメチオニンは細胞中で翻訳後にポリペプチドから除
去され得る、またはそのN末端のメチオニンはその単離されたポリペプチドにおいて存在
するままであり得ることが当該技術において知られている。
従って、1側面において、本発明はSEQ ID NO:4で示されるアミノ酸配列が
含まれる単離されたポリペプチドに関し、ここで(1位における)最初のメチオニンは場
合により存在しない。1態様において、SEQ ID NO:4の最初のメチオニンは存
在しない。1側面において、本発明はSEQ ID NO:84で示されるアミノ酸配列
が含まれる単離されたポリペプチドに関し、それは最初のメチオニンの非存在を除いてS
EQ ID NO:4と同一である。
別の側面において、その単離されたポリペプチドにはSEQ ID NO:6で示され
るアミノ酸配列が含まれ、ここで(1位における)最初のメチオニンは場合により存在し
ない。1態様において、SEQ ID NO:6の最初のメチオニンは存在しない。1側
面において、本発明はSEQ ID NO:86で示されるアミノ酸配列が含まれる単離
されたポリペプチドに関し、それは最初のメチオニンの非存在を除いてSEQ ID N
O:6と同一である。
さらなる側面において、その単離されたポリペプチドにはSEQ ID NO:7で示
されるアミノ酸配列が含まれ、ここで(1位における)最初のメチオニンは場合により存
在しない。1態様において、本発明はSEQ ID NO:83で示されるアミノ酸配列
が含まれる単離されたポリペプチドに関し、それは最初のメチオニンの非存在を除いてS
EQ ID NO:7と同一である。さらに別の側面において、その単離されたポリペプ
チドにはSEQ ID NO:8で示されるアミノ酸配列が含まれ、ここで(1位におけ
る)最初のメチオニンは場合により存在しない。1態様において、その単離されたポリペ
プチドにはSEQ ID NO:85で示されるアミノ酸配列が含まれ、それは最初のメ
チオニンの非存在を除いてSEQ ID NO:8と同一である。
1側面において、本発明はSEQ ID NO:4が含まれる免疫原性組成物に関し、
ここで(1位における)最初のメチオニンは場合により存在しない。別の側面において、
本発明はSEQ ID NO:6が含まれる免疫原性組成物に関し、ここで(1位におけ
る)最初のメチオニンは場合により存在しない。さらなる側面において、本発明はSEQ
ID NO:7が含まれる免疫原性組成物に関し、ここで(1位における)最初のメチ
オニンは場合により存在しない。さらに別の側面において、本発明はSEQ ID NO
:8が含まれる免疫原性組成物に関し、ここで(1位における)最初のメチオニンは場合
により存在しない。
別の側面において、本発明はSEQ ID NO:83が含まれる免疫原性組成物に関
する。1側面において、本発明はSEQ ID NO:84が含まれる免疫原性組成物に
関する。1側面において、本発明はSEQ ID NO:85が含まれる免疫原性組成物
に関する。別の側面において、本発明はSEQ ID NO:86が含まれる免疫原性組
成物に関する。
哺乳類における免疫応答の生成に加えて、本明細書で記述される免疫原性組成物はまた
、対応する野生型C.ディフィシル毒素と比較して低減した細胞毒性を有する。好ましく
は、その免疫原性組成物は安全であり、且つ哺乳類における投与に関してそれぞれの野生
型毒素の細胞毒性と比較して最小限(例えば約6〜8log10の低減)の細胞毒性を有
する〜細胞毒性を有しない。
本明細書で用いられる際、細胞毒性という用語は当該技術において理解されている用語
であり、アポトーシス性の細胞死および/または細胞の1種類以上の通常の生化学的また
は生物学的機能がその細胞毒性薬剤の非存在を除いて同一の条件下の同一の細胞と比較し
て異常に弱められている(compromised)状態を指す。毒性は、例えば細胞に
おいて、または哺乳類において、50%の細胞死を誘導するのに必要な薬剤の量(すなわ
ちそれぞれEC50またはED50)として、または当該技術で既知の他の方法により定
量化することができる。
細胞毒性を示すためのアッセイは当該技術において既知であり、例えば細胞円形化アッ
セイ(cell rounding assays)である(例えばKuehne et al. Natu
re. 2010 Oct 7;467(7316):711-3を参照)。TcdAおよびTcdBの作用は細胞の円形
化(例えば形態の喪失)および死を引き起こし、そのような現象は光学顕微鏡により見る
ことができる。例えば図9を参照。
当該技術で既知の追加の典型的な細胞毒性アッセイには、(Busch et al., J Biol Che
m. 1998 Jul 31;273(31):19566-72において記述されているような)[14C]グルコース
で標識されたRasの蛍光体画像化に関するグルコシル化アッセイ、および好ましくは下
記の実施例において記述されるインビトロ細胞毒性アッセイが含まれ、ここでEC50
細胞、好ましくはヒト二倍体線維芽細胞(例えばIMR90細胞(ATCC CCL−1
86(商標)))においてその毒素の非存在下で同一の条件下で同一の細胞と比較して少
なくとも約50%の細胞変性作用(CPE)を示す免疫原性組成物の濃度を指してよい。
そのインビトロ細胞毒性アッセイは、細胞、好ましくはヒト二倍体線維芽細胞(例えばI
MR90細胞(ATCC CCL−186(商標)))においてその毒素の非存在下で同
一の条件下で同一の細胞と比較して野生型C.ディフィシル毒素に誘導される細胞変性作
用(CPE)の少なくとも約50%を阻害する組成物の濃度を評価するために用いられて
もよい。追加の典型的な細胞毒性アッセイには、Doern et al., J Clin Microbiol. 1992
Aug;30(8):2042-6において記述されている細胞毒性アッセイが含まれる。細胞毒性は、
毒素で処理した細胞においてATPレベルを測定することにより決定することもできる。
例えば、ルシフェラーゼに基づく基質、例えばCELLTITERGLO(登録商標)(
Promega)を用いることができ、それは相対光単位(RLU)として測定される発
光を放射する。そのようなアッセイにおいて、細胞生存度はその細胞中のATPの量また
はRLU値に正比例し得る。
1態様において、その免疫原性組成物の細胞毒性は、対応する野生型C.ディフィシル
毒素と比較して少なくとも約1000、2000、3000、4000、5000、60
00、7000、8000、9000、10000、11000、12000、1300
0倍、14000倍、15000倍、またはより多く低減されている。例えば表20を参
照。
別の態様において、その免疫原性組成物の細胞毒性は、対応する野生型毒素と同一条件
下で比較して少なくとも約2−log10、より好ましくは約3−log10、そして最
も好ましくは約4−log10以上低減されている。例えば、変異体C.ディフィシルT
cdBは、標準的な細胞変性作用アッセイ(CPE)で測定した際に、少なくとも約10
−12g/mlのEC50値を有し得る典型的な野生型C.ディフィシルTcdBと比較
して、約10−9g/mlのEC50値を有し得る。例えば下記の実施例の節中の表7A
、7B、8Aおよび8Bを参照。
さらに別の態様において、その変異体C.ディフィシル毒素の細胞毒性は、例えばイン
ビトロ細胞毒性アッセイ、例えば本明細書で記述されるインビトロ細胞毒性アッセイによ
り測定した際に、少なくとも約50μg/ml、100μg/ml、200μg/ml、
300μg/ml、400μg/ml、500μg/ml、600μg/ml、700μ
g/ml、800μg/ml、900μg/ml、1000μg/ml、またはより大き
いEC50を有する。従って、好ましい態様において、その免疫原性組成物および変異体
毒素は哺乳類への投与に関して生物学的に安全である。
機序または理論により束縛されるわけではないが、野生型TcdAと比較してD285
およびD287変異を有するTcdA、ならびに野生型TcdBと比較してD286およ
びD288変異を有するTcdBはグルコシルトランスフェラーゼ活性において欠陥があ
り、従って細胞変性作用の誘導において欠陥があると予想された。加えて、DHCモチー
フ中に変異を有する毒素は自己触媒的プロセシングにおいて欠陥があり、従って細胞毒性
作用を一切有しないと予想された。
しかし、本発明者らは、驚くべきことに、数ある中でも、SEQ ID NO:4を有
する典型的な変異体TcdAおよびSEQ ID NO:6を有する典型的な変異体Tc
dBは、機能不全のグルコシルトランスフェラーゼ活性および機能不全のシステインプロ
テアーゼ活性を示すにも関わらず、(野生型C.ディフィシル630毒素から著しく低減
してはいたが)意外にも細胞毒性を示すことを発見した。機序または理論により束縛され
るわけではないが、その変異体毒素は新規の機序により細胞毒性をもたしていると信じら
れる。それでもなお、SEQ ID NO:4を有する典型的な変異体TcdAおよびS
EQ ID NO:6を有する典型的な変異体TcdBは、驚くほど免疫原性であった。
下記の実施例を参照。
野生型毒素の化学的架橋はその毒素の不活性化に失敗する可能性を有するが、本発明者
らはさらに、変異体毒素の少なくとも1個のアミノ酸において化学的に架橋することはそ
の変異体毒素の細胞毒性を化学的架橋を欠く同一の変異体毒素と比較して、そして対応す
る野生型毒素と比較してさらに低減することを発見した。好ましくは、その変異体毒素は
その化学的架橋剤との接触の前に精製される。
さらに、化学的架橋剤が有用なエピトープを変化させる可能性にも関わらず、本発明者
らは驚くべきことに、化学的に架橋された少なくとも1個のアミノ酸を有する遺伝学的に
改変された変異体C.ディフィシル毒素は結果として多数の中和抗体またはその結合断片
を引き出す免疫原性組成物をもたらすことを発見した。従って、中和抗体分子と関係する
エピトープは意外にも以下の化学的架橋を保持していた。
架橋(本明細書において“化学的不活性化”または“不活性化”とも呼ばれる)は、2
個以上の分子を共有結合により化学的に連結するプロセスである。用語“架橋試薬”、“
架橋剤”、および“クロスリンカー”は、ペプチド、ポリペプチド、および/またはタン
パク質上の特定の官能基(第1級アミン類、スルヒドリル類(sulhydryls)、
カルボキシル類、カルボニル類等)と反応する、および/またはそれに化学的に付着する
ことができる分子を指す。1態様において、その分子はペプチド、ポリペプチド、および
/またはタンパク質上の特定の官能基(第1級アミン類、スルヒドリル類(sulhyd
ryls)、カルボキシル類、カルボニル類等)と反応する、および/またはそれに化学
的に付着することができる2個以上の反応性末端を含有していてよい。好ましくは、その
化学的架橋剤は水溶性である。別の好ましい態様において、その化学的架橋剤はヘテロ二
官能性クロスリンカーである。別の態様において、その化学的架橋剤は二官能性クロスリ
ンカーではない。化学的架橋剤は当該技術で既知である。
好ましい態様において、その架橋剤はゼロ長(zero−length)架橋剤である
。“ゼロ長”クロスリンカーは、2個の分子の官能基の間の直接の架橋を媒介または生成
するであろう架橋剤を指す。例えば、2個のポリペプチドの架橋において、ゼロ長クロス
リンカーは結果として外来の要素を組み込むことなく橋、または1つのポリペプチドのア
ミノ酸側鎖からのカルボキシル基および別のポリペプチドのアミノ基の間の架橋の形成を
もたらすであろう。ゼロ長架橋剤は、例えばヒドロキシルおよびカルボキシル部分の間の
エステル結合の形成、および/またはカルボキシルおよび第1級アミノ部分の間のアミド
結合の形成を触媒することができる。
典型的な適切な化学的架橋剤には、ホルムアルデヒド;ホルマリン;アセトアルデヒド
;プロピオンアルデヒド;1−エチル−3−(3−ジメチルアミノプロピル)−カルボジ
イミド(EDC)、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド
塩酸塩、1−シクロヘキシル−3−(2−モルホリニル−(4−エチル)カルボジイミド
メト−p−トルエンスルホネート(CMC)、N,N’−ジシクロヘキシルカルボジイ
ミド(DCC)、およびN,N’−ジイソプロピルカルボジイミド(DIC)、およびそ
れらの誘導体が含まれる、水溶性カルボジイミド類(RN=C=NR’);ならびにN−
ヒドロキシスクシンイミド(NHS);フェニルグリオキサール;および/またはUDP
−ジアルデヒドが含まれる。
好ましくは、その架橋剤はEDCである。変異体C.ディフィシル毒素ポリペプチドが
EDCにより(例えばそのポリペプチドをEDCと接触させることにより)化学的に修飾
される場合、1態様において、そのポリペプチドには(a)そのポリペプチドのアスパラ
ギン酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の
架橋が含まれる。1態様において、そのポリペプチドには(b)そのポリペプチドのグル
タミン酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間の少なくとも1個
の架橋が含まれる。1態様において、そのポリペプチドには(c)そのポリペプチドのC
末端のカルボキシル基およびそのポリペプチドのN末端のアミノ基の間の少なくとも1個
の架橋が含まれる。1態様において、そのポリペプチドには(d)そのポリペプチドのC
末端のカルボキシル基およびそのポリペプチドのリシン酸残基の側鎖の間の少なくとも1
個の架橋が含まれる。1態様において、そのポリペプチドには(e)そのポリペプチドの
アスパラギン酸残基の側鎖および第2の単離されたポリペプチドのリシン酸残基の側鎖の
間の少なくとも1個の架橋が含まれる。1態様において、そのポリペプチドには(f)そ
のポリペプチドのグルタミン酸残基の側鎖および第2の単離されたポリペプチドのリシン
酸残基の側鎖の間の少なくとも1個の架橋が含まれる。1態様において、そのポリペプチ
ドには(g)そのポリペプチドのC末端のカルボキシル基および第2の単離されたポリペ
プチドのN末端のアミノ基の間の少なくとも1個の架橋が含まれる。1態様において、そ
のポリペプチドには(h)そのポリペプチドのC末端のカルボキシル基および第2の単離
されたポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋が含まれる。例え
ば、図24および図25を参照。
“第2の単離されたポリペプチド”は、EDCとの反応の間に存在するあらゆる単離さ
れたポリペプチドを指す。1態様において、第2の単離されたポリペプチドは、第1の単
離されたポリペプチドと同一の配列を有する変異体C.ディフィシル毒素ポリペプチドで
ある。別の態様において、第2の単離されたポリペプチドは、第1の単離されたポリペプ
チドと異なる配列を有する変異体C.ディフィシル毒素ポリペプチドである。
1態様において、そのポリペプチドには(a)〜(d)の修飾から選択される少なくと
も2個の修飾が含まれる。典型的な態様において、そのポリペプチドには(a)そのポリ
ペプチドのアスパラギン酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間
の少なくとも1個の架橋ならびに(b)そのポリペプチドのグルタミン酸残基の側鎖およ
びそのポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋が含まれる。さら
なる態様において、そのポリペプチドには(a)〜(d)の修飾から選択される少なくと
も3個の修飾が含まれる。さらに別の態様において、そのポリペプチドには(a)、(b
)、(c)、および(d)の修飾が含まれる。
1より多くの変異体ポリペプチドがEDCによる化学修飾の間に存在する場合、1態様
において、その結果として生じる組成物には(a)〜(h)の修飾のいずれかの少なくと
も1個が含まれる。1態様において、その組成物には(a)〜(h)の修飾から選択され
る少なくとも2個の修飾が含まれる。さらなる態様において、その組成物には(a)〜(
h)の修飾から選択される少なくとも3個の修飾が含まれる。さらに別の態様において、
その組成物には(a)〜(h)の修飾から選択される少なくとも4個の修飾が含まれる。
別の態様において、その組成物には(a)〜(h)の修飾のそれぞれの少なくとも1個が
含まれる。
典型的な態様において、その結果として生じる組成物には(a)そのポリペプチドのア
スパラギン酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間の少なくとも
1個の架橋;ならびに(b)そのポリペプチドのグルタミン酸残基の側鎖およびそのポリ
ペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋が含まれる。1態様において
、その組成物にはさらに(c)そのポリペプチドのC末端のカルボキシル基およびそのポ
リペプチドのN末端のアミノ基の間の少なくとも1個の架橋;ならびに(d)そのポリペ
プチドのC末端のカルボキシル基およびそのポリペプチドのリシン酸残基の側鎖の間の少
なくとも1個の架橋が含まれる。
別の典型的な態様において、その結果として生じる組成物には(e)そのポリペプチド
のアスパラギン酸残基の側鎖および第2の単離されたポリペプチドのリシン酸残基の側鎖
の間の少なくとも1個の架橋;(f)そのポリペプチドのグルタミン酸残基の側鎖および
第2の単離されたポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋;(g
)そのポリペプチドのC末端のカルボキシル基および第2の単離されたポリペプチドのN
末端のアミノ基の間の少なくとも1個の架橋;ならびに(h)そのポリペプチドのC末端
のカルボキシル基および第2の単離されたポリペプチドのリシン酸残基の側鎖の間の少な
くとも1個の架橋が含まれる。
さらなる典型的な態様において、その結果として生じる組成物には(a)そのポリペプ
チドのアスパラギン酸残基の側鎖およびそのポリペプチドのリシン酸残基の側鎖の間の少
なくとも1個の架橋;(b)そのポリペプチドのグルタミン酸残基の側鎖およびそのポリ
ペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋;(e)そのポリペプチドの
アスパラギン酸残基の側鎖および第2の単離されたポリペプチドのリシン酸残基の側鎖の
間の少なくとも1個の架橋;ならびに(f)そのポリペプチドのグルタミン酸残基の側鎖
および第2の単離されたポリペプチドのリシン酸残基の側鎖の間の少なくとも1個の架橋
が含まれる。
好ましい態様において、その化学的架橋剤にはホルムアルデヒドが含まれ、より好まし
くはリシンの非存在下でホルムアルデヒドが含まれる薬剤が含まれる。グリシンまたは他
の適切な第1級アミンを有する化合物を、架橋反応における失活剤(quencher)
として用いることができる。従って、別の好ましい態様において、その化学的薬剤にはホ
ルムアルデヒドおよびグリシンの使用が含まれる。
さらに別の好ましい態様において、その化学的架橋剤にはEDCおよびNHSが含まれ
る。当該技術で既知であるように、NHSをEDCのカップリングプロトコル中に含める
ことができる。しかし、本発明者らは、驚くべきことに、NHSはその変異体C.ディフ
ィシル毒素の、対応する野生型毒素と比較した場合の、遺伝学的に変異させた毒素と比較
した場合の、そしてEDCにより化学的に架橋されている遺伝学的に変異させた毒素と比
較した場合の細胞毒性のさらなる低下を促進することができることを発見した。例えば実
施例22を参照。従って、機序または理論により束縛されるわけではないが、(例えば変
異体毒素ポリペプチド、EDC、およびNHSの反応の結果として生じる)そのポリペプ
チドの少なくとも1個のリシン残基の側鎖に連結されたベータ−アラニン部分を有する変
異体毒素ポリペプチドは、例えばベータ−アラニン部分が存在しないC.ディフィシル毒
素(野生型または変異体)と比較して、その変異体毒素の細胞毒性のさらなる低下を促進
し得る。
EDCおよび/またはNHSの使用には、グリシンまたは他の適切な第1級アミンを有
する化合物の失活剤としての使用も含まれてよい。例えばグリシンメチルエステルおよび
アラニンのような、第1級アミンを有するあらゆる化合物を失活剤として用いることがで
きる。好ましい態様において、その失活剤化合物は非重合体性親水性第1級アミンである
。非重合体性親水性第1級アミンの例には、例えばアミノ糖類、アミノアルコール類、お
よびアミノポリオール類が含まれる。非重合体性親水性第1級アミンの具体的な例には、
グリシン、エタノールアミン、グルカミン、アミン官能性を持たせた(amine fu
nctionalized)ポリエチレングリコール、およびアミン官能性を持たせたエ
チレングリコールオリゴマー類が含まれる。
1側面において、本発明は、EDCおよび非重合体性親水性第1級アミン、好ましくは
グリシンにより化学修飾された少なくとも1個のアミノ酸側鎖を有する変異体C.ディフ
ィシル毒素ポリペプチドに関する。(例えばEDC、NHSで処理し、グリシンで失活さ
せた(quenched)三重変異体毒素の反応の)結果として生じるグリシン付加物は
、対応する野生型毒素と比較してその変異体毒素の細胞毒性の低下を促進し得る。
1態様において、変異体C.ディフィシル毒素ポリペプチドがEDCおよびグリシンに
より化学修飾される場合、そのポリペプチドには、そのポリペプチドがEDCにより修飾
される際の少なくとも1個の修飾(例えば上記で記述された(a)〜(h)の修飾のいず
れかの少なくとも1個)、ならびに以下の典型的な修飾の少なくとも1個が含まれる:(
i)そのポリペプチドのC末端のカルボキシル基に連結されたグリシン部分;(j)その
ポリペプチドの少なくとも1個のアスパラギン酸残基の側鎖に連結されたグリシン部分;
および(k)そのポリペプチドの少なくとも1個のグルタミン酸残基の側鎖に連結された
グリシン部分。例えば、図24および図25を参照。
1態様において、変異体C.ディフィシルTcdAの少なくとも1個のアミノ酸は化学
的に架橋されており、および/または変異体C.ディフィシルTcdBの少なくとも1個
のアミノ酸は化学的に架橋されている。別の態様において、SEQ ID NO:4、S
EQ ID NO:6、SEQ ID NO:7、および/またはSEQ ID NO:
8の少なくとも1個のアミノ酸は化学的に架橋されている。例えば、その少なくとも1個
のアミノ酸は、カルボジイミドが含まれる薬剤、例えばEDCにより化学的に架橋するこ
とができる。カルボジイミド類は、(例えばアスパラギン酸および/またはグルタミン酸
の側鎖からの)遊離のカルボキシルおよび(例えばリシン残基の側鎖中の)アミノ基の間
で共有結合を形成して安定なアミド結合を形成することができる。
別の例として、その少なくとも1個のアミノ酸は、NHSが含まれる薬剤により化学的
に架橋することができる。NHSエステルで活性化されたクロスリンカーは、(例えばそ
れぞれのポリペプチド鎖のN末端の、および/またはリシン残基の側鎖中の)第1級アミ
ンと反応してアミド結合を生じることができる。
別の態様において、その少なくとも1個のアミノ酸は、EDCおよびNHSが含まれる
薬剤により化学的に架橋することができる。例えば、1態様において、本発明はSEQ
ID NO:4で示されるアミノ酸配列を有する単離されたポリペプチドに関し、ここで
1位のメチオニン残基は場合により存在せず、ここでそのポリペプチドにはEDCおよび
NHSにより化学的に修飾された少なくとも1個のアミノ酸側鎖が含まれる。別の態様に
おいて、本発明はSEQ ID NO:6で示されるアミノ酸配列を有する単離されたポ
リペプチドに関し、ここで1位のメチオニン残基は場合により存在せず、ここでそのポリ
ペプチドにはEDCおよびNHSにより化学的に修飾された少なくとも1個のアミノ酸側
鎖が含まれる。さらに別の態様において、本発明は、SEQ ID NO:84、SEQ
ID NO:86、SEQ ID NO:83、SEQ ID NO:85、SEQ
ID NO:7、またはSEQ ID NO:8で示されるアミノ酸配列を有する単離さ
れたポリペプチドに関する。そのポリペプチドは、そのポリペプチドをEDCおよびNH
Sと接触させることにより修飾される。例えば図24および図25を参照。
変異体C.ディフィシル毒素ポリペプチドがEDCおよびNHSにより(例えば接触に
より)化学的に修飾される場合、1態様において、そのポリペプチドにはそのポリペプチ
ドがEDCにより修飾される際の少なくとも1個の修飾(例えば上記で記述された(a)
〜(h)の修飾のいずれかの少なくとも1個)、および(l)そのポリペプチドの少なく
とも1個のリシン残基の側鎖に連結されたベータ−アラニン部分が含まれる。
別の側面において、本発明は変異体C.ディフィシル毒素ポリペプチドに関し、ここで
そのポリペプチドにはEDC、NHS、および非重合体性親水性第1級アミン、好ましく
はグリシンにより化学修飾された少なくとも1個のアミノ酸側鎖が含まれる。1態様にお
いて、そのポリペプチドにはそのポリペプチドがEDCにより修飾される際の少なくとも
1個の修飾(例えば上記で記述された(a)〜(h)の修飾のいずれかの少なくとも1個
)、そのポリペプチドがグリシンにより修飾される際の少なくとも1個の修飾(例えば上
記で記述された(i)〜(k)の修飾のいずれかの少なくとも1個)、および(l)その
ポリペプチドの少なくとも1個のリシン残基の側鎖に連結されたベータ−アラニン部分が
含まれる。例えば、図24および図25を参照。
1側面において、本発明は変異体C.ディフィシル毒素ポリペプチドに関し、ここでそ
のポリペプチドの少なくとも1個のリシン残基の側鎖はベータ−アラニン部分に連結され
ている。1態様において、そのポリペプチドの第2のリシン残基の側鎖はアスパラギン酸
残基の側鎖に、および/またはグルタミン酸残基の側鎖に連結されている。そのポリペプ
チドの“第2の”リシン残基には、ベータ−アラニン部分に連結されていないそのポリペ
プチドのリシン残基が含まれる。その第2のリシン残基が連結されているアスパラギン酸
の側鎖および/またはグルタミン酸の側鎖は、そのポリペプチドのアスパラギン酸の側鎖
および/またはグルタミン酸の側鎖であって分子内架橋を形成していてよく、または第2
のポリペプチドのアスパラギン酸の側鎖および/またはグルタミン酸の側鎖であって分子
間架橋を形成していてよい。別の態様において、そのポリペプチドの少なくとも1個のア
スパラギン酸残基の側鎖および/または少なくとも1個のグルタミン酸残基の側鎖はグリ
シン部分に連結されている。そのグリシン部分に連結されているアスパラギン酸残基およ
び/またはグルタミン酸残基は、リシン残基には連結されていない。
化学的に架橋された変異体C.ディフィシル毒素ポリペプチドのさらに別の例として、
少なくとも1個のアミノ酸をホルムアルデヒドが含まれる薬剤により化学的に架橋するこ
とができる。ホルムアルデヒドはN末端のアミノ酸残基のアミノ基ならびにアルギニン、
システイン、ヒスチジン、およびリシンの側鎖と反応することができる。ホルムアルデヒ
ドおよびグリシンはシッフ塩基付加物を形成することができ、それは第1級N末端アミノ
基、アルギニン、およびチロシン残基、ならびにより低い程度でアスパラギン、グルタミ
ン、ヒスチジン、およびトリプトファン残基に付着することができる。
化学的架橋剤は、その処理された毒素が、例えばインビトロ細胞毒性アッセイにより、
または動物毒性により測定した際に同一の条件下で未処理の毒素よりも低い毒性(例えば
約100%、99%、95%、90%、80%、75%、60%、50%、25%、また
は10%低い毒性)を有する場合、毒素の細胞毒性を低減すると言われる。
好ましくは、その化学的架橋剤は、その変異体C.ディフィシル毒素の細胞毒性を、同
一の条件下であるがその化学的架橋剤の非存在下でのその変異体毒素と比較して、少なく
とも約2−log10の低減、より好ましくは約3−log10の低減、そして最も好ま
しくは約4−log10以上低減する。野生型毒素と比較した場合、その化学的架橋剤は
好ましくはその変異体毒素の細胞毒性を少なくとも約5−log10の低減、約6−lo
10の低減、約7−log10の低減、約8−log10の低減、またはより大きく低
減する。
別の好ましい態様において、その化学的に不活性化された変異体C.ディフィシル毒素
は、例えばインビトロ細胞毒性アッセイ、例えば本明細書で記述されるインビトロ細胞毒
性アッセイにより測定した際に、少なくとも約50μg/ml、100μg/ml、20
0μg/ml、300μg/ml、400μg/ml、500μg/ml、600μg/
ml、700μg/ml、800μg/ml、900μg/ml、1000μg/ml以
上のEC50値、またはより大きいEC50値を示す。
その変異体毒素を化学的架橋剤と接触させるための反応条件は当業者の専門知識の範囲
内であり、その条件は用いられる薬剤に応じて異なってよい。しかし、本発明者らは、驚
くべきことに、変異体C.ディフィシル毒素ポリペプチドを化学的架橋剤と接触させ、一
方でその変異体毒素の機能性エピトープを維持し、且つ細胞毒性を対応する野生型毒素と
比較して低下させるための最適な反応条件を発見した。
好ましくは、その反応条件は変異体毒素を架橋剤と接触させるために選択され、ここで
その変異体毒素は約0.5、0.75、1.0、1.25、1.5、1.75、2.0m
g/mlの最小濃度〜約3.0、2.5、2.0、1.5、または1.25mg/mlの
最大濃度を有する。あらゆる最小値をあらゆる最大値と組み合わせてその反応に関する変
異体毒素の適切な濃度の範囲を定めることができる。最も好ましくは、その変異体毒素は
その反応に関して約1.0〜1.25mg/mlの濃度を有する。
1態様において、その反応において用いられる薬剤は、約1mM、2mM、3mM、4
mM、5mM、10mM、15mM、20mM、30mM、40mM、または50mMの
最小濃度および約100mM、90mM、80mM、70mM、60mM、または50m
Mの最大濃度を有する。あらゆる最小値をあらゆる最大値と組み合わせてその反応に関す
る化学薬剤の適切な濃度の範囲を定めることができる。
その薬剤にホルムアルデヒドが含まれる好ましい態様において、用いられる濃度は好ま
しくは約2mM〜80mMのあらゆる濃度、最も好ましくは約40mMである。その薬剤
にEDCが含まれる別の好ましい態様において、用いられる濃度は好ましくは約1.3m
M〜約13mM、より好ましくは約2mM〜3mMのあらゆる濃度、最も好ましくは約2
.6mMである。
その変異体毒素をその化学的架橋剤と接触させる典型的な反応時間には、約0.5、1
、2、3、4、5、6、12、24、36、48、または60時間の最小値、および約1
4日間、12日間、10日間、7日間、5日間、3日間、2日間、1日間、または12時
間の最大値が含まれる。あらゆる最小値をあらゆる最大値と組み合わせて適切な反応時間
の範囲を定めることができる。
好ましい態様において、その変異体毒素をその化学的架橋剤と接触させる工程は、その
変異体C.ディフィシル毒素の細胞毒性を、適切なヒト細胞、例えばIMR−90細胞に
おいて、標準的なインビトロ細胞毒性アッセイにおいて、その架橋剤の非存在下での同一
の変異体毒素と比較して、少なくとも約1000μg/mlのEC50値まで低減するの
に十分な期間の間行われる。より好ましくは、その反応工程は、その変異体毒素の細胞毒
性を適切なヒト細胞において少なくとも約1000μg/mlのEC50値まで低減する
のに十分な期間の少なくとも2倍の長さ、最も好ましくは少なくとも3倍以上の長さの時
間の間行われる。1態様において、その反応時間は約168時間(または7日間)を超え
ない。
例えば、その薬剤にホルムアルデヒドが含まれる1態様において、その変異体毒素をそ
の薬剤と好ましくは約12時間接触させ、それはその変異体C.ディフィシル毒素の細胞
毒性を、適切なヒト細胞、例えばIMR−90細胞において、標準的なインビトロ細胞毒
性アッセイにおいて、その架橋剤の非存在下での同一の変異体毒素と比較して、少なくと
も約1000μg/mlのEC50値まで低減するのに十分である典型的な期間であるこ
とが示された。より好ましい態様において、その反応は約48時間実施され、それはその
反応に関する十分な期間の少なくとも約3倍の長さである。そのような態様において、そ
の反応時間は好ましくは約72時間より長くない。
その薬剤にEDCが含まれる別の態様において、その変異体毒素をその薬剤と好ましく
は約0.5時間、より好ましくは少なくとも約1時間、または最も好ましくは約2時間接
触させる。そのような態様において、その反応時間は好ましくは約6時間より長くない。
その変異体毒素をその化学的架橋剤と接触させる典型的なpHには、約pH5.5、6
.0、6.5、7.0、または7.5の最小値、および約pH8.5、8.0、7.5、
7.0、または6.5の最大値が含まれる。あらゆる最小値をあらゆる最大値と組み合わ
せて適切なpHの範囲を定めることができる。好ましくは、その反応はpH6.5〜7.
5で、好ましくはpH7.0で行われる。
その変異体毒素をその化学的架橋剤と接触させる典型的な温度には、約2℃、4℃、1
0℃、20℃、25℃、または37℃の最小温度、および約40℃、37℃、30℃、2
7℃、25℃、または20℃の最大温度が含まれる。あらゆる最小値をあらゆる最大値と
組み合わせて適切な反応温度を定めることができる。好ましくは、その反応は約20℃〜
30℃で、最も好ましくは約25℃で行われる。
上記で記述された免疫原性組成物には、1種類の変異体C.ディフィシル毒素(Aまた
はB)が含まれていてよい。従って、その免疫原性組成物は、製剤またはキット中で別個
のバイアル(例えば変異体C.ディフィシル毒素Aが含まれる組成物に関する別個のバイ
アルおよび変異体C.ディフィシル毒素Bが含まれる組成物に関する別個のバイアル)を
占めることができる。その免疫原性組成物は、同時、順次、または別々の使用を意図され
ていてよい。
別の態様において、上記で記述される免疫原性組成物には変異体C.ディフィシル毒素
(AおよびB)の両方が含まれていてよい。記述された変異体C.ディフィシル毒素Aお
よび変異体C.ディフィシル毒素Bのあらゆる組み合わせを、免疫原性組成物に関して組
み合わせてよい。従って、その免疫原性組成物は、単一のバイアル(例えば変異体C.デ
ィフィシルTcdAが含まれる組成物および変異体C.ディフィシルTcdBが含まれる
組成物の両方を含有する単一のバイアル)中で組み合わせることができる。好ましくは、
その免疫原性組成物には変異体C.ディフィシルTcdAおよび変異体C.ディフィシル
TcdBが含まれる。
例えば、1態様において、その免疫原性組成物にはSEQ ID NO:4およびSE
Q ID NO:6が含まれ、ここでSEQ ID NO:4およびSEQ ID NO
:6のそれぞれの少なくとも1個のアミノ酸は化学的に架橋されている。別の態様におい
て、その免疫原性組成物には、SEQ ID NO:4またはSEQ ID NO:7が
含まれる変異体C.ディフィシル毒素A、およびSEQ ID NO:6またはSEQ
ID NO:8を含む変異体C.ディフィシル毒素Bが含まれ、ここでその変異体C.デ
ィフィシル毒素のそれぞれの少なくとも1個のアミノ酸は化学的に架橋されている。
別の態様において、その免疫原性組成物には、SEQ ID NO:4、SEQ ID
NO:84、およびSEQ ID NO:83から選択されるあらゆる配列、ならびに
SEQ ID NO:6、SEQ ID NO:86、およびSEQ ID NO:85
から選択されるあらゆる配列が含まれる。別の態様において、その免疫原性組成物には、
SEQ ID NO:84およびSEQ ID NO:86が含まれる免疫原性組成物が
含まれる。別の態様において、その免疫原性組成物には、SEQ ID NO:83およ
びSEQ ID NO:85が含まれる免疫原性組成物が含まれる。別の態様において、
その免疫原性組成物には、SEQ ID NO:84、SEQ ID NO:83、SE
Q ID NO:86、およびSEQ ID NO:85が含まれる。
本発明の組成物、例えば変異体毒素Aおよび/または変異体毒素Bが含まれる免疫原性
組成物のいずれも、療法的作用に関して異なる比率または量で組み合わせることができる
ことが理解されている。例えば、その変異体C.ディフィシルTcdAおよび変異体C.
ディフィシルTcdBは、免疫原性組成物中に0.1:10〜10:0.1、A:Bの範
囲の比率で存在することができる。別の態様において、例えば、その変異体C.ディフィ
シルTcdBおよび変異体C.ディフィシルTcdAは、免疫原性組成物中に0.1:1
0〜10:0.1、B:Aの範囲の比率で存在することができる。1つの好ましい態様に
おいて、その比率は、その組成物に変異体TcdAの総量よりも大きな変異体TcdBの
総量が含まれるような比率である。
1側面において、免疫原性組成物は中和抗体またはその結合断片に結合することができ
る。好ましくは、その中和抗体またはその結合断片は本明細書において下記で記述される
中和抗体またはその結合断片である。1つの典型的な態様において、免疫原性組成物は抗
毒素A抗体またはその結合断片に結合することができ、ここでその抗毒素A抗体またはそ
の結合断片にはSEQ ID NO:36のアミノ酸配列を有する可変軽鎖およびSEQ
ID NO:37のアミノ酸配列を有する可変重鎖が含まれる。例えば、その免疫原性
組成物には変異体C.ディフィシルTcdA、SEQ ID NO:4、またはSEQ
ID NO:7が含まれていてよい。別の例として、その免疫原性組成物にはSEQ I
D NO:84またはSEQ ID NO:83が含まれていてよい。
別の典型的な態様において、免疫原性組成物は抗毒素B抗体またはその結合断片に結合
することができ、ここでその抗毒素B抗体またはその結合断片にはB8−26の可変軽鎖
およびB8−26の可変重鎖が含まれる。例えば、その免疫原性組成物には変異体C.デ
ィフィシルTcdB、SEQ ID NO:6、またはSEQ ID NO:8が含まれ
ていてよい。別の例として、その免疫原性組成物にはSEQ ID NO:86またはS
EQ ID NO:85が含まれていてよい。
組み換え細胞
別の側面において、本発明は、組み換え細胞またはその子孫に関する。1態様において
、その細胞またはその子孫には変異体C.ディフィシルTcdAおよび/または変異体C
.ディフィシルTcdBをコードするポリヌクレオチドが含まれる。
別の態様において、その組み換え細胞またはその子孫には、例えばGAPまたはBES
TFITプログラムにより初期設定のギャップウェイトを用いて最適に整列させた際に、
SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:7、またはS
EQ ID NO:8のいずれかに対して少なくとも約90%、91%、92%、93%
、94%、95%、96%、97%、好ましくは約98%、より好ましくは約99%、ま
たは最も好ましくは約100%の同一性を有するポリペプチドをコードする核酸配列が含
まれる。
別の態様において、その組み換え細胞またはその子孫には、例えばGAPまたはBES
TFITプログラムにより初期設定のギャップウェイトを用いて最適に整列させた際に、
SEQ ID NO:84、SEQ ID NO:86、SEQ ID NO:83、ま
たはSEQ ID NO:85のいずれかに対して少なくとも約90%、91%、92%
、93%、94%、95%、96%、97%、好ましくは約98%、より好ましくは約9
9%、または最も好ましくは約100%の同一性を有するポリペプチドをコードする核酸
配列が含まれる。
追加の態様において、その組み換え細胞またはその子孫には、例えばGAPまたはBE
STFITプログラムにより初期設定のギャップウェイトを用いて最適に整列させた際に
、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、
SEQ ID NO:14、SEQ ID NO:44、SEQ ID NO:45、S
EQ ID NO:46、またはSEQ ID NO:47のいずれかに対して少なくと
も約90%、91%、92%、93%、94%、95%、96%、97%、好ましくは約
98%、より好ましくは約99%、または最も好ましくは約100%の同一性を有する核
酸配列が含まれる。
その組み換え細胞は、本発明のポリペプチドの組み換え生成において有用なあらゆる細
胞、例えば原核細胞または真核細胞に由来してよい。好ましくは、その組み換え細胞は、
約5000、6000、好ましくは約7000、そしてより好ましくは約8000ヌクレ
オチド以上より大きい異種核酸配列を発現するのに適したあらゆる細胞に由来する。その
原核宿主細胞は、あらゆるグラム陰性またはグラム陽性細菌であってよい。典型的な態様
において、その原核宿主細胞は毒素および/または芽胞をコードする内在性ポリヌクレオ
チドを欠いている。
グラム陰性細菌には、カンピロバクター、大腸菌、フラボバクテリウム、フゾバクテリ
ウム、ヘリコバクター、イリオバクター(Ilyobacter)、ナイセリア(Nei
sseria)、シュードモナス、サルモネラ、およびウレアプラズマ(Ureapla
sma)が含まれるが、それらに限定されない。例えば、その組み換え細胞は、参照によ
り本明細書に援用される米国特許出願公開第2010013762号、段落[0201]
〜[0230]において記述されているようなシュードモナス・フルオレッセンス(Ps
eudomonas fluorescens)細胞に由来してよい。
グラム陽性細菌には、バシラス、クロストリジウム、エンテロコッカス、ゲオバシラス
(Geobacillus)、ラクトバシラス(Lactobacillus)、ラクト
コッカス(Lactococcus)、オセアノバシラス(Oceanobacillu
s)、スタフィロコッカス、ストレプトコッカス、およびストレプトマイセスが含まれる
が、それらに限定されない。好ましくは、その細胞はC.ディフィシル細胞に由来する。
本発明者らは、C.ディフィシル毒素をコードする内在性のポリヌクレオチドを欠いて
いる野生型C.ディフィシルの株を同定した。その内在性の毒素Aおよび毒素B遺伝子を
欠いている株には以下の株が含まれ、それはアメリカ培養細胞系統保存機関(ATCC)
(バージニア州マナサス)を通して入手可能である:C.ディフィシル1351(ATC
C 43593(商標))、C.ディフィシル3232(ATCC BAA−1801(
商標))、C.ディフィシル7322(ATCC 43601(商標))、C.ディフィ
シル5036(ATCC 43603(商標))、C.ディフィシル4811(ATCC
43602(商標))、およびC.ディフィシルVPI 11186(ATCC 70
0057(商標))。
従って、1態様において、その組み換えC.ディフィシル細胞は本明細書で記述される
株に由来する。好ましくは、その組み換えC.ディフィシル細胞またはその子孫は、C.
ディフィシル1351、C.ディフィシル5036、およびC.ディフィシルVPI 1
1186からなる群に由来する。より好ましくは、その組み換えC.ディフィシル細胞ま
たはその子孫は、C.ディフィシルVPI 11186細胞に由来する。
好ましい態様において、その組み換えC.ディフィシル細胞またはその子孫の芽胞形成
遺伝子は不活性化されている。芽胞は感染性、高度に耐性である可能性があり、C.ディ
フィシルのその宿主の外部の好気性環境における存続を促進する可能性がある。芽胞は抗
微生物療法の間のC.ディフィシルの宿主内部での生存にも寄与する可能性がある。従っ
て、芽胞形成遺伝子を欠くC.ディフィシル細胞は、哺乳類への投与のための安全な免疫
原性組成物を生産するために有用である。加えて、そのような細胞の使用は、製造の間の
安全性、例えばその施設、将来の製品、およびスタッフを保護するための安全性を促進す
る。
標的化された不活性化のための芽胞形成遺伝子の例には、inter alia、sp
o0A、spoIIE、σ、σ、およびσが含まれる。好ましくは、spo0A遺
伝子が不活性化される。
C.ディフィシルの芽胞形成遺伝子を不活性化する方法は、当該技術で既知である。例
えば、芽胞形成遺伝子は、選択可能なマーカー、例えば抗生物質耐性マーカーの標的化さ
れた挿入により不活性化することができる。例えば、Heap et al., J Microbiol Methods
. 2010 Jan;80(1):49-55; Heap et al., J. Microbiol. Methods, 2007 Sept; 70(3):452
-464;およびUnderwood et al., J Bacteriol. 2009 Dec;191(23):7296-305を参照。例え
ば、参照により33〜66ページから本明細書にそのまま援用される、“DNA Molecules
and Methods”と題されたMintonらの国際公開第2007/148091号、または対応
する米国公開US 20110124109 A1、段落[00137]〜[0227]
も参照。
変異体C.ディフィシル毒素を生成する方法
1側面において、本発明は、変異体C.ディフィシル毒素を生成する方法に関する。1
態様において、その方法には上記で記述されたいずれかの組み換え細胞またはその子孫を
ポリペプチドを発現するための適切な条件下で培養することが含まれる。
別の態様において、その方法には組み換え細胞またはその子孫を変異体C.ディフィシ
ル毒素をコードするポリヌクレオチドを発現するための適切な条件下で培養することが含
まれ、ここでその細胞には変異体C.ディフィシル毒素をコードするポリヌクレオチドが
含まれ、ここでその変異体には対応する野生型クロストリジウム・ディフィシル毒素と比
較して少なくとも1個の変異を有するグルコシルトランスフェラーゼドメインおよび少な
くとも1個の変異を有するシステインプロテアーゼドメインが含まれる。1態様において
、その細胞は毒素をコードする内在性ポリヌクレオチドを欠いている。
さらなる態様において、その方法には組み換えC.ディフィシル細胞またはその子孫を
変異体C.ディフィシル毒素をコードするポリヌクレオチドを発現するための適切な条件
下で培養することが含まれ、ここでその細胞には変異体C.ディフィシル毒素をコードす
るポリヌクレオチドが含まれ、且つその細胞はC.ディフィシル毒素をコードする内在性
ポリヌクレオチドを欠いている。
別の側面において、本発明は、変異体C.ディフィシル毒素を生成する方法に関する。
その方法には以下の工程が含まれる:(a)C.ディフィシル細胞を組み換え大腸菌細胞
と接触させ、ここでそのC.ディフィシル細胞はC.ディフィシル毒素をコードする内在
性ポリヌクレオチドを欠いており、その大腸菌細胞には変異体C.ディフィシル毒素をコ
ードするポリヌクレオチドが含まれ;(b)そのC.ディフィシル細胞および大腸菌細胞
を、そのポリヌクレオチドを大腸菌細胞からC.ディフィシル細胞に移すための適切な条
件下で培養し;(c)その変異体C.ディフィシル毒素をコードするポリヌクレオチドを
含むC.ディフィシル細胞を選択し;(d)工程(c)のC.ディフィシル細胞をそのポ
リヌクレオチドを発現するための適切な条件下で培養し;そして(e)その変異体C.デ
ィフィシル毒素を単離する。
本発明の方法において、その組み換え大腸菌細胞には本明細書で記述される変異体C.
ディフィシル毒素をコードする異種ポリヌクレオチドが含まれる。そのポリヌクレオチド
はDNAまたはRNAであってよい。1つの典型的な態様において、その変異体C.ディ
フィシル毒素をコードするポリヌクレオチドは、大腸菌のコドン使用頻度に関してコドン
最適化されている。ポリヌクレオチドをコドン最適化するための方法は当該技術において
既知である。
1態様において、そのポリヌクレオチドには上記で記述したような変異体C.ディフィ
シルTcdAをコードするポリヌクレオチドに少なくとも約60%、65%、70%、7
5%、80%、85%、86%、87%、88%、89%、90%、91%、92%、9
3%、94%、95%、96%、97%、98%、99%、または100%同一である核
酸配列が含まれる。変異体C.ディフィシル毒素Aをコードする典型的なポリヌクレオチ
ドには、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:
44、およびSEQ ID NO:45が含まれる。
別の態様において、そのポリヌクレオチドには上記で記述したような変異体C.ディフ
ィシルTcdBをコードするポリヌクレオチドに少なくとも約60%、65%、70%、
75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、
93%、94%、95%、96%、97%、98%、99%、または100%同一である
核酸配列が含まれる。変異体C.ディフィシル毒素Bをコードする典型的なポリヌクレオ
チドには、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO
:46、およびSEQ ID NO:47が含まれる。別の態様において、そのポリヌク
レオチドはSEQ ID NO:83、SEQ ID NO:84、SEQ ID NO
:85、またはSEQ ID NO:86をコードしている。
1態様において、その異種ポリヌクレオチドが含まれる大腸菌細胞はその変異体C.デ
ィフィシル毒素をコードする異種ポリヌクレオチドの安定な宿主となる(stably
hosts)大腸菌細胞である。典型的な大腸菌細胞には、MAX Efficienc
y(登録商標)Stbl2(商標)大腸菌コンピテント細胞(Invitrogen、カ
リフォルニア州カールスバッド)、One Shot(登録商標)Stbl3(商標)化
学的コンピテント大腸菌(Invitrogen、カリフォルニア州カールスバッド)、
ElectroMAX(商標)Stbl4(商標)大腸菌コンピテント細胞(Invit
rogen)、および大腸菌CA434からなる群から選択される細胞が含まれる。好ま
しい態様において、その大腸菌クローニング宿主細胞はDH5αではない。より好ましく
は、その大腸菌クローニング宿主細胞はMAX Efficiency(登録商標)St
bl2(商標)大腸菌コンピテント細胞である。
本発明の方法にはさらに、C.ディフィシル細胞および大腸菌細胞をそのポリヌクレオ
チドを大腸菌細胞からC.ディフィシル細胞に移すための適切な条件下で培養し、結果と
して組み換えC.ディフィシル細胞をもたらす工程が含まれる。好ましい態様において、
その培養条件は、そのポリヌクレオチドをその大腸菌細胞(供与細胞)からC.ディフィ
シル細胞(受容細胞)中に移し、結果として遺伝的に安定な継承(inheritanc
e)をもたらすのに適している。
最も好ましくは、その培養条件は当該技術で既知である細菌の接合に適している。“接
合”は、ポリヌクレオチドの(例えば細菌プラスミドからの)一方向性の移動が1つの細
菌細胞(すなわち“供与者”)から別の細菌細胞(すなわち“受容者”)に対して起こる
、ポリヌクレオチドの移動の特定のプロセスを指す。接合プロセスには供与細胞の受容細
胞に対する接触が含まれる。好ましくは、供与大腸菌細胞は大腸菌CA434細胞である
大腸菌細胞からC.ディフィシル細胞へのポリヌクレオチドの移動のための典型的な適
切な(接合)条件には、C.ディフィシルのブレインハートインフュージョンブロス(B
HI;Oxoid)またはシェドラー嫌気ブロス(Schaedlers anaero
bic broth)(SAB;Oxoid)中での増殖液体培養が含まれる。別の態様
において、固体C.ディフィシル培養物を新鮮な血液寒天(FBA)またはBHI寒天上
で増殖させることができる。好ましくは、C.ディフィシルを嫌気性環境(例えば、80
% N、10% CO、および10% H[体積/体積])中で37℃で増殖させる
。1態様において、その適切な条件には、大腸菌をルリア−ベルターニ(LB)ブロス上
で、またはLB寒天上で37℃で好気的に増殖させることが含まれる。C.ディフィシル
への接合性移動に関して、典型的な適切な条件には、大腸菌をFBA上で嫌気的に増殖さ
せることが含まれる。抗生物質が当該技術で既知であるように液体および固体培地中に含
まれていてよい。そのような抗生物質の例には、サイクロセリン(250μg/ml)、
セフォキシチン(8μg/ml)、クロラムフェニコール(12.5μg/ml)、チア
ンフェニコール(15μg/ml)、およびエリスロマイシン(5μg/ml)が含まれ
る。
本発明の方法にはさらに、結果として得られた変異体C.ディフィシル毒素をコードす
るポリヌクレオチドが含まれる組み換えC.ディフィシル細胞を選択する工程が含まれる
。典型的な態様において、その組み換えC.ディフィシル細胞は、その変異体C.ディフ
ィシル毒素をコードするポリヌクレオチドの組み換え大腸菌細胞からの接合を介した受容
者である。
本発明の方法には、その組み換え細胞またはその子孫を、その変異体C.ディフィシル
毒素をコードするポリヌクレオチドを発現し、結果として変異体C.ディフィシル毒素の
産生をもたらすための適切な条件下で培養する工程が含まれる。組み換え細胞がそのポリ
ヌクレオチドを発現するための適切な条件には、C.ディフィシル細胞を増殖させるのに
適した培養条件が含まれ、それは当該技術で既知である。例えば、適切な条件には、その
C.ディフィシル形質転換体をブレインハートインフュージョンブロス(BHI;Oxo
id)またはシェドラー嫌気ブロス(SAB;Oxoid)中で培養することが含まれて
よい。別の態様において、固体C.ディフィシル培養物をFBAまたはBHI寒天上で増
殖させることができる。好ましくは、そのC.ディフィシルを嫌気性環境(例えば、80
% N、10% CO、および10% H[体積/体積])中で37℃で増殖させる
1態様において、本発明の方法には、結果として生じる変異体C.ディフィシル毒素を
単離する工程が含まれる。タンパク質をC.ディフィシルから単離する方法は、当該技術
で既知である。
別の態様において、その方法には、結果として生じる変異体C.ディフィシル毒素を精
製する工程が含まれる。ポリペプチドを精製する方法、例えばクロマトグラフィーは、当
該技術で既知である。
典型的な態様において、その方法にはさらにその単離された変異体クロストリジウム・
ディフィシル毒素を上記で記述した化学的架橋剤と接触させる工程が含まれる。好ましく
は、その薬剤にはホルムアルデヒド、エチル−3−(3−ジメチルアミノプロピル)カル
ボジイミド、またはEDCおよびNHSの組み合わせが含まれる。典型的な反応条件は、
上記で、および下記の実施例の節で記述されている。
別の側面において、本発明は、あらゆる方法により、好ましくは上記で記述される方法
のいずれかにより生成された、本明細書で記述される変異体C.ディフィシル毒素が含ま
れる免疫原性組成物に関する。
抗体
驚くべきことに、上記で記述された本発明の免疫原性組成物はインビボで新規の抗体を
引き出し、これはその免疫原性組成物にはそれぞれの野生型C.ディフィシル毒素の保存
された天然の構造(例えば保存された抗原エピトープ)が含まれることおよびその免疫原
性組成物にはエピトープが含まれることを示唆している。C.ディフィシルの1つの株か
らの毒素に対して産生された抗体は、C.ディフィシルの別の株により産生された対応す
る毒素に結合することができる可能性がある。すなわち、その抗体およびその結合断片は
“交差反応性”である可能性があり、それは多数のC.ディフィシル株から産生された毒
素上の類似の抗原部位と反応する能力を指す。交差反応性には、抗体の、その産生を刺激
しなかった抗原と反応または結合する能力、すなわち、抗原および異なるが類似の抗原に
対して生成された抗体の間の反応も含まれる。
1側面において、本発明者らは、驚くべきことに、複数のC.ディフィシル毒素に対し
て中和作用を有するモノクローナル抗体およびその同じものを生成する方法を発見した。
本発明の抗体は、インビトロでC.ディフィシル毒素の細胞毒性を中和することができ、
哺乳類細胞へのC.ディフィシル毒素の結合を阻害することができ、および/またはイン
ビボでC.ディフィシル毒素の腸管毒性を中和することができる。本発明は、前記のもの
のいずれかをコードする核酸配列が含まれる単離されたポリペプチドにも関する。加えて
、本発明は、その組成物を投与されなかった哺乳類と比較して、哺乳類においてC.ディ
フィシル感染症、C.ディフィシル関連疾患、症候群、病気、症状、および/またはそれ
らの合併症を処置する、予防する、それらの危険性を低下させる、それらの重症度を低下
させる、それらの発生率を低下させる、および/またはそれらの発症を遅らせるための前
記の組成物のいずれかの使用、ならびに前記の組成物を調製するための方法に関する。
本発明者らはさらに、その中和モノクローナル抗体の少なくとも2種類の組み合わせは
TcdAまたはTcdBのそれぞれの中和において意外にも相乗作用を示すことができる
ことを発見した。抗毒素抗体またはその結合断片は、C.ディフィシル感染症の抑制にお
いて有用であり得る。
“抗体”は、少なくとも1または2個の重(H)鎖可変領域(本明細書においてVHと
略される)、および少なくとも1または2個の軽(L)鎖可変領域(本明細書においてV
Lと略される)が含まれるタンパク質である。そのVHおよびVL領域は、さらに“相補
性決定領域”(“CDR”)と呼ばれる超可変性の領域へと細分することができ、“フレ
ームワーク領域”(FR)と呼ばれるより保存されている領域がその間に挟まっている。
フレームワーク領域およびCDRの範囲は正確に定義されている(Kabat, E. A., et al.
Sequences of Proteins of Immunological Interest , 第5版, U.S. Department of He
alth and Human Services, NIH Publication No. 91-3242, 1991、およびChothia, C. et
al., J. Mol. Biol. 196:901-917, 1987を参照)。用語“抗体”にはIgA、IgG、
IgE、IgD、IgM型(ならびにその亜型)の完全な免疫グロブリンが含まれ、ここ
でその免疫グロブリンの軽鎖はカッパまたはラムダ型であってよい。
その抗体分子は完全長(例えばIgG1またはIgG4抗体)であることができる。そ
の抗体は、以下のアイソタイプ:IgG(例えばIgG1、IgG2、IgG3、IgG
4)、IgM、IgA1、IgA2、IgD、またはIgEが含まれる様々なアイソタイ
プの抗体であることができる。1つの好ましい態様において、その抗体はIgGアイソタ
イプ、例えばIgG1である。別の好ましい態様において、その抗体はIgE抗体である
別の態様において、その抗体分子には“抗原結合断片”または“結合断片”が含まれ、
本明細書で用いられる際、それはC.ディフィシルの毒素(例えば毒素A)に特異的に結
合する抗体の部分を指す。その結合断片は、例えば、1個以上の免疫グロブリン鎖が完全
長ではないが毒素に特異的に結合する分子である。
抗体の“結合断片”という用語の範囲内に含まれる結合部分の例には、(i)VL、V
H、CLおよびCH1ドメインからなる一価の断片であるFab断片;(ii)ヒンジ領
域においてジスルフィド結合により連結された2個のFab断片を含む二価の断片である
F(ab’)断片;(iii)VHおよびCH1ドメインからなるFd断片;(iv)
抗体の単一の腕のVLおよびVHドメインからなるFv断片、(v)VHドメインからな
るdAb断片(Ward et al., Nature 341:544-546, 1989);ならびに(vi)特異的に
結合するために十分な枠組みを有する単離された相補性決定領域(CDR)、例えば可変
領域の抗原結合部分が含まれる。
軽鎖可変領域の結合断片および重鎖可変領域の結合断片、例えばFv断片の2個のドメ
インであるVLおよびVHは、組み換え的方法を用いて、それらが単一のタンパク質鎖と
して作られることを可能にする合成リンカーにより連結することができ、ここでそのVL
およびVH領域は対になって一価の分子を形成する(単鎖Fv(scFv)として知られ
る;例えばBird et al. (1988) Science 242:423-426;およびHuston et al. (1988) Proc
. Natl. Acad. Sci. USA 85:5879-5883を参照)。そのような単鎖抗体も、抗体の“結合
断片”という用語の範囲内に含まれる。これらの抗体部分は当該技術で既知の技法を用い
て得られ、その部分は完全な抗体と同じ方法で有用性に関してスクリーニングされる。
本明細書で用いられる際、特定のポリペプチドまたは特定のポリペプチド上のエピトー
プに“特異的に結合する”、またはそれに“特異的である”抗体は、その特定のポリペプ
チドまたは特定のポリペプチド上のエピトープに、いずれの他のポリペプチドまたはポリ
ペプチドエピトープにも実質的に結合することなく結合する抗体である。例えば、標的に
“特異的に結合する”生体分子(例えばタンパク質、核酸、抗体等)に言及する際、その
生体分子は、指定された条件(例えば抗体の場合は免疫アッセイ条件)下で測定した際に
、その標的が含まれる不均質な分子の集団中でその標的分子に結合し、且つ他の分子には
有意な量では結合しない。その抗体およびその標的の間の結合反応は、不均質な分子の集
団中のその標的の存在の決定的なものである。例えば、“特異的結合”または“特異的に
結合する”は、C.ディフィシルの野生型および/または変異体毒素に対して非特異的抗
原に関するその親和性よりも少なくとも2倍大きい親和性で結合する抗体またはその結合
断片の能力を指す。
典型的な態様において、その抗体はキメラ抗体である。キメラ抗体は、当該技術で既知
の組み換えDNA技法により生成することができる。例えば、マウス(または他の種の)
モノクローナル抗体分子のFc定常領域をコードする遺伝子を制限酵素で消化してそのマ
ウスのFcをコードする領域を除去し、ヒトのFc定常領域をコードする遺伝子の均等な
部分で置き換えることができる。キメラ抗体は組み換えDNA技法により作成することも
でき、ここでマウスの可変領域をコードするDNAをヒトの定常領域をコードするDNA
にライゲーションすることができる。
別の典型的な態様において、その抗体またはその結合断片は、当該技術で既知の方法に
よりヒト化される。例えば、一度マウスの抗体を得たら、その抗体のCDRをヒトのCD
Rの少なくとも一部で置き換えることができる。ヒト化抗体は、抗原結合に直接関わって
いないマウスのFv可変領域の配列をヒトのFv可変領域からの均等な配列で置き換える
ことにより生成することもできる。ヒト化抗体を生成するための一般的な方法は当該技術
で既知である。
例えば、C.ディフィシルTcdAまたはC.ディフィシルTcdBに対して向けられ
たモノクローナル抗体は、標準的な技法、例えばハイブリドーマ技法により生成すること
もできる(例えばKohler and Milstein, 1975, Nature, 256: 495-497を参照)。簡潔に
は、不死の細胞株をC.ディフィシルTcdA、C.ディフィシルTcdB、または本明
細書で記述される変異体C.ディフィシル毒素で免疫した哺乳類からのリンパ球と融合さ
せ、結果として得られたハイブリドーマ細胞の培養上清をスクリーニングして、C.ディ
フィシルTcdAまたはC.ディフィシルTcdBに結合するモノクローナル抗体を産生
するハイブリドーマを同定する。典型的には、その不死の細胞株は、そのリンパ球と同じ
哺乳類種に由来する。本発明のモノクローナル抗体を産生するハイブリドーマ細胞は、そ
のハイブリドーマの培養上清をELISAのようなアッセイを用いてC.ディフィシルT
cdAまたはC.ディフィシルTcdBに結合する抗体に関してスクリーニングするこに
より検出される。ヒトのハイブリドーマを類似の方法で調製することができる。
免疫処置および選択による抗体の生成に対する代替手段として、本発明の抗体は、C.
ディフィシルTcdA、C.ディフィシルTcdB、または本明細書で記述される変異体
C.ディフィシル毒素を用いて組み換え組み合わせ(combinatorial)免疫
グロブリンライブラリーをスクリーニングすることにより同定することもできる。その組
み換え抗体ライブラリーは、例えばscFvライブラリーまたはFabライブラリーであ
ってよい。さらに、本明細書で記述される本発明の抗体を競合結合試験において用いて追
加の抗TcdAまたは抗TcdB抗体およびその結合断片を同定することができる。例え
ば、追加の抗TcdAまたは抗TcdB抗体およびその結合断片は、ヒト抗体ライブラリ
ーをスクリーニングして競合結合アッセイにおいて本明細書で記述される本発明の抗体と
競合するそのライブラリー内の分子を同定することにより同定することができる。
加えて、本発明に含まれる抗体には、当該技術で既知のファージディスプレイ法を用い
ることにより生成することができる組み換え抗体が含まれる。ファージディスプレイ法で
は、ファージを用いてレパートリーまたは抗体ライブラリー(例えばヒトまたはマウス)
から発現される抗原結合ドメインを提示することができる。本明細書で記述される免疫原
(例えば変異体C.ディフィシル毒素)に結合する抗原結合ドメインを発現するファージ
を、例えば標識された抗原を用いて選択または同定することができる。
特定のアミノ酸が置換されている、欠失している、または付加されている抗体およびそ
の結合断片も、本発明の範囲内である。特に、好ましい抗体はフレームワーク領域中に、
例えば抗原への結合を向上させるようなアミノ酸置換を有する。例えば、その免疫グロブ
リン鎖の選択された少数の受容者のフレームワーク残基を対応する供与者のアミノ酸で置
き換えることができる。その置換の好ましい位置には、CDRに隣接する、またはCDR
と相互作用することができるアミノ酸残基が含まれる。供与者からのアミノ酸の選択に関
する基準が米国特許第5,585,089号(例えば段12〜16)において記述されて
いる。その受容者のフレームワークは、成熟したヒト抗体のフレームワーク配列またはコ
ンセンサス配列であることができる。
本明細書で用いられる際、“中和抗体またはその結合断片”は、哺乳類において、およ
び/または細胞培養において、病原体(例えばC.ディフィシルTcdAまたはTcdB
)に結合してその病原体の感染性および/または活性をその中和抗体またはその結合断片
の非存在下での同一の条件下でのその病原体と比較して低減する(例えば細胞毒性を低減
する)それぞれの抗体またはその結合断片を指す。1態様において、その中和抗体または
その結合断片は、その中和抗体またはその結合断片の非存在下での同一の条件下でのその
病原体の生物学的活性と比較して、その病原体の生物学的活性の少なくとも約70%、7
5%、80%、85%、90%、95%、99%、またはより多くを中和することができ
る。
本明細書で用いられる際、用語“抗毒素抗体またはその結合断片”は、それぞれのC.
ディフィシル毒素(例えばC.ディフィシル毒素Aまたは毒素B)に結合する抗体または
その結合断片を指す。例えば、抗毒素A抗体またはその結合断片は、TcdAに結合する
抗体またはその結合断片を指す。
本明細書で記述される抗体またはその結合断片は、例えばマウス、ヒト、ウサギ、およ
びヤギが含まれる、野生型および/またはトランスジェニックのあらゆる動物において産
生させることができる。
上記で記述される免疫原性組成物が、以前に例えばワクチン接種のために集団に投与さ
れている免疫原性組成物である場合、その対象において生じた抗体応答を、同じ株からの
、およびその抗体の産生を刺激しなかった株からの毒素を中和するために用いることがで
きる。例えば、免疫原性組成物により生成される630株および様々な野生型C.ディフ
ィシル株からの毒素の間の交差反応性に関する試験を示す実施例37を参照。
1側面において、本発明は、C.ディフィシルTcdAに特異的な抗体またはその結合
断片に関する。TcdAに特異的に結合するモノクローナル抗体には、A65−33;A
60−22;A80−29および/または、好ましくはA3−25が含まれる。
1側面において、本発明は、あらゆる野生型C.ディフィシル株、例えば上記で記述さ
れた野生型C.ディフィシル株からのTcdAに、例えばSEQ ID NO:1に特異
的な抗体またはその結合断片に関する。別の側面において、本発明は、上記で記述された
免疫原性組成物に特異的な抗体またはその結合断片に関する。例えば、1態様において、
その抗体またはその結合断片は、SEQ ID NO:4またはSEQ ID NO:7
が含まれる免疫原性組成物に特異的である。別の態様において、その抗体またはその結合
断片はSEQ ID NO:4またはSEQ ID NO:7が含まれる免疫原性組成物
に特異的であり、ここでSEQ ID NO:4またはSEQ ID NO:7の少なく
とも1個のアミノ酸はホルムアルデヒド、EDC、NHS、またはEDCおよびNHSの
組み合わせにより架橋されている。別の態様において、その抗体またはその結合断片は、
SEQ ID NO:84またはSEQ ID NO:83が含まれる免疫原性組成物に
特異的である。
A65−33;A60−22;A80−29および/または、好ましくはA3−25の
可変重鎖および軽鎖領域に対して少なくとも約90%、91%、92%、93%、94%
、95%、96%、97%、好ましくは約98%、より好ましくは約99%、または最も
好ましくは約100%同一である可変重鎖および可変軽鎖領域を有する抗体またはその結
合断片も、TcdAに結合することができる。
1態様において、その抗体またはその抗原結合断片には、SEQ ID NO:37で
示されるようなA3−25の可変重鎖領域のアミノ酸配列に対して少なくとも約60%、
65%、70%、75%、80%、85%、86%、87%、88%、89%、90%、
91%、92%、93%、94%、95%、96%、97%、98%、99%、または1
00%同一であるアミノ酸配列が含まれる可変重鎖領域が含まれる。
別の態様において、その抗体またはその抗原結合断片には、SEQ ID NO:36
で示されるようなA3−25の可変軽鎖領域のアミノ酸配列に対して少なくとも約60%
、65%、70%、75%、80%、85%、86%、87%、88%、89%、90%
、91%、92%、93%、94%、95%、96%、97%、98%、99%、または
100%同一であるアミノ酸配列が含まれる可変軽鎖領域が含まれる。
さらに別の側面において、その抗体またはその抗原結合断片には、SEQ ID NO
:37で示される可変重鎖領域のアミノ酸配列に対して少なくとも約60%、65%、7
0%、75%、80%、85%、86%、87%、88%、89%、90%、91%、9
2%、93%、94%、95%、96%、97%、98%、99%、または100%同一
であるアミノ酸配列が含まれる可変重鎖領域、およびSEQ ID NO:36で示され
る可変軽鎖領域のアミノ酸配列に対して少なくとも約60%、65%、70%、75%、
80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、
94%、95%、96%、97%、98%、99%、または100%同一であるアミノ酸
配列が含まれる可変軽鎖領域が含まれる。
別の態様において、A65−33;A60−22;A80−29および/または、好ま
しくはA3−25の可変重鎖および/または可変軽鎖の相補性決定領域(CDR)を有す
る抗体またはその結合断片は、TcdAにも結合することができる。A3−25の可変重
鎖領域のCDRを下記の表4において示す。
Figure 2017125030
A3−25の可変軽鎖領域のCDRを下記の表5において示す。
Figure 2017125030
1態様において、その抗体またはその結合断片には、SEQ ID NO:41(CD
R H1)、42(CDR H2)および43(CDR H3)で示されるような重鎖相
補性決定領域(CDR)のアミノ酸配列、および/またはSEQ ID NO:38(C
DR L1)、39(CDR L2)および40(CDR L3)で示されるような軽鎖
CDRのアミノ酸配列が含まれる。
1つの典型的な態様において、C.ディフィシル毒素Aに特異的な抗体またはその結合
断片は、TcdAのN末端領域内のエピトープ、例えばSEQ ID NO:1の番号付
けに従うTcdAのアミノ酸1〜1256のエピトープに特異的に結合する。
好ましい態様において、C.ディフィシル毒素Aに特異的な抗体またはその結合断片は
、毒素AのC末端領域内のエピトープ、例えばSEQ ID NO:1の番号付けに従う
TcdAのアミノ酸1832〜2710のエピトープに特異的に結合する。例にはA3−
25;A65−33;A60−22;A80−29が含まれる。
さらに別の態様において、C.ディフィシル毒素Aに特異的な抗体またはその結合断片
はC.ディフィシル毒素Aの“移行”領域内のエピトープ、例えば好ましくはSEQ I
D NO:1の番号付けに従うTcdAの残基956〜1128が含まれるエピトープ、
例えばSEQ ID NO:1の番号付けに従うTcdAのアミノ酸659〜1832の
エピトープに特異的に結合する。
別の側面において、本発明は、C.ディフィシルTcdBに特異的な抗体またはその結
合断片に関する。例えば、その抗体またはその結合断片は、あらゆる野生型C.ディフィ
シル株、例えば上記で記述された野生型C.ディフィシル株からのTcdBに、例えばS
EQ ID NO:2に特異的であってよい。別の側面において、本発明は、上記で記述
された免疫原性組成物に特異的な抗体またはその結合断片に関する。例えば、1態様にお
いて、その抗体またはその結合断片は、SEQ ID NO:6またはSEQ ID N
O:8が含まれる免疫原性組成物に特異的である。
別の態様において、その抗体またはその結合断片はSEQ ID NO:6またはSE
Q ID NO:8が含まれる免疫原性組成物に特異的であり、ここでSEQ ID N
O:6またはSEQ ID NO:8の少なくとも1個のアミノ酸はホルムアルデヒド、
EDC、NHS、またはEDCおよびNHSの組み合わせにより架橋されている。別の態
様において、その抗体またはその結合断片は、SEQ ID NO:86またはSEQ
ID NO:85が含まれる免疫原性組成物に特異的である。
TcdBに特異的に結合するモノクローナル抗体には、本明細書で記述されるB2−3
1;B5−40、B70−2;B6−30;B9−30;B59−3;B60−2;B5
6−6;および/または、好ましくはB8−26クローンにより産生される抗体が含まれ
る。
TcdBにも結合することができる抗体またはその結合断片には、B2−31;B5−
40、B70−2;B6−30;B9−30;B59−3;B60−2;B56−6、好
ましくはB8−26、B59−3、および/またはB9−30の可変重および軽鎖領域に
対して少なくとも約90%、91%、92%、93%、94%、95%、96%、97%
、好ましくは約98%、より好ましくは約99%、または最も好ましくは約100%同一
である可変重鎖および可変軽鎖領域を有する抗体またはその結合断片が含まれる。
1態様において、その抗体またはその抗原結合断片には、SEQ ID NO:49で
示されるようなA3−25の可変重鎖領域のアミノ酸配列に対して少なくとも約60%、
65%、70%、75%、80%、85%、86%、87%、88%、89%、90%、
91%、92%、93%、94%、95%、96%、97%、98%、99%、または1
00%同一であるアミノ酸配列が含まれる可変重鎖領域が含まれる。
1態様において、その抗体またはその抗原結合断片には、SEQ ID NO:60で
示されるようなA3−25の可変重鎖領域のアミノ酸配列に対して少なくとも約60%、
65%、70%、75%、80%、85%、86%、87%、88%、89%、90%、
91%、92%、93%、94%、95%、96%、97%、98%、99%、または1
00%同一であるアミノ酸配列が含まれる可変重鎖領域が含まれる。
1態様において、その抗体またはその抗原結合断片には、SEQ ID NO:71で
示されるようなA3−25の可変重鎖領域のアミノ酸配列に対して少なくとも約60%、
65%、70%、75%、80%、85%、86%、87%、88%、89%、90%、
91%、92%、93%、94%、95%、96%、97%、98%、99%、または1
00%同一であるアミノ酸配列が含まれる可変重鎖領域が含まれる。
別の態様において、その抗体またはその抗原結合断片には、SEQ ID NO:55
で示されるようなA3−25の可変軽鎖領域のアミノ酸配列に対して少なくとも約60%
、65%、70%、75%、80%、85%、86%、87%、88%、89%、90%
、91%、92%、93%、94%、95%、96%、97%、98%、99%、または
100%同一であるアミノ酸配列が含まれる可変軽鎖領域が含まれる。
別の態様において、その抗体またはその抗原結合断片には、SEQ ID NO:66
で示されるようなA3−25の可変軽鎖領域のアミノ酸配列に対して少なくとも約60%
、65%、70%、75%、80%、85%、86%、87%、88%、89%、90%
、91%、92%、93%、94%、95%、96%、97%、98%、99%、または
100%同一であるアミノ酸配列が含まれる可変軽鎖領域が含まれる。
別の態様において、その抗体またはその抗原結合断片には、SEQ ID NO:77
で示されるようなA3−25の可変軽鎖領域のアミノ酸配列に対して少なくとも約60%
、65%、70%、75%、80%、85%、86%、87%、88%、89%、90%
、91%、92%、93%、94%、95%、96%、97%、98%、99%、または
100%同一であるアミノ酸配列が含まれる可変軽鎖領域が含まれる。
C.ディフィシルTcdBの中和抗体(B8−26 mAb)の可変重鎖に関するアミ
ノ酸配列がSEQ ID NO:49において示されている。表25−a参照。
Figure 2017125030
C.ディフィシルTcdBの中和抗体(B8−26 mAb)の可変軽鎖に関するアミ
ノ酸配列がSEQ ID NO:55において示されている。表25−b参照。
Figure 2017125030
1態様において、その抗体またはその結合断片には、SEQ ID NO:51(CD
R H1)、52(CDR H2)および53(CDR H3)において示されるような
重鎖CDRのアミノ酸配列および/またはSEQ ID NO:57(CDR L1)、
58(CDR L2)および59(CDR L3)において示されるような軽鎖CDRの
アミノ酸配列が含まれる。
C.ディフィシルTcdBの中和抗体(B59−3 mAb)の可変重鎖に関するアミ
ノ酸配列がSEQ ID NO:60において示されている。表26−a参照。
Figure 2017125030
C.ディフィシルTcdBの中和抗体(B59−3 mAb)の可変軽鎖に関するアミ
ノ酸配列がSEQ ID NO:66において示されている。表26−b参照。
Figure 2017125030
1態様において、その抗体またはその結合断片には、SEQ ID NO:62(CD
R H1)、63(CDR H2)および64(CDR H3)において示されるような
重鎖CDRのアミノ酸配列および/またはSEQ ID NO:68(CDR L1)、
69(CDR L2)および70(CDR L3)において示されるような軽鎖CDRの
アミノ酸配列が含まれる。
C.ディフィシルTcdBの中和抗体(B9−30 mAb)の可変重鎖に関するアミ
ノ酸配列がSEQ ID NO:71において示されている。表27−a参照。
Figure 2017125030
C.ディフィシルTcdBの中和抗体(B9−30 mAb)の可変軽鎖に関するアミ
ノ酸配列がSEQ ID NO:77において示されている。表27−b参照。
Figure 2017125030
1態様において、その抗体またはその結合断片には、SEQ ID NO:73(CD
R H1)、74(CDR H2)および75(CDR H3)において示されるような
重鎖CDRのアミノ酸配列および/またはSEQ ID NO:79(CDR L1)、
80(CDR L2)および81(CDR L3)において示されるような軽鎖CDRの
アミノ酸配列が含まれる。
1側面において、本発明は、あらゆるC.ディフィシル株、例えば上記で記述されたC
.ディフィシル株からの野生型C.ディフィシルTcdBに、例えばSEQ ID NO
:2に特異的な抗体またはその結合断片に関する。別の側面において、本発明は、上記で
記述された免疫原性組成物に特異的な抗体またはその結合断片に関する。例えば、1態様
において、その抗体またはその結合断片は、SEQ ID NO:6またはSEQ ID
NO:8が含まれる免疫原性組成物に特異的である。別の態様において、その抗体また
はその結合断片はSEQ ID NO:6またはSEQ ID NO:8が含まれる免疫
原性組成物に特異的であり、ここでSEQ ID NO:6またはSEQ ID NO:
8の少なくとも1個のアミノ酸はホルムアルデヒド、EDC、NHS、またはEDCおよ
びNHSの組み合わせにより架橋されている。
B2−31;B5−40、B70−2;B6−30;B9−30;B59−3;B60
−2;B56−6;および/または、好ましくはB8−26の可変重および軽鎖領域に対
して少なくとも約90%、91%、92%、93%、94%、95%、96%、97%、
好ましくは約98%、より好ましくは約99%、または最も好ましくは約100%同一で
ある可変重鎖および可変軽鎖領域を有する抗体またはその結合断片も、TcdBに結合す
ることができる。
1態様において、その抗体またはその抗原結合断片には、B8−26の可変重鎖領域の
アミノ酸配列(SEQ ID NO:49)に対して少なくとも約60%、65%、70
%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92
%、93%、94%、95%、96%、97%、98%、99%、または100%同一で
あるアミノ酸配列が含まれる可変重鎖領域が含まれる。
別の態様において、その抗体またはその抗原結合断片には、B8−26の可変軽鎖領域
のアミノ酸配列(SEQ ID NO:55)に対して少なくとも約60%、65%、7
0%、75%、80%、85%、86%、87%、88%、89%、90%、91%、9
2%、93%、94%、95%、96%、97%、98%、99%、または100%同一
であるアミノ酸配列が含まれる可変軽鎖領域が含まれる。
さらに別の側面において、その抗体またはその抗原結合断片には、B8−26の可変重
鎖領域のアミノ酸配列(SEQ ID NO:49)に対して少なくとも約60%、65
%、70%、75%、80%、85%、86%、87%、88%、89%、90%、91
%、92%、93%、94%、95%、96%、97%、98%、99%、または100
%同一であるアミノ酸配列が含まれる可変重鎖領域およびB8−26の可変軽鎖領域のア
ミノ酸配列(SEQ ID NO:55)に対して少なくとも約60%、65%、70%
、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%
、93%、94%、95%、96%、97%、98%、99%、または100%同一であ
るアミノ酸配列が含まれる可変軽鎖領域が含まれる。
別の態様において、B2−31;B5−40、B70−2;B6−30;B9−30;
B59−3;B60−2;B56−6;および/または、好ましくはB8−26の可変重
鎖および/または可変軽鎖のCDRを有する抗体またはその結合断片も、TcdBに結合
することができる。
1態様において、その抗体またはその結合断片には、B8−26の重鎖相補性決定領域
(CDR)のアミノ酸配列および/またはB8−26の軽鎖CDRのアミノ酸配列が含ま
れる。
好ましい態様において、C.ディフィシル毒素Bに特異的な抗体またはその結合断片は
、毒素BのN末端領域内のエピトープ、例えばSEQ ID NO:2の番号付けに従う
TcdBのアミノ酸1〜1256のエピトープに特異的に結合する。例にはB2−31;
B5−40;B8−26;B70−2;B6−30;およびB9−30が含まれる。
典型的な態様において、C.ディフィシル毒素Bに特異的な抗体またはその結合断片は
、毒素BのC末端領域内のエピトープ、例えばSEQ ID NO:2の番号付けに従う
TcdBのアミノ酸1832〜2710のエピトープに特異的に結合する。
さらに別の態様において、C.ディフィシル毒素Bに特異的な抗体またはその結合断片
はC.ディフィシル毒素Bの“移行”領域内のエピトープ、例えば好ましくはSEQ I
D NO:2の番号付けに従うTcdBの残基956〜1128が含まれるエピトープ、
例えばTcdBのアミノ酸659〜1832のエピトープに特異的に結合する。例にはB
59−3;B60−2;およびB56−6が含まれる。
抗体の組み合わせ
その抗毒素抗体またはその結合断片は、他の抗C.ディフィシル毒素抗体(例えば他の
モノクローナル抗体、ポリクローナルガンマグロブリン)またはその結合断片との組み合
わせで投与することができる。用いることができる組み合わせには、抗毒素A抗体または
その結合断片および抗毒素B抗体またはその結合断片が含まれる。
別の態様において、組み合わせには抗毒素A抗体またはその結合断片および別の抗毒素
A抗体またはその結合断片が含まれる。好ましくは、その組み合わせには中和性抗毒素A
モノクローナル抗体またはその結合断片および別の中和性抗毒素Aモノクローナル抗体ま
たはその結合断片が含まれる。驚くべきことに、本発明者らは、そのような組み合わせは
結果として毒素Aの細胞毒性の中和において相乗作用をもたらすことを発見した。例えば
、その組み合わせには、以下の中和性抗毒素Aモノクローナル抗体:A3−25;A65
−33;A60−22;およびA80−29の少なくとも2種類の組み合わせが含まれる
。より好ましくは、その組み合わせにはA3−25抗体ならびに以下の中和性抗毒素Aモ
ノクローナル抗体:A65−33;A60−22;およびA80−29の少なくとも1種
類が含まれる。最も好ましくは、その組み合わせには4種類の抗体:A3−25;A65
−33;A60−22;およびA80−29の全てが含まれる。
さらなる態様において、組み合わせには抗毒素B抗体またはその結合断片および別の抗
毒素B抗体またはその結合断片が含まれる。好ましくは、その組み合わせには中和性抗毒
素Bモノクローナル抗体またはその結合断片および別の中和性抗毒素Bモノクローナル抗
体またはその結合断片が含まれる。驚くべきことに、本発明者らは、そのような組み合わ
せは結果として毒素Bの細胞毒性の中和において相乗作用をもたらすことを発見した。よ
り好ましくは、その組み合わせには以下の中和性抗毒素Bモノクローナル抗体:B8−2
6;B9−30およびB59−3の少なくとも2種類の組み合わせが含まれる。最も好ま
しくは、その組み合わせには3種類の抗体:B8−26;B9−30およびB59−3の
全てが含まれる。
さらに別の態様において、組み合わせには抗毒素B抗体またはその結合断片および別の
抗毒素B抗体またはその結合断片が含まれる。前に述べたように、本発明者らは、中和性
モノクローナル抗体の少なくとも2種類の組み合わせは意外にも毒素Aおよび毒素Bのそ
れぞれの中和において相乗作用を示し得ることを発見した。
別の態様において、本発明の薬剤は混合物として配合することができ、またはそれによ
り結果として抗毒素Aおよび抗毒素B結合特性の両方を有する共有結合的に連結された抗
体(または共有結合的に連結された抗体断片)がもたらされる当該技術で認識されている
技法を用いて化学的もしくは遺伝学的に連結することができる。その組み合わせ配合は、
その薬剤の単独または別の薬剤との組み合わせでの親和性、結合活性、または生物学的有
効性のような1個以上のパラメーターの決定により導かれてよい。
そのような併用療法は、好ましくは、例えばC.ディフィシル関連疾患または障害の抑
制、(例えば再発の)予防、および/または処置におけるそれらの療法的活性において相
加的および/または相乗的である。そのような併用療法を施すことは、所望の作用を達成
するために必要なその療法剤(例えば抗体もしくは抗体断片の混合物、または架橋された
、もしくは遺伝学的に融合した二重特異性抗体もしくは抗体断片)の投与量を減少させる
ことができる。
本発明の組成物、例えば抗毒素Aおよび/または抗毒素B抗体またはそれらの結合断片
のいずれも、療法的作用に関して異なる比率または量で組み合わせることができることが
理解されている。例えば、その抗毒素Aおよび抗毒素B抗体またはそれらのそれぞれの結
合断片は、組成物中に0.1:10〜10:0.1、A:Bの範囲の比率で存在すること
ができる。別の態様において、その抗毒素Aおよび抗毒素B抗体またはそれらのそれぞれ
の結合断片は、組成物中に0.1:10〜10:0.1、B:Aの範囲の比率で存在する
ことができる。
別の側面において、本発明は、C.ディフィシルTcdAに対する中和抗体を生成する
方法に関する。その方法には、上記で記述したような免疫原性組成物を哺乳類に投与し、
その哺乳類から抗体を回収することが含まれる。好ましい態様において、その免疫原性組
成物にはSEQ ID NO:4を有する変異体C.ディフィシルTcdAが含まれ、こ
こでその変異体C.ディフィシルTcdAの少なくとも1個のアミノ酸は、好ましくはホ
ルムアルデヒドまたは1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド
により化学的に架橋されている。生成することができるTcdAに対する典型的な中和抗
体には、A65−33;A60−22;A80−29および/またはA3−25が含まれ
る。
さらに別の側面において、本発明は、C.ディフィシルTcdBに対する中和抗体を生成
する方法に関する。その方法には、上記で記述したような免疫原性組成物を哺乳類に投与
し、その哺乳類から抗体を回収することが含まれる。好ましい態様において、その免疫原
性組成物にはSEQ ID NO:6を有する変異体C.ディフィシルTcdBが含まれ
、ここでその変異体C.ディフィシルTcdBの少なくとも1個のアミノ酸は、好ましく
はホルムアルデヒドまたは1−エチル−3−(3−ジメチルアミノプロピル)カルボジイ
ミドにより化学的に架橋されている。生成することができるTcdBに対する典型的な中
和抗体には、B2−31;B5−40、B70−2;B6−30;B9−30;B59−
3;B60−2;B56−6;および/またはB8−26が含まれる。
配合物
(例えば本明細書で記述される変異体C.ディフィシル毒素、免疫原性組成物、抗体お
よび/またはその抗体結合断片が含まれる組成物のような)本発明の組成物は、様々な形
態であってよい。これらには、例えば半固体および固体剤形、坐剤、液体形態、例えば液
体溶液(例えば注射可能な溶液および不融性の(infusible)溶液)、分散液ま
たは懸濁液、リポソーム類、および/または例えば凍結乾燥された(lyophiliz
ed)粉末の形態、凍結乾燥された(freeze−dried)形態、噴霧乾燥された
形態、および/または発泡乾燥された(foam−dried)形態のような乾燥した形
態が含まれる。座剤に関して、結合剤およびキャリヤーには例えばポリアルキレングリコ
ール類またはトリグリセリド類が含まれ、そのような座剤は本発明の組成物を含有する混
合物から形成することができる。典型的な態様において、その組成物は注射前の液体のビ
ヒクル中での溶解または懸濁に適した形態である。別の典型的な態様において、その組成
物はリポソームまたは微粒子、例えばポリラクチド、ポリグリコライド(polygly
colide)、またはコポリマー中で乳化または封入されている(encapsula
ted)。
好ましい態様において、その組成物は凍結乾燥されており、使用前にその場で再構成さ
れる。
1側面において、本発明は、薬学的に許容可能なキャリヤーと一緒に配合された、(例
えば本明細書で記述される変異体C.ディフィシル毒素、免疫原性組成物、抗体および/
またはその抗体結合断片が含まれる組成物のような)本明細書で記述される組成物のいず
れかが含まれる医薬組成物に関する。“薬学的に許容可能なキャリヤー”には、生理的に
適切であるあらゆる溶媒、分散媒、安定剤、希釈剤、および/または緩衝剤が含まれる。
典型的な安定剤には、炭水化物、例えばソルビトール、マンニトール、デンプン、デキ
ストラン、スクロース、トレハロース、ラクトース、および/またはグルコース;不活性
なタンパク質、例えばアルブミンおよび/またはカゼイン;および/または他の大きなゆ
っくりと代謝される高分子、例えば多糖類、例えばキトサン、ポリ乳酸、ポリグリコール
酸およびコポリマー(例えばラテックスで官能性を持たせたSEPHAROSE(商標)
アガロース、アガロース、セルロース等)、アミノ酸、重合体性アミノ酸、アミノ酸コポ
リマー、ならびに脂質凝集体(例えば油滴またはリポソーム)が含まれる。加えて、これ
らのキャリヤーは免疫刺激剤(すなわちアジュバント)として機能することができる。
好ましくは、その組成物にはトレハロースが含まれる。トレハロースの好ましい量(重
量%)には、約1%、2%、3%、または4%の最小値から約10%、9%、8%、7%
、6%、または5%の最大値までが含まれる。あらゆる最小値をあらゆる最大値と組み合
わせて適切な範囲を定めることができる。1態様において、その組成物には、例えば0.
5mLの用量あたり約3%〜6%のトレハロース、最も好ましくは4.5%のトレハロー
スが含まれる。
適切な希釈剤の例には、蒸留水、生理食塩水、生理的リン酸緩衝生理食塩水、グリセロ
ール、アルコール(例えばエタノール)、リンガー溶液、デキストロース溶液、ハンクス
平衡塩類溶液、および/または凍結乾燥賦形剤が含まれる。
典型的な緩衝剤には、リン酸塩(例えばリン酸カリウム、リン酸ナトリウム);酢酸塩
(例えば酢酸ナトリウム);コハク酸塩(例えばコハク酸ナトリウム);グリシン;ヒス
チジン;炭酸塩、トリス(トリス(ヒドロキシメチル)アミノメタン)、および/または
重炭酸塩(例えば重炭酸アンモニウム)緩衝剤が含まれる。好ましくは、その組成物には
トリス緩衝剤が含まれる。トリス緩衝剤の好ましい量には、約1mM、5mM、6mM、
7mM、8mM、9mM、10mMの最小値から約100mM、50mM、20mM,1
9mM、18mM、17mM、16mM、15mM、14mM、13mM、12mM、ま
たは11mMの最大値までが含まれる。あらゆる最小値をあらゆる最大値と組み合わせて
適切な範囲を定めることができる。1態様において、その組成物には、例えば0.5mL
の用量あたり約8mM〜12mMのトリス緩衝剤、最も好ましくは10mMのトリス緩衝
剤が含まれる。
別の好ましい態様において、その組成物にはヒスチジン緩衝剤が含まれる。ヒスチジン
緩衝剤の好ましい量には、約1mM、5mM、6mM、7mM、8mM、9mM、10m
Mの最小値から約100mM、50mM、20mM,19mM、18mM、17mM、1
6mM、15mM、14mM、13mM、12mM、または11mMの最大値までが含ま
れる。あらゆる最小値をあらゆる最大値と組み合わせて適切な範囲を定めることができる
。1態様において、その組成物には、例えば0.5mLの用量あたり約8mM〜12mM
のヒスチジン緩衝剤、最も好ましくは10mMのヒスチジン緩衝剤が含まれる。
別の好ましい態様において、その組成物にはリン酸緩衝剤が含まれる。リン酸緩衝剤の
好ましい量には、約1mM、5mM、6mM、7mM、8mM、9mM、10mMの最小
値から約100mM、50mM、20mM,19mM、18mM、17mM、16mM、
15mM、14mM、13mM、12mM、または11mMの最大値までが含まれる。あ
らゆる最小値をあらゆる最大値と組み合わせて適切な範囲を定めることができる。1態様
において、その組成物には、例えば0.5mLの用量あたり約8mM〜12mMのリン酸
緩衝剤、最も好ましくは10mMのリン酸緩衝剤が含まれる。
その緩衝剤のpHは一般に、選択される有効物質を安定化するように選択されると考え
られ、当業者はそれを既知の方法により確かめることができる。好ましくは、その緩衝剤
のpHは生理的pHの範囲内であろう。従って、好ましいpHの範囲は約3から約8まで
、より好ましくは約6.0から約8.0まで;さらにもっと好ましくは約6.5から約7
.5まで;そして最も好ましくは約7.0〜約7.2である。
一部の態様において、その医薬組成物には界面活性剤が含まれていてよい。それが両性
、非イオン性、陽イオン性または陰イオン性であれ、あらゆる界面活性剤が適切である。
典型的な界面活性剤には、ポリオキシエチレンソルビタンエステル類界面活性剤(例えば
TWEEN(登録商標))、例えばポリソルベート20および/またはポリソルベート8
0;ラウリル、セチル、ステアリルおよびオレイルアルコール類に由来するポリオキシエ
チレン脂肪エーテル類(Brij界面活性剤として知られる)、例えばトリエチレングリ
コールモノラウリルエーテル(Brij30);トリトンX 100、またはt−オクチ
ルフェノキシポリエトキシエタノール;ならびにソルビタンエステル類(一般にSPAN
類として知られる)、例えばソルビタントリオレエート(Span85)およびソルビタ
ンモノラウレート、ならびにそれらの組み合わせが含まれる。好ましい界面活性剤にはポ
リソルベート80(ポリオキシエチレンソルビタンモノオレエート)が含まれる。
ポリソルベート80の好ましい量(重量%)には、約0.001%、0.005%、ま
たは0.01%の最小値から約0.010%、0.015%、0.025%、または1.
0%の最大値までが含まれる。あらゆる最小値をあらゆる最大値と組み合わせて適切な範
囲を定めることができる。1態様において、その組成物には約0.005%〜0.001
5%のポリソルベート80、最も好ましくは0.01%のポリソルベート80が含まれる
典型的な態様において、その免疫原性組成物にはトレハロースおよびホスフェート80
が含まれる。別の典型的な態様において、その免疫原性組成物にはトリス緩衝剤およびポ
リソルベート80が含まれる。別の典型的な態様において、その免疫原性組成物にはヒス
チジン緩衝剤およびポリソルベート80が含まれる。さらに別の典型的な態様において、
その免疫原性組成物にはリン酸緩衝剤およびポリソルベート80が含まれる。
1つの典型的な態様において、その免疫原性組成物にはトレハロース、トリス緩衝剤お
よびポリソルベート80が含まれる。別の典型的な態様において、その免疫原性組成物に
はトレハロース、ヒスチジン緩衝剤およびポリソルベート80が含まれる。さらに別の典
型的な態様において、その免疫原性組成物にはトレハロース、リン酸緩衝剤およびポリソ
ルベート80が含まれる。
本明細書で記述される組成物には、さらに石油、動物、植物、または合成由来の構成要
素、例えば落花生油、大豆油、および/または鉱油が含まれていてよい。例には、プロピ
レングリコールまたはポリエチレングリコールのようなグリコール類が含まれる。
一部の態様において、その医薬組成物にはさらにホルムアルデヒドが含まれる。例えば
、好ましい態様において、さらにホルムアルデヒドが含まれる医薬組成物は免疫原性組成
物を有し、ここでその免疫原性組成物の変異体C.ディフィシル毒素はホルムアルデヒド
が含まれる化学的架橋剤と接触させてある。その医薬組成物中に存在するホルムアルデヒ
ドの量は、約0.001%、0.002%、0.003%、0.004%、0.005%
、0.006%、0.007%、0.008%、0.009%、0.010%、0.01
3%、または0.015%の最小値から約0.020%、0.019%、0.018%、
0.017%、0.016%、0.015%、0.014%、0.013%、0.012
%、0.011%または0.010%の最大値まで様々であってよい。あらゆる最小値を
あらゆる最大値と組み合わせて適切な範囲を定めることができる。1態様において、その
医薬組成物には約0.010%ホルムアルデヒドが含まれる。
一部の代わりの態様において、本明細書で記述される医薬組成物にはホルムアルデヒド
が含まれない。例えば、好ましい態様において、ホルムアルデヒドが含まれない医薬組成
物は免疫原性組成物を有し、ここでその変異体C.ディフィシル毒素の少なくとも1個の
アミノ酸はEDCが含まれる薬剤により化学的に架橋されている。より好ましくは、その
ような態様において、その変異体C.ディフィシル毒素はホルムアルデヒドが含まれる化
学的架橋剤と接触させていない。別の典型的な態様において、凍結乾燥された形態である
医薬組成物にはホルムアルデヒドは含まれない。
別の態様において、本明細書で記述される組成物には下記で記述されるようなアジュバ
ントが含まれていてよい。好ましいアジュバントは、免疫原への内因性免疫応答を、その
免疫応答の質的形態に影響を及ぼし得るその免疫原における立体構造変化を引き起こすこ
となく増強する。
典型的なアジュバントには、3−O−脱アシル化モノホスホリルリピドA(MPL(商
標))(GB 2220211(GSK)参照);水酸化アルミニウムゲル、例えばAl
hydrogel(商標)(Brenntag Biosector、デンマーク);ア
ルミニウム塩類(例えば水酸化アルミニウム、リン酸アルミニウム、硫酸アルミニウム)
が含まれ、それは免疫刺激剤、例えばMPLまたは3−DMP、QS−21、重合体性ま
たは単量体性アミノ酸、例えばポリグルタミン酸またはポリリシンと共に、またはそれら
なしで用いることができる。
さらに別の典型的なアジュバントは、免疫刺激性オリゴヌクレオチド、例えばCpGオ
リゴヌクレオチド(例えば国際公開第1998/040100号、国際公開第2010/
067262号を参照)、またはサポニンおよび免疫刺激性オリゴヌクレオチド、例えば
CpGオリゴヌクレオチド(例えば国際公開第00/062800号を参照)である。好
ましい態様において、そのアジュバントはCpGオリゴヌクレオチド、最も好ましくはC
pGオリゴデオキシヌクレオチド(CpG ODN)である。好ましいCpG ODNは
、B細胞を優先的に活性化するBクラスのCpG ODNである。本発明の側面において
、そのCpG ODNは核酸配列5’ T
T 3’(SEQ ID NO: 48)を有し
、ここではホスホロチオエート結合を示す。この配列のCpG ODNはCpG 24
555として知られており、それは国際公開第2010/067262号において記述さ
れている。好ましい態様において、CpG 24555は水酸化アルミニウム塩、例えば
Alhydrogelと一緒に用いられる。
さらなるクラスの典型的なアジュバントには、サポニンアジュバント類、例えばSti
mulon(商標)(QS−21、それはトリテルペングリコシドまたはサポニンである
;Aquila、マサチューセッツ州フレーミングハム)またはそれから生成される粒子
、例えばISCOM類(免疫刺激複合体)およびISCOMATRIX(登録商標)アジ
ュバントが含まれる。従って、本発明の組成物は、ISCOM類、CTBを含有するIS
COMS、リポソームの形態で送達されてよく、またはアクリレート類もしくはポリ(D
L−ラクチド−コ−グリコシド)のような化合物中に封入されて吸着に適した大きさのマ
イクロスフィアを形成していてよい。典型的には、用語“ISCOM”は、グリコシド類
、例えばトリテルペノイドサポニン類(特にQuil A)、および疎水性領域を含有す
る抗原の間で形成された免疫原性複合体を指す。好ましい態様において、そのアジュバン
トはISCOMATRIXアジュバントである。
他の典型的なアジュバントには、RC−529、GM−CSFおよび完全フロイントア
ジュバント(CFA)および不完全フロイントアジュバント(IFA)が含まれる。
さらに別のクラスの典型的なアジュバントは、N−グリコシルアミド類、N−グリコシ
ル尿素類およびN−グリコシルカルバメート類が含まれる糖脂質類似体であり、そのそれ
ぞれが糖残基においてアミノ酸で置換されている。
場合により、その医薬組成物には2種類以上の異なるアジュバントが含まれる。アジュ
バントの好ましい組み合わせには、例えば以下のアジュバントの少なくとも2種類が含ま
れるアジュバントのあらゆる組み合わせが含まれる:ミョウバン、MPL、QS−21、
ISCOMATRIX、CpG、およびAlhydrogel。典型的なアジュバントの
組み合わせには、CpGおよびAlhydrogelの組み合わせが含まれる。
あるいは、1態様において、その組成物はその哺乳類にアジュバントの非存在下で投与
される。
本明細書で記述される組成物は、予防および/または療法的適用に関して、例えば非経
口、局所、静脈内、粘膜、経口、皮下、動脈内、頭蓋内、髄腔内、腹腔内、鼻腔内、筋内
、皮内、注入、直腸、および/または経皮経路のようなあらゆる投与経路により投与する
ことができる。好ましい態様において、その組成物の投与経路は非経口投与であり、より
好ましくは筋内投与である。典型的な筋内投与は腕または脚の筋肉において実施される。
本明細書で記述される組成物は、C.ディフィシル感染症の予防および/または処置に
おいて少なくとも部分的に有効である療法との組み合わせで投与することができる。例え
ば、本発明の組成物は、生物療法;生菌療法;便移植(stool implants)
;免疫療法(例えば静脈内免疫グロブリン);および/またはC.ディフィシル関連疾患
(CDAD)の抗生物質処置に関するケアの受け入れられている標準、例えばメトロニダ
ゾールおよびバンコマイシンの前に、それらと同時に、またはそれらの後に投与すること
ができる。
毒素Aおよび毒素Bに関する本発明の組成物は、その哺乳類にあらゆる組み合わせで投
与することができる。例えば、変異体C.ディフィシルTcdAが含まれる免疫原性組成
物は、その哺乳類に、変異体C.ディフィシルTcdBが含まれる免疫原性組成物の投与
の前に、それと同時に、またはその後に投与することができる。逆に、変異体C.ディフ
ィシルTcdBが含まれる免疫原性組成物は、その哺乳類に、変異体C.ディフィシルT
cdAが含まれる免疫原性組成物の投与の前に、それと同時に、またはその後に投与する
ことができる。
別の態様において、抗毒素A抗体またはその結合断片が含まれる組成物は、その哺乳類
に、抗毒素B抗体またはその結合断片が含まれる組成物の投与の前に、それと同時に、ま
たはその後に投与することができる。逆に、抗毒素B抗体またはその結合断片が含まれる
組成物は、その哺乳類に、抗毒素A抗体またはその結合断片が含まれる組成物の投与の前
に、それと同時に、またはその後に投与することができる。
さらなる態様において、本発明の組成物は、その哺乳類に、薬学的に許容可能なキャリ
ヤーの投与の前に、それと同時に、またはその後に投与することができる。例えば、アジ
ュバントは変異体C.ディフィシル毒素が含まれる組成物の投与の前に、それと同時に、
またはその後に投与することができる。従って、本発明の組成物および薬学的に許容可能
なキャリヤーは同じバイアル中に包装することができ、またはそれらを別々のバイアル中
に包装して使用前に混合することができる。その組成物は、1回量投与および/または多
数回用量投与(multiple dose administration)のために
配合することができる。
哺乳類においてC.ディフィシル感染を防御および/または処置する方法
1側面において、本発明は、哺乳類においてC.ディフィシル毒素に対する免疫応答を
誘導する方法に関する。その方法には、有効量の本明細書で記述される組成物をその哺乳
類に投与することが含まれる。例えば、その方法には、その哺乳類においてそれぞれのC
.ディフィシル毒素に対する免疫応答を生じさせるために有効な量を投与することが含ま
れてよい。
典型的な態様において、本発明は、哺乳類においてC.ディフィシルTcdAに対する
免疫応答を誘導する方法に関する。その方法には、有効量の変異体C.ディフィシルTc
dAが含まれる免疫原性組成物をその哺乳類に投与することが含まれる。別の典型的な態
様において、本発明は、哺乳類においてC.ディフィシルTcdBに対する免疫応答を誘
導する方法に関する。その方法には、有効量の変異体C.ディフィシルTcdBが含まれ
る免疫原性組成物をその哺乳類に投与することが含まれる。
さらなる態様において、その方法には、有効量の変異体C.ディフィシルTcdAが含
まれる免疫原性組成物および有効量の変異体C.ディフィシルTcdBが含まれる免疫原
性組成物をその哺乳類に投与することが含まれる。追加の側面において、本明細書で記述
される組成物は、哺乳類において、その組成物を投与されなかった哺乳類と比較して、C
.ディフィシル感染症、C.ディフィシル関連疾患、症候群、病気、症状、および/また
はそれらの合併症を処置する、予防する、それらの危険性を低下させる、それらの重症度
を低下させる、それらの発生率を低下させる、および/またはそれらの発症を遅らせるた
めに用いることができる。その方法には、有効量のその組成物をその哺乳類に投与するこ
とが含まれる。
感染の重症度に基づいて、C.ディフィシル感染により引き起こされる3種類の臨床症
候群が認められている。最も重度の形態は偽膜性大腸炎(PMC)であり、それは大量の
下痢、腹痛、疾患の全身的徴候、および結腸の特徴的な内視鏡的外観を特徴とする。
抗生物質関連大腸炎(AAC)も大量の下痢、腹痛および圧痛、全身的徴候(例えば発
熱)、ならびに白血球増加を特徴とする。AACにおける腸管損傷はPMCにおける腸管
損傷よりも重症度が低く、PMCにおける結腸の特徴的な内視鏡的外観は存在せず、死亡
率は低い。
最後に、抗生物質関連下痢(AAD、それはC.ディフィシル関連下痢(CDAD)と
しても知られている)は比較的軽度な症候群であり、軽度〜中程度の下痢を特徴とし、(
例えば腹痛および圧痛を特徴とするような)大きな腸の炎症および感染の全身的徴候(例
えば発熱)の両方を欠いている。
これらの3種類の別個の症候群は、典型的には順に増大する頻度で起こる。すなわち、
PMCは典型的にはAACより低い頻度で起こり、AADは典型的にはC.ディフィシル
疾患の最も頻繁な臨床像である。
C.ディフィシル感染症の頻繁な厄介な問題は疾患の再発または再燃であり、それはC
.ディフィシル疾患から回復した全ての患者の20%に至るまでにおいて起こる。再燃は
臨床的にAAD、AAC、またはPMCとみなすことができる。一度再燃した患者は、再
度再燃する可能性がより高い。
本明細書で用いられる際、C.ディフィシル感染症の状態には、例えば軽度、軽度〜中
程度、中程度、および重度のC.ディフィシル感染症が含まれる。C.ディフィシル感染
症の状態は、その感染症の症状の存在および/または重症度に依存して変動してよい。
C.ディフィシル感染症の症状には、例えば下痢;大腸炎;痙攣、発熱、便中の白血球
、および大腸生検における炎症を伴う大腸炎;偽膜性大腸炎;低アルブミン血症;全身水
腫;白血球増加;敗血症;腹痛;無症候性保菌;および/または合併症およびその感染症
の発現の間に存在する中間的な病理学的表現型、ならびにそれらの組み合わせ等のような
、生理的、生化学的、組織学的および/または行動学的症状が含まれ得る。従って、例え
ば、有効量の本明細書で記述される組成物の投与は、例えば、その組成物を投与されなか
った哺乳類と比較して、下痢;腹痛、痙攣、発熱、大腸生検における炎症、低アルブミン
血症、全身水腫、白血球増加、敗血症、および/または無症候性保菌等を処置する、予防
する、それらの危険性を低下させる、それらの重症度を低下させる、それらの発生率を低
下させる、および/またはそれらの発症を遅らせることができる。
C.ディフィシル感染症の危険因子には、例えば以下の危険因子が含まれ得る:現在ま
たは近い将来の抗微生物薬(例えば正常な結腸微生物叢の崩壊を引き起こす抗生物質、例
えばクリンダマイシン、セファロスポリン類、メトロニダゾール、バンコマイシン、フル
オロキノロン類(レボフロキサシン、モキシフロキサシン、ガチフロキサシン、およびシ
プロフロキサシンが含まれる)、リネゾリド等が含まれる、嫌気性細菌に対する抗細菌ス
ペクトルおよび/または活性を有するあらゆる抗微生物剤が含まれる)の使用;現在また
は近い将来の処方されたメトロニダゾールまたはバンコマイシンの退薬:現在または近い
将来の健康管理施設(例えば病院、長期療養施設等)および健康管理従事者への入院(a
dmission);現在または近い将来のプロトンポンプ阻害剤、H2拮抗薬、および
/またはメトトレキセート、またはそれらの組み合わせによる処置;現在の胃腸疾患、例
えば炎症性腸疾患、またはその危険性;その哺乳類に対する過去、現在または近い将来の
胃腸手術または胃腸手技;過去または現在のC.ディフィシル感染症および/またはCD
ADの再発、例えばC.ディフィシル感染症および/またはCDADを一度または一度よ
り多く有したことがある患者;ならびに少なくとも約65歳以上の年齢のヒト。
本明細書で記述される方法において、その哺乳類は例えばマウス、ハムスター、霊長類
、およびヒトのようなあらゆる哺乳類であってよい。好ましい態様において、その哺乳類
はヒトである。本発明によれば、そのヒトにはC.ディフィシル感染症、C.ディフィシ
ル関連疾患、症候群、病気、症状、および/またはそれらの合併症を示したことがある人
;現在C.ディフィシル感染症、C.ディフィシル関連疾患、症候群、病気、症状、およ
び/またはそれらの合併症を示している人;ならびにC.ディフィシル感染症、C.ディ
フィシル関連疾患、症候群、病気、症状、および/またはそれらの合併症の危険にさらさ
れている人が含まれてよい。
C.ディフィシル感染の症状を示したことがある人の例には、上記で記述した症状を示
したことがある、または示している人;C.ディフィシル感染症および/またはC.ディ
フィシル関連疾患(CDAD)を有したことがある、または有している人;ならびにC.
ディフィシル感染症および/またはCDADの再発を有する人が含まれる。
C.ディフィシル感染の危険にさらされている患者の例には、以下の人が含まれる:計
画された抗微生物薬の使用の危険にさらされている、または現在それを経験している人;
処方されたメトロニダゾールまたはバンコマイシンの退薬の危険にさらされている、また
は現在それを経験している人;計画された健康管理施設(例えば病院、長期療養施設等)
および健康管理従事者への入院の危険にさらされている、または現在それを経験している
人;および/または計画されたプロトンポンプ阻害剤、H2拮抗薬、および/またはメト
トレキセート、またはそれらの組み合わせによる処置の危険にさらされている、または現
在それを受けている人;胃腸疾患、例えば炎症性腸疾患を有したことがある、または経験
している人;胃腸手術または胃腸手技を受けたことがある、または受けている人;ならび
にC.ディフィシル感染症および/またはCDADの再発を有したことがある、または有
している人、例えばC.ディフィシル感染症および/またはCDADを一度、または一度
より多く有したことがある患者;約65歳以上である人。そのような危険にさらされてい
る患者は現在C.ディフィシル感染症の症状を示している可能性があり、または示してい
ない可能性もある。
無症候性の患者において、予防および/または処置はあらゆる年齢において(例えば約
10、20、または30歳において)開始することができる。しかし、1態様において、
患者が少なくとも約45、55、65、75、または85歳に達するまでは処置を開始す
る必要はない。例えば、本明細書で記述される組成物は、50〜85歳の無症候性のヒト
に投与されてよい。
1態様において、哺乳類においてC.ディフィシル感染症、C.ディフィシル関連疾患
、症候群、病気、症状、および/またはそれらの合併症を予防する、それらの危険性を低
下させる、それらの重症度を低下させる、それらの発生率を低下させる、および/または
それらの発症を遅らせる方法には、有効量の本明細書で記述される組成物をそれを必要と
する哺乳類、C.ディフィシル感染症の危険にさらされている哺乳類、および/またはC
.ディフィシル感染症にかかりやすい哺乳類に投与することが含まれる。有効量には、例
えば、哺乳類において、その組成物を投与されなかった哺乳類と比較して、C.ディフィ
シル感染症、C.ディフィシル関連疾患、症候群、病気、症状、および/またはそれらの
合併症を予防する、それらの危険性を低下させる、それらの重症度を低下させる、それら
の発生率を低下させる、および/またはそれらの発症を遅らせるのに十分な量が含まれる
。有効量の本明細書で記述される組成物の投与は、例えば下痢;腹痛、痙攣、発熱、大腸
生検における炎症、低アルブミン血症、全身水腫、白血球増加、敗血症、および/または
無症候性保菌等を予防する、それらの危険性を低下させる、それらの重症度を低下させる
、それらの発生率を低下させる、および/またはそれらの発症を遅らせることができる。
好ましい態様において、その方法には有効量の本明細書で記述される免疫原性組成物をそ
れを必要とする哺乳類、C.ディフィシル感染症の危険にさらされている哺乳類、および
/またはC.ディフィシル感染症にかかりやすい哺乳類に投与することが含まれる。
追加の態様において、哺乳類においてC.ディフィシル感染症、C.ディフィシル関連
疾患、症候群、病気、症状、および/またはそれらの合併症を処置する、それらの重症度
を低下させる、および/またはそれらの発症を遅らせる方法には、有効量の本明細書で記
述される組成物をC.ディフィシル感染症の疑いがある、または現在それを患っている哺
乳類に投与することが含まれる。有効量には、例えば、哺乳類において、その組成物を投
与されなかった哺乳類と比較して、C.ディフィシル感染症、C.ディフィシル関連疾患
、症候群、病気、症状、および/またはそれらの合併症を処置する、それらの重症度を低
下させる、および/またはそれらの発症を遅らせるのに十分な量が含まれる。
有効量のその組成物の投与は、その対象においてC.ディフィシル感染の少なくとも1
種類の徴候または症状、例えば下記で記述される徴候または症状を改善することができる
。有効量の本明細書で記述される組成物の投与は、例えば、その組成物を投与されなかっ
た哺乳類と比較して、下痢の重症度を低下させる、および/または発生率を低下させる;
腹痛、痙攣、発熱、大腸生検における炎症、低アルブミン血症、全身水腫、白血球増加、
敗血症、および/または無症候性保菌等の重症度を低下させる、および/または発生率を
低下させることができる。場合により、感染症の症状、徴候、および/または危険因子の
存在は、処置を開始する前に決定される。好ましい態様において、その方法には有効量の
本明細書で記述される抗体および/またはその結合断片をC.ディフィシル感染症の疑い
がある、または現在それを患っている哺乳類に投与することが含まれる。
従って、その組成物の有効量は、本発明の方法において所望の作用(例えば予防的およ
び/または療法的作用)を達成するのに十分な量を指す。例えば、投与に関する免疫原の
量は、注射あたり約1μg、5μg、25μg、50μg、75μg、100μg、20
0μg、500μg、または1mgの最小値から約2mg、1mg、500μg、200
μgの最大値まで様々であってよい。あらゆる最小値をあらゆる最大値と組み合わせて適
切な範囲を定めることができる。典型的には、免疫原あたり約10、20、50または1
00μgがそれぞれのヒトへの注射に関して用いられる。
対象に投与される本発明の組成物の量は、その感染症のタイプおよび重症度に、および
/またはその人の特徴、例えば全身の健康状態、年齢、性別、体重および薬物への耐性に
依存してよい。それは疾患の程度、重症度、およびタイプにも依存してよい。有効量はま
た、投与経路、標的部位、その患者の生理状態、その患者の年齢、その患者がヒトか動物
か、施された他の療法、および処置が予防的か療法的かのような要因に応じて異なってよ
い。当業者は、これらおよび他の要因に応じて適切な量を決定することができるであろう
有効量には、本明細書における方法での使用に関して1回有効用量(one effe
ctive dose)または(例えば2、3、4回用量、またはより多くの用量のよう
な)多数回有効用量(multiple effective doses)が含まれて
よい。有効投与量は、安全性および有効性を最適化するように用量設定される必要がある
可能性がある。
予防的および/または療法的使用を成し遂げるために適切な投与の量および頻度の組み
合わせは、予防的に、または療法的に有効な計画と定義される。予防および/または療法
計画において、その組成物は典型的には十分な免疫応答が達成されるまで1回より多くの
投与量で投与される。典型的には、その免疫応答を監視し、その免疫応答が衰え始めたら
反復投与量を与える。
その組成物は、ある期間にわたって多数回の投与量で投与することができる。処置は、
その療法剤(例えば変異体C.ディフィシル毒素が含まれる免疫原性組成物)に対する抗
体または活性化されたT細胞もしくはB細胞応答をアッセイすることにより時間にわたっ
て監視することができる。その応答が減少した場合、それは追加免疫投与量が必要である
ことを示している。
実施例1:毒素陰性C.ディフィシル株の同定
毒素(AおよびB)遺伝子および毒素発現を欠くC.ディフィシル株を同定するため、
13のC.ディフィシル株を試験した。13のC.ディフィシル株の培養液を、毒素Aに
関するELISAにより試験した。7つの株は毒素Aを発現していた:C.ディフィシル
14797−2、C.ディフィシル630、C.ディフィシルBDMS、C.ディフィシ
ルW1194、C.ディフィシル870、C.ディフィシル1253、およびC.ディフ
ィシル2149。図3参照。
6つの株は毒素Aを発現しておらず、病原性遺伝子座全体を欠いていた:C.ディフィ
シル1351(ATCC 43593(商標))、C.ディフィシル3232(ATCC
BAA−1801(商標))、C.ディフィシル7322(ATCC 43601(商
標))、C.ディフィシル5036(ATCC 43603(商標))、C.ディフィシ
ル4811(4 ATCC 3602(商標))、およびC.ディフィシルVPI 11
186(ATCC 700057(商標))。VPI 11186を、接合によるプラス
ミドDNAの取り込みに対するその有効性に基づいて選択した。
その同じ13の株を、その病原性遺伝子座(PaLoc; Braun et al., Gene. 1996 N
ov 28;181(1-2):29-38.)の外側のプライマーを用いる多重PCRアッセイで試験した。
そのPCRの結果は、ELISAによる6つの毒素A陰性株からのDNAはPaLocか
らのいずれの遺伝子(tcdA〜tcdE)も増幅しないことを示した。PaLocに隣
接する配列(cdd3およびcdu2)は存在していた(データは示していない)。
実施例2:C.ディフィシルVPI 11186における芽胞形成経路の不活性化
C.ディフィシル産生株(production strain)の芽胞形成機能のノ
ックアウトは、安全な製造環境における大規模発酵を容易にする。非芽胞形成性C.ディ
フィシル株を作り出すためにClosTronシステムを用いた。Heap et al., J Micro
biol Methods. 2009 Jul;78(1):79-85を参照。ClosTronシステムは、部位特異的
な挿入によるspo0A1クロストリジウム遺伝子の不活性化のためにグループIIイン
トロンを用いて標的化された遺伝子不活性化を可能にする。その毒素マイナス産生株VP
I 11186に対してそのClosTron技術による芽胞形成不活性化を施した。エ
リスロマイシン耐性変異体を選択し、挿入カセットの存在をPCRにより確かめた(示し
ていない)。2個の独立したクローンが芽胞を形成できないことを確かめた。
実施例3:細胞毒性機能を不活性化するための毒素AおよびB遺伝子の遺伝子改変
株630Δのゲノム配列に基づく完全長変異体毒素AおよびBのオープンリーディング
フレーム(ORF)を、Blue Heron Biotechでのカスタム合成のため
に設計した。例えばSEQ ID NO:9〜14を参照。細胞毒性の原因であるグルコ
シルトランスフェラーゼ活性に関する活性部位を、2個の対立遺伝子置換:毒素Aに関し
てD285A/D287A(SEQ ID NO:3参照)、および毒素Bに関してD2
86A/D288A(SEQ ID NO:5参照)により変化させた。2つのヌクレオ
チドを、それぞれのアスパラギン酸(D)コドンにおいて変異させてアラニン(A)に関
するコドンを作り出した。例えばSEQ ID NO:9〜14を参照。加えて、システ
イン残基を欠く変異体毒素を発現する一対のベクターを、Blue Heron Bio
techでのカスタム合成後に構築した。変異体毒素Aからの7個のシステイン残基およ
び変異体毒素Bからの9個のシステイン残基をアラニンで置き換えた。その置換には、A
およびB毒素の自己触媒的プロテアーゼの触媒的システインが含まれる。また、ベクター
構築に関して用いられる制限酵素部位を削除するために必要である場合、サイレント変異
を導入した。
実施例4:pMTL84121fdx発現ベクター
C.ディフィシル変異体毒素抗原発現のために用いられたプラスミドシャトルベクター
は、Minton研究室により開発されたpMTL8000シリーズモジュラーシステム
から選択された(Heap et al., J Microbiol Methods. 2009 Jul;78(1):79-85を参照)。
選択されたベクターpMTL84121fdxは、C.ディフィシルプラスミドpCD6
Gram+レプリコン、catP(クロラムフェニコール/チアンフェニコール)選択
用マーカー、p15a Gram−レプリコンおよびtra機能、ならびにC.スポロゲ
ネス(C.sporogenes)フェレドキシンプロモーター(fdx)および遠位の
(distal)マルチクローニングサイト(MCS)を含有する。実験によるデータは
、低コピー数のp15aレプリコンは代替案であるColE1よりも大腸菌中での大きな
安定性を与えることを示唆した。fdxプロモーターは、それがCATレポーターコンス
トラクト(例えばtcdA、tcdB;または異種のtetRまたはxylR)を用いた
実験において試験された他のプロモーターよりも高い発現をもたらしたために選択された
(データは示していない)。
実施例5:改変された毒素ORFのpMTL84121fdx中へのクローニング
株630Δのゲノム配列に基づく完全長変異体毒素AおよびBのオープンリーディング
フレーム(ORF)を、pMTL84121fdxベクターのマルチクローニングNde
IおよびBglII部位を用いて、標準的な分子生物学の技法を用いてサブクローニング
した。クローニングを容易にするため、そのORFに開始コドンを含有する近位のNde
I部位およびその停止コドンのすぐ下流のBglII部位を隣接させた。
実施例6:三重変異体を作り出すためのTcdAの部位特異的変異誘発
自己触媒的プロテアーゼドメインの触媒的システイン残基を、SEQ ID NO:3
および5、すなわち“二重変異体”のそれぞれにおいて置換した(すなわち、TcdAに
関してC700AおよびTcdBに関してC698A)。変異体毒素Aの変異誘発に関し
て、TcdA D285A/D287A発現プラスミドからの2.48kbのNdeI−
HindIII断片をpUC19(同じもので切断した)中にサブクローニングし、この
鋳型に対して部位特異的変異誘発を実施した。一度その新しい対立遺伝子をDNA配列分
析により確認し、その改変されたNdeI−HindIII断片を発現ベクターpMTL
84121fdx中に再導入して“三重変異体”、すなわちSEQ ID NO:4およ
びSEQ ID NO:6を作り出した。
実施例7:三重変異体を作り出すためのTcdBの部位特異的変異誘発
変異体毒素Bの変異誘発のため、変異体毒素Bプラスミドからの3.29kbのNde
I−EcoNI断片を改変して再導入した。EcoNI部位は入手可能なクローニングベ
クター中に存在しないため、わずかに大きい3.5kbのNdeI−EcoRV断片をp
UC19(NdeI−SmaIにより調製された)中にサブクローニングした。変異誘発
後、その改変された内部の3.3kbのNdeI−EcoNI断片を切り出し、それを用
いて対応する変異体毒素B発現ベクターpMTL84121fdxの断片を置き換えた。
この方向の(directional)計画のクローニング効率は極めて低いことが分か
ったため、1.5kbのDraIIIの置き換えを含む、C698A対立遺伝子を導入す
るための代替計画を並行して試みた。両方の計画が独立して所望の組み換え体をもたらし
た。
実施例8:部位特異的変異誘発による追加の変異体毒素変種の作製
少なくとも12の異なるC.ディフィシル変異体毒素変種を構築した。対立遺伝子置換
をN末端の変異体毒素遺伝子断片中に部位特異的変異誘発(Quickchange(登
録商標)キット)により導入した。生物学的活性において野生型C.ディフィシル株から
精製された天然の毒素に対して定量的に均等なタンパク質を生成するこのプラスミドに基
づく系の能力を評価するための参照対照としての組み換え毒素も設計した。この場合、本
来のグルコシルトランスフェラーゼの置換を元に戻すように対立遺伝子置換を導入した。
加えて、一対のシステインを含まない変異体毒素ベクターを、Blue Heron B
iotechでのカスタム合成後に構築した。
その12の毒素の変種には、(1)D285A/D287A変異を有する変異体C.デ
ィフィシル毒素A(SEQ ID NO:3);(2)D286A/D288A変異を有
する変異体C.ディフィシル毒素B(SEQ ID NO:5);(3)D285A/D
287A、C700A変異を有する変異体C.ディフィシル毒素A(SEQ ID NO
:4);(4)D286A/D288A、C698A変異を有する変異体C.ディフィシ
ル毒素B(SEQ ID NO:6);(5)SEQ ID NO:1を有する組み換え
毒素A;(6)SEQ ID NO:2を有する組み換え毒素B;(7)C700A変異
を有する変異体C.ディフィシル毒素A;(8)C698A変異を有する変異体C.ディ
フィシル毒素B;(9)C700A、C597S、C1169S、C1407S、C16
23S、C2023S、およびC2236S変異を有する変異体C.ディフィシル毒素A
;(10)C698A、C395S、C595S、C824S、C870S、C1167
S、C1625S、C1687S、およびC2232S変異を有する変異体C.ディフィ
シル毒素B;(11)D285A、D287A、C700A、D269A、R272A、
E460A、およびR462A変異を有する変異体C.ディフィシル毒素A(SEQ I
D NO:7);ならびに(12)D270A、R273A、D286A、D288A、
D461A、K463A、およびC698A変異を有する変異体C.ディフィシル毒素B
(SEQ ID NO:8)が含まれる。
実施例9:形質転換体の安定性
一般的に用いられるDH5α大腸菌研究室株を用いると、再編成されたプラスミドが得
られた。対照的に、Invitrogen Stbl2(商標)大腸菌宿主を用いた形質
転換は、LBクロラムフェニコール(25μg/ml)プレート上での30℃における3
日間の増殖の後、増殖の遅い完全長変異体毒素組み換え体をもたらした。関連するStb
l3(商標)およびStbl4(商標)大腸菌株を用いるとより低いクローニング効率が
得られたが、これらの系統はプラスミドの維持に関して安定であることが分かった。続い
て形質転換体を寒天において、または液体培養中で、クロラムフェニコール選択下で30
℃において増殖させた。(Millerの)LB培地は動物由来物質を含まないトリプト
ン−大豆に基づく培地と比較して形質転換体の回収率および増殖を向上させることも分か
った。
実施例10:C.ディフィシルの野生型または遺伝子変異体毒素遺伝子をコードするp
MTL84121fdxによる形質転換
C.ディフィシルの大腸菌接合伝達による形質転換を、本質的にHeap et al., Journal
of Microbiological Methods, 2009. 78(1): p. 79-85において記述されているように行
った。大腸菌宿主CA434を、野生型または様々な変異体毒素遺伝子をコードするpM
TL84121fdxを用いて形質転換した。大腸菌宿主CA434は、発現プラスミド
をC.ディフィシル産生株VPI 11186 spo0A1中に移動させるための中間
体である。CA434は大腸菌HB101の派生株である。この株はTra+ Mob+
R702接合性プラスミドを有し、それはKm、Tc、Su、Sm/Spe、およびH
g(Tn1831による)に対する耐性を与える。化学的コンピテントまたはエレクトロ
コンピテント細胞CA434細胞を調製し、発現ベクター形質転換体をMillerのL
B CAMプレート上で30℃において選択した。3日後に見えてくる増殖の遅いコロニ
ーを選んで3mL LBクロラムフェニコール培養において対数期中期まで増殖させた(
30℃において約24時間、225rpm、オービタルシェーカー)。壊れた線毛を避け
るために大腸菌培養物を低速(5,000g)遠心分離により回収し、細胞のペレットを
1mL PBS中で大孔径のホールピペットを用いて穏やかに再懸濁した。細胞を低速遠
心分離により濃縮した。逆さにしてPBSの大部分を除去し、排水した(drained
)ペレットを嫌気室中に移して0.2mLのC.ディフィシル培養物と共に再懸濁し、B
HIS寒天プレート上にスポットし、8時間または一夜増殖させた。変異体毒素A形質転
換体の場合、一夜の接合でよりよい結果が達成された。細胞のパッチを0.5mLのPB
S中にかき集め、0.1mLを大腸菌供与細胞を殺すために15μg/mLチアンフェニ
コール(クロラムフェニコールのより強力な類似体)およびD−サイクロセリン/セホキ
シチンを補ったBHIS選択培地上に蒔いた。16〜24時間後に見えてきた形質転換体
を、新しい(補助物質を加えた)BHISプレート上に再度画線することにより純化し、
その後の培養物を組み換え毒素または変異体毒素の発現に関して試験した。優れた発現を
示しているクローンからグリセロールパーマネント(Glycerol permane
nts)およびシードストック(seed stocks)を調製した。また、2mLの
培養液からプラスミドのミニプレップを、細胞をリゾチームにより前処理する(必須では
ない)改変されたQiagenキットの手順を用いて調製した。そのC.ディフィシルミ
ニプレップDNAを、クローンの完全性を確かめるためのPCR配列決定のための鋳型と
して用いた。あるいは、プラスミドミニプレップDNAを大腸菌Stbl2(商標)形質
転換体から調製し、配列決定した。
実施例11:毒素AおよびBの三重変異体(それぞれSEQ ID NO:4および6
)および七重B変異体(SEQ ID NO:8)のC.ディフィシル発現分析
形質転換体を2mL培養(型にはまった分析のため)で、または通気穴に蓋をしたフラ
スコ中(時間経過実験のため)でのどちらかで増殖させた。試料(2mL)を短時間遠心
分離(10,000rpm、30秒間)して細胞を濃縮し:上清をデカントして10倍濃
縮し(Amicon−ultra 30k);ペレットを排水して−80℃で凍結させた
。細胞のペレットを氷上で解かし、1mLの溶解緩衝液(トリス−HCl pH7.5;
1mM EDTA、15%グリセロール)中で再懸濁し、超音波処理(微小チップを用い
た1×20秒のバースト(burst))した。その溶解物を4℃で遠心分離し、上清を
5倍濃縮した。上清および溶解物の試料を試料緩衝液と合わせて熱処理(10分間、80
℃)した後、2通りの(duplicate)3〜8%トリス−酢酸SDS−PAGEゲ
ル(Invitrogen)上に装填した(loading)。1枚のゲルをクーマシー
で染色し、2枚目のゲルをウェスタン分析のためにエレクトロブロットした。毒素A特異
的および毒素B特異的ウサギ抗血清(Fitgerald;Biodesign)を用い
て変異体毒素AおよびBの変種を検出した。七重変異体毒素B(SEQ ID NO:8
)の発現も、ウェスタンブロットハイブリダイゼーションにより確認した。
実施例12:変異体毒素のグルコシルトランスフェラーゼ活性の抑止
遺伝子二重変異体(DM)毒素AおよびB(それぞれSEQ ID NO:3および5
)および三重変異体(TM)毒素AおよびB(それぞれSEQ ID NO:4および6
)は、UDP−14C−グルコース[30μM]、50mM HEPES、pH7.2、
100mM KCl、4mM MgCl、2mM MnCl、1mM DTT、およ
び0.1μg/μL BSAの存在下でのインビトログルコシル化アッセイにおいて、
C−グルコースを10μgのRhoA、Rac1およびCdc42 GTPアーゼに移
さなかった。しかし、野生型AおよびB毒素対照(それぞれSEQ ID NO:1およ
び2を有する)は、それぞれ10および1ngの低い用量(およびより低い用量、データ
は示していない)において(図4Aおよび4B)、100μgの変異体毒素の存在下にお
いてさえも(図4B)、14C−グルコースをGTPアーゼに効率的に移し、これはそれ
ぞれの野生型毒素と比較して少なくとも100,000倍の低減を示している。類似の結
果がCdc42 GTPアーゼに関して検出された(データは示していない)。
具体的には、図4Bにおいて、野生型毒素Aおよび毒素B(1ng)または三重変異体
毒素Aおよび三重変異体毒素B(100μg)をUDP−14C−グルコースの存在下で
RhoA GTPアーゼと共に30℃で2時間保温した。説明したように、1ngの野生
型TcdAおよびTcdBは14C−グルコースをRhoAに移したが、100μgの三
重変異体毒素Aおよび三重変異体毒素Bは移さなかった。1ngの野生型TcdAまたは
TcdBをそれぞれ100μgの三重変異体毒素Aまたは三重変異体毒素Bによる反応中
に添加した場合、RhoAのグルコシル化が検出され、これはグルコシル化阻害剤がない
ことを示している。グルコシル化活性に関する検出の感度は、100μgの変異体毒素の
バックグラウンド中の1ngの野生型毒素(1:100,000の比率)であることが確
かめられた。その結果は、三重変異体毒素Aおよび三重変異体毒素B中のグルコシルトラ
ンスフェラーゼの活性部位における変異があらゆる測定可能なグルコシルトランスフェラ
ーゼ活性を低減した(それぞれの野生型毒素の活性と比較して100,000倍低い活性
よりも低い)ことを示している。グルコシル化されたGTPアーゼのTCA沈殿によりグ
ルコシルトランスフェラーゼ活性を定量化するための類似のアッセイも開発した。
実施例13:自己触媒的システインプロテアーゼ活性の抑止
自己触媒的切断の機能は、三重遺伝子変異体AおよびB(TM)(それぞれSEQ I
D NO:4および6)において、そのシステインプロテアーゼ切断部位を変異させた場
合、抑止された。図5において図説されているように、野生型(wt)毒素AおよびB(
それぞれSEQ ID NO:3および5)はイノシトール−6−リン酸の存在下で切断
される。二重変異体毒素AおよびB(それぞれSEQ ID NO:3および5)も、野
生型に関する切断と同様に、イノシトール−6−リン酸の存在下で切断される(データは
示していない)。毒素A(SEQ ID NO:3)は308kDaから245および6
0kDaの2個の断片へと切断される。毒素B(SEQ ID NO:5)は270kD
aから207および63kDaの2個の断片へと切断される。三重変異体毒素AおよびB
(TM)(それぞれSEQ ID NO:4および6)は、イノシトール−6−リン酸の
存在下においてさえも、それぞれ308および207kDaにおいて影響を受けないまま
である。図5参照。従って、そのシステインプロテアーゼ活性は遺伝子改変により不活性
化された。
より具体的には、図5において、1μgの三重変異体Aおよび三重変異体Bを、Lis
t Biologicalsからの野生型TcdAおよびTcdBと並行して室温(21
±5℃)で90分間保温した。その切断反応は、20μLの量で、トリス−HCl、pH
7.5、2mM DTT中で、イノシトール−6−リン酸(TcdAに関して10mMお
よびTcdBに関して0.1mM)の存在下または非存在下で実施された。次いで全反応
量を3〜8%SDS/PAGE上に装填し;タンパク質のバンドを銀染色により可視化し
た。説明したように、wtTcdAおよびTcdBはイノシトール−6−リン酸の存在下
で切断されてそれぞれ245kDおよび60kDならびに207kDおよび63kDの2
個のタンパク質のバンドになった。三重変異体毒素Aおよび三重変異体毒素Bは切断され
ず、従って三重変異体毒素AにおけるC700A変異および三重変異体毒素BにおけるC
698A変異は切断を妨げることが確認された。
実施例14:三重変異体毒素AおよびB(それぞれSEQ ID NO:4および6)
の残存する細胞毒性
その遺伝子変異体毒素を、ヒト二倍体肺線維芽細胞株であるIMR90細胞におけるイ
ンビトロ細胞毒性アッセイによりそれらの細胞毒性に関して評価した。これらの細胞は毒
素AおよびBの両方に対して感受性である。代わりの好ましい態様として、ミドリザル(
Cercopithecus aethiops)からのベロ正常腎臓細胞を、それらは
毒素AおよびBに対する適度な感受性を有することが観察されたため、その細胞毒性アッ
セイにおいて用いることができる。好ましくは、HT−29ヒト結腸直腸腺癌細胞は、そ
れらはその毒素に対してベロおよびIMR90細胞株と比較して著しく減少した感受性を
示したため、その細胞毒性アッセイにおいて用いられない。例えば下記の表6を参照。
Figure 2017125030
系列希釈した遺伝子変異体毒素またはwt毒素の試料を、96ウェル組織培養プレート
中で増殖した細胞単層に添加した。37℃で72時間保温した後、そのプレートを、相対
発光単位(RLU)として表される発光を生じる、ルシフェラーゼに基づくCellTi
terGlo(登録商標)試薬(Promega、ウィスコンシン州マディソン)の添加
により細胞のATPレベルを測定することにより、代謝的に活性な細胞に関して評価した
。高いRLUはその細胞が生存可能であることを示し、低いRLUはその細胞が代謝的に
活性ではなく瀕死であることを示す。EC50として表される細胞毒性のレベルは、細胞
培養対照におけるレベルと比較してRLUにおける50%の低減を引き出すwt毒素また
は遺伝子変異体毒素の量として定義される(このアッセイの詳細を下記で提供する)。図
6、表7A、および表8Aにおいて示されるように、TcdAおよびTcdBのEC50
値はそれぞれ約0.92ng/mLおよび0.009ng/mLであった。三重変異体毒
素Aおよび三重変異体毒素BのEC50値はそれぞれ約8600ng/mLおよび74n
g/mLであった。wt毒素と比較した細胞毒性におけるおおよそ10,000倍の低減
にも関わらず、両方の遺伝子変異体毒素はなお細胞毒性の低い残存レベルを示した。この
残存する細胞毒性は中和性抗毒素モノクローナル抗体により遮断することができ、これは
、それはその三重変異体毒素に特異的であるがそのwt毒素の既知の酵素活性(グルコシ
ル化または自己タンパク質分解)にはおそらく関連していないことを示している。
両方のwt毒素は強力なインビトロでの細胞毒性を示し、少量のその毒素は哺乳類細胞
に対して例えば細胞の円形化(細胞変性作用またはCPE)および(ATPレベルにより
測定されるような)代謝活性の欠如のような様々な作用を引き起こすのに十分である。従
って、その変異体毒素原薬(drug substances)中に残存する細胞毒性が
残っていないことを確かめるために、2種類のインビトロアッセイ(CPEまたは細胞円
形化アッセイおよびATPアッセイ)が開発された。その結果はEC50として表され、
それは1)その細胞の50%のCPEの発現、または2)相対光単位として測定されるよ
うなATPレベルにおける50%の低減を引き起こす毒素または変異体毒素の量である。
CPEアッセイにおいて、試料または原薬を系列希釈し、IMR90細胞と共に保温し
、それを可能性のある細胞変性作用に関して観察する。そのCPEアッセイは、0(正常
な細胞)〜4(約100%の細胞が円形化している)の尺度上で採点され、2の点数(約
50%の細胞が円形化している)がその試験試料のEC50値として定義される。この方
法は1000μg/mLの濃度での変異体毒素原薬の試験のために用いられ、それはこの
アッセイにおいてマトリックス干渉(matrix interference)なしで
試験することができる最大許容可能濃度である。従って、検出可能な細胞毒性がない場合
はEC50>1000μg/mLとして報告される。
ATPアッセイはATPから生成される発光シグナルの量の測定に基づき、それは代謝
的に活性な細胞の数に比例する。このアッセイにおいてアッセイ干渉なしで試験すること
ができる最大許容可能濃度は、約200μg/mLである。従って、このアッセイにおい
て検出可能な細胞毒性がない場合はEC50>200μg/mLとして報告される。
異なる濃度の変異体毒素AおよびBを、毒素対照と並行して細胞に添加した。そのアッ
セイのエンドポイントは、CellTiter−Glo(登録商標)(Promega)
を用いる細胞ATPレベルにより決定される細胞生存度であった。発光の程度はATPレ
ベルまたは生存可能な細胞の数に比例している。
野生型(wt)毒素Aのインビトロ細胞毒性(EC50)は920pg/mLであり、
毒素Bに関しては9pg/mLであった。変異体毒素A(SEQ ID NO:4)のイ
ンビトロ細胞毒性(EC50)は8600ng/mLであり、変異体毒素B(SEQ I
D NO:6)に関しては74ng/mLであった。これらの値はそれぞれ9348およ
び8222倍の低減を表しているが、両方の変異体毒素において残存する細胞毒性が検出
された。
言い換えると、三重変異体毒素AおよびB(それぞれSEQ ID NO:4および6
)の細胞毒性はIMR−90細胞におけるインビトロ細胞毒性アッセイにおいてwt毒素
AおよびB(それぞれSEQ ID NO:1および2)と比較して著しく低減した。図
6において図説されるように、両方の三重変異体毒素はwt毒素と比較して細胞毒性にお
ける著しい低減(10倍)を示したが、両方の三重変異体毒素のより高い濃度において
残存する細胞毒性が観察された。
さらに、それぞれの三重変異体毒素の残存する細胞毒性は、その毒素に特異的な抗体に
より完全に中和することができた(例えば、野生型毒素の毒性と比較して、毒性における
少なくとも6〜8log10の低減)。下記の実施例16を参照。
細胞培養アッセイは、細胞毒性の検出に関してインビボの動物モデルよりも高感度であ
る。マウス致死負荷モデルにおいて腹腔内または静脈内経路のどちらかにより送達された
際、wtTcdAはマウスあたり約50ngのLD50を有し、一方でwtTcdBはよ
り強力でマウスあたり約5ngのLD50を有する。対照的に、上記で記述された細胞培
養に基づくインビトロアッセイは、wtTcdAに関してウェルあたり100pgおよび
wtTcdBに関してウェルあたり2pgのEC50値を有する。
実施例15:遺伝子七重変異体毒素B(SEQ ID NO:8)の残存する細胞毒性
図7で図説されるように、EC50値は三重変異体毒素B(SEQ ID NO:6)
(20.78ng/mL)および七重変異体毒素B(SEQ ID NO:8)(35.
9ng/mL)変異体に関して類似しており、これはそのグルコシルトランスフェラーゼ
活性部位およびGTPアーゼ基質結合部位をさらに改変するための4個の追加の変異はそ
の遺伝子変異体毒素の細胞毒性をそれ以上低減しなかったことを示している。そのEC
値は、二重変異体毒素B(SEQ ID NO:5)に関しても三重および七重変異体
毒素に関するEC50値と類似していた(データは示していない)。この観察は、その変
異体毒素の細胞毒性に関する機序は驚くべきことにグルコシルトランスフェラーゼおよび
基質認識機序と無関係であることを示唆している。
実施例16:三重変異体毒素AおよびB(それぞれSEQ ID NO:4および6)
の残存する細胞毒性
その残存する細胞毒性の性質をさらに評価するため、その変異体毒素(SEQ ID
NO:4および6)をそれらのそれぞれの中和抗体と混合して保温した後、その混合物を
IMR90細胞の単層に添加した。
その結果(図8)は、変異体毒素AおよびB(それぞれSEQ ID NO:4および
6)の残存する細胞毒性は変異体毒素A(上のパネル、図8)および変異体毒素B(下の
パネル、図8)に特異的な中和抗体を用いて完全に抑止され得ることを示した。増大する
濃度の変異体毒素A(上のパネル)およびB(下のパネル)を、ウサギ抗毒素ポリクロー
ナル(pAb、1:10希釈)またはマウスモノクローナル抗体(3.0mg IgG/
mLを含有するストックから1:50希釈)と共に保温した後、IMR90細胞に添加し
た。IMR90細胞との37℃における72時間の処理(保温)後、CellTiter
−Glo(登録商標)基質を添加し、相対光単位(RLU)を分光光度計においてATP
レベルを測定するための発光プログラムを用いて測定した。ATPレベルがより低いほど
、毒性がより高い。対照にはそれらの対応するEC50値の4倍で添加されたTcdAお
よびTcdBが含まれていた。
公開された報告は、その毒素のグルコシルトランスフェラーゼまたは自己触媒的プロテ
アーゼドメインにおける変異は結果としてその毒性の完全な不活性化をもたらすことを示
唆している。しかし、我々のデータはこれらの公開された報告とは一致せず、これは公開
された報告における粗製の培養物の溶解物に対して我々の研究で試験された高度に精製さ
れた変異体毒素の増大した濃度;12時間未満でなされた観察に対して変異体毒素で処理
した細胞の細胞円形化が観察された時点の増大(例えば24時間、48時間、72時間、
または96時間);公開された報告で開示された細胞毒性アッセイにおけるHT−29ヒ
ト結腸直腸腺癌細胞に対して、本細胞毒性アッセイにおける毒素に対して著しく高い感受
性を示す細胞株の使用;および/またはその変異体毒素の残存する毒性を駆動している可
能性のあるグルコシル化以外の未知の活性もしくはプロセスに起因する可能性がある。
実施例17:遺伝子変異体毒素の細胞毒性の新規の機序
遺伝子変異体毒素の残存する細胞毒性の機序を調べるため、IMR−90細胞をwt毒
素B(SEQ ID NO:2)または遺伝子変異体毒素B(SEQ ID NO:6)
で処理し、Rac1 GTPアーゼのグルコシル化を処理の時間で試験した。試料を24
時間から96時間までにおいて収集し、細胞抽出物を調製した。グルコシル化されたRa
c1をグルコシル化されていないRac1から、Rac1に対する2種類の抗体を用いた
ウェスタンブロットにより識別する。一方の抗体はRac1の両方の形態を認識し(23
A8)、他方(102)はグルコシル化されていないRac1のみを認識する。図22で
図説されるように、毒素Bに関して、総Rac1レベルは時間が経過しても変化しないま
まであり、Rac1の大部分はグルコシル化されていた。一方で遺伝子変異体毒素B(S
EQ ID NO:6)を用いた処理は結果として総Rac1の有意な低減をもたらした
が、そのRac1は全ての時点においてグルコシル化されていなかった。これは、Rac
1レベルは遺伝子変異体毒素を用いた処理により負の影響を受けるが、wt毒素によって
は影響を受けないことを示している。図22で図説されるように、アクチンのレベルは示
した時点において毒素および遺伝子変異体毒素Bで処理した細胞において類似しており、
モック処理した細胞と類似していた。これは、その遺伝子変異体毒素は野生型毒素に駆動
されるグルコシル化経路とは異なる機序により細胞毒性を発揮することを示した。
実施例18:遺伝子変異体毒素の化学的処理
細胞毒性活性において4logの低減を示した遺伝学的に改変された変異体毒素は好ま
しいが、細胞毒性におけるさらなる低減(2〜4log)が考えられた。2つの化学的不
活性化計画が評価されてきた。
第1の方法は、その変異体毒素を不活性化するためにホルムアルデヒドおよびグリシン
を用いる。ホルムアルデヒドでの不活性化は、ホルムアルデヒドおよびそのタンパク質上
の第1級アミンの間でシッフ塩基(イミン)を形成することにより起こる。次いでそのシ
ッフ塩基はいくつかのアミノ酸残基(Arg、His、Trp、Tyr、Gln、Asn
)と反応して分子内架橋または分子間架橋のどちらかを形成することができる。この架橋
はそのタンパク質の構造を固定させてそれを不活性にする。加えて、ホルムアルデヒドは
グリシンと反応してシッフ塩基を形成することができる。次いでそのグリシルシッフ塩基
はアミノ酸残基と反応して分子間タンパク質−グリシン架橋を形成することができる。ホ
ルムアルデヒドは、その遺伝子変異体毒素の細胞毒性活性を検出可能な限界より下まで低
減した(細胞毒性における低減は、三重変異体B(SEQ ID NO:6)に関して8
log10より大きく、三重変異体A(SEQ ID NO:4)に関して6log10
より大きい)。しかし、そのホルムアルデヒドで不活性化された(FI)三重変異体毒素
を25℃で保温した際に、時間の経過に伴い復帰が観察された。その細胞毒性の復帰は、
低量のホルムアルデヒド(0.01〜0.02%)をFI−三重変異体毒素の保管溶液中
に添加することにより防ぐことができる。実施例23参照。
別の方法は、不活性化された変異体毒素を生成するために1−エチル−3−(3−ジメ
チルアミノプロピル)カルボジイミド(EDC)/N−ヒドロキシスクシンイミド(NH
S)処理を用いる。この方法において、EDC/NHSはタンパク質上のカルボキシル基
と反応して活性化されたエステルを形成する。次いでその活性化されたエステルはそのタ
ンパク質上の第1級アミンと反応して安定なアミド結合を形成することができる。ホルム
アルデヒド反応と同様に、この反応は結果として分子内および分子間架橋をもたらす。E
DC/NHSを用いた処理により形成されたアミド結合は、ホルマリン不活性化により形
成された不安定なイミン結合よりも安定であり、不可逆的である。活性化されたエステル
のそのポリペプチド上の第1級アミンとの反応により形成される架橋に加えて、グリシン
およびベータ−アラニン付加物の両方が形成され得る。機序または理論により束縛される
わけではないが、グリシンが未反応の活性化されたエステルを失活させるために添加され
る際、グリシン付加物が生成される。グリシンのアミンがそのポリペプチド上の活性化さ
れたエステルと反応して安定なアミド結合を形成する。機序または理論により束縛される
わけではないが、ベータ−アラニン付加物は活性化されたベータ−アラニンのそのポリペ
プチド上の第1級アミンとの反応により形成される。この反応は、結果として安定なアミ
ド結合をもたらす。活性化されたベータ−アラニンは、3モルのNHSの1モルのEDC
との反応により生成される。
細胞毒性活性の遺伝学的に改変された変異体毒素と比較して2〜4log(天然の毒素
と比較して6〜8log)の低減を達成するため、その化学的に不活性化された変異体毒
素は1000μg/mL以上のEC50値を有するべきである。細胞毒性活性における低
減に加えて、ドットブロット分析により決定されるような重要なエピトープを保持するこ
とは好都合であろう。現在までに、細胞毒性の低減およびエピトープ認識基準の両方を満
たすいくつかの反応条件が同定されている。数バッチの不活性化された変異体毒素が動物
試験のために調製されており、少数の代表的なバッチからの分析データを表7Aおよび7
B、表8Aおよび8Bにおいて示す。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
実施例19:精製
発酵の終了時に、発酵槽を冷却する。細胞のスラリーを連続遠心分離により回収し、適
切な緩衝液中で再懸濁する。細胞懸濁液の溶解は高圧ホモジナイゼーションにより達成さ
れる。変異体毒素Aに関して、そのホモジネートを凝集させ(flocculated)
、その凝集した溶液に対して連続遠心分離を行う。この溶液を濾過し、次いで下流の処理
のために移す。変異体毒素Bに関して、そのホモジネートを連続遠心分離により透明にし
、次いで下流の処理のために移す。
変異体毒素A(SEQ ID NO:4)を2つのクロマトグラフィー工程を用いて精
製し、続いて最終緩衝液交換を行う。その透明になった溶解液を疎水性相互作用クロマト
グラフィー(HIC)カラム上に装填し、結合した変異体毒素をクエン酸ナトリウム勾配
を用いて溶離する。次いでそのHICカラムからの生成物のプールを陽イオン交換(CE
X)カラム上にロードし、結合した変異体毒素Aを塩化ナトリウム勾配を用いて溶離する
。精製された変異体毒素Aを含有するCEXのプールを、透析濾過により最終緩衝液中に
交換する(exchanged into)。その精製された変異体毒素Aを、透析濾過
により最終原薬中間緩衝液中に交換する。透析濾過の後、保持液(retentate)
を0.2ミクロンフィルターを通して濾過した後、化学的に不活性化して最終的な原薬と
する。そのタンパク質濃度は1〜3mg/mLを目標とする。
変異体毒素B(SEQ ID NO:6)を2つのクロマトグラフィー工程を用いて精
製し、続いて最終緩衝液交換を行う。その透明になった溶解液を陰イオン交換(AEX)
カラム上に装填し、結合した変異体毒素を塩化ナトリウム勾配を用いて溶離する。AEX
カラムからの生成物のプールにクエン酸ナトリウムを添加し、疎水性相互作用クロマトグ
ラフィー(HIC)カラム上に装填する。結合した変異体毒素をクエン酸ナトリウム勾配
を用いて溶離する。精製された変異体毒素ポリペプチド(SEQ ID NO:6)を含
有するHICのプールを、透析濾過により最終緩衝液中に交換する。その精製された変異
体毒素Bを、透析濾過により最終原薬中間緩衝液中に交換する。透析濾過の後、保持液を
0.2ミクロンフィルターを通して濾過した後、化学的に不活性化して最終的な原薬とす
る。そのタンパク質濃度は1〜3mg/mLを目標とする。
実施例20:ホルムアルデヒド/グリシン不活性化
精製後、その遺伝子変異体毒素AおよびB(それぞれSEQ ID NO:4および6
)を40mM(1.2mg/ml)のホルムアルデヒドを用いて25℃で48時間不活性
化する。その不活性化は、40mM(3mg/ml)グリシンを含有する10mMホスフ
ェート、150mM塩化ナトリウム緩衝液中でpH7.0±0.5で実施される。その不
活性化の期間は、IMR90細胞でのEC50における1000ug/mLより大きい濃
度までの低減に必要な期間の3倍を超えるように設定される。48時間後、その生物学的
活性は天然の毒素と比較して7〜8log10低減される。48時間の保温の後、その不
活性化された変異体毒素を透析濾過により最終原薬緩衝液中に交換する。例えば、100
kD再生セルロースアセテート限外濾過カセットを用いて、その不活性化された毒素を1
〜2mg/mLまで濃縮し、緩衝液交換する。
実施例21:N−(3−ジメチルアミノプロピル)−N’−エチルカルボジイミド(E
DC)/N−ヒドロキシスクシンイミド(NHS)不活性化
精製後、その遺伝子変異体毒素(SEQ ID NO:4およびSEQ ID NO:
6)を、1mgの精製された遺伝子変異体毒素AおよびB(それぞれおおよそ2.6mM
および4.4mM)あたり0.5mgのEDCおよび0.5mgのNHSを用いて25℃
で2時間不活性化する。その反応を100mMの終濃度までのグリシンの添加により停止
し、反応物を25℃でさらに2時間保温する。その不活性化は、10mMホスフェート、
150mM塩化ナトリウム緩衝液中でpH7.0±0.5で実施される。その不活性化の
期間は、IMR90細胞でのEC50における1000ug/mLより大きい濃度までの
低減に必要な期間の3倍を超えるように設定される。2時間後、その生物学的活性は天然
の毒素と比較して7〜8log10低減される。4時間の保温の後、その不活性化された
変異体毒素を透析濾過により最終原薬緩衝液中に交換する。例えば、100kD再生セル
ロースアセテート限外濾過カセットを用いて、その不活性化された毒素を1〜2mg/m
Lまで濃縮し、緩衝液交換する。
別途記載しない限り、以下の用語は、実施例の節において用いられる際、実施例21に
おける本記述に従って生成された組成物を指す:“EDC/NHSで処理された三重変異
体”;“EDCで不活性化された変異体毒素”;“変異体毒素[A/B]原薬”;“EI
−変異体毒素”;“EDC/NHS−三重変異体毒素”。例えば、以下の用語は同義であ
る:“EDC/NHSで処理された三重変異体毒素A”;“EDCで不活性化された変異
体毒素A”;“変異体毒素A原薬”;“EI−変異体毒素A”;“EDC/NHS−三重
変異体毒素A”。別の例として、以下の用語は同義である:“EDC/NHSで処理され
た三重変異体毒素B”;“EDCで不活性化された変異体毒素B”;“変異体毒素B原薬
”;“EI−変異体毒素B”;“EDC/NHS−三重変異体毒素B”。
変異体毒素A原薬および変異体毒素B原薬は、それぞれバッチプロセスを用いて製造さ
れ、それには以下の工程が含まれる:(1)それぞれの遺伝子三重変異体毒素ポリペプチ
ドをコードするプラスミドを含有する毒素陰性C.ディフィシル株(VPI 11186
)の(大豆加水分解物、酵母抽出物HT YEST(商標)412(Sheffield
Bioscience)、グルコース、およびチアンフェニコール中での)発酵、(2
)その遺伝子変異体毒素(“原薬中間体”)の、無細胞溶解物からの、イオン交換および
疎水性相互作用クロマトグラフィー手順を用いた、少なくとも95%より大きい純度まで
の精製、(3)EDC/NHSを用いた処理、続いてグリシンを用いた失活/キャッピン
グによる化学的不活性化、ならびに(4)最終緩衝液マトリックス中への交換。
実施例22:不活性化および配合の条件を支持する研究
遺伝子変異体毒素の化学的不活性化を最適化するため、統計学的実験計画(DOE)を
実施した。DOEにおいて調べられた要素には、温度、ホルムアルデヒド/グリシンの濃
度、EDC/NHSの濃度および時間が含まれていた(表9および10)。生物学的活性
の喪失を監視するため、IMR90細胞におけるEC50値を決定した。加えて、処理後
の様々な時点におけるIMR−90細胞の細胞形態も観察した。処理後72時間における
形態を示す図9を参照。タンパク質構造への作用を決定するため、その毒素の異なるドメ
インに対して産生させたモノクローナル抗体の一団(panel)を用いるドットブロッ
ト分析を用いてエピトープ認識を監視した。
Figure 2017125030
Figure 2017125030
C.ディフィシル変異体毒素のホルムアルデヒド/グリシン不活性化において、最終的
な反応条件は、細胞毒性活性における所望のレベルの低減(7〜8log10)が達成さ
れる一方でエピトープ認識を最大化するように選択された。上記の実施例20を参照。
C.ディフィシル変異体毒素のEDC/NHS不活性化において、最終的な反応条件は
、細胞毒性活性における所望のレベルの低減(7〜8log10)が達成される一方でエ
ピトープ認識を最大化するように選択された。上記の実施例21を参照。
代わりの態様において、そのEDC−NHS反応はアラニンの添加により停止され、そ
れはその反応を十分に停止する。アラニンの使用は結果として、その反応をグリシンによ
り停止した場合の修飾に類似した変異体毒素タンパク質上の修飾をもたらし得る。例えば
、アラニンを添加することによる停止は、結果としてその変異体毒素のグルタミン酸およ
び/またはアスパラギン酸残基の側鎖上のアラニン部分をもたらす可能性がある。別の代
わりの態様において、そのEDC−NHS反応はグリシンメチルエステルの添加により停
止され、それはその反応を十分に停止する。
最適な条件下での化学的に不活性な三重変異体C.ディフィシル毒素Aおよび毒素Bの
生成は、結果として残存する細胞毒性の検出不能なレベル(>1000μg/mL−CP
Eアッセイにより試験される最も高い濃度)までのさらなる低減をもたらしたが、毒素特
異的中和抗体へのそれらの反応性により測定されるように、抗原性を維持している。表2
8において示される結果は、wt毒素からEDC/NHSで処理された三重変異体毒素ま
で通した細胞毒性における段階的な低減を実証している。免疫蛍光標識は三重変異体毒素
(SEQ ID NO:4および6)および変異体毒素原薬がIMR−90細胞に対する
比較可能な結合を示すことを確証し、これはその細胞毒性の喪失がその細胞への低減した
結合によるものではなかったことを示唆している(データは示していない)。変異体毒素
A原薬と比較して、変異体毒素B原薬は細胞毒性においてより高い倍率の低減を達成し、
それは観察されたTcdAと比較したTcdBの約600倍高い作用強度と一致している
Figure 2017125030
EDCのみにより、またはEDCおよびスルホ−NHSにより修飾された変異体毒素B
に関する細胞毒性アッセイの結果も評価した。表29参照。
Figure 2017125030
条件:三重変異体毒素B(“TM TcdB”)(SEQ ID NO:6)を、変異
体毒素B:EDC:スルホ−NHS=1:0.5:0.94の重量比で修飾した。この比
率は、実施例21で記述されたような標準的なEDC/NHS反応とモル的に均等である
(スルホ−NHSのより高いMWに関して補正した)。スルホ−NHSの作用を決定する
ため、そのスルホ−NHSの比率を標準的な比率の0.5倍から2倍まで変動させた。1
×PBS pH7.0中で25℃において2通りの反応を実施し、EDC溶液の添加によ
り開始した。2時間後、反応を1MグリシンpH7.0(終濃度0.1M)の添加により
停止し、さらに2時間保温した。停止した反応物を脱塩し、変異体毒素B原薬(“TM
TcdB−EDC”)をVivaspin 20装置を用いて濃縮し、無菌のバイアル中
に濾過滅菌し、それを用いて細胞毒性アッセイにおける評価を行った。
同じモル比において、スルホ−NHSはEC50をNHSに関する>1000ug/m
Lと比較して約250ug/mLまで低減した。2倍のモル比においてさえも、スルホ−
NHSは細胞毒性の低下においてNHSほど有効ではないようであった。表30参照。
Figure 2017125030
修飾の数およびタイプを決定するため、EDC/NHSおよびEDC/スルホ−NHS
で不活性化された三重変異体毒素B試料の両方に対してペプチドマッピングを実施した。
両方の試料において類似の量のグリシン付加物、架橋およびデヒドロアラニン修飾が観察
された。しかし、スルホ−NHS試料ではベータ−アラニンは観察されなかった。
野生型毒素B(SEQ ID NO:2)を、標準的なプロトコル(実施例21参照)
を用いて不活性化し;毒素B:EDC:NHS 1:0.5:0.5、1×PBS pH
7.0中で25℃において2時間、次いで1Mグリシン(終濃度0.1M)により停止し
、さらに2時間保温した。その試料を脱塩し、濃縮し、それを用いて細胞毒性アッセイを
行った。この試料に関するEC50は244ng/mL未満であった。
実施例23:復帰試験
ホルムアルデヒド/グリシンまたはEDC/NHSで不活性化されたC.ディフィシル
変異体毒素のどちらかに関して復帰が起こるかどうかを決定するため、不活性化された変
異体毒素の試料(1mg/mL)を25℃で5〜6週間保温した。分割量(Aliquo
ts)を毎週取り出し、IMR90細胞におけるEC50値を決定した。1つのホルムア
ルデヒド/グリシンで不活性化された試料はホルムアルデヒドを含有せず、1つの試料は
0.01%ホルムアルデヒドを含有していた。EC50をCPEアッセイにより測定した
Figure 2017125030
25℃において、残留するホルムアルデヒドの非存在下では、部分的な復帰が観察され
る(表11)。5週間後、その細胞毒性活性はおおよそ3倍まで増大した。その細胞毒性
活性は増大したが、5週間後、なお天然の毒素と比較して7log10の低減があった。
復帰はホルマリンを0.010%の濃度で含ませることにより完全に防がれた。EDC/
NHSで不活性化された試料では復帰は観察されなかった。EDC/NHSで処理された
三重変異体毒素A(SEQ ID NO:4)およびEDC/NHSで処理された三重変
異体毒素B(SEQ ID NO:6)の両方の4つのロット全てに関して、その6週間
の保温全体を通してEC50値は>1000μg/mLの出発レベルに留まっていた。対
照的に、FIで処理された三重変異体毒素A(SEQ ID NO:4)およびFIで処
理された三重変異体毒素B(SEQ ID NO:6)のEC50値は安定せず、許容で
きないほど低いEC50値まで低下し、これは細胞毒性における増大または不活性化の復
帰を示している。表11参照。
細胞毒性を検出不能なレベル(CPEアッセイにより測定した際に>1000μg/m
L)まで安定して低減することに加えて、EDC/NHSを用いて不活性化された変異体
毒素は毒素中和性mAbの標的である重要なエピトープを保持していた。表31参照。F
I変異体毒素は同じ抗原決定基の喪失を示した。
Figure 2017125030
実施例24:前臨床免疫原性試験
重要な前臨床目標には、C.ディフィシル変異体毒素AおよびBが含まれる組成物を小
動物および非ヒト霊長類(NHP)において試験することが含まれる。マウスおよびハム
スターを、とりわけそのC.ディフィシル組成物がその変異体毒素AおよびBに対する中
和抗体を引き出すことができるかどうかを決定するために免疫した。その抗原を、マウス
、ハムスター、およびカニクイザル・マカクにおける一連の免疫処置の後、血清中和抗体
応答の誘導に関して試験した。遺伝子変異体毒素および/または化学的に不活性化された
変異体毒素を、中性緩衝液、リン酸アルミニウム緩衝液、または一部の態様においてIS
COMATRIXをアジュバントとして含有する緩衝液中で配合した。中和抗体応答は一
般に、それぞれの追加免疫または最終投与の約2〜4週間後に試験された。
その毒素中和アッセイは抗血清のC.ディフィシルTcdAまたはTcdBにより媒介
される細胞毒性作用を中和する能力を実証し、従って試料中に存在する抗体の機能活性を
測定することができる。毒素中和アッセイを、TcdAおよびTcdBの両方に感受性で
あるヒト肺線維芽細胞株のIMR−90に対して実施した。簡潔には、96ウェルマイク
ロタイタープレートに、毒素に媒介される細胞毒性の標的の役目を果たすIMR−90細
胞を蒔いた。それぞれの試験血清試料を、TcdAおよびTcdBを中和する能力に関し
て別々に分析した。試験抗血清の適切な系列希釈物を一定濃度のTcdAまたはTcdB
と混合し、加湿した恒温器(37℃/5%CO)中で37℃において90分間保温して
その毒素の中和を起こさせた。品質管理のため、全てのプレートには既知の力価の抗毒素
抗体が含まれる参照標準および対照が含まれていた。90分後、その毒素−抗血清混合物
をIMR−90細胞の単層に添加し、そのプレートをさらに72時間保温した。続いて、
代謝的に活性な細胞中に存在するアデノシン三リン酸(ATP)レベルを決定するために
CellTiter−Glo(登録商標)基質をそのアッセイプレートに添加し、それを
相対光単位(RLU)として測定した。大きいATPレベルは高い細胞生存度を示し、レ
ベルはその試料中に存在する抗体によるその毒素の中和の量に正比例する。前臨床データ
に関して、そのRLUデータをその試験抗血清試料の希釈値に対してプロットして4パラ
メーターロジスティック(4−PL)回帰反応当てはめ曲線を生成した。その中和力価を
、細胞毒性における50%の低減を示す試料希釈値として表した。
実施例25:マウス免疫原性試験:muC.difficile2010−06
この試験の目的は、それぞれが異なる方法により化学的に不活性化された変異体C.デ
ィフィシル毒素B(SEQ ID NO:6)の2種類の形態の免疫原性を評価すること
であった。この試験において、未処理の変異体毒素B(SEQ ID NO:6)(遺伝
学的に不活性化されているが化学的に不活性化されていない)を、アジュバントと共に、
またはアジュバントなしで、対照として用いた。
10匹のマウスの群を、10μgの表12に従う免疫原を用いて筋内に免疫した。
Figure 2017125030
結果:そのマウスにおいて、そのワクチン候補のそれぞれの投与後に有害事象はなかっ
た。図10で図説されるように、それぞれの群中のマウスはそれぞれの変異体毒素の3回
目の投与の後に著しい強い抗毒素B中和抗体を発現した。
12週目の力価に基づいて、マウスにおいてEDCで不活性化された変異体毒素B(群
2)およびホルマリンで不活性化された変異体毒素(群1)は強力な中和応答を生じさせ
たようである。
化学的不活性化の非存在下では、その遺伝子変異体毒素B(SEQ ID NO:6)
は2回の投与後に中和応答を生じさせ(群3〜4、8週目)、それは3回目の投与後にブ
ーストされた(群3〜4、12週目)。
実施例26:マウス免疫原性試験:muC.difficile2010−07:
この試験の目的は、化学的に不活性化されたC.ディフィシル変異体毒素AおよびB(
それぞれSEQ ID NO:4および6)の、単独または組み合わせのどちらかでの免
疫原性を評価することであった。全ての群に関して、免疫原はリン酸アルミニウムをアジ
ュバントとして用いて配合された。
5匹のマウスの群を、10μgの表13に従う免疫原を用いて筋内に免疫した。
Figure 2017125030
結果:そのマウスにおいて、そのワクチン候補のそれぞれの投与後に有害事象はなかっ
た。図11で図説されるように、化学的に不活性化された遺伝子変異体毒素の2回の投与
後に、抗毒素A中和抗体(群3〜5)は3〜4log10の力価までブーストされ、一方
で抗毒素B中和抗体(群1〜2、5)は低〜検出不能のままであり、それは上記で記述さ
れたマウス試験からのデータ(図10)と一致している。抗毒素B中和抗体は群1、2、
および5において3回目の投与後に2〜3log10までブーストされ(12週目の力価
)、4回目の投与の2週間後にそれらのピークに達した(14週目の力価)。群3〜5に
おける抗毒素A中和抗体の力価は3回目(12週目の力価)および4回目の免疫処置(1
4週目の力価)後にわずかに増大した。
実施例27:ハムスター免疫原性試験:hamC.difficile2010−02

この試験の目的は、C.ディフィシル三重変異体および化学的に不活性化された変異体
毒素AおよびBの免疫原性および保護能力をシリアンゴールデンハムスターモデルにおい
て評価することであった。シリアンゴールデンハムスターモデルは、ヒトのCDADを模
擬実験するための最高の利用可能な負荷モデルである。マウス試験muC.diffic
ile2010−07において用いられたバッチと同じバッチの変異体毒素AおよびBを
、この試験において用いた。対照として、1つの群にアルミニウム含有アジュバントなし
で変異体毒素を与えた。
5匹のシリアンゴールデンハムスターの群を、10μgの表14に従う免疫原を用いて
筋内に免疫した。
Figure 2017125030
結果:その変異体毒素による免疫処置後に有害事象は観察されなかった。図12で図説
されるように、変異体毒素の1回投与後、抗毒素A中和応答はホルマリンで不活性化され
た変異体毒素(群1〜2)に関して2〜3log10であり、EDCで不活性化された変
異体毒素(群3)に関して3〜4log10であった。2回目の投与後、3つの群全てに
おいて抗毒素A抗体がブーストされた。3つの群全てにおいて抗毒素A抗体は3回目の投
与後には増大したように見えなかった。類似の結果が4回目の免疫処置後に観察され、こ
こで力価における増大はアルミニウムアジュバントを含有しないホルマリンで不活性化さ
れた群(群2)において観察された。
抗毒素B中和応答は、1回投与後はホルマリンで不活性化された変異体毒素の群(群1
〜2)では検出不能であり、EDCで不活性化された変異体毒素(群3)に関しては2l
og10をちょうど超えていた。2回目の投与後、2個のホルマリンで不活性化された群
(群1〜2)における抗毒素B中和抗体力価は3〜4log10まで増大し、一方でED
Cで不活性化された群(群3)における抗毒素B中和抗体力価は4〜5log10まで増
大した。3つの群全てに関して、3回目および/または4回目の投与後に抗毒素B中和抗
体力価における増大が観察され、全ての群が16週目(最後の投与後)にピーク力価に達
した。図12参照。
図13において、化学的に不活性化された遺伝子変異体毒素に対する中和抗体応答のレ
ベル(図12)を、List Biological Laboratories,In
c.(カリフォルニア州キャンベル)(本明細書において“List Bio”または“
List Biologicals”とも呼ばれる)のトキソイド(すなわち、List
Biological Laboratoriesから購入したトキソイドを野生型毒
素のホルマリン不活性化により調製した;ハムスター負荷モデルを確立するために用いら
れた対照試薬)により引き出された中和抗体応答のレベルと比較した。
本明細書で用いられる際、図および表中の“FI”は、別途記載しない限りその毒素の
25℃において2日間のホルマリン/グリシン処理を指す。本明細書で用いられる際、図
および表中の“EI”は、別途記載しない限り30℃において4時間のEDC/NHS処
理を指す。図13において、5匹のハムスター動物をそれぞれの変異体毒素組成物で処置
し、一方で11匹のハムスター動物をList Biologicalから購入したトキ
ソイドで処置した。
図13におけるデータは、表14に従って投与されたハムスターにおいて、EDCで不
活性化された変異体毒素が含まれる免疫原性組成物により誘導された、2回投与後の毒素
A(図13A)および毒素B(図13B)に対するそれぞれの中和抗体力価は、List
Biologicalのトキソイドにより引き出されたそれぞれの中和抗体力価よりも
高いことを示している。
実施例28:ハムスター免疫原性試験:C.difficile ham2010−0
2(続き)
変異体毒素の保護的有効性を評価するため、免疫したハムスターに、免疫しなかった動
物の1つの対照群と共に、まず正常な腸内細菌叢を崩壊させるためにクリンダマイシン抗
生物質の経口用量(30mg/kg)を与えた。5日後、そのハムスターに野生型C.デ
ィフィシルの芽胞(630株、動物あたり100cfu)の経口用量で負荷を与えた。動
物を負荷後11日間毎日CDADの徴候に関して監視し、それはハムスターでは濡れた尻
尾(wet tail)として知られている。いくつかの異なるパラメーターを臨床的に
採点するシステムを用いて、重症のCDADを有すると決定された動物を安楽死させた。
そのパラメーターには、刺激後の活動性、脱水症状、排泄物、温度、および体重等が含ま
れており、それらは当該技術で既知である。
11日目において、その試験を終了し、全ての生存している動物を安楽死させた。図1
4は、免疫しなかった対照と比較した、3つの免疫した群(群1〜3、表14に従う)の
それぞれに関する生存曲線を示す。見て分かるように、免疫しなかった動物は全て重症の
CDADを発現し、負荷後1〜3日目に安楽死を必要とした(0%生存)。ホルマリンで
不活性化された変異体毒素を投与された両方の群は60%生存曲線を有し、動物は3日目
(群1)または4日目(群2)まで安楽死を必要としなかった。EDCで不活性化された
変異体毒素を投与された群は80%生存曲線を有し、(5匹中の)1匹の動物が7日目に
安楽死を必要とした。従って、そのハムスターはC.ディフィシルの芽胞による致死的負
荷から保護された。
実施例29:ハムスター免疫原性試験:hamC.difficile2010−03
:遺伝子的および化学的に不活性化されたC.ディフィシル変異体毒素の免疫原性
この試験の目的は、アジュバントを加えないC.ディフィシル三重変異体および化学的
に不活性化された変異体毒素AおよびB(それぞれSEQ ID NO:4および6)の
免疫原性をシリアンゴールデンハムスターモデルにおいて評価することであった。マウス
試験muC.difficile2010−07において用いられたバッチと同じバッチ
の変異体毒素AおよびB(それぞれSEQ ID NO:4および6)を、この試験にお
いて用いた。対照として、1つの群(群1)にリン酸緩衝生理食塩水をプラセボとして与
えた。
5または10匹のシリアンゴールデンハムスターの群を、表15に従う免疫原を用いて
免疫した。動物は3回の投与を受けた。加えて、動物は2週ごとに投与された。
Figure 2017125030
結果:図15参照。プラセボ対照群では抗毒素AまたはB抗体は観察されなかった。1
回投与後、抗毒素A中和抗体がホルマリンで不活性化された群(群2)および遺伝子変異
体毒素群(群4)に関して2〜3log10で、EDCで不活性化された群(群3)に関
して3〜4log10で観察された。抗毒素A中和抗体は、これらの群(2〜4)のそれ
ぞれにおいて関連する変異体毒素による2回目の免疫処置後に増大した(図15における
2週目の力価を3週目の力価と比較)。変異体毒素の3回目の投与(4週目に与えられた
)後、群2〜4における抗毒素A中和抗体力価はそれらの4週目の力価と比較して増大し
た。
抗毒素B中和抗体は2回目の投与後に検出可能であり、ここでホルマリンで不活性化さ
れた(群2)およびEDCで不活性化された(群3)抗毒素B中和抗体は3〜4log
まで増大し、遺伝子三重変異体(群4)に関して2〜3log10まで増大した。3回
目の免疫処置(4週目)後、その抗毒素B中和抗体力価はホルマリンで不活性化された変
異体毒素(群2)および遺伝子変異体毒素(群4)に関して3〜4log10、EDCで
不活性化された変異体毒素(群3)に関して4〜5log10までブーストされた。
抗毒素Aおよび抗毒素B中和抗体の両方に関して、ピーク力価は全てのワクチン接種さ
れた群(群2〜4)に関して6週目(3回目の投与後)に観察された。
Alhydrogel/CpGまたはISCOMATRIXで抗原性補強した免疫原性
組成物の評価
Alhydrogel、ISCOMATRIX、またはAlhydrogel/CpG
24555(Alh/CpG)と共に配合された化学的に不活性化された変異体毒素が含
まれる免疫原性組成物で免疫されたハムスターは、強い中和性抗毒素抗血清を発現した。
ピークの抗毒素Aおよび抗毒素B応答は、Alh/CpGまたはISCOMATRIX中
で配合された変異体毒素で免疫された群において、Alhydrogelのみと共に配合
されたワクチンと比較した場合に2〜3倍高く、統計的に有意であった。50%中和力価
を示す表32を参照。ハムスター(n=10/群)を、0、2、および4週目に、100
μgのAlhydrogel、または200μgのCpG24555+100μgのAl
hydrogel、または10UのISCOMATRIXと共に配合された各10μgの
変異体毒素A原薬および変異体毒素B原薬を用いてIMで免疫した。それぞれの時点にお
いて血清を収集し、機能的抗毒素活性に関して毒素中和アッセイで分析した。幾何平均力
価を表32において提供する。アスタリスク()は、Alhydrogel群における
力価と比較した場合の統計的有意性(p<0.05)を示す。
Figure 2017125030
これらのアジュバントと共に配合された変異体毒素原薬が含まれる免疫原性組成物の保
護的有効性を試験した。ハムスターを免疫し、経口クリンダマイシン(30mg/kg)
を5週目に与え、上記で記述された方法に従って負荷を与えた。免疫されないハムスター
の1つの群(n=5)が対照として含まれた。Alh/CpGまたはISCOMATRI
Xのどちらかで抗原性補強された変異体毒素原薬で免疫されたハムスター(100%生存
)において、Alhydrogelのみ(70%生存)と比較して増大した有効性が観察
された。従って、そのハムスターはC.ディフィシルの芽胞による致死的負荷から保護さ
れた。
実施例30:カニクイザル・マカクにおけるクロストリジウム・ディフィシルワクチン
接種
この試験の目的は、低および高用量のEDCで不活性化された、およびホルマリンで不
活性化されたC.ディフィシル変異体毒素のカニクイザル・マカクにおける免疫原性を試
験することであった。抗原性補強されない対照の役目を果たす1つの群(群5)を除いて
、全ての変異体毒素をアジュバントとしてのISCOMATRIX(登録商標)中で配合
した。
Figure 2017125030
結果:図16は、0、2、3、4、6、8、および12週目におけるこれらの動物にお
ける抗毒素中和抗体応答を示す。抗毒素A力価は5つの群全てに関して1回投与後に2〜
3log10であった(2週目の力価)。これらの力価は、それぞれの群に関してそれぞ
れのそれに続く投与の後にブーストされた。これらの動物において、3および4週目の間
に力価の低下はなかった。全ての群に関して、ピーク力価は4〜5log10であった。
全ての時点において、ISCOMATRIXアジュバントなしの群(群5)は最も低い力
価を有し、これは免疫応答のブーストにおけるISCOMATRIXの有用性を示してい
る。アジュバントなしの対照群(群5)は12週目にピーク力価に達し、高用量のEDC
で不活性化された変異体毒素で免疫された群(群4)も同様であり;全ての他の群は最後
の投与の2週間後である6週目にピーク力価に達した。全ての群における力価は2回目の
投与後にブーストされた(3週目の時点)。抗毒素A応答と同様に、抗毒素B応答は3週
目から4週目までで低下しなかった。3回目の投与後(6週目の時点)、全ての群におけ
る抗毒素B中和抗体力価は、低用量のホルマリンで不活性化された群(群1)および高用
量のEDCで不活性化された群(群4)(その両方がちょうど4log10より大きい力
価を有していた)を除き、3〜4log10であった。ピーク力価は、8週目にピーク力
価を有していた低用量のEDCで不活性化された群(群3)を除き、全ての群に関して1
2週目に観察された。全ての群が4log10より大きいピーク力価を有していた。
実施例31:モノクローナル抗体の生成
毒素AおよびBは多くの構造的相同性を共有しているが、その抗体の中和活性は毒素特
異的であることが分かった。この発明において、個々の毒素に特異的であり、様々なエピ
トープおよび機能ドメインに向けられ、そして天然の毒素に対して高い親和性および強力
な中和活性を有するいくつかの抗体が同定された。毒素AおよびB mAbを生成するた
め、商業的に入手可能なホルマリンで不活性化された(FI)変異体毒素またはその触媒
部位中に特異的な変異を導入することにより非毒性にされた組み換えホロ変異体毒素(S
EQ ID NO:4および6)のどちらかで免疫されたマウスからそれぞれ抗体を単離
した。その抗体のエピトープマッピングは、毒素Aに対するmAbの大部分(52種類の
内の49種類)はその毒素の非触媒性C末端ドメインに向けられていることを示した。
毒素Bに対するモノクローナル抗体は、そのタンパク質の3個のドメインを標的として
いた。合計17種類の毒素B特異的mAbの内で、6種類はN末端(例えば630のよう
な野生型C.ディフィシルのTcdBのアミノ酸1〜543)に、6種類はC末端(例え
ば630のような野生型C.ディフィシルのTcdBのアミノ酸1834〜2366)に
、そして5種類は中央の移行ドメイン(例えば630のような野生型C.ディフィシルの
TcdBのアミノ酸799〜1833)に特異的であった。従って、変異体C.ディフィ
シル毒素(例えばSEQ ID NO:4および6)を免疫抗原として用いるアプローチ
は、その変異体毒素の抗原構造に悪影響を及ぼす傾向があるホルマリン不活性化プロセス
と比較して、全てではないとしてもほとんどの抗原エピトープを提示する重要な利点を与
える。
実施例32:SEQ ID NO:36のアミノ酸配列を有する可変軽鎖およびSEQ
ID NO:37のアミノ酸配列を有する可変重鎖が含まれる毒素A mAb A3−
25の特性付け。
mAb A3−25は、この抗体は一般的に利用可能なIgG、IgMおよびIgAに
関するアイソタイプ判別キットを用いてその免疫グロブリン(Ig)アイソタイプを明ら
かにする全ての試みを拒絶したため、特に興味深かった。Ig H鎖特異的抗血清を用い
たウェスタンブロットによるさらなる分析は、A3−25がIgEアイソタイプのもので
あることを示し、これはmAb生成において稀な出来事であった。これはA3−25のハ
イブリドーマ細胞から単離されたmRNAのヌクレオチド配列決定によりさらに確証され
た。A3−25のHおよびL鎖の可変領域のヌクレオチド配列から推定されたアミノ酸配
列が図17において示されている。
A3−25 mAbをC.ディフィシル感染および疾患に関する動物モデルにおいてさ
らに評価するため、公開された方法に従うそのεH鎖の可変領域のマウスγ重鎖上への分
子移植(molecular grafting)により、そのIgアイソタイプをマウ
スIgG1に変更した。
実施例33:毒素特異的抗体の中和能力およびエピトープマッピング
さらに、機能性/中和抗体を同定する試みにおいて、全てのモノクローナル抗体を、標
準的な細胞変性作用(CPE)アッセイにおいて、または細胞生存度の指標としてのAT
Pの測定に基づくよりストリンジェント且つ定量的なアッセイにおいて、野生型毒素を中
和する能力に関して評価した。
合計52種類の毒素A特異的抗体の内で、4種類のmAb(A3−25、A65−33
、A60−22およびA80−29)(表17および図18)は様々なレベルの中和活性
を示した。その抗体のエピトープをマッピングするため、BiaCore競合結合アッセ
イおよび血球凝集阻止(HI)アッセイを実施した。結果は、これらの抗体は毒素Aタン
パク質の異なるエピトープを標的としている可能性があることを示した(表17)。その
タンパク質上の結合部位の位置をさらに同定するため、その抗体を既知の配列の毒素断片
を用いるウェスタンブロットまたはドットブロットアッセイにおいて個々に評価した。4
種類の中和性mAbは全てその毒素のC末端領域に向けられていることが分かった。
合計17種類の毒素B特異的抗体から、9種類が中和性であることが分かった。9種類
の中和性mAbの内で、それらの6種類はN末端に、その他の3種類はB毒素の移行ドメ
インに向けられていた(表18)。BiaCore競合結合アッセイに基づいて、その9
種類の中和性モノクローナル抗体抗体を、図19で示されるように4つのエピトープ群に
分類した。
Figure 2017125030
Figure 2017125030
実施例34:著しく高められた中和活性を有する新規の毒素A抗体の組み合わせの同定

4種類の毒素A mAb(A3−25、A65−33、A60−22およびA80−2
9)は、個々にATPに基づく中和アッセイにおいて試験した際、毒素Aの不完全または
部分的な中和を示した。mAb A3−25は最も強力な抗体であり、その他の3種類は
中和性がより低く、A80−29はバックグラウンドよりかろうじて上であった(図18
)。しかし、A3−25をその他の3種類のmAbのいずれか1種類と組み合わせた場合
、図20A〜Cにおいて示されるように、3つの組み合わせ全てにおいて中和における相
乗作用が観察され、それは個々の抗体の中和の総和よりもはるかに大きかった。加えて、
3つの組み合わせは全て、通常抗毒素Aポリクローナル抗体を用いて観察される完全な中
和能力を示した。
実施例35:著しく高められた中和活性を示す新規の毒素B抗体の組み合わせの同定:
我々は、BiaCore分析により同定された異なるエピトープ群からの毒素B mA
bによる相乗的中和も観察した。群1の最も優勢なmAbである毒素B mAb B8−
26を、群3からの多数のmAbと組み合わせた。その組み合わせを毒素B特異的中和ア
ッセイにおいて評価し、その結果を図21および表19において示す。
Figure 2017125030
B8−26をエピトープ群3のmAbと組み合わせた場合、相乗的中和作用が観察され
たが、他のmAbでは一切観察されなかった(データは示していない)。
実施例36:安全且つ有効な変異体毒素組成物に関するmAbによるインビトロスクリ
ーニング:
遺伝子工学により生成されたC.ディフィシルの遺伝子変異体毒素AおよびB(例えば
SEQ ID NO:4および6)は、インビトロ細胞毒性アッセイを用いて残存する細
胞毒性を示した。我々はそれぞれの変異体毒素C.ディフィシル毒素に関して細胞毒性に
おける約4logの低減を達成した(表20)が、例えばホルマリン処理によるその変異
体毒素のさらなる化学的不活性化が好ましかった。しかし、化学的不活性処理は過酷であ
る可能性があり、これらの毒素または変異体毒素の重要な抗原エピトープに悪影響を及ぼ
す可能性がある。
Figure 2017125030
バイオプロセスの最適化のため、三重変異体TcdAおよびB(1mg/mL)のホル
マリンおよびEDC/NHS処理を用いた化学的不活性化に関して統計学的実験計画(D
OE)を実施した。三重変異体TcdAのホルマリン不活性化を最適化するため、我々は
ホルマリン/グリシンの濃度(20〜40mM)、pH(6.5〜7.5)、および温度
(25〜40℃)を変動させた。三重変異体TcdBに関して、我々はホルマリン/グリ
シン濃度を2から80mMまで変動させ、温度およびpHはそれぞれ25℃および7.0
であった。全てのホルマリン処理に関する保温時間は24時間であった。ホルマリン不活
性化に関して、表21および23中の“40/40”はその反応において用いられたホル
マリンおよびグリシンの濃度を表す。EDC/NHS処理に関して、我々はEDC/NH
Sの濃度を0.25から2.5mg/三重変異体TcdAのmgまで、および0.125
から2.5mg/三重変異体TcdBのmgまで変動させ、25℃で4時間保温した。反
応の終了時に、全ての試料を10mMホスフェート、pH7.0中で脱塩した。精製後、
処理されたTcdを残存する細胞毒性に関して、そしてドットブロット分析によりエピト
ープのmAb認識に関して分析した。目標は、中和性mAbの一団により認識されるエピ
トープに負の影響を及ぼすことなく(++++または+++)細胞毒性を所望のレベル(
EC50>1000μg/mL)まで低減する処理条件を同定することであった。その処
理条件(表21〜24中でチェックマーク“u”を付けてある)は、少なくとも4種類の
中和性mAbに対する反応性を保持する一方で細胞毒性においてそれぞれの野生型毒素の
細胞毒性と比較して6〜8log10の低減を示す、潜在的に安全且つ有効な免疫原性組
成物をもたらした。選ばれた結果を表21〜24において説明する。三重変異体毒素に対
する処理条件の変動からの追加のデータおよびインビトロ細胞毒性および毒性中和アッセ
イからのデータを、表33および表34において示す。例えば、その変異体毒素の好まし
い架橋処理条件に関するさらなる詳細を提供する上記の実施例20および21も参照。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
表33において参照された三重変異体毒素A(SEQ ID NO:4)の試料に関す
る化学架橋反応条件
試料1〜4をEDC/NHSにより修飾した。条件:30℃、20mM MES/15
0mM NaCl pH6.5。反応をEDCの添加により開始した。2時間の反応後、
試料A、B、およびCに1Mグリシンを50mMのグリシンの終濃度まで添加した。試料
Dにはグリシンを添加しなかった。その反応は、下記で示されるように異なる変異体毒素
A(SEQ ID NO:4):EDC:NHSの重量比を有するように設定された。
1 L44166−157A 1:0.25:0.25 w:w:w
2 L44166−157B 1:1.25:1.25
3 L44166−157C 1:2.5:2.5
4 L44166−157D 1:2.5:2.5
試料5 L44905−160A 80mM HCHO、80mMグリシン、80mM
NaPO4 pH7、1mg/mL変異体毒素A(SEQ ID NO:4)タンパク
質、25℃において48時間の反応。
試料6 L44166−166 変異体毒素A(SEQ ID NO:4)の25℃に
おける20mM MES/150mM NaCl pH6.5中でのEDC/NHS修飾
。変異体毒素A(SEQ ID NO:4):EDC:NHS=1:0.5:0.5。反
応をEDCの添加により開始した。2時間の反応後、1Mグリシンを0.1Mのグリシン
の終濃度まで添加し、さらに2時間保温した。この時間の後、反応緩衝液をSephad
ex G25上で1×PBSに交換した。
試料7 L44905−170A 80mM HCHO、80mMグリシン、80mM
NaPO pH7、1mg/mL変異体毒素A(SEQ ID NO:4)タンパク
質、35℃において48時間の反応。このホルマリン反応は、抗原結合が重度に減少する
であろうような過度の架橋を生成することに向けられた。
試料8 L44897−61 32mM HCHO/80mMグリシン、25℃におい
て72時間の反応。
試料9 L44897−63 80mM HCHO/80mMグリシン、25℃におい
て72時間の反応。
以下の反応は全て24時間の反応時間を有していた。
試料10 L44897−72 チューブ番号1 25℃、80mM NaPi pH
6.5、20mM HCHO/20mMグリシン
試料11 L44897−72 チューブ番号2 25℃、80mM NaPi pH
6.5、40mM HCHO/40mMグリシン
試料12 L44897−72 チューブ番号3 32.5℃、80mM NaPi
pH7.0、30mM HCHO/30mMグリシン
試料13 L44897−72 チューブ番号4 32.5℃、80mM NaPi
pH7.0、30mM HCHO/30mMグリシン
試料14 L44897−72 チューブ番号5 32.5℃、80mM NaPi
pH7.0、30mM HCHO/30mMグリシン
試料15 L44897−75 チューブ番号6 25℃、80mM NaPi pH
7.5、20mM HCHO/20mMグリシン
試料16 L44897−75 チューブ番号7 25℃、80mM NaPi pH
7.5、40mM HCHO/40mMグリシン
試料17 L44897−75 チューブ番号8 40℃、80mM NaPi pH
6.5、20mM HCHO/20mMグリシン
試料18 L44897−75 チューブ番号9 40℃、80mM NaPi pH
6.5、40mM HCHO/40mMグリシン
試料19 L44897−75 チューブ番号10 40℃、80mM NaPi p
H7.5、20mM HCHO/20mMグリシン
試料20 L44897−75 チューブ番号11 40℃、80mM NaPi p
H7.5、40mM HCHO/40mMグリシン
以下の8個の試料は、78mM HCHOおよび76mMグリシンを含有する80mM
NaPi pH7.0中で25℃において示された時間の間反応させた。
試料21 L44897−101(前修飾(pre−modification))T
xA対照、時間ゼロ、対照試料、修飾されていない、またはHCHO/グリシンに曝露し
ていない
試料22 L44897−101、2時間
試料23 L44897−101、4時間
試料24 L44897−101、6時間
試料25 L44897 102、24時間
試料26 L44897−103、51時間
試料27 L44897−104、74時間
試料28 L44897−105、120時間
試料29(L44980−004)は、EDC/NHS修飾された変異体毒素A(SE
Q ID NO:4)(三重変異体毒素A(SEQ ID NO:4)−EDC)であっ
た。反応条件は25℃であり、緩衝液は20mM MES/150mM NaCl pH
6.6であった。三重変異体毒素A(SEQ ID NO:4):EDC:NHS=1:
0.5:0.5 w:w:w。反応をEDCの添加により開始した。2時間の反応後、グ
リシンを0.1Mの終濃度まで添加し、25Cでさらに2時間反応させた。反応をSep
hadex G25上での脱塩により終了させた。
以下の12個の試料および2個の対照は復帰実験であり、ここで試料を25℃および3
7℃で保温した。
反応1=25℃、80mM NaPi pH7.0、40mM HCHOのみ(グリシ
ンなし)、24時間の反応。
反応2=25℃、80mM NaPi pH7.0、40mM HCHO/40mM
グリシン、24時間の反応
試料 反応
30 反応番号1 0週目、25℃
31 反応番号1 1週目、25℃
32 反応番号1 2週目、25℃
33 反応番号1 3週目、25℃
34 反応番号1 4週目、25℃
35 反応番号1 3週目、37℃
36 反応番号2 0週目、25℃
37 反応番号2 1週目、25℃
38 反応番号2 2週目、25℃
39 反応番号2 3週目、25℃
40 反応番号2 4週目、25℃
41 反応番号2 3週目、37℃
42 TxA 対照 3週目、25℃
43 TxA 対照 3週目、37℃
次の4個の試料は、80mM NaPi pH7.0、40mM HCHO/40mM
グリシン中での25℃における示された時間の間の反応により生成された。
44 L44897−116−6 29.5時間
45 L44897−116−7 57.5時間
46 L44897−116 −8 79.5時間
47 L44897−116−9 123.5時間
試料48 L44897−139 25℃、80mM NaPi pH7.0、40m
M HCHO/40mMグリシンにおける48時間の反応。
試料49 L44166−204 変異体毒素A(SEQ ID NO:4)のEDC
/NHS修飾。25C、緩衝液1×PBS pH7.0。変異体毒素A(SEQ ID
NO:4):EDC:NHS=1:0.5:0.5 w:w:w。EDC/NHSとの2
時間の反応、次いで1Mグリシンを0.1Mの終濃度まで添加し、さらに2時間反応。緩
衝液をSephadex G25上で20mM L−ヒスチジン/100mM NaCl
pH6.5に交換した。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
表34において参照された変異体毒素Bの試料に関する化学架橋反応条件
三重変異体毒素B(SEQ ID NO:6)を化学的に架橋し、以下の反応条件に従
って試験した。L44905−86試料を、3種類のホルマリン反応のバリエーションお
よび2種類の保温温度を含む実験において試験した。合計18個の試料に関して、それぞ
れの日に6個の試料を得た。リスト中の最初の試料は未処理の対照である(それにより合
計19個の試料となる)。その未処理の対照には、未処理の三重変異体毒素Bポリペプチ
ド(SEQ ID NO:6)が含まれていた。
反応1(“Rxn1”)=80mM HCHO、80mMグリシン、80mM NaP
O4 pH7、1mg/mL三重変異体毒素B(SEQ ID NO:6)タンパク質
反応2(“Rxn2”)=80mM HCHO、グリシンなし、80mM NaPO4
pH7、1mg/mL三重変異体毒素B(SEQ ID NO:6)タンパク質
反応3(“Rxn3”)=80mM HCHO、グリシンなし、80mM NaPO4
pH7、1mg/mL三重変異体毒素B(SEQ ID NO:6)タンパク質+シア
ノボロヒドリドキャッピング。
シアノボロヒドリドキャッピングは、80mM CNBrHの脱塩された最終反応物
への添加および36℃で24時間の保温を含んでいた。
試料L34346−30Aに関して、1グラムの三重変異体毒素B(SEQ ID N
O:6)あたり0.5gのEDCおよびNHS、20mM MES、150mM NaC
l、pH6.5中で30℃において4時間。
試料L34346−30Bに関して、1グラムの三重変異体毒素B(SEQ ID N
O:6)あたり0.5gのEDCおよびNHS、20mM MES、150mM NaC
l、pH6.5中で30℃において2時間、続いてグリシンの添加(g/Lの終濃度)お
よび30℃においてさらに2時間の保温。L34346−30AおよびL34346−3
0Bに関する2つの反応の間の唯一の違いは、反応L34346−30Bへのグリシンの
添加である。
実施例37:免疫原性組成物により誘導される抗体は、様々なC.ディフィシル株から
の毒素を中和することができる。
その変異体毒素原薬が含まれる免疫原性組成物により誘導された抗体が広いスペクトル
の多様な毒素配列を中和することができるかどうかを評価するため、多様なリボタイプお
よび毒素タイプを代表する株を配列決定して、変異体毒素原薬と比較した様々な株の間の
遺伝的多様性の程度を確認した。次いで、様々な株からの分泌された毒素を含有する培養
上清を、免疫されたハムスターからの血清を用いたインビトロ中和アッセイにおいて試験
し、その免疫原性組成物の適用範囲(coverage)を決定し、その免疫原性組成物
の循環している臨床株からの多様な毒素に対して保護する能力を決定した。
HT−29細胞(結腸癌細胞株)およびIMR−90細胞の両方を用いて、CDC株か
ら発現された毒素の中和を試験した。HT−29細胞はTcdAに対してより感受性であ
り;これらの細胞における精製されたTcdAのEC50は、TcdBに関する3.3n
g/mLと比較して100pg/mLである。一方で、IMR−90細胞はTcdBに対
してより感受性であり;これらの細胞における精製されたTcdBのEC50は、Tcd
Aに関する0.92〜1.5ng/mLと比較して9〜30pg/mLの範囲である。こ
れらの細胞株におけるTcdAおよびTcdB両方に関するそのアッセイの特異性を、ポ
リクローナルおよびモノクローナル毒素特異的抗体両方を用いることにより確かめた。ア
ッセイの標準化のため、24種類のCDC分離株の培養濾液をそれらのそれぞれのEC
値の4倍の濃度で試験した。その株の3種類は、その中和アッセイでの試験に関して低
すぎる毒素レベルを有していた。
米国およびカナダにおけるC.ディフィシルの循環している株の95%より大きい割合
を含む多様なアイソタイプ/毒素タイプを代表する24種類の株を、CDCから得た。こ
れらの分離株の中には、リボタイプ027、001および078を代表する株、米国、カ
ナダおよび英国におけるCDADの3種類の流行株があった。株2004013および2
004118はリボタイプ027を代表し;株2004111はリボタイプ001を代表
し、株2005088、2005325および2007816はリボタイプ078を代表
していた。疾患を引き起こす臨床分離株および630株の間の遺伝的多様性の程度を確認
するため、これらの臨床株からの毒素遺伝子(tcdAおよびtcdB)を完全に配列決
定した。表35参照。その毒素のアミノ酸配列を、Megalign(商標)プログラム
(DNASTAR(登録商標)Lasergene(登録商標))中のClustalW
を用いて整列させ、配列の同一性に関して分析した。tcdAに関して、ゲノムアライン
メント分析は、その臨床分離株の全ておよび株630が全体で約98〜100%のアミノ
酸配列の同一性を共有していることを示した。tcdA遺伝子のC末端部分はわずかによ
り大きく分岐していた。同じ分析をtcdB遺伝子に関して実施し、それはより大きな配
列の分岐を示した。特に、株2007838/NAP7/126および2007858/
NAP1/unk5はN末端(97〜100%)およびC末端ドメイン(88〜100%
;データは示していない)において630株からの最も大きな分岐パターンを示した。
ハムスター血清プール(HS)を、変異体TcdA(SEQ ID NO:4)および
変異体TcdB(SEQ ID NO:6)が含まれる免疫原で免疫されたシリアンゴー
ルデンハムスターから収集し、ここでその変異体毒素は例えば上記で記述された実施例2
9、表15に従ってEDCにより不活性化され、リン酸アルミニウムと共に配合された。
表35における結果は、少なくともそれぞれの培養上清からの毒素Bがインビトロ中和ア
ッセイにおいてその免疫されたハムスターからの血清により中和されたことを示している
Figure 2017125030
図23は、IMR−90細胞における様々なC.ディフィシル株からの毒素調製物を用
いた中和アッセイの結果を示す。そのデータは、ハムスター抗血清中のTcdB中和抗体
が、高病毒性株およびTcdA陰性、TcdB陽性株を含め、試験した21種類の分離株
全てからの毒素を中和することができたことを示している。C.ディフィシルの少なくと
も16種類の異なる株をCDC(ジョージア州アトランタ)(前述)から得て、当該技術
において既知であるような、および上記で記述したような適切な条件の下で、C.ディフ
ィシル培地中で培養した。分泌された毒素を含有する培養上清を分析してそれらのIMR
−90単層に対する細胞毒性(EC50)を決定し、続いてリン酸アルミニウムと共に配
合された変異体毒素A原薬および変異体毒素B原薬で免疫されたハムスターからの様々な
希釈度の血清を用いて、そのEC50の4倍での標準的なインビトロ中和アッセイで試験
した。それぞれの株の培養上清から得られた粗製の毒素および精製された毒素(List
Biologicalsから得た市販の毒素)(それぞれの上清から精製されたもので
はない)を、上記で記述されたインビトロ細胞毒性アッセイを用いて、IMR−90細胞
に対する細胞毒性に関して試験した。
図23A〜Kにおいて、そのグラフはインビトロ細胞毒性試験(前述)からの結果を示
し、ここでATPレベル(RLU)を以下:C.ディフィシル培養液およびハムスター血
清のプール(■);粗製の毒素およびハムスター血清のプール(●);精製された毒素お
よびハムスター血清のプール(▲);粗製の毒素(▼)、対照;ならびに精製された毒素
(◆)、対照の増大する濃度に対してプロットした。それぞれの株からの毒素はその細胞
に4×EC50値で添加された。
図23A〜Kで示されるように、記述された免疫原を与えられたハムスターは、驚くべ
きことに、少なくとも以下の16種類の異なるC.ディフィシルのCDC株からの毒素に
対してそれぞれの毒素のみの対照と比較して中和活性を示す中和抗体を発現した:200
7886(図23A);2006017(図23B);2007070(図23C);2
007302(図23D);2007838(図23E);2007886(図23F)
;2009292(図23G);2004013(図23H);2009141(図23
I);2005022(図23J);2006376(図23K)。それからの毒素が試
験され、それがリン酸アルミニウム中で配合された変異体毒素A原薬および変異体毒素B
原薬が含まれる免疫原性組成物により中和された追加のC.ディフィシル株に関して、表
35も参照。
別の試験において、(CDCから、および英国のLeeds病院から得た)様々なC.
ディフィシル株からの分泌された毒素を含有する培養上清を、Alhydrogelと共
に配合された変異体毒素A原薬および変異体毒素B原薬を投与されたハムスターからの血
清を用いたインビトロ中和アッセイにおいて試験した。実験設計に関して表36を参照。
その結果を表37および表38において示す。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
実施例38:EDC/NHS三重変異体毒素のペプチドマッピング
EDC/NHSで不活性化された三重変異体毒素を特性付けるため、EDC/NHSで
処理された三重変異体毒素A(SEQ ID NO:4)の4ロットおよびEDC/NH
Sで処理された三重変異体毒素B(SEQ ID NO:6)の4ロットに対してペプチ
ドマッピング実験を実施した。その変異体毒素をトリプシンで消化した後、結果として生
じたペプチド断片を逆相HPLCを用いて分離した。質量スペクトル分析を用いて、その
不活性化プロセスの結果として起こった修飾を同定した。変異体毒素A原薬および変異体
毒素B原薬両方に関して、理論上のトリプシン消化ペプチド(tryptic pept
ides)の95%より多くが同定された。架橋およびグリシン付加物(グリシンはキャ
ッピング剤として用いられた)が同定された。変異体毒素A原薬および変異体毒素B原薬
両方において、ベータ−アラニン付加物も観察された。機序または理論により束縛される
わけではないが、そのベータ−アラニン付加物は3モルのNHSの1モルのEDCとの反
応の結果であるようであり、それはNHSで活性化されたベータ−アラニンを形成する。
次いでこの分子はリシン基と反応してベータ−アラニン付加物(+70Da)を形成する
ことができる。EDC/NHSで処理された三重変異体毒素Bの試料において、低レベル
(0.07モル/モルタンパク質)のデヒドロアラニン(−34Da)も観察された。デ
ヒドロアラニンはシステイン残基の脱スルホン化の結果である。同じタイプおよび程度の
修飾がそれぞれの変異体毒素の4つのバッチ全てにおいて観察され、これはそのプロセス
が一貫した生成物を生成することを示している。(95%より大きい配列包括度での)ペ
プチドマッピングは、その修飾が存在することを確証している。その修飾の要約を表39
において示す。図24〜25も参照。加えて、その三重変異体毒素A原薬の、および三重
変異体毒素B原薬の大きさおよび電荷の不均一性は、化学的不活性化の非存在下でのそれ
ぞれの三重変異体毒素Aおよび三重変異体毒素Bの大きさおよび電荷の不均一性と比較し
て増大していた。結果として、サイズ排除クロマトグラフィー(SEC)および陰イオン
交換クロマトグラフィー(AEX)のプロフィールは比較的広いピークを有していた(デ
ータは示していない)。
Figure 2017125030
実施例39:製剤の製造
C.ディフィシル免疫原性組成物(製剤)は、2種類の有効な医薬成分(変異体毒素A
原薬および変異体毒素B原薬)を含有する。典型的な製剤は、変異体毒素A原薬および変
異体毒素B原薬のそれぞれが含まれる、10mMトリス緩衝液 pH7.4、4.5%(
w/w)トレハロース二水和物、および0.01%(w/v)ポリソルベート80を含有
する凍結乾燥された配合物である。その免疫原性組成物は、その凍結乾燥されたワクチン
を希釈剤を用いて、またはAlhydrogelを含有する希釈剤を用いてのどちらかで
再懸濁することにより、注射用に調製される。プラセボには注射用の滅菌通常生理食塩水
溶液(0.9%塩化ナトリウム)が含まれるであろう。
Figure 2017125030
緩衝液の調製
注射用水(WFI)を調剤容器に入れる。混合しながら賦形剤を添加して溶液になるま
で溶解させる。そのpHを測定する。必要であれば、pHをHClを用いて7.4±0.
1に調節する。その溶液をWFIにより最終重量まで希釈し、次いで0.22μm Mi
llipore Express SHC XL150フィルターを用いて濾過する。濾
過前の(pre−filtration)生物負荷低減試料を濾過の前に得る。その濾過
された緩衝液を、モル浸透圧濃度およびpHに関して試料採取する。
配合物の調製
解凍した変異体毒素原薬を、以下の操作の順序で予め計算した量に基づいて配合容器中
にプールする:0.6mg/mLを達成するための目標希釈緩衝液量の50%をまずその
容器に入れ、続いて変異体毒素A原薬を添加し、100rpmで5分間混合する。次いで
変異体毒素B原薬をその容器に添加し、その溶液を0.6mg/mLの希釈点までさらに
希釈し、次いで100rpmでさらに5分間混合する。試料を取り出し、総変異体毒素濃
度に関して試験する。その溶液をプロセス中の変異体毒素濃度の値に基づいて100パー
セントの量まで希釈し、次いで100rpmで15分間混合する。配合された製剤を、濾
過前の(pre−filtration)pHおよび生物負荷に関して試料採取する。次
いで配合された製剤を一夜貯蔵に関してMillipore Express SHC
XL150を用いて濾過し、または濾過滅菌のために充填ラインへと運ぶ。
その配合されたバルクを充填エリアへと運び、生物負荷に関して試料採取し、次いで2
個の直列のMillipore Express SHC XL150フィルターで濾過
滅菌する。その配合されたバルクを、発熱物質を除去されたガラスバイアル中に、0.7
3mLの目標充填量で充填する。その充填されたバイアルに部分的に栓をして、次いで凍
結乾燥機中に装填する。凍結乾燥サイクルを表41で示したように実施する。サイクルの
完了時に、凍結乾燥チャンバーに窒素を0.8atmまで戻し充填し(back−fil
led)、次いで栓を完全に締める(seated)。チャンバーから取り出し、そのバ
イアルにフリップオフ式の封を用いて蓋をする。
Figure 2017125030
製剤の安定性のデータを表42において要約する。そのデータは、その製剤が2〜8℃
で少なくとも3ヶ月間または25℃もしくは40℃で少なくとも1ヶ月間の貯蔵の間、物
理的および化学的に安定であることを示唆している。両方の貯蔵条件下で、試験した最近
の時点まで、サイズ排除クロマトグラフィー(SEC)により検出される不純物のレベル
は変化せず、インビトロ抗原性における変化もなかった。
Figure 2017125030
実施例40;ワクチン希釈剤
生理食塩水に関して、再構成の際の等張溶液を確実にするため、60mM NaClが
アジュバントを一切含まない凍結乾燥された製剤に関する希釈剤として用いられる。
Alhydrogel:Alhydrogel“85”2%(Brenntag)は、
水酸化アルミニウムの八面体結晶シートからなる商業的に入手可能な適正製造基準(GM
P)グレードの製品である。典型的なAlhydrogel希釈剤配合物を、表43にお
いて示す。その典型的な配合は、上記で記述された製剤との組み合わせで用いることがで
きる。
Figure 2017125030
Alhydrogelアジュバントを用いた試験は、pH6.0から7.5までにおい
て、変異体毒素A原薬および変異体毒素B原薬の1mg Al/mL Alhydrog
elへの100%の結合を示す。両方の原薬の最大結合は、試験した最も高いタンパク質
濃度(それぞれ300μg/mL)において見られた。
タンパク質のAlhydrogelへの結合を、200μg/mLのそれぞれの原薬お
よび0.25から1.5mg/mLまでの範囲のAlhydrogelを含有する凍結乾
燥された製剤配合物によっても試験した。その製剤を様々な濃度のAlhydrogel
を含有する希釈剤を用いて再構成し、結合したそれぞれの変異体毒素のパーセントを測定
した。Alhydrogelの全ての試験した濃度は、その抗原の100%の結合を示し
た。
変異体毒素A原薬および変異体毒素B原薬(それぞれ200μg/mL)の目標用量に
おけるタンパク質のAlhydrogelへの結合速度論も評価した。その結果は、その
変異体毒素原薬の100%が24時間のRTでの時間経過全体を通してAlhydrog
elに結合していたことを示している。
CpG 24555およびAlhydrogel:CpG 24555は、配列5−T
CG TCG TTTTTC GGT GCT TTT−3(SEQ ID NO:48
)を有する合成21塩基長オリゴデオキシヌクレオチド(ODN)である。CpG 24
555およびAlhydrogel希釈剤の組み合わせに関する典型的な配合を表44に
おいて示す。その典型的な配合は、上記で記述された製剤との組み合わせで用いることが
できる。
Figure 2017125030
ISCOMATRIX(登録商標):ISCOMATRIX(登録商標)アジュバント
は、当該技術で既知のサポニンに基づくアジュバントである。ISCOMATRIX(登
録商標)アジュバント配合物に関する典型的な配合を表45において示す。その典型的な
配合は、上記で記述された製剤との組み合わせで用いることができる。
Figure 2017125030
実施例41:NHPモデルにおけるAlhydrogelで抗原性補強した変異体毒素
原薬組成物の免疫原性および前臨床概念実証
NHP、特にカニクイザル・マカクにおけるAlhydrogelで抗原性補強した変
異体毒素A原薬および変異体毒素B原薬組成物の免疫原性を評価した。2週間間隔(0、
2、4週目)で投与あたり10μgのそれぞれの変異体毒素A原薬および変異体毒素B原
薬組成物(Alhydrogelと共に配合)で免疫されたNHPは、強い中和抗毒素応
答を発現した。表46参照。抗毒素Aおよび抗毒素B中和応答の両方が3回目の免疫処置
後に保護範囲に達し、少なくとも33週目(試験した最後の時点)を通して保護範囲内ま
たはその上に留まっていた。
カニクイザル・マカク(n=8)を、0、2および4週目において、250μgのAl
hydrogel中で配合されたそれぞれ10μgの変異体毒素A原薬および変異体毒素
B原薬でIMで免疫した。それぞれの時点において血清を収集し、機能的抗毒素活性に関
して毒素中和アッセイにおいて分析した。GMTを表46において提供する。その表で提
供されている保護力価範囲は中和抗体力価範囲を表しており、それはMerckモノクロ
ーナル抗体療法試験におけるC.ディフィシル感染の再発における有意な低減と相関して
いる。
Figure 2017125030
Merck mAb療法試験からのヒト保護抗体力価の、NHPにおけるPfizer
のワクチン候補により誘導された力価に対する相関
Merck/Medarex mAbによる第2相有効性試験(Lowy et al., N Engl J
Med. 2010 Jan 21;362(3):197-205)は、血清中の中和性抗毒素mAbのレベルおよびC
DADの再発の予防の間の相関を実証しているようである。その毒素特異的mAbのヒト
への投与の後、ヒトの受容者における10〜100μg/mLの範囲の血清抗体レベルは
再発に対して保護するようである(CDADの再発における70%の低減)。
変異体毒素原薬が含まれる免疫原性組成物を、その免疫原性組成物がヒトにおいて潜在
的に有効な中和抗体応答を誘導することができるかどうかを評価するため、Merck/
Medarex第2相試験からの公開されたデータをNHPモデルにおいてその免疫原性
組成物により誘導された抗体のレベルと比較することにより試験した。これは、Merc
k/Medarex mAbの以前に公開された特徴を利用して再発の徴候を示さない対
象から得られた血清中のこれらのmAbの範囲(10〜100μg/mL)を50%中和
力価に変換し、これらの力価(“保護力価範囲”)を本明細書で記述される前臨床モデル
において観察された力価と比較することにより成し遂げられた。表46で示されるように
、Alhydrogelで抗原性補強された変異体毒素A原薬および変異体毒素B原薬が
含まれる免疫原性組成物はNHPにおいて免疫応答を生じさせ、それは3回目の投与後に
“保護範囲”に達し、33週目を通してこの範囲内またはその上に留まっていた。NHP
において本発明のC.ディフィシル免疫原性組成物により誘導された毒素中和抗体のレベ
ルは、CDADの再発から保護されたようであったMerck/Medarex試験の対
象における血清抗体レベルに匹敵する。
実施例42:ISCOMATRIXまたはAlhydrogel/CpG 24555
(Alh/CpG)で抗原性補強された変異体毒素原薬組成物のNHPモデルにおける免
疫原性
NHPにおいて、ISCOMATRIXおよびAlh/CpGは両方とも、Alhyd
rogelのみと共に投与されたワクチンと比較した場合に、抗毒素AおよびBの中和力
価を統計的に有意に高めた(表47)。バックグラウンドより上の抗毒素応答は、Alh
/CpGまたはISCOMATRIXのどちらかと共に投与されたワクチンにより、Al
hydrogelのみ(4〜6週目)と比較してより早い時点で誘発され(2〜4週目)
、それはヒトにおけるCDADの再発からの保護に対して重要な作用を有する可能性があ
る。Alhydrogelと比較して、Alh/CpGにより、またはISCOMATR
IXにより抗原性補強された免疫原性組成物は保護範囲(実施例41も参照)に達する抗
毒素中和力価をより迅速に生成し、それはこの範囲内またはこの範囲より上に33週目を
通して留まっている。
表47において示されるように、カニクイザル・マカクを、0、2、および4週目にお
いて、250μgのAlhydrogel(n=8)、または500μMのCpG+25
0μgのAlhydrogel(n=10)、または45UのISCOMATRIX(n
=10)中で配合されたそれぞれ10μgの変異体毒素A原薬および変異体毒素B原薬で
、IMで免疫した。それぞれの時点において血清を収集し、機能的抗毒素活性に関して上
記で記述された毒素中和アッセイで分析した。GMTを表中に列挙する。アスタリスク(
)は、Alhydrogel群における力価と比較した場合の統計的有意性(p<0.
05)を示す。保護力価範囲は、Merck/Medarex mAb療法試験に従うC
.ディフィシル感染の再発における有意な低減と相関する中和抗体力価範囲を表す。
Figure 2017125030
NHPにおいて生成された中和抗毒素抗体力価に対する、ISCOMATRIXまたは
Alh/CpGアジュバントの存在下で投与された変異体毒素A原薬および変異体毒素B
原薬の用量も評価した。1つの試験において、NHPにISCOMATRIX中で配合さ
れた低(10μg)または高(100μg)用量のそれぞれの変異体毒素原薬を投与した
。応答を免疫処置後のそれぞれの時点において比較した。表48で示されるように、抗毒
素中和力価は両方の処置群において強かった。抗毒素A力価はほとんどの時点において低
用量群および高用量群の間でほぼ同等であり、一方で抗毒素B力価に関しては高用量群に
おいてより高い傾向があった。
Figure 2017125030
表48で示されるように、カニクイザル・マカク(n=5)を、0、2、および4週目
において、45UのISCOMATRIXと共に配合されたそれぞれ10μgまたは10
0μgの変異体毒素A原薬および変異体毒素B原薬で、IMで免疫した。それぞれの時点
において血清を収集し、機能的抗毒素活性に関して毒素中和アッセイで分析した。GMT
を表中に列挙する。保護力価範囲は、Merck/Medarex mAb療法試験での
C.ディフィシル感染の再発における有意な低減と相関する中和抗体力価範囲を表す。
抗毒素B応答の速度論を高めるための試みにおいて、NHPを、ISCOMATRIX
またはAlh/CpGアジュバントの存在下で増大する容量の変異体毒素B原薬(10、
50、または100μg)と混合した一定用量の変異体毒素A原薬(10μg)で免疫し
た。アジュバントに関わらず、より高い用量の変異体毒素B原薬(50または100μg
のどちらか)を与えられた群に関して、10μg用量の変異体毒素B薬物と比較してより
高い抗毒素B中和応答を誘導する傾向があった(表50、統計的に有意な増大を示すため
の印を付けた)。この傾向は、最後の免疫処置後のほとんどの時点において観察され
た。しかし、いくつかの場合において、抗毒素A中和応答は変異体毒素Bの量が増大した
際に統計的に有意な減少を示した(表49において^の印を付けた)。
表49および表50で示されるように、NHP(群あたり10匹)を、0、2、および
4週目において、ISCOMATRIX(投与あたり45U)と共に、またはAlh/C
pG(投与あたり250μg/500μg)と共に配合された異なる比率の変異体毒素A
原薬および変異体毒素B原薬(10μgの変異体毒素A原薬に加えて10、50、または
100μgいずれかの変異体毒素B原薬;表49および表50においてそれぞれ10A:
10B、10A:50Bおよび10A:100Bと表されている)で、IMで免疫した。
表49は抗毒素A力価を示す。表50は抗毒素B力価を示す。GMTを表中に列挙する。
保護力価範囲は、Merck mAb療法試験でのC.ディフィシル感染の再発における
有意な低減と相関する中和抗体力価範囲を表す。記号^は、中和力価における10A:1
0B群と比較した統計的に有意な減少(p<0.05)を表す。アスタリスクの記号
、中和力価における10A:10B群と比較した統計的に有意な増大(p<0.05)を
表す。
Figure 2017125030
Figure 2017125030
実施例43:カニクイザルにおける免疫原性組成物による4週間の回復期間を有する5
週反復投与IM毒性試験
カニクイザルにおけるPF−06425095(水酸化アルミニウムおよびCpG 2
4555アジュバントとの組み合わせでの三重変異体毒素A原薬および三重変異体毒素B
原薬が含まれる免疫原性組成物)を用いた5週IM反復投与毒性試験を、水酸化アルミニ
ウムおよびCpG 24555アジュバントとの組み合わせでのC.ディフィシル三重変
異体毒素A原薬および三重変異体毒素B原薬(PF−06425095)の可能性のある
毒性および免疫原性を評価するために実施した。0.2または0.4mg/投与でのPF
−06425095、三重変異体毒素A原薬および三重変異体毒素B原薬(それぞれ低お
よび高用量の免疫原性組成物群)、水酸化アルミニウムとして0.5mgのアルミニウム
、および1mgのCpG 24555ならびにアジュバントの組み合わせのみ(水酸化ア
ルミニウム+CpG 24555;PF−06376915)をカニクイザル(6匹/性
別/群)にIMで予備刺激投与(prime dose)として投与し、続いて3回の追
加免疫投与を行った(1、8、22、および36日目)。別個の群の動物(6匹/性別)
に、おおよそ7.0のpHの0.9%等張生理食塩水を与えた。その免疫原性組成物のビ
ヒクルは、pH7.4の10mMトリス緩衝液、4.5%トレハロース二水和物、および
0.1%ポリソルベート80で構成されていた。アジュバント対照のビヒクルは、60n
M NaClを含むpH6.5の10mMヒスチジン緩衝液で構成されていた。総投与量
は注射あたり0.5mLであった。全ての用量は左および/または右四頭筋(quard
riceps muscle)中に投与された。選択された動物は、その試験の投与期の
間に観察されるあらゆる作用の可逆性を評価するため、4週間の投与なしの観察期間を経
た。
この試験において、不都合な所見はなかった。PF−06425095は十分に耐容さ
れ、全身毒性の証拠なしで局所的な炎症反応のみをもたらした。投与期の間、4および3
8日目においてフィブリノーゲン(23.1%〜2.3倍)、ならびに4(2.1倍〜2
7.5倍)および38(2.3倍〜101.5倍)日目においてC反応性タンパク質、な
らびに36および/または38日目においてグロブリン(11.1%〜24.1%)にお
ける事前調査からの用量依存性の増大が免疫原性組成物で処置された群において見られ、
それは抗原性補強された免疫原性組成物の投与に対する予想された炎症反応と一致してい
た。
4日目に気付かれたフィブリノーゲンおよびC反応性タンパク質における増大は、高用
量免疫原性組成物群においてのみ、フィブリノーゲン(25.6%〜65.5%)および
C反応性タンパク質(4.5倍および5.6倍)における増大により、8日目までに部分
的に回復した。インターロイキン(IL)−6における増大は、低および高用量免疫原性
組成物群において、1日目、3時間目(8.3倍〜127.2倍の個々の値、1日目、0
時間目、用量応答)および36日目、3時間目(9.4倍〜39.5倍の個々の値、36
日目、0時間目)において観察された。他のサイトカイン類(IL−10、IL−12、
インターフェロン誘導性タンパク質(IP−10)および腫瘍壊死因子α(TNF−α)
では変化は観察されなかった。これらの急性期タンパク質およびサイトカインにおける増
大は、外来抗原の投与に対する予想された正常な生理的応答の一部であった。これらの臨
床病理パラメーターにおけるPF−06425095に関連する、またはアジュバントに
関連する変化は、回復期には存在しなかった(サイトカイン類は回復期の間は評価されな
かった)。加えて、注射部位において局在性の変化が存在し、それはアジュバント対照群
ならびに低および高用量免疫原性組成物群において類似の発生率および重症度であり;従
ってそれらはPF−06425095に直接関連していなかった。投与期の間、その変化
にはマクロファージの浸潤による筋線維の分離を特徴とする最小限〜中程度の慢性活動性
炎症が含まれ、それはしばしば好塩基性粒状物質(アルミニウム含有アジュバントと解釈
される)、リンパ球、形質細胞、好中球、好酸球、壊死性残屑、および浮腫を含有してい
た。その好塩基性粒状物質は、これらの慢性活動性炎症の病巣内で細胞外にも存在してい
た。回復期の終了時に、最小限〜中程度の慢性炎症および単核細胞の浸潤、ならびに最小
限の線維化が存在していた。これらの注射部位の所見は、そのアジュバントに対する局所
的な炎症反応を表す。他の顕微鏡的変化には、腸骨(流入領域)リンパ節における最小限
〜中程度の増大したリンパ系細胞充実度および脾臓中の胚中心における最小限の増大した
細胞充実度が含まれ、それはアジュバント対照群ならびに低および高用量免疫原性組成物
群において投与期の間に気付かれた。回復期の終了時に、これらの顕微鏡的所見はより低
い重症度であった。これらの作用は抗原刺激に対する免疫応答を表しており、アジュバン
トまたはPF−06425095に対する薬理学的応答であった。抗DNA抗体における
試験物に関連する増大はなかった。
不都合な所見の非存在に基づいて、この試験における最大無毒性量(NOAEL)は、
4回の投与に関して2回の0.5mLの注射として投与された高用量免疫原性組成物群(
0.4mgのPF−06425095としての三重変異体毒素A原薬および三重変異体毒
素B原薬/投与)である。
実施例44:ハムスターに受動的に移された血清陽性NHPの有効性
5匹のシリアンゴールデンハムスターの群に、正常な腸内細菌叢を崩壊させるためにク
リンダマイシン抗生物質の経口用量(30mg/kg)を投与した。5日後、そのハムス
ターに野生型C.ディフィシルの芽胞(630株、動物あたり100cfu)の経口用量
で負荷を与え、表51に従うNHP血清を腹腔内(IP)投与した。機序または理論によ
り束縛されるわけではないが、その芽胞による負荷後の疾患症状は典型的には負荷の約3
0〜48時間後に開始を示す。
そのハムスターに投与されたNHP血清は、ISCOMATRIXと共に配合された変
異体毒素A原薬および変異体毒素B原薬(10:10、10:50、および10:100
A:Bの比率)による3回の免疫処置後に最も高い力価を示しているNHP血清試料(
抗毒素A血清および抗毒素B血清)からプールされた(実施例42、表49、および表
を参照)。そのNHP血清は、実施例42において記述されたように、5、6、および
8週目の時点(免疫処置は0、2、および4週目に行われた)から収集された。結果を下
記の表52〜54において示す。記号“+”は、不応答動物である3番の動物を含まない
幾何平均(GM)を()中に示す。“TB”は最後の採血を表し、その日にその動物を
安楽死させ、それは全ての動物に関して同じではない。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
別の試験において、シリアンゴールデンハムスターに正常な腸内細菌叢を崩壊させるた
めにクリンダマイシン抗生物質の経口用量(30mg/kg)を投与した。5日後、その
ハムスターに野生型C.ディフィシルの芽胞(630株、動物あたり100cfu)の経
口用量で負荷を与え、表55に従うNHP血清を腹腔内(IP)投与した。機序または理
論により束縛されるわけではないが、その芽胞による負荷後の疾患症状は典型的には負荷
の約30〜48時間後に開始を示す。
そのハムスターに投与されたNHP血清は、AlhydrogelおよびCpG 24
555と共に配合された変異体毒素A原薬および変異体毒素B原薬(10:10、10:
50、および10:100 A:Bの比率)による3回の免疫処置後にNHPから収集さ
れた試料からプールされた(実施例42、表49、および表50を参照)。そのNHP血
清は、実施例42において記述されたように、5、6、8、および12週目の時点(NH
Pは0、2、および4週目に免疫された)から収集された。結果を下記の表56〜59に
おいて示す。ハムスターからの血清を阻止濃度(IC50)の値を決定するためにさらに
調べ、それは上記で記述された毒素中和アッセイを用いて決定された。ハムスターにおい
て本発明のC.ディフィシル免疫原性組成物により誘導された毒素中和抗体のレベルは、
CDADの再発から保護されたようであったMerck/Medarex試験の対象にお
ける血清抗体レベルに匹敵する。
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
Figure 2017125030
実施例45:変異体毒素原薬の特性付け
三重変異体毒素Aの一次構造をSEQ ID NO:4において示す。SEQ ID
NO:4の1位におけるNH末端Met残基はSEQ ID NO:12の開始コドン
に由来し、単離されたタンパク質には存在しない(例えばSEQ ID NO:84を参
照)。従って、実施例12〜実施例45において、“SEQ ID NO:4”は最初の
(1位の)メチオニンが存在しないSEQ ID NO:4を指す。精製された三重変異
体毒素A(SEQ ID NO:4)(原薬中間体−ロットL44993−132)およ
びEDC/NHS処理された三重変異体毒素A(SEQ ID NO:4)(“変異体毒
素A原薬”−ロットL44898−012)は両方ともSLISKEELIKLAYSI
(SEQ ID NO:4の2〜16位)で開始する単一のNH末端配列を示した。
三重変異体毒素Bの一次構造をSEQ ID NO:6において示す。SEQ ID
NO:6の1位におけるNH末端Met残基は開始コドンに由来し、単離されたタンパ
ク質には存在しない(例えばSEQ ID NO:86を参照)。従って、実施例12〜
実施例45において、“SEQ ID NO:6”は最初の(1位の)メチオニンが存在
しないSEQ ID NO:6を指す。精製された三重変異体毒素B(SEQ ID N
O:6)(原薬中間体−ロット010)およびEDC/NHS処理された三重変異体毒素
B(SEQ ID NO:6)(“変異体毒素B原薬”−ロットL44906−153)
は両方ともSLVNRKQLEKMANVR(SEQ ID NO:6の2〜16位)で
開始する単一のNH末端配列を示した。
円二色性(CD)分光法を用いて、三重変異体A(SEQ ID NO:4)および変
異体毒素A原薬の二次および三次構造を評価した。CD分光法を用いて、三重変異体B(
SEQ ID NO:6)および変異体毒素B原薬の二次および三次構造も評価した。C
D分光法を用いて、pHの構造に対する可能性のある作用も評価した。EDC処理の三重
変異体毒素Aへの作用を、変異体毒素A原薬に関して得られたCDデータを三重変異体毒
素Aに関して得られたデータと比較することにより分析した。EDC処理の三重変異体毒
素B(SEQ ID NO:6)への作用を、変異体毒素B原薬に関して得られたCDデ
ータを三重変異体毒素Bに関して得られたデータと比較することにより分析した。
変異体毒素A原薬の遠紫外CDデータを様々なpHにおいて得た。pH5.0〜7.0
で記録されたスペクトルはその二次構造中のαヘリックスの高い割合を示しており、これ
はそのタンパク質のポリペプチド主鎖がαヘリックスに支配される十分に定められた(w
ell−defined)立体構造をとっていることを示唆している。
変異体毒素A原薬の近紫外CDスペクトルも得た。260〜300nmの強い負の楕円
率は、芳香族側鎖が唯一の固定した環境中にあること、すなわち変異体毒素A原薬が三次
構造を有していることを示すものである。実際、個々の芳香族側鎖のタイプに起因する特
徴的な特徴をそのスペクトル内で識別することができる:約290nmにおける肩および
約283nmにおける最も大きな負のピークは規則正しいトリプトファン側鎖による偏光
の吸収によるものであり、276nmにおける負のピークはチロシン側鎖からのものであ
り、262および268nmにおける小さい肩は三次接触に参加しているフェニルアラニ
ン残基を示している。遠および近紫外の結果は、変異体毒素A原薬が生理的pHにおいて
コンパクトに折りたたまれた構造を保持している証拠を提供する。pH5.0〜7.0に
おいて観察されたほぼ同一の遠および近紫外CDスペクトルは、このpH範囲内では検出
可能な構造変化は起こっていないことを示している。CDデータはpH3.0および4.
0では収集することができず、これはそのタンパク質がこれらのpH点では不溶性であっ
たためである。変異体毒素A原薬の遠および近紫外CDスペクトルの三重変異体毒素Aの
遠および近紫外CDスペクトルとの比較において、両方のタンパク質のスペクトルは試験
した実験条件の全ての下で本質的に同一であり、これはEDC処理が三重変異体毒素Aの
二次および三次構造に検出可能な作用を有しなかったことを示している。この発見は、そ
れぞれストークス半径および沈降/摩擦係数において検出可能な変化を示さないゲル濾過
および分析用超遠心法の結果と一致している。
変異体毒素A原薬(ならびに三重変異体毒素A)は25個のトリプトファン残基を含有
し、それは一次配列全体にわたって分布しており、便利な内在性蛍光プローブの役目を果
たすことができる。温度の関数としての変異体毒素A原薬の300〜400nmの蛍光発
光スペクトルを得た。6.8℃において、変異体毒素A原薬は280nmでの励起の際に
特徴的なトリプトファン蛍光発光スペクトルを示す。蛍光発光最大値は約335nmにお
いて観察され、これはトリプトファン残基が極性の水性環境ではなくタンパク質内部に典
型的な非極性の環境中にあることを示している。その蛍光発光スペクトルの結果は、この
報告で提供されるCD実験の結果と合わせて、変異体毒素A原薬がコンパクトに折りたた
まれた構造を保持していることを確証している。
外来のプローブである8−アニリノ−1−ナフタレンスルホン酸(8−anilino
−1−naphtalene sulfonic acid)(ANS)の蛍光を用いて
、pHにおける変化の際の変異体毒素A原薬および三重変異体毒素Aにおける可能性のあ
る立体構造変化を特性付けた。その結果から分かるように、変異体毒素A原薬または三重
変異体毒素AのどちらをpH7.0においてそのプローブで滴定した(titrated
)際にもANS蛍光強度における増大は本質的に存在せず、これはこれらの条件下ではそ
のタンパク質上に疎水性表面は露出していないことを示唆している。pHを2.6に変え
ることは、プローブの濃度における増大の際のANS蛍光量子収率における、蛍光量子収
率が見かけ上の飽和に達するまでの劇的な増大をもたらす。このANS蛍光量子収率にお
ける増大は、低いpH(2.6)において、変異体毒素A原薬および三重変異体毒素Aの
両方が疎水性表面を露出させるpHに誘導される立体構造変化を起こすことを示している
。そのような立体構造変化は、三重変異体毒素AのEDCに誘導される修飾および不活性
化は変異体毒素A原薬(DS)の立体構造の柔軟性を制限しなかったことを示している。
EDC処理の三重変異体毒素Aの水力学的特性への作用を、G4000 SWXLカラ
ム上でのサイズ排除クロマトグラフィーを用いて評価した。変異体毒素A原薬および三重
変異体毒素Aを、pH7.0、6.0、および5.0で平衡化したG4000 SWXL
カラム上に注入した。そのデータは、サイズ排除クロマトグラフィーを用いて変異体毒素
A原薬および三重変異体毒素Aのストークス半径における違いを検出することができなか
ったことを示している。従って、EDC処理は三重変異体毒素Aの水力学的特性およびそ
れに対応して全体的な分子の形状に劇的には影響を及ぼさなかった。
三重変異体毒素Aおよび変異体毒素A原薬のさらなる分析を、多角度レーザー光散乱(
MALLS)技法を用いて実施した。三重変異体毒素AのEDCによる処理は、結果とし
て様々な多量体および単量体の種からなる不均質な混合物の生成をもたらした。そのよう
な不均質性は、そのタンパク質のカルボキシルおよび第1級アミンの間の多数のEDCに
誘導される分子間および分子内共有結合の導入を反映している。
得られたデータは、三重変異体毒素Aおよび変異体毒素A原薬(EDCで処理された三
重変異体毒素A)の物理的および化学的特徴を提供し、それらの一次、二次、および三次
構造の重要な特徴を記述している。生成されたデータは、三重変異体毒素AのEDCによ
る処理は結果としてそのポリペプチド鎖の共有結合性修飾をもたらしたが、そのタンパク
質の二次および三次構造には影響を及ぼさなかったことを実証している。EDCによる処
理は分子内および分子間架橋をもたらす。変異体毒素A原薬(ならびに三重変異体毒素A
)に関して得られた生化学的および生物物理学的パラメーターを表60において提供する
Figure 2017125030
変異体毒素B原薬の遠紫外CDデータを様々なpHにおいて得た。pH5.0〜7.0
で記録されたスペクトルはその二次構造中のαヘリックスの高い割合を示しており、これ
はそのタンパク質のポリペプチド主鎖がαヘリックスに支配される十分に定められた(w
ell−defined)立体構造をとっていることを示唆している。
変異体毒素B原薬の近紫外CDスペクトルも得た。260〜300nmの強い負の楕円
率は、芳香族側鎖が唯一の固定した環境中にあること、すなわち変異体毒素B原薬が三次
構造を有していることを示すものである。実際、個々の芳香族側鎖のタイプに起因する特
徴的な特徴をそのスペクトル内で識別することができる:約290nmにおける肩および
約283nmにおける最も大きな負のピークは規則正しいトリプトファン側鎖による偏光
の吸収によるものであり、276nmにおける負のピークはチロシン側鎖からのものであ
り、262および268nmにおける小さい肩は三次接触に参加しているフェニルアラニ
ン残基を示している。遠および近紫外CDスペクトルは、変異体毒素B原薬が生理的pH
においてコンパクトに折りたたまれた構造を保持している証拠を提供する。pH5.0〜
7.0において観察された非常に類似した遠および近紫外CDスペクトルは、このpH範
囲内では検出可能な二次または三次の構造変化は起こっていないことを示している。CD
データはpH3.0および4.0では収集することができず、これはそのタンパク質がこ
れらのpH点では不溶性であったためである。
変異体毒素B原薬の遠および近紫外CDスペクトルの三重変異体毒素Bの遠および近紫
外CDスペクトルとの比較において、両方のタンパク質のスペクトルはpH5.0〜7.
0において非常に類似しており、これはEDC処理がそのタンパク質の二次および三次構
造に検出可能な作用を有しなかったことを示している。
三重変異体毒素Bは16個のトリプトファン残基を含有し、それは一次配列全体にわた
って分布しており、便利な内在性蛍光プローブの役目を果たすことができる。温度の関数
としての変異体毒素B原薬の300〜400nmの蛍光発光スペクトルを得た。7℃にお
いて、変異体毒素B原薬は280nmでの励起の際に特徴的なトリプトファン蛍光発光ス
ペクトルを示す。蛍光発光最大値は約335nmにおいて観察され、これはトリプトファ
ン残基が極性の水性環境ではなくタンパク質内部に典型的な非極性の環境中にあることを
示している。この結果は、CD実験の結果(上記参照)と合わせて、変異体毒素B原薬が
コンパクトに折りたたまれた構造を保持していることを確証している。
外来のプローブである8−アニリノ−1−ナフタレンスルホン酸(8−anilino
−1−naphtalene sulfonic acid)(ANS)の蛍光を用いて
、pHにおける変化の際の変異体毒素B原薬および三重変異体毒素Bにおける可能性のあ
る立体構造変化を特性付けた。その結果から分かるように、変異体毒素B原薬または三重
変異体毒素BのどちらをpH7.0においてそのプローブで滴定した(titrated
)際にもANS蛍光強度における増大は本質的に存在せず、これはこれらの条件下ではそ
のタンパク質上に疎水性表面は露出していないことを示唆している。pHを2.6に変え
ることは、変異体毒素B原薬の存在下でのプローブの濃度における増大の際のANS蛍光
量子収率における、蛍光量子収率が見かけ上の飽和に達するまでの劇的な増大をもたらす
。このANS蛍光量子収率における増大は、低いpH(2.6)において、変異体毒素B
原薬が疎水性表面を露出させるpHに誘導される立体構造変化を起こすことを示している
。そのような立体構造変化は、三重変異体毒素BのEDCに誘導される修飾および不活性
化は変異体毒素B原薬(DS)の立体構造の柔軟性を制限しなかったことを示している。
EDC処理の三重変異体毒素Bの水力学的特性への作用を、G4000 SWXLカラ
ム上でのサイズ排除クロマトグラフィーを用いて評価した。変異体毒素B原薬および三重
変異体毒素Bを、pH7.0、6.0、5.0で平衡化したG4000 SWXLカラム
上に注入した。そのデータは、サイズ排除クロマトグラフィーを用いて変異体毒素B原薬
および三重変異体毒素Bのストークス半径における違いを検出することができなかったこ
とを示しており、従って、EDC処理はそのタンパク質の水力学的特性およびそれに対応
して全体的な分子の形状に劇的には影響を及ぼさなかった。
三重変異体毒素Bおよび変異体毒素B原薬のさらなる分析を、多角度レーザー光散乱(
MALLS)技法を用いて実施した。三重変異体毒素BのEDCによる処理は、結果とし
て様々な多量体および単量体の種からなるより不均質な混合物の生成をもたらした。その
ような不均質性は、そのタンパク質のカルボキシルおよび第1級アミンの間の多数のED
Cに誘導される分子間および分子内共有結合の導入を反映している。
得られたデータは、三重変異体毒素Bおよび変異体毒素B原薬(EDCで処理された三
重変異体毒素B)の物理的および化学的特徴を提供し、それらの一次、二次、および三次
構造の重要な特徴を記述している。生成されたデータは、三重変異体毒素BのEDCによ
る処理は結果としてそのポリペプチド鎖の共有結合性修飾をもたらしたが、そのタンパク
質の二次および三次構造には影響を及ぼさなかったことを実証している。EDCによる処
理は分子内および分子間架橋をもたらす。変異体毒素B原薬(ならびに三重変異体毒素B
)に関して得られた主要な生化学的および生物物理学的パラメーターを表61において提
供する。
Figure 2017125030
本発明の側面
以下の条項は、本発明の追加の態様を記述する:
C1. SEQ ID NO:4で示されるアミノ酸配列が含まれる単離されたポリペ
プチドであって、1位のメチオニン残基が場合により存在せず、且つ該ポリペプチドに1
−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒ
ドロキシスクシンイミド(NHS)により化学的に修飾された少なくとも1個のアミノ酸
側鎖が含まれる、前記単離されたポリペプチド。
C2. SEQ ID NO:6で示されるアミノ酸配列が含まれる単離されたポリペ
プチドであって、1位のメチオニン残基が場合により存在せず、且つ該ポリペプチドに1
−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒ
ドロキシスクシンイミド(NHS)により化学的に修飾されたアミノ酸側鎖が含まれる、
前記単離されたポリペプチド。
C3. ポリペプチドのアスパラギン酸残基の少なくとも1個の側鎖またはポリペプチ
ドのグルタミン酸残基の少なくとも1個の側鎖がグリシンにより化学的に修飾されている
、条項C1またはC2に記載の単離されたポリペプチド。
C4. ポリペプチドに以下:
a)ポリペプチドのアスパラギン酸残基の側鎖およびポリペプチドのリシン酸残基の側
鎖の間の少なくとも1個の架橋;ならびに
b)ポリペプチドのグルタミン酸残基の側鎖およびポリペプチドのリシン酸残基の側鎖
の間の少なくとも1個の架橋
が含まれる、条項C1〜C3のいずれかに記載の単離されたポリペプチド。
C5. ポリペプチドに該ポリペプチドの少なくとも1個のリシン残基の側鎖に連結さ
れたベータ−アラニン部分が含まれる、条項C1〜C4のいずれかに記載の単離されたポ
リペプチド。
C6. ポリペプチドに該ポリペプチドのアスパラギン酸残基の側鎖に、または該ポリ
ペプチドのグルタミン酸残基の側鎖に連結されたグリシン部分が含まれる、条項C4に記
載の単離されたポリペプチド。
C7. SEQ ID NO:4で示されるアミノ酸配列が含まれる単離されたポリペ
プチドであって、1位のメチオニン残基が場合により存在せず、且つ該ポリペプチドの少
なくとも1個のリシン残基の側鎖がベータ−アラニン部分に連結されている、前記単離さ
れたポリペプチド。
C8. SEQ ID NO:6で示されるアミノ酸配列が含まれる単離されたポリペ
プチドであって、1位のメチオニン残基が場合により存在せず、且つ該ポリペプチドの少
なくとも1個のリシン残基の側鎖がベータ−アラニン部分に連結されている、前記単離さ
れたポリペプチド。
C9. ポリペプチドの第2のリシン残基の側鎖がアスパラギン酸残基の側鎖に、また
はグルタミン酸残基の側鎖に連結されている、条項C7またはC8に記載の単離されたポ
リペプチド。
C10. ポリペプチドのアスパラギン酸の側鎖またはグルタミン酸の側鎖がグリシン
部分に連結されている、条項C7〜C9のいずれかに記載の単離されたポリペプチド。
C11. ポリペプチドが少なくとも約100μg/mlのEC50を有する、条項C
1〜C10のいずれかに記載の単離されたポリペプチド。
C12. 1位のメチオニン残基が場合により存在しない、SEQ ID NO:4で
示されるアミノ酸配列を有する単離されたポリペプチド、および1位のメチオニン残基が
場合により存在しない、SEQ ID NO:6で示されるアミノ酸配列を有する単離さ
れたポリペプチドが含まれる免疫原性組成物であって、該ポリペプチドが1−エチル−3
−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒドロキシスク
シンイミド(NHS)により化学的に修飾された少なくとも1個のアミノ酸側鎖を有する
、前記免疫原性組成物。
C13. ポリペプチドに以下:
a)該ポリペプチドのリシン残基の側鎖に連結された少なくとも1個のベータ−アラニ
ン部分;
b)該ポリペプチドのリシン残基の側鎖およびアスパラギン酸残基の側鎖の間の少なく
とも1個の架橋;ならびに
c)該ポリペプチドのリシン残基の側鎖およびグルタミン酸残基の側鎖の間の少なくと
も1個の架橋
のいずれかの少なくとも1が含まれる、条項C12に記載の免疫原性組成物。
C14. ポリペプチドが少なくとも約100μg/mlのEC50を有する、条項C
12に記載の免疫原性組成物。
C15. 1位のメチオニン残基が場合により存在しない、SEQ ID NO:4で
示されるアミノ酸配列を有する単離されたポリペプチド、および1位のメチオニン残基が
場合により存在しない、SEQ ID NO:6で示されるアミノ酸配列を有する単離さ
れたポリペプチドが含まれる免疫原性組成物であって、且つ
a)SEQ ID NO:4の少なくとも1個のリシン残基の側鎖がベータ−アラニン
部分に連結されており、且つ
b)SEQ ID NO:6の少なくとも1個のリシン残基の側鎖がベータ−アラニン
部分に連結されている、
前記免疫原性組成物。
C16. SEQ ID NO:4の第2のリシン残基の側鎖がアスパラギン酸残基の
側鎖に、またはグルタミン酸残基の側鎖に連結されており、且つSEQ ID NO:6
の第2のリシン残基がアスパラギン酸残基の側鎖に、またはグルタミン酸残基の側鎖に連
結されている、条項C15に記載の免疫原性組成物。
C17. SEQ ID NO:4で示されるアミノ酸配列を有するポリペプチドのア
スパラギン酸残基の側鎖またはグルタミン酸残基の側鎖がグリシン部分に連結されており
、1位のメチオニン残基が場合により存在しない、条項C12〜C16のいずれかに記載
の免疫原性組成物。
C18. SEQ ID NO:6で示されるアミノ酸配列を有するポリペプチドのア
スパラギン酸残基の側鎖またはグルタミン酸残基の側鎖がグリシン部分に連結されており
、1位のメチオニン残基が場合により存在しない、条項C12〜C16のいずれかに記載
の免疫原性組成物。
C19. ポリペプチドが少なくとも約100μg/mlのEC50を有する、条項C
12〜C18のいずれかに記載の免疫原性組成物。
C20. SEQ ID NO:84で示されるアミノ酸配列を有する単離されたポリ
ペプチドおよびSEQ ID NO:86で示されるアミノ酸配列を有する単離されたポ
リペプチドが含まれる免疫原性組成物であって、それぞれのポリペプチドに以下:
a)該ポリペプチドのアスパラギン酸残基の側鎖および該ポリペプチドのリシン酸残基
の側鎖の間の少なくとも1個の架橋;
b)該ポリペプチドのグルタミン酸残基の側鎖および該ポリペプチドのリシン酸残基の
側鎖の間の少なくとも1個の架橋;
c)該ポリペプチドの少なくとも1個のリシン残基の側鎖に連結されたベータ−アラニ
ン部分;ならびに
d)該ポリペプチドの少なくとも1個のアスパラギン酸残基の側鎖に、または該ポリペ
プチドの少なくとも1個のグルタミン酸残基の側鎖に連結されたグリシン部分
が含まれる、前記免疫原性組成物。
C21. 対応する野生型クロストリジウム・ディフィシル毒素Aと比較して少なくと
も1個の変異を有するグルコシルトランスフェラーゼドメイン、および少なくとも1個の
変異を有するシステインプロテアーゼドメインが含まれる、変異体クロストリジウム・デ
ィフィシル毒素Aが含まれる免疫原性組成物。
C22. 変異が非保存的アミノ酸置換である、条項C21に記載の組成物。
C23. 置換にアラニン置換が含まれる、条項C22に記載の組成物。
C24. 野生型クロストリジウム・ディフィシル毒素AにSEQ ID NO:1に
対して少なくとも95%の同一性を有する配列が含まれる、条項C21〜C23のいずれ
かに記載の組成物。
C25. 野生型クロストリジウム・ディフィシル毒素AにSEQ ID NO:1に
対して少なくとも98%の同一性を有する配列が含まれる、条項C24に記載の組成物。
C26. 野生型クロストリジウム・ディフィシル毒素AにSEQ ID NO:1が
含まれる、条項C25に記載の組成物。
C27. グルコシルトランスフェラーゼドメインに少なくとも2個の変異が含まれる
、条項C21〜C26のいずれかに記載の組成物。
C28. 少なくとも2個の変異がSEQ ID NO:1の番号付けに従うアミノ酸
位置101、269、272、285、287、269、272、460、462、54
1、または542に存在する、条項C27に記載の組成物。
C29. グルコシルトランスフェラーゼドメインにSEQ ID NO:29が含ま
れる、条項C21〜C26のいずれかに記載の組成物。
C30. グルコシルトランスフェラーゼドメインにSEQ ID NO:29のアミ
ノ酸位置101、269、272、285、287、269、272、460、462、
541、または542、またはそれらのあらゆる組み合わせに存在する少なくとも2個の
非保存的変異が含まれる、条項C29に記載の組成物。
C31. システインプロテアーゼドメインにSEQ ID NO:1の番号付けに従
う700、589、655、543位、またはそれらのあらゆる組み合わせに存在する変
異が含まれる、条項C21〜C26のいずれかに記載の組成物。
C32. システインプロテアーゼドメインにSEQ ID NO:32が含まれる、
条項C21〜C26のいずれかに記載の組成物。
C33. システインプロテアーゼドメインにSEQ ID NO:32の1、47、
113、158、またはそれらのあらゆる組み合わせに存在する非保存的変異が含まれる
、条項C32に記載の組成物。
C34. 変異体クロストリジウム・ディフィシル毒素AにSEQ ID NO:4が
含まれる、条項C21に記載の組成物。
C35. 変異体クロストリジウム・ディフィシル毒素AにSEQ ID NO:84
が含まれる、条項C21に記載の組成物。
C36. 変異体クロストリジウム・ディフィシル毒素AにSEQ ID NO:7が
含まれる、条項C21に記載の組成物。
C37. 変異体クロストリジウム・ディフィシル毒素AにSEQ ID NO:83
が含まれる、条項C21に記載の組成物。
C38. 変異体クロストリジウム・ディフィシル毒素Aの少なくとも1個のアミノ酸
が化学的に架橋されている、条項C21〜C33のいずれかに記載の組成物。
C39. アミノ酸がホルムアルデヒドにより化学的に架橋されている、条項C38に
記載の組成物。
C40. アミノ酸が1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミ
ドにより化学的に架橋されている、条項C38に記載の組成物。
C41. アミノ酸がN−ヒドロキシスクシンイミドにより化学的に架橋されている、
条項C38またはC40に記載の組成物。
C42. 組成物が抗毒素A中和抗体またはその結合断片により認識される、条項C2
1〜C41のいずれかに記載の組成物。
C43. 対応する野生型のクロストリジウム・ディフィシル毒素Aと比較して285
位および287位においてアミノ酸置換を有するSEQ ID NO:29が含まれるグ
ルコシルトランスフェラーゼドメインならびに158位においてアミノ酸置換を有するS
EQ ID NO:32が含まれるシステインプロテアーゼドメインが含まれる変異体ク
ロストリジウム・ディフィシル毒素Aが含まれる免疫原性組成物であって、該変異体クロ
ストリジウム・ディフィシル毒素Aの少なくとも1個のアミノ酸が化学的に架橋されてい
る、前記免疫原性組成物。
C44. SEQ ID NO:4またはSEQ ID NO:7が含まれる免疫原性
組成物であって、SEQ ID NO:4またはSEQ ID NO:7の少なくとも1
個のアミノ酸が化学的に架橋されている、前記免疫原性組成物。
C45. 少なくとも1個のアミノ酸がホルムアルデヒドにより架橋されている、条項
C43またはC44に記載の組成物。
C46. 少なくとも1個のアミノ酸が1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミドにより架橋されている、条項C43またはC44に記載の組成物。
C47. 少なくとも1個のアミノ酸がN−ヒドロキシスクシンイミドにより架橋され
ている、条項C43、C44、またはC46に記載の組成物。
C48. 組成物が抗毒素A中和抗体またはその結合断片により認識される、条項C4
3またはC44に記載の組成物。
C49. SEQ ID NO:4が含まれる免疫原性組成物。
C50. SEQ ID NO:84が含まれる免疫原性組成物。
C51. SEQ ID NO:7が含まれる免疫原性組成物。
C52. SEQ ID NO:83が含まれる免疫原性組成物。
C53. 少なくとも1個のアミノ酸が化学的に架橋されている、条項C49〜C52
のいずれかに記載の組成物。
C54. 組成物が対応する野生型クロストリジウム・ディフィシル毒素Aと比較して
減少した細胞毒性を示す、条項C21〜C51のいずれかに記載の組成物。
C55. SEQ ID NO:84が含まれる単離されたポリペプチド。
C56. SEQ ID NO:86が含まれる単離されたポリペプチド。
C57. SEQ ID NO:83が含まれる単離されたポリペプチド。
C58. SEQ ID NO:85が含まれる単離されたポリペプチド。
C59. 対応する野生型クロストリジウム・ディフィシル毒素Bと比較して少なくと
も1個の変異を有するグルコシルトランスフェラーゼドメインおよび少なくとも1個の変
異を有するシステインプロテアーゼドメインが含まれる変異体クロストリジウム・ディフ
ィシル毒素Bが含まれる免疫原性組成物。
C60. 変異が非保存的アミノ酸置換である、条項C59に記載の組成物。
C61. 置換にアラニン置換が含まれる、条項C60に記載の組成物。
C62. 野生型クロストリジウム・ディフィシル毒素BにSEQ ID NO:2に
対して少なくとも95%の同一性を有する配列が含まれる、条項C59〜C61のいずれ
かに記載の組成物。
C63. 野生型クロストリジウム・ディフィシル毒素BにSEQ ID NO:2に
対して少なくとも98%の同一性を有する配列が含まれる、条項C62に記載の組成物。
C64. 野生型クロストリジウム・ディフィシル毒素BにSEQ ID NO:2が
含まれる、条項C63に記載の組成物。
C65. グルコシルトランスフェラーゼドメインに少なくとも2個の変異が含まれる
、条項C59〜C64のいずれかに記載の組成物。
C66. 少なくとも2個の変異がSEQ ID NO:2の番号付けに従うアミノ酸
位置102、286、288、270、273、384、461、463、520、また
は543に存在する、条項C65に記載の組成物。
C67. グルコシルトランスフェラーゼドメインにSEQ ID NO:31が含ま
れる、条項C59〜C64のいずれかに記載の組成物。
C68. グルコシルトランスフェラーゼドメインにSEQ ID NO:31のアミ
ノ酸位置102、286、288、270、273、384、461、463、520、
または543に存在する少なくとも2個の非保存的変異が含まれる、条項C67に記載の
組成物。
C69. システインプロテアーゼドメインにSEQ ID NO:2の番号付けに従
う698、653、587、544位、またはそれらのあらゆる組み合わせに存在する変
異が含まれる、条項C59〜C64のいずれかに記載の組成物。
C70. システインプロテアーゼドメインにSEQ ID NO:33が含まれる、
条項C59〜C64のいずれかに記載の組成物。
C71. システインプロテアーゼドメインにSEQ ID NO:33の1、44、
110、155位、またはそれらのあらゆる組み合わせに存在する非保存的変異が含まれ
る、条項C70に記載の組成物。
C72. 変異体クロストリジウム・ディフィシル毒素BにSEQ ID NO:6が
含まれる、条項C59に記載の組成物。
C73. 変異体クロストリジウム・ディフィシル毒素BにSEQ ID NO:86
が含まれる、条項C59に記載の組成物。
C74. 変異体クロストリジウム・ディフィシル毒素BにSEQ ID NO:8が
含まれる、条項C59に記載の組成物。
C75. 変異体クロストリジウム・ディフィシル毒素BにSEQ ID NO:85
が含まれる、条項C59に記載の組成物。
C76. 変異体クロストリジウム・ディフィシル毒素Bの少なくとも1個のアミノ酸
が化学的に架橋されている、条項C59〜C71のいずれかに記載の組成物。
C77. アミノ酸がホルムアルデヒドにより化学的に架橋されている、条項C76に
記載の組成物。
C78. アミノ酸が1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミ
ドにより化学的に架橋されている、条項C76に記載の組成物。
C79. 少なくとも1個のアミノ酸がN−ヒドロキシスクシンイミドにより架橋され
ている、条項C76またはC78に記載の組成物。
C80. 組成物が抗毒素B中和抗体またはその結合断片により認識される、条項C5
9〜C79のいずれかに記載の組成物。
C81. 対応する野生型のクロストリジウム・ディフィシル毒素Bと比較して286
位および288位においてアミノ酸置換を有するSEQ ID NO:31が含まれるグ
ルコシルトランスフェラーゼドメインならびに155位においてアミノ酸置換を有するS
EQ ID NO:33が含まれるシステインプロテアーゼドメインが含まれる変異体ク
ロストリジウム・ディフィシル毒素Bが含まれる免疫原性組成物であって、該変異体クロ
ストリジウム・ディフィシル毒素Bの少なくとも1個のアミノ酸が化学的に架橋されてい
る、前記免疫原性組成物。
C82. SEQ ID NO:6またはSEQ ID NO:8が含まれる免疫原性
組成物であって、SEQ ID NO:6またはSEQ ID NO:8の少なくとも1
個のアミノ酸が化学的に架橋されている、前記免疫原性組成物。
C83. 少なくとも1個のアミノ酸がホルムアルデヒドにより架橋されている、条項
C81またはC82に記載の組成物。
C84. 少なくとも1個のアミノ酸が1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミドにより架橋されている、条項C81またはC82に記載の組成物。
C85. 少なくとも1個のアミノ酸がN−ヒドロキシスクシンイミドにより架橋され
ている、条項C81、C82、またはC84に記載の組成物。
C86. 組成物が抗毒素B中和抗体またはその結合断片により認識される、条項C8
1またはC82に記載の組成物。
C87. SEQ ID NO:6が含まれる免疫原性組成物。
C88. SEQ ID NO:86が含まれる免疫原性組成物。
C89. SEQ ID NO:8が含まれる免疫原性組成物。
C90. SEQ ID NO:85が含まれる免疫原性組成物。
C91. 組成物が対応する野生型クロストリジウム・ディフィシル毒素Bと比較して
減少した細胞毒性を示す、条項C59〜C89のいずれかに記載の組成物。
C92. SEQ ID NO:4が含まれる免疫原性組成物およびSEQ ID N
O:6が含まれる免疫原性組成物であって、SEQ ID NO:4および6のそれぞれ
の少なくとも1個のアミノ酸が化学的に架橋されている、前記免疫原性組成物。
C93. SEQ ID NO:84が含まれる免疫原性組成物およびSEQ ID
NO:86が含まれる免疫原性組成物であって、SEQ ID NO:84および86の
それぞれの少なくとも1個のアミノ酸が化学的に架橋されている、前記免疫原性組成物。
C94. 少なくとも1個のアミノ酸がホルムアルデヒドにより架橋されている、条項
C92またはC93に記載の組成物。
C95. 少なくとも1個のアミノ酸が1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミドにより架橋されている、条項C92またはC93に記載の組成物。
C96. 少なくとも1個のアミノ酸がN−ヒドロキシスクシンイミドにより架橋され
ている、条項C92、C93、またはC95に記載の組成物。
C97. SEQ ID NO:11、SEQ ID NO:12、SEQ ID N
O:13、SEQ ID NO:14、SEQ ID NO:44、SEQ ID NO
:45、SEQ ID NO:46、またはSEQ ID NO:47が含まれる、組み
換え細胞またはその子孫。
C98. SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:
7、またはSEQ ID NO:8をコードする核酸配列が含まれる、組み換え細胞また
はその子孫。
C99. SEQ ID NO:84をコードする核酸配列が含まれる、組み換え細胞
またはその子孫。
C100. SEQ ID NO:86をコードする核酸配列が含まれる、組み換え細
胞またはその子孫。
C101. SEQ ID NO:83をコードする核酸配列が含まれる、組み換え細
胞またはその子孫。
C102. SEQ ID NO:85をコードする核酸配列が含まれる、組み換え細
胞またはその子孫。
C103. 前記の細胞がグラム陽性細菌細胞に由来する、条項C97またはC98に
記載の組み換え細胞。
C104. 細胞がクロストリジウム・ディフィシル細胞に由来する、条項C97、C
98、またはC99に記載の組み換え細胞。
C105. 細胞が毒素をコードする内在性ポリヌクレオチドを欠いている、条項C9
7〜C104のいずれかに記載の組み換え細胞。
C106. 細胞がクロストリジウム・ディフィシル1351、クロストリジウム・デ
ィフィシル3232、クロストリジウム・ディフィシル7322、クロストリジウム・デ
ィフィシル5036、クロストリジウム・ディフィシル4811、およびクロストリジウ
ム・ディフィシルVPI 11186からなる群から選択されるクロストリジウム・ディ
フィシル細胞に由来する、条項C104またはC105のいずれかに記載の細胞。
C107. 細胞がクロストリジウム・ディフィシルVPI 11186細胞である、
条項C106に記載の細胞。
C108. クロストリジウム・ディフィシル細胞の芽胞形成遺伝子が不活性化されて
いる、条項C106またはC107に記載の細胞。
C109. 芽胞形成遺伝子にspo0A遺伝子またはspoIIE遺伝子が含まれる
、条項C108に記載の細胞。
C110. 組み換え細胞またはその子孫を変異体クロストリジウム・ディフィシル毒
素をコードするポリヌクレオチドを発現するための適切な条件下で培養することが含まれ
る、変異体クロストリジウム・ディフィシル毒素を生成する方法であって、該細胞に該変
異体クロストリジウム・ディフィシル毒素をコードするポリヌクレオチドが含まれ、且つ
該変異体に対応する野生型クロストリジウム・ディフィシル毒素と比較して少なくとも1
個の変異を有するグルコシルトランスフェラーゼドメインおよび少なくとも1個の変異を
有するシステインプロテアーゼドメインが含まれる、前記方法。
C111. 細胞が毒素をコードする内在性ポリヌクレオチドを欠いている、条項C1
10に記載の方法。
C112. 組み換え細胞またはその子孫に条項C97〜C111のいずれかに記載の
細胞が含まれる、条項C110に記載の方法。
C113. さらに変異体クロストリジウム・ディフィシル毒素を単離することが含ま
れる、条項C110に記載の方法。
C114. さらに単離された変異体クロストリジウム・ディフィシル毒素をホルムア
ルデヒドと接触させることが含まれる、条項C113に記載の方法。
C115. 接触が最大で14日間行われる、条項C114に記載の方法。
C116. 接触が最大で48時間行われる、条項C115に記載の方法。
C117. 接触が約25℃で行われる、条項C114に記載の方法。
C118. さらに単離された変異体クロストリジウム・ディフィシル毒素をエチル−
3−(3−ジメチルアミノプロピル)カルボジイミドと接触させることが含まれる、条項
C113に記載の方法。
C119. 接触が最大で24時間行われる、条項C118に記載の方法。
C120. 接触が最大で4時間行われる、条項C120に記載の方法。
C121. 接触が約25℃で行われる、条項C118に記載の方法。
C122. さらに単離された変異体クロストリジウム・ディフィシル毒素をN−ヒド
ロキシスクシンイミドと接触させることが含まれる、条項C118に記載の方法。
C123. 条項C110〜C122のいずれかに記載の方法により生成された免疫原
性組成物。
C124. 免疫原性組成物を哺乳類に投与することおよび該哺乳類から抗体を回収す
ることが含まれる、クロストリジウム・ディフィシル毒素Aに対する中和抗体を生成する
方法であって、前記の免疫原性組成物にSEQ ID NO:4が含まれ、1位のメチオ
ニン残基が場合により存在せず、SEQ ID NO:4の少なくとも1個のアミノ酸が
ホルムアルデヒド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、
N−ヒドロキシスクシンイミド、または1−エチル−3−(3−ジメチルアミノプロピル
)カルボジイミドおよびN−ヒドロキシスクシンイミドの組み合わせにより架橋されてい
る、前記方法。
C125. 免疫原性組成物を哺乳類に投与することおよび該哺乳類から抗体を回収す
ることが含まれる、クロストリジウム・ディフィシル毒素Aに対する中和抗体を生成する
方法であって、前記の免疫原性組成物にSEQ ID NO:84が含まれ、SEQ I
D NO:84の少なくとも1個のアミノ酸がホルムアルデヒド、1−エチル−3−(3
−ジメチルアミノプロピル)カルボジイミド、N−ヒドロキシスクシンイミド、または1
−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびN−ヒドロキシス
クシンイミドの組み合わせにより架橋されている、前記方法。
C126. 免疫原性組成物を哺乳類に投与することおよび該哺乳類から抗体を回収す
ることが含まれる、クロストリジウム・ディフィシル毒素Bに対する中和抗体を生成する
方法であって、前記の免疫原性組成物にSEQ ID NO:6が含まれ、1位のメチオ
ニン残基が場合により存在せず、SEQ ID NO:6の少なくとも1個のアミノ酸が
ホルムアルデヒド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、
N−ヒドロキシスクシンイミド、または1−エチル−3−(3−ジメチルアミノプロピル
)カルボジイミドおよびN−ヒドロキシスクシンイミドの組み合わせにより架橋されてい
る、前記方法。
C127. 免疫原性組成物を哺乳類に投与することおよび該哺乳類から抗体を回収す
ることが含まれる、クロストリジウム・ディフィシル毒素Aに対する中和抗体を生成する
方法であって、前記の免疫原性組成物にSEQ ID NO:86が含まれ、SEQ I
D NO:86の少なくとも1個のアミノ酸がホルムアルデヒド、1−エチル−3−(3
−ジメチルアミノプロピル)カルボジイミド、N−ヒドロキシスクシンイミド、または1
−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびN−ヒドロキシス
クシンイミドの組み合わせにより架橋されている、前記方法。
C128. 免疫原性組成物に特異的な抗体またはその抗体結合断片であって、前記の
免疫原性組成物に1位のメチオニン残基が場合により存在しないSEQ ID NO:4
または1位のメチオニン残基が場合により存在しないSEQ ID NO:7が含まれる
、前記抗体またはその抗体結合断片。
C129. 条項C128に記載の抗体またはその抗体結合断片であって、1位のメチ
オニン残基が場合により存在しないSEQ ID NO:4または1位のメチオニン残基
が場合により存在しないSEQ ID NO:7の少なくとも1個のアミノ酸がホルムア
ルデヒド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、N−ヒド
ロキシスクシンイミド、または1−エチル−3−(3−ジメチルアミノプロピル)カルボ
ジイミドおよびN−ヒドロキシスクシンイミドの組み合わせにより架橋されている、前記
抗体またはその抗体結合断片。
C130. SEQ ID NO:41(CDR H1)、SEQ ID NO:42
(CDR H2)およびSEQ ID NO:43(CDR H3)で示される重鎖相補
性決定領域(CDR)のアミノ酸配列、ならびにSEQ ID NO:38(CDR L
1)、SEQ ID NO:39(CDR L2)およびSEQ ID NO:40(C
DR L3)で示される軽鎖CDRのアミノ酸配列が含まれる、抗体またはその抗体結合
断片。
C131. 抗体またはその抗体結合断片にSEQ ID NO:37で示されるアミ
ノ酸配列が含まれる重鎖およびSEQ ID NO:36で示されるアミノ酸配列が含ま
れる軽鎖が含まれる、条項C128、C129、またはC130に記載の抗体またはその
抗体結合断片。
C132. 条項C128〜C131のいずれかに記載のいずれかから選択される2以
上の抗体またはその抗体結合断片の組み合わせが含まれる組成物。
C133. 免疫原性組成物に特異的な抗体またはその抗体結合断片であって、前記の
免疫原性組成物に1位のメチオニン残基が場合により存在しないSEQ ID NO:6
または1位のメチオニン残基が場合により存在しないSEQ ID NO:8が含まれる
、前記抗体またはその抗体結合断片。
C134. 条項C123に記載の抗体またはその抗体結合断片であって、1位のメチ
オニン残基が場合により存在しないSEQ ID NO:6または1位のメチオニン残基
が場合により存在しないSEQ ID NO:8の少なくとも1個のアミノ酸がホルムア
ルデヒド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、N−ヒド
ロキシスクシンイミド、または1−エチル−3−(3−ジメチルアミノプロピル)カルボ
ジイミドおよびN−ヒドロキシスクシンイミドの組み合わせにより架橋されている、前記
抗体またはその抗体結合断片。
C135. SEQ ID NO:51(CDR H1)、SEQ ID NO:52
(CDR H2)およびSEQ ID NO:53(CDR H3)において示される重
鎖相補性決定領域(CDR)のアミノ酸配列、ならびにSEQ ID NO:57(CD
R L1)、SEQ ID NO:58(CDR L2)およびSEQ ID NO:5
9(CDR L3)において示される軽鎖CDRのアミノ酸配列が含まれる、抗体または
その抗体結合断片。
C136. SEQ ID NO:61(CDR H1)、SEQ ID NO:62
(CDR H2)およびSEQ ID NO:63(CDR H3)において示される重
鎖相補性決定領域(CDR)のアミノ酸配列、ならびにSEQ ID NO:68(CD
R L1)、SEQ ID NO:69(CDR L2)およびSEQ ID NO:7
0(CDR L3)において示される軽鎖CDRのアミノ酸配列が含まれる、抗体または
その抗体結合断片。
C137. SEQ ID NO:73(CDR H1)、SEQ ID NO:74
(CDR H2)およびSEQ ID NO:75(CDR H3)において示される重
鎖相補性決定領域(CDR)のアミノ酸配列、ならびにSEQ ID NO:79(CD
R L1)、SEQ ID NO:80(CDR L2)およびSEQ ID NO:8
1(CDR L3)において示される軽鎖CDRのアミノ酸配列が含まれる、抗体または
その抗体結合断片。
C138. 条項C133〜C137のいずれかから選択される2以上の抗体またはそ
の抗体結合断片の組み合わせが含まれる組成物。
C139. 哺乳類においてクロストリジウム・ディフィシル感染症を処置する方法で
あって、該哺乳類に1位のメチオニン残基が場合により存在しないSEQ ID NO:
4が含まれる免疫原性組成物および1位のメチオニン残基が場合により存在しないSEQ
ID NO:6が含まれる免疫原性組成物を投与することが含まれ、SEQ ID N
O:4および6のそれぞれの少なくとも1個のアミノ酸がホルムアルデヒドにより架橋さ
れている、前記方法。
C140. 哺乳類においてクロストリジウム・ディフィシル感染症を処置する方法で
あって、該哺乳類に1位のメチオニン残基が場合により存在しないSEQ ID NO:
4が含まれる免疫原性組成物および1位のメチオニン残基が場合により存在しないSEQ
ID NO:6が含まれる免疫原性組成物を投与することが含まれ、SEQ ID N
O:4およびSEQ ID NO:6のそれぞれの少なくとも1個のアミノ酸が1−エチ
ル−3−(3−ジメチルアミノプロピル)カルボジイミド、N−ヒドロキシスクシンイミ
ド、または1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびN−
ヒドロキシスクシンイミドの組み合わせにより架橋されている、前記方法。
C141. 哺乳類においてクロストリジウム・ディフィシル感染症を処置する方法で
あって、該哺乳類にSEQ ID NO:84が含まれる免疫原性組成物およびSEQ
ID NO:86が含まれる免疫原性組成物を投与することが含まれ、SEQ ID N
O:84およびSEQ ID NO:86のそれぞれの少なくとも1個のアミノ酸が1−
エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびN−ヒドロキシスク
シンイミドにより架橋されている、前記方法。
C142. 哺乳類においてクロストリジウム・ディフィシルに対する免疫応答を誘導
する方法であって、該哺乳類に1位のメチオニン残基が場合により存在しないSEQ I
D NO:4が含まれる免疫原性組成物および1位のメチオニン残基が場合により存在し
ないSEQ ID NO:6が含まれる免疫原性組成物を投与することが含まれ、SEQ
ID NO:4およびSEQ ID NO:6のそれぞれの少なくとも1個のアミノ酸
がホルムアルデヒドにより架橋されている、前記方法。
C143. 哺乳類においてクロストリジウム・ディフィシルに対する免疫応答を誘導
する方法であって、該哺乳類に1位のメチオニン残基が場合により存在しないSEQ I
D NO:4が含まれる免疫原性組成物および1位のメチオニン残基が場合により存在し
ないSEQ ID NO:6が含まれる免疫原性組成物を投与することが含まれ、SEQ
ID NO:4およびSEQ ID NO:6のそれぞれの少なくとも1個のアミノ酸
が1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、N−ヒドロキシス
クシンイミド、または1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド
およびN−ヒドロキシスクシンイミドの組み合わせにより架橋されている、前記方法。
C144. 哺乳類においてクロストリジウム・ディフィシルに対する免疫応答を誘導
する方法であって、該哺乳類にSEQ ID NO:84が含まれる免疫原性組成物およ
びSEQ ID NO:86が含まれる免疫原性組成物を投与することが含まれ、SEQ
ID NO:84およびSEQ ID NO:86のそれぞれの少なくとも1個のアミ
ノ酸が1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびN−ヒド
ロキシスクシンイミドにより架橋されている、前記方法。
C145. 哺乳類がそれを必要とする哺乳類である、条項C139〜C144のいず
れかに記載の方法。
C146. 哺乳類が再発性クロストリジウム・ディフィシル感染症を有する、条項C
139〜C144のいずれかに記載の方法。
C147. 組成物が非経口投与される、条項C139〜C144のいずれかに記載の
方法。
C148. 組成物にさらにアジュバントが含まれる、条項C139〜C144のいず
れかに記載の方法。
C149. アジュバントにアルミニウムが含まれる、条項C148に記載の方法。
C150. アジュバントに水酸化アルミニウムゲルおよびCpGオリゴヌクレオチド
が含まれる、条項C148に記載の方法。
C151. アジュバントにISCOMATRIX(登録商標)が含まれる、条項C1
48に記載の方法。

Claims (1)

  1. SEQ ID NO:6で示されるアミノ酸配列を含む単離されたポリペプチドであって、1位のメチオニン残基が場合により存在せず、且つ該ポリペプチドが1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒドロキシスクシンイミド(NHS)により化学的に修飾されたアミノ酸側鎖を含む、前記単離されたポリペプチド。
JP2017027808A 2011-04-22 2017-02-17 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法 Active JP6321239B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161478474P 2011-04-22 2011-04-22
US61/478,474 2011-04-22
US201161478899P 2011-04-25 2011-04-25
US61/478,899 2011-04-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016009882A Division JP6097853B2 (ja) 2011-04-22 2016-01-21 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017198569A Division JP2018052938A (ja) 2011-04-22 2017-10-12 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Publications (2)

Publication Number Publication Date
JP2017125030A true JP2017125030A (ja) 2017-07-20
JP6321239B2 JP6321239B2 (ja) 2018-05-09

Family

ID=46085103

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2014505775A Active JP5917682B2 (ja) 2011-04-22 2012-04-20 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2016009882A Active JP6097853B2 (ja) 2011-04-22 2016-01-21 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2017027808A Active JP6321239B2 (ja) 2011-04-22 2017-02-17 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2017198569A Pending JP2018052938A (ja) 2011-04-22 2017-10-12 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2018071560A Active JP6735784B2 (ja) 2011-04-22 2018-04-03 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2018192593A Active JP6892425B2 (ja) 2011-04-22 2018-10-11 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2021088838A Active JP7097478B2 (ja) 2011-04-22 2021-05-27 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2022102418A Pending JP2022126822A (ja) 2011-04-22 2022-06-27 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014505775A Active JP5917682B2 (ja) 2011-04-22 2012-04-20 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2016009882A Active JP6097853B2 (ja) 2011-04-22 2016-01-21 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2017198569A Pending JP2018052938A (ja) 2011-04-22 2017-10-12 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2018071560A Active JP6735784B2 (ja) 2011-04-22 2018-04-03 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2018192593A Active JP6892425B2 (ja) 2011-04-22 2018-10-11 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2021088838A Active JP7097478B2 (ja) 2011-04-22 2021-05-27 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法
JP2022102418A Pending JP2022126822A (ja) 2011-04-22 2022-06-27 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Country Status (29)

Country Link
US (13) US8481692B2 (ja)
EP (4) EP3505531B1 (ja)
JP (8) JP5917682B2 (ja)
KR (1) KR101667837B1 (ja)
CN (3) CN107022532B (ja)
AR (1) AR086199A1 (ja)
AU (6) AU2012245904B2 (ja)
BR (2) BR122019017005B1 (ja)
CA (1) CA2832712C (ja)
CO (1) CO6801643A2 (ja)
DK (2) DK2699587T3 (ja)
ES (3) ES2968629T3 (ja)
FI (1) FI3549949T3 (ja)
HR (2) HRP20231631T1 (ja)
HU (1) HUE047085T2 (ja)
IL (8) IL270779B1 (ja)
MX (1) MX347521B (ja)
MY (2) MY168205A (ja)
NZ (1) NZ616035A (ja)
PE (2) PE20141029A1 (ja)
PL (3) PL2699587T3 (ja)
PT (2) PT3549949T (ja)
RU (2) RU2754446C2 (ja)
SA (3) SA112330472B1 (ja)
SG (3) SG194132A1 (ja)
SI (3) SI3549949T1 (ja)
TW (6) TWI815599B (ja)
WO (1) WO2012143902A1 (ja)
ZA (1) ZA201307818B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345532B2 (ja) * 2006-08-02 2013-11-20 ヨハネス・グーテンベルク−ウニヴェルジテート・マインツ Lct中毒に対する医薬品
WO2010067262A1 (en) * 2008-12-09 2010-06-17 Pfizer Inc. Immunostimulatory oligonucleotides
BR112014004896B1 (pt) 2010-09-03 2023-02-14 Valneva Usa, Inc. Polipepttdeo isolado de proteínas de toxina a e toxina b de c. difficile e usos do mesmo
PE20141029A1 (es) 2011-04-22 2014-09-04 Wyeth Llc Composiciones relacionadas con una toxina de clostridium difficile mutante y sus metodos
ES2704069T3 (es) * 2011-12-08 2019-03-14 Glaxosmithkline Biologicals Sa Vacuna basada en toxinas de Clostridium difficile
AR089797A1 (es) 2012-01-27 2014-09-17 Merck Sharp & Dohme Vacunas contra clostridum difficile que comprenden toxinas recombinantes
EP3838923B1 (en) 2012-08-24 2024-05-01 The Regents of The University of California Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
BR122016023101B1 (pt) * 2012-10-21 2022-03-22 Pfizer Inc Polipeptídeo, composição imunogênica que o compreende, bem como célula recombinante derivada de clostridium difficile
NZ707895A (en) * 2012-11-06 2019-07-26 Bayer Pharma AG Formulation for bispecific t-cell engagers (bites)
US9493518B2 (en) * 2013-03-14 2016-11-15 National Health Research Institutes Compositions and methods for treating clostridium difficile-associated diseases
EP2968508B1 (en) 2013-03-15 2022-04-27 Sanofi Pasteur Biologics, LLC Antibodies against clostridium difficile toxins and methods of using the same
EP2988778A4 (en) * 2013-04-22 2016-12-14 Board Of Regents Of The Univ Of Oklahoma CLOSTRIDIUM DIFFICILE IMPREGENT AND METHOD OF USE
CA2915279A1 (en) 2013-06-14 2014-12-18 Sanofi Pasteur Inc. Compositions and methods of immunizing against c. difficile
US9717711B2 (en) 2014-06-16 2017-08-01 The Lauridsen Group Methods and compositions for treating Clostridium difficile associated disease
WO2016012587A1 (en) * 2014-07-25 2016-01-28 Biosynth S.R.L. Glycoconjugate vaccines comprising basic units of a molecular construct expressing built-in multiple epitopes for the formulation of a broad-spectrum vaccine against infections due to enteropathogenic bacteria
EP3256855B1 (en) * 2015-02-13 2020-10-07 Quanterix Corporation Immunoassays for diffrential detection of clostridium difficile
US11185555B2 (en) 2016-04-11 2021-11-30 Noah James Harrison Method to kill pathogenic microbes in a patient
SG11201811559WA (en) 2016-06-27 2019-01-30 Univ California Cancer treatment combinations
US20190211377A1 (en) * 2016-12-22 2019-07-11 Roche Molecular Systems, Inc. Cobra probes to detect a marker for epidemic ribotypes of clostridium difficile
WO2019064115A1 (en) * 2017-09-28 2019-04-04 Pfizer Inc. COMPOSITIONS AND METHODS FOR GENERATING A DIFFICULT CLOSTRIDIUM IMMUNE RESPONSE
WO2020201985A1 (en) * 2019-04-01 2020-10-08 Pfizer Inc. Compositions and methods for eliciting an immune response against clostridium difficile
EP3965810A4 (en) * 2019-05-10 2023-01-25 The Board Of Regents Of The University Of Oklahoma CLOSTRIDIOIDES DIFFICILE TCDB VARIANTS, VACCINES AND METHOD OF USE
WO2020231930A1 (en) * 2019-05-11 2020-11-19 The Texas A&M University System Protein inhibitors of clostridium difficile toxin b
KR102376876B1 (ko) 2020-04-09 2022-03-21 대진대학교 산학협력단 무독성의 클로스트리디움 디피실 독소단백질-단편 및 이의 용도
CA3177003A1 (en) * 2020-05-06 2021-11-11 Vern L. Schramm Agents to prevent tissue damage from clostridium difficile infections by inhibition of the gut-damaging bacterial toxins tcda and tcdb
CN111755068B (zh) * 2020-06-19 2021-02-19 深圳吉因加医学检验实验室 基于测序数据识别肿瘤纯度和绝对拷贝数的方法及装置
WO2021255690A2 (en) 2020-06-19 2021-12-23 Pfizer Inc. Immunogenic compositions against clostridioides (clostridium) difficile and methods thereof
WO2023175454A1 (en) 2022-03-14 2023-09-21 Pfizer Inc. Methods for producing an adjuvant
WO2023232901A1 (en) 2022-06-01 2023-12-07 Valneva Austria Gmbh Clostridium difficile vaccine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041857A2 (en) * 2002-06-17 2004-05-21 Ballard Jimmy D Mutant of clostridium difficile toxin b and methods of use
JP2006520205A (ja) * 2003-03-13 2006-09-07 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 細菌性細胞溶解素の精製方法
JP2008513408A (ja) * 2004-09-22 2008-05-01 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 細菌性細胞溶解素の精製方法
WO2011068953A2 (en) * 2009-12-02 2011-06-09 Tufts University Atoxic recombinant holotoxins of clostridium difficile as immunogens

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216123A (ja) 1982-06-10 1983-12-15 Kazue Ueno 抗血清
US4689299A (en) 1982-09-30 1987-08-25 University Of Rochester Human monoclonal antibodies against bacterial toxins
US4713240A (en) 1985-04-04 1987-12-15 Research Corporation Vaccines based on insoluble supports
US5358868A (en) 1987-11-24 1994-10-25 Connaught Laboratories Limited Genetic detoxification of pertussis toxin
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5601823A (en) 1989-10-31 1997-02-11 Ophidian Pharmaceuticals, Inc. Avian antitoxins to clostridium difficle toxin A
US5919665A (en) 1989-10-31 1999-07-06 Ophidian Pharmaceuticals, Inc. Vaccine for clostridium botulinum neurotoxin
US5599539A (en) 1989-10-31 1997-02-04 Ophidian Pharmaceuticals, Inc. Therapy for clostridial botulinum toxin
US5578308A (en) 1990-02-12 1996-11-26 Capiau; Carine Glutaraldehyde and formalin detoxified bordetella toxin vaccine
US5231003A (en) 1990-05-11 1993-07-27 Cambridge Bioscience Corporation Monoclonal antibodies specific for toxin b of clostridium difficile
EP0581882B1 (en) 1991-04-22 1998-01-07 Massachusetts Health Research Institute, Inc. (Mhri) Process of screening plasma samples for effective antibody titers against respiratory viruses
US6221363B1 (en) 1991-07-11 2001-04-24 Baxter Aktiengesellschaft Vaccine for the prevention of lyme disease
WO1994022476A1 (en) 1993-03-29 1994-10-13 Pfizer Inc. Multicomponent clostridial vaccines using saponin adjuvants
JPH10505358A (ja) 1994-09-06 1998-05-26 ギャラゲン・インコーポレイテッド クロストリジウム・ディフィシル関連疾患の治療処置
HUT78048A (hu) 1994-10-24 1999-07-28 Ophidian Pharmaceuticals, Inc. A C. difficile által okozott betegség kezelésére és megelőzésére szolgáló vakcina és antitoxin
US6743430B1 (en) 1995-03-29 2004-06-01 Richard E. Parizek Multicomponent vaccine containing clostridial and non-clostridial organisms in a low dose
US5610023A (en) 1995-03-31 1997-03-11 Lee Laboratories, Inc. Method of purification of clostridium difficile toxin A and production of mono-specific antibodies
CN1195297A (zh) 1995-07-07 1998-10-07 奥拉瓦克斯有限公司 艰难梭菌毒素作为粘膜佐剂
US5919463A (en) 1995-07-07 1999-07-06 Oravax, Inc. Clostridium difficle toxins as mucosal adjuvants
JPH11510793A (ja) 1995-07-07 1999-09-21 オラバックス インク. 胃腸病に対する鼻腔内ワクチン接種
CA2232001C (en) * 1995-09-15 2002-12-10 Dale N. Gerding Methods and compositions for prevention and treatment of clostridium difficile-associated diseases
IL127935A (en) 1996-07-12 2003-06-24 First Opinion Corp Computerized medical diagnostic and treatment advice system including network access
ID21338A (id) 1996-09-30 1999-05-27 Embrex Inc Metoda untuk menghasilkan kekebalan aktif dengan vaksin gabungan
US20100267012A1 (en) 1997-11-04 2010-10-21 Bergeron Michel G Highly conserved genes and their use to generate probes and primers for detection of microorganisms
WO1998040100A1 (en) 1997-03-10 1998-09-17 Ottawa Civic Loeb Research Institute USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT
US6299881B1 (en) 1997-03-24 2001-10-09 Henry M. Jackson Foundation For The Advancement Of Military Medicine Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts
US20050106157A1 (en) 1997-05-27 2005-05-19 Deckers Harm M. Immunogenic formulations comprising oil bodies
EP1000155A1 (en) 1997-06-20 2000-05-17 QUEEN MARY & WESTFIELD COLLEGE Immunogenic fragments of toxin a of clostridium difficile
DE19739685A1 (de) 1997-09-10 1999-03-11 Eichel Streiber Christoph Von Monoklonale Antikörper zur Therapie und Prophylaxe von Erkrankungen durch Clostridium difficile
EP1568378B1 (en) 1997-10-20 2016-03-16 Sanofi Pasteur Biologics, LLC Immunization against Clostridium difficile disease
AU754270B2 (en) 1997-10-20 2002-11-07 Sanofi Pasteur Biologics, Llc Passive immunization against clostridium difficile disease
US6969520B2 (en) 1997-10-20 2005-11-29 Acambis Inc. Active immunization against clostridium difficile disease
JP2002542169A (ja) 1999-04-09 2002-12-10 テクラブ, インコーポレイテッド Clostridiumdifficileに対する、組換え毒素A/毒素Bワクチン
WO2000061761A2 (en) 1999-04-09 2000-10-19 Techlab, Inc. Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines
US6733760B1 (en) 1999-04-09 2004-05-11 Techlab, Inc. Recombinant toxin A/toxin B vaccine against Clostridium difficile
KR100922031B1 (ko) 1999-04-19 2009-10-19 글락소스미스클라인 바이오로지칼즈 에스.에이. 백신
GB0008682D0 (en) 2000-04-07 2000-05-31 Microbiological Res Authority Transformation of clostridium difficile
MXPA02010826A (es) * 2000-05-04 2006-03-09 Harvard College Compuestos y metodos para el tratamiento y la prevencion de infeccion bacteriana.
US20050053575A1 (en) * 2001-06-20 2005-03-10 Ramot At Tel Aviv University Ltd Antigenic product displaying multiple copies of an epitope of a deposit-forming polypeptide involved in plaque-forming diseases and methods of using same
US20040029129A1 (en) * 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
AU2003242024A1 (en) 2002-06-05 2003-12-22 Chugai Seiyaku Kabushiki Kaisha Method of constructing antibody
US20040235139A1 (en) 2002-12-23 2004-11-25 Demain Arnold L. Clostridium difficile culture and toxin production methods
US20050020506A1 (en) 2003-07-25 2005-01-27 Drapeau Susan J. Crosslinked compositions comprising collagen and demineralized bone matrix, methods of making and methods of use
AU2005206951B2 (en) 2004-01-16 2010-08-19 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
NZ530709A (en) 2004-01-21 2006-07-28 Agres Ltd Improved IGA production method
CA2553946C (en) 2004-02-06 2019-02-26 University Of Massachusetts Antibodies against clostridium difficile toxins and uses thereof
EP1833510A4 (en) * 2004-12-27 2010-02-10 Progenics Pharmaceuticals Neva ORAL ADMINISTRATION ANTITOXIN ANTIBODIES AND METHODS OF MAKING AND USING THE SAME
WO2006130925A1 (en) 2005-06-10 2006-12-14 Monash University Genetic manipulation of clostridium difficile
GB0512751D0 (en) 2005-06-22 2005-07-27 Glaxo Group Ltd New adjuvant
WO2007090126A2 (en) * 2006-01-30 2007-08-09 Invitrogen Corporation Compositions and methods for detecting and quantifying toxic substances in disease states
RU2409385C2 (ru) * 2006-03-30 2011-01-20 Эмбрекс, Инк. Способ иммунизации птицы против инфекции, вызванной бактериями clostridium
US8852600B2 (en) * 2006-06-08 2014-10-07 The Rockefeller University Codon-optimized DNA molecules encoding the receptor binding domains of Clostridium difficile toxins A and B, and methods of use thereof
GB0612301D0 (en) 2006-06-21 2006-08-02 Morvus Technology Ltd DNA molecules and methods
US20080206819A1 (en) 2006-08-21 2008-08-28 Mary Tsao Intensified Perfusion Production Method
US7775167B2 (en) 2006-08-22 2010-08-17 Monsanto Technology Llc Custom planter and method of custom planting
EP2813144A1 (en) 2006-10-09 2014-12-17 Charleston Laboratories, Inc. Analgesic compositions comprising an antihistamine
US9023352B2 (en) * 2007-02-20 2015-05-05 Tufts University Methods, compositions and kits for treating a subject using a recombinant heteromultimeric neutralizing binding protein
JP5164970B2 (ja) * 2007-03-02 2013-03-21 パナソニック株式会社 音声復号装置および音声復号方法
EP2014760A1 (en) 2007-06-13 2009-01-14 CMC Biopharmaceuticals A/S A method for producing a biopolymer (e.g. polypeptide) in a continuous fermentation process
US9096638B2 (en) 2007-09-06 2015-08-04 Geneohm Sciences Canada, Inc. Detection of toxigenic strains of Clostridium difficile
SI2198007T1 (en) * 2007-09-14 2018-04-30 Sanofi Pasteur Biologics, Llc Pharmaceutical compositions containing Clostridium difficile A and B toxoids
WO2009132082A2 (en) * 2008-04-22 2009-10-29 Medical College Of Georgia Research Institute, Inc. Immunogenic compositions containing ceramide and methods of use thereof
EP2288719A4 (en) 2008-05-15 2012-01-11 Univ Tufts DIFFICULT CLOSTRIDIUM DIAGNOSTIC METHODS AND METHODS AND VECTORS FOR EXPRESSION OF RECOMBINANT TOXINS
US9421251B2 (en) 2008-06-25 2016-08-23 Novartis Ag Rapid responses to delayed booster immunisations
EP2146490A1 (en) 2008-07-18 2010-01-20 Alcatel, Lucent User device for gesture based exchange of information, methods for gesture based exchange of information between a plurality of user devices, and related devices and systems
US20120020996A1 (en) 2008-08-06 2012-01-26 Jonathan Lewis Telfer Vaccines against clostridium difficile and methods of use
US9115347B2 (en) 2008-09-24 2015-08-25 Sanofi Pasteur Biologies, LLC Methods and compositions for increasing toxin production
CN102264381B (zh) 2008-10-01 2014-07-09 美国政府(由卫生和人类服务部的部长所代表) 提供对疟原虫的长效免疫应答的用于疟疾的多组分疫苗
US10369204B2 (en) * 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
RU2011126602A (ru) 2008-12-03 2013-01-10 Берингер Ингельхайм Ветмедика Гмбх Способ получения вакцин
WO2010067262A1 (en) 2008-12-09 2010-06-17 Pfizer Inc. Immunostimulatory oligonucleotides
GB0901001D0 (en) * 2009-01-22 2009-03-04 Univ Nottingham Methods
AU2010215275B2 (en) * 2009-02-20 2016-03-31 Micropharm Limited Antibodies to Clostridium difficile toxins
CA2772400A1 (en) 2009-08-27 2011-03-17 Synaptic Research, Llc A novel protein delivery system to generate induced pluripotent stem (ips) cells or tissue-specific cells
WO2011060431A2 (en) * 2009-11-16 2011-05-19 University Of Maryland Baltimore Multivalent live vector vaccine against clostridium difficile-associated disease
GB0921288D0 (en) * 2009-12-04 2010-01-20 Health Prot Agency Therapies for preventing or suppressing clostridium difficile infection
TW201136603A (en) * 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
CN101870978A (zh) * 2010-03-23 2010-10-27 王世霞 密码子优化的艰难梭菌外毒素a羧基端基因序列及其核酸疫苗
CA2793978C (en) 2010-03-30 2021-08-03 Pfenex Inc. High level expression of recombinant toxin proteins
US8765399B2 (en) 2010-05-18 2014-07-01 Montefiore Medical Center Cultures and protocols for diagnosis of toxigenic Clostridium difficile
BR112014004896B1 (pt) * 2010-09-03 2023-02-14 Valneva Usa, Inc. Polipepttdeo isolado de proteínas de toxina a e toxina b de c. difficile e usos do mesmo
GB201016742D0 (en) 2010-10-05 2010-11-17 Health Prot Agency Clostridium difficile antigens
US9285372B2 (en) * 2010-11-12 2016-03-15 Reflexion Pharmaceuticals, Inc. Methods and compositions for identifying D-peptidic compounds that specifically bind target proteins
PE20141029A1 (es) 2011-04-22 2014-09-04 Wyeth Llc Composiciones relacionadas con una toxina de clostridium difficile mutante y sus metodos
HRP20231749T1 (hr) 2011-05-27 2024-03-15 Glaxosmithkline Biologicals Sa Imunogeni pripravak
WO2012166991A1 (en) * 2011-05-31 2012-12-06 The Board Of Regents Of The University Of Texas Systeem S-nitrosylation of glucosylating toxins and uses therefor
ES2704069T3 (es) 2011-12-08 2019-03-14 Glaxosmithkline Biologicals Sa Vacuna basada en toxinas de Clostridium difficile
AR089797A1 (es) 2012-01-27 2014-09-17 Merck Sharp & Dohme Vacunas contra clostridum difficile que comprenden toxinas recombinantes
CN104582722A (zh) 2012-09-19 2015-04-29 诺华股份有限公司 作为疫苗的艰难梭菌多肽
BR122016023101B1 (pt) 2012-10-21 2022-03-22 Pfizer Inc Polipeptídeo, composição imunogênica que o compreende, bem como célula recombinante derivada de clostridium difficile
AU2013352034B2 (en) 2012-11-28 2018-08-02 Emergent Biosolutions Canada Inc. Antibodies against Clostridium difficile
JP6290918B2 (ja) 2012-12-05 2018-03-07 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 免疫原性組成物
GB201223342D0 (en) 2012-12-23 2013-02-06 Glaxosmithkline Biolog Sa Immunogenic composition
AU2014228956A1 (en) 2013-03-15 2015-10-08 Sanofi Pasteur, Inc. Toxoid, compositions and related methods
EP2968508B1 (en) 2013-03-15 2022-04-27 Sanofi Pasteur Biologics, LLC Antibodies against clostridium difficile toxins and methods of using the same
US20170165375A1 (en) 2013-04-02 2017-06-15 Stc. Unm Antibiotic protocells and related pharmaceutical formulations and methods of treatment
CA2915279A1 (en) 2013-06-14 2014-12-18 Sanofi Pasteur Inc. Compositions and methods of immunizing against c. difficile
US20160250283A1 (en) 2013-10-23 2016-09-01 The Rockefeller University Compositions and methods for prophylaxis and therapy of clostridium difficile infection
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
KR102069988B1 (ko) 2015-11-17 2020-01-23 화이자 인코포레이티드 박테리아 세포 배양에서 폴리사카라이드를 생성하기 위한 배지 및 발효 방법
CN108697778B (zh) 2016-02-16 2023-10-03 哈佛学院院长等 病原体疫苗及其生产和使用方法
IL269258B2 (en) 2017-03-15 2023-09-01 Novavax Inc Methods and compositions for inducing immune responses against Clostridium difficile
US10577665B2 (en) 2017-09-05 2020-03-03 Mcmaster University Aptamers for clostridium difficile detection
WO2019064115A1 (en) 2017-09-28 2019-04-04 Pfizer Inc. COMPOSITIONS AND METHODS FOR GENERATING A DIFFICULT CLOSTRIDIUM IMMUNE RESPONSE
JP6704173B2 (ja) 2019-09-26 2020-06-03 パナソニックIpマネジメント株式会社 開閉器及び分電盤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041857A2 (en) * 2002-06-17 2004-05-21 Ballard Jimmy D Mutant of clostridium difficile toxin b and methods of use
JP2006520205A (ja) * 2003-03-13 2006-09-07 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 細菌性細胞溶解素の精製方法
JP2008513408A (ja) * 2004-09-22 2008-05-01 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 細菌性細胞溶解素の精製方法
WO2011068953A2 (en) * 2009-12-02 2011-06-09 Tufts University Atoxic recombinant holotoxins of clostridium difficile as immunogens

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GENTH, H. ET AL.: "New method to generate enzymatically deficient Clostridium difficile toxin B as an antigen for immu", INFECT. IMMUN., vol. 68, no. 3, JPN6018004816, March 2000 (2000-03-01), pages 1094 - 1101 *
JANK, T. ET AL.: "Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding.", J. BIOL. CHEM., vol. 282, no. 48, JPN6018004815, 30 November 2007 (2007-11-30), pages 35222 - 35231 *
TEICHERT, M. ET AL: "Application of Mutated Clostridium difficile Toxin A for Determinatio of Glucosyltransferase-Depend", INFECTION AND IMMUNITY, vol. 74, no. 10, JPN6016000635, 2006, pages 6006 - 6010 *
VIDUNAS, E. ET AL.: "Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium diffic", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 105, no. 7, JPN6017001140, July 2016 (2016-07-01), pages 2032 - 2041 *
WOODY, M.A. ET AL.: "Modification of carboxyl groups in botulinum neurotoxin types A and E.", TOXICON, vol. 27, no. 10, JPN6017001139, 1989, pages 1143 - 1150 *

Also Published As

Publication number Publication date
JP2021130692A (ja) 2021-09-09
MX2013012344A (es) 2013-11-20
SI2699587T1 (sl) 2019-08-30
AU2016202903B2 (en) 2017-11-30
KR20130140206A (ko) 2013-12-23
US10774117B2 (en) 2020-09-15
NZ616035A (en) 2016-03-31
DK2699587T3 (da) 2019-08-05
US20130244307A1 (en) 2013-09-19
CO6801643A2 (es) 2013-11-29
ZA201307818B (en) 2014-06-25
FI3549949T3 (fi) 2024-01-30
JP5917682B2 (ja) 2016-05-18
AR086199A1 (es) 2013-11-27
TW202320843A (zh) 2023-06-01
RU2013145170A (ru) 2015-06-27
DK3549949T3 (da) 2023-12-18
AU2017261465B2 (en) 2018-10-04
US20190202873A1 (en) 2019-07-04
CN103619871B (zh) 2016-12-14
HUE047085T2 (hu) 2020-04-28
EP2699587A1 (en) 2014-02-26
MX347521B (es) 2017-04-27
AU2012245904A1 (en) 2013-10-17
CN103619871A (zh) 2014-03-05
AU2019246878A1 (en) 2019-10-31
CA2832712A1 (en) 2012-10-26
JP2018135345A (ja) 2018-08-30
US20170313749A1 (en) 2017-11-02
RU2754446C2 (ru) 2021-09-02
AU2012245904B2 (en) 2016-04-21
CN111647059A (zh) 2020-09-11
CA2832712C (en) 2018-08-28
RU2592686C2 (ru) 2016-07-27
WO2012143902A1 (en) 2012-10-26
JP2016117745A (ja) 2016-06-30
US20200095290A1 (en) 2020-03-26
AU2019246878B2 (en) 2020-09-10
IL245047A0 (en) 2016-05-31
SG10201602668VA (en) 2016-05-30
IL273231B (en) 2021-08-31
US8900597B2 (en) 2014-12-02
USRE46518E1 (en) 2017-08-22
IL265510B (en) 2021-05-31
IL265510A (en) 2019-05-30
US20120269841A1 (en) 2012-10-25
US20150125927A1 (en) 2015-05-07
JP2019052149A (ja) 2019-04-04
AU2020230248B2 (en) 2022-12-01
CN111647059B (zh) 2023-11-28
USRE48863E1 (en) 2021-12-28
EP3549949A1 (en) 2019-10-09
JP6892425B2 (ja) 2021-06-23
HRP20231631T1 (hr) 2024-03-15
IL228944A (en) 2017-11-30
AU2017261465A1 (en) 2017-11-30
US10597428B2 (en) 2020-03-24
EP3549949B1 (en) 2023-11-29
IL255345B (en) 2021-05-31
US20230391835A1 (en) 2023-12-07
US20150307563A1 (en) 2015-10-29
ES2969952T3 (es) 2024-05-23
US8481692B2 (en) 2013-07-09
EP3505531B1 (en) 2023-11-15
USRE48862E1 (en) 2021-12-28
JP2022126822A (ja) 2022-08-30
CN107022532B (zh) 2021-05-04
USRE46376E1 (en) 2017-04-25
IL254418A0 (en) 2017-11-30
CN107022532A (zh) 2017-08-08
JP6735784B2 (ja) 2020-08-05
TW201932481A (zh) 2019-08-16
IL254440B (en) 2019-12-31
AU2018201296A1 (en) 2018-03-15
IL273231A (en) 2020-04-30
SG10201911993UA (en) 2020-02-27
PT3549949T (pt) 2024-02-02
PE20181334A1 (es) 2018-08-21
EP4365196A2 (en) 2024-05-08
TWI671313B (zh) 2019-09-11
ES2968629T3 (es) 2024-05-13
PE20141029A1 (es) 2014-09-04
HRP20240042T1 (hr) 2024-03-29
IL270779A (en) 2020-01-30
US9745354B2 (en) 2017-08-29
KR101667837B1 (ko) 2016-10-20
TWI815599B (zh) 2023-09-11
TW202041525A (zh) 2020-11-16
SA112330472B1 (ar) 2015-11-02
PL2699587T3 (pl) 2019-12-31
BR112013027229A2 (pt) 2016-11-29
BR112013027229B1 (pt) 2020-10-27
MY168205A (en) 2018-10-15
AU2016202903A1 (en) 2016-05-26
PL3505531T3 (pl) 2024-03-11
SI3505531T1 (sl) 2024-02-29
US9187536B1 (en) 2015-11-17
TWI701257B (zh) 2020-08-11
EP3505531A1 (en) 2019-07-03
IL254418B (en) 2019-12-31
JP7097478B2 (ja) 2022-07-07
TW201932480A (zh) 2019-08-16
TW201302780A (zh) 2013-01-16
JP2014514318A (ja) 2014-06-19
SI3549949T1 (sl) 2024-02-29
TWI686402B (zh) 2020-03-01
US8557548B2 (en) 2013-10-15
IL255345A0 (en) 2017-12-31
JP2018052938A (ja) 2018-04-05
RU2015154443A (ru) 2019-01-17
PT2699587T (pt) 2019-09-05
ES2742823T3 (es) 2020-02-17
TW201806967A (zh) 2018-03-01
AU2020230248A1 (en) 2020-10-01
BR122019017005B1 (pt) 2022-03-29
TWI804717B (zh) 2023-06-11
SG194132A1 (en) 2013-11-29
JP6097853B2 (ja) 2017-03-15
PL3549949T3 (pl) 2024-04-08
TWI650329B (zh) 2019-02-11
MY182429A (en) 2021-01-25
RU2015154443A3 (ja) 2019-05-22
JP6321239B2 (ja) 2018-05-09
SA115360697B1 (ar) 2016-04-05
US20130330371A1 (en) 2013-12-12
IL254440A0 (en) 2017-11-30
IL270779B1 (en) 2024-05-01
SA115360698B1 (ar) 2016-04-27
US11535652B2 (en) 2022-12-27
EP2699587B1 (en) 2019-07-03
IL228944A0 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
JP6321239B2 (ja) 変異体クロストリジウム・ディフィシル毒素に関する組成物およびその方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6321239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250