JP2017036416A - 硬化性シリコーン樹脂組成物及びその硬化物 - Google Patents

硬化性シリコーン樹脂組成物及びその硬化物 Download PDF

Info

Publication number
JP2017036416A
JP2017036416A JP2015159650A JP2015159650A JP2017036416A JP 2017036416 A JP2017036416 A JP 2017036416A JP 2015159650 A JP2015159650 A JP 2015159650A JP 2015159650 A JP2015159650 A JP 2015159650A JP 2017036416 A JP2017036416 A JP 2017036416A
Authority
JP
Japan
Prior art keywords
group
resin composition
component
silicone resin
curable silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015159650A
Other languages
English (en)
Inventor
真也 籔野
Shinya Yabuno
真也 籔野
亮 板谷
Akira Itaya
亮 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2015159650A priority Critical patent/JP2017036416A/ja
Publication of JP2017036416A publication Critical patent/JP2017036416A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】光半導体装置の色度ばらつきを抑制し、光取り出し効率の高い光半導体装置を安定的且つ取扱い容易に製造できる材料を形成するための硬化性シリコーン樹脂組成物を提供する。
【解決手段】 下記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分を含むことを特徴とする硬化性シリコーン樹脂組成物、及びその硬化物。
(A):分子内に1個以上のヒドロシリル基を有し、脂肪族不飽和基を有しないポリオルガノシロキサン
(B):白金族金属を含むヒドロシリル化触媒
(C):分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサン
(D):1次粒子の平均粒径が5〜5000nmのシリカフィラー
(E):ポリエーテル変性レベリング剤
【選択図】なし

Description

本発明は、硬化性シリコーン樹脂組成物及びその硬化物、並びに、上記硬化性シリコーン樹脂組成物を使用して光半導体素子を封止することによって得られる光半導体装置に関する。
半導体装置において半導体素子を被覆して保護するための封止材としては、各種の樹脂材料が使用されている。特に、光半導体装置における封止材には、SOXやH2S等の硫黄化合物に対するバリア性(以下、「硫黄バリア性」と称する場合がある)と、耐熱衝撃性(冷熱サイクル等の熱衝撃が加えられた場合にも封止材のクラックや剥離、光半導体装置の不点灯(不灯)等の不具合を生じにくい特性)とが同時に高いレベルで満たされることが求められる。
しかしながら、上述の硫黄バリア性と耐熱衝撃性との両特性を同時に満たすことは困難であるのが現状である。これは、一般に、硫黄バリア性を向上させるためには封止材の硬度を高める手段が採られるが、この場合、封止材の柔軟性が低下するために耐熱衝撃性が損なわれ、一方で、耐熱衝撃性を向上させると硫黄バリア性が低下する傾向を示し、これらの特性がトレードオフの関係にあるためである。
現在、光半導体装置における封止材としては、耐熱衝撃性と硫黄バリア性とのバランスが比較的良好なフェニルシリコーン(フェニルシリコーン系封止材)が広く使用されている(例えば、特許文献1参照)。
ところで、従来の封止材を使用した光半導体装置においては、各光半導体装置(例えば、製造初期の光半導体装置と製造後期の光半導体装置)の間で色度のばらつき(「色度ばらつき」と称する)が生じ、光取り出し効率の高い光半導体装置を安定して製造することが難しいという問題も生じていた。このような問題は、封止材を形成するための封止剤(硬化性組成物)を光半導体装置のパッケージに充填する際や硬化の際に加熱すると、該封止剤の粘度が大きく低下するために封止剤中の光波長変換材料(蛍光体)が沈降してしまうことが原因で生じるものと考えられる。
光半導体装置の色度ばらつきを抑制し、光取り出し効率の高い光半導体装置を安定的に製造するために、硬化性樹脂組成物中に、無機蛍光体粒子と1nm以上〜100nm未満の1次径ナノ粒子を添加し、分散させることにより、低粘度の硬化性樹脂組成物に無機蛍光体粒子が分散された封止剤をパッケージ基板に充填する際にも、製造初期と製造後期で無機蛍光体粒子の分散状態に変化がなく、演色性を安定的に維持することのできる光半導体装置用硬化性樹脂組成物が提案されている(例えば、特許文献2、3参照)。
一方、硬化後の屈折率が1.50〜1.55のシリコーン樹脂中に1〜30質量%の濃度で平均粒子径1〜10μmの酸化珪素フィラーを均一に分散させることで、ガス透過性が小さいだけでなく界面反射が低減され、さらに良好な発光輝度を有する、光半導体装置封止用として好適な硬化性シリコーン樹脂組成物が提案されている(例えば、特許文献4参照)。
特許第4409160号公報 特開2014−5334号公報 特開2014−31436号公報 特開2012−41496号公報
しかしながら、フィラーを含有させた光半導体封止用硬化性樹脂組成物では、保存中にフィラーが凝集してしまい、粘度が上昇して、光半導体装置製造の際に型への注入が困難になるなど、取扱い性が低下するという問題が生じていた。
従って、本発明の目的は、光半導体装置の色度ばらつきを抑制し、光取り出し効率の高い光半導体装置を安定的に製造できる材料(封止材やレンズ等)を形成でき、さらに保存中の粘度上昇が抑制され、製造から一定時間保存後に使用したとしても、光半導体装置を製造する際に型に容易に注入可能な硬化性シリコーン樹脂組成物を提供することにある。
また、本発明の他の目的は、光半導体装置の色度ばらつきを抑制し、光取り出し効率の高い光半導体装置を安定的、且つ容易に製造できる材料(硬化物)を提供することにある。
さらに、本発明の他の目的は、上記硬化物により光半導体素子を封止することにより得られる、光取り出し効率が高く、且つ容易に製造できる光半導体装置を提供することにある。
本発明者らは、分子内に1個以上のヒドロシリル基を有し脂肪族不飽和基を有しないポリオルガノシロキサンと、特定のヒドロシリル化触媒と、分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサンと、一次粒子の平均粒径が特定範囲のシリカフィラーとを必須成分として含む組成物(硬化性シリコーン樹脂組成物)に、ポリエーテル変性レベリング剤を配合すると、保存中にシリカフィラーが凝集しにくくなり、組成物の粘度上昇が抑制されるため、製造から一定時間経過後に使用したとしても型に容易に注入することが可能であり、光半導体装置の色度ばらつきを抑制し、光取り出し効率の高い光半導体装置を安定的、且つ容易に製造できる材料(硬化物)を形成できることを見出し、本発明を完成させた。
すなわち、本発明は、下記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分を含むことを特徴とする硬化性シリコーン樹脂組成物を提供する。
(A):分子内に1個以上のヒドロシリル基を有し、脂肪族不飽和基を有しないポリオルガノシロキサン
(B):白金族金属を含むヒドロシリル化触媒
(C):分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサン
(D):1次粒子の平均粒径が5〜5000nmのシリカフィラー
(E):ポリエーテル変性レベリング剤
前記硬化性シリコーン樹脂組成物において、(E)成分の含有量は、硬化性シリコーン樹脂組成物(100重量%)に対して、0.001〜5重量%であってもよい。
前記硬化性シリコーン樹脂組成物は、さらに、下記の(F)成分を含んでいてもよい。
(F):分子内に2個以上のアルケニル基及び1個以上のアリール基を有するポリオルガノシロキシシルアルキレン
前記硬化性シリコーン樹脂組成物は、さらに、下記の(G)成分を含んでいてもよい。
(G):分子内に1個以上のアルケニル基及び1個以上のアリール基を有するラダー型ポリオルガノシルセスキオキサン
前記硬化性シリコーン樹脂組成物は、さらに、下記の(H)成分を含んでいてもよい。
(H):分子内に下記式(Y)で表される基及び下記式(Z)で表される基のいずれか一方若しくは両方を有するイソシアヌレート化合物
Figure 2017036416
Figure 2017036416
[式(Y)中のR6、式(Z)中のR7は、同一又は異なって、水素原子又は炭素数1〜8の直鎖若しくは分岐鎖状のアルキル基を示す。]
前記硬化性シリコーン樹脂組成物は、さらに蛍光体を含んでいてもよい。
また、本発明は、前記硬化性シリコーン樹脂組成物を硬化させることにより得られる硬化物を提供する。
前記硬化性シリコーン樹脂組成物は、光半導体封止用樹脂組成物であってもよい。
前記硬化性シリコーン樹脂組成物は、光半導体用レンズの形成用樹脂組成物であってもよい。
また、本発明は、光半導体素子と、該光半導体素子を封止する封止材とを含み、前記封止材が前記光半導体封止用硬化性シリコーン樹脂組成物の硬化物であることを特徴とする光半導体装置を提供する。
さらに、本発明は、光半導体素子とレンズとを含み、前記レンズが前記光半導体用レンズの形成用硬化性シリコーン樹脂組成物の硬化物であることを特徴とする光半導体装置を提供する。
本発明の硬化性シリコーン樹脂組成物は、上記特定組成のシリコーン樹脂及び特定一次粒子径のシリカフィラーを含有するため、本発明の硬化性シリコーン樹脂組成物を硬化させて得られる硬化物を光半導体装置における光半導体素子の封止材やレンズとして使用することにより、光半導体装置の色度ばらつきが抑制され、光取り出し効率の高い光半導体装置を安定的に製造することが可能となる。さらに、ポリエーテル変性レベリング剤を配合することにより、保存中にシリカフィラーが凝集しにくくなり、組成物の粘度上昇が抑制される。このため、上記硬化性シリコーン樹脂組成物を製造から一定時間保存後に光半導体装置における光半導体素子の封止材やレンズの原料として使用したとしても、型に容易に注入できるため、光半導体装置やレンズを効率的に製造することができる。従って、本発明の硬化性シリコーン樹脂組成物は特に光半導体装置における封止剤(光半導体封止用樹脂組成物)やレンズ形成用組成物(光半導体用レンズの形成用組成物)として好ましく使用できる。
本発明の硬化性シリコーン樹脂組成物の硬化物(封止材)により光半導体素子が封止された光半導体装置の一例を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。 合成例1で得られた生成物(ビニル基及びフェニル基を有するポリオルガノシルセスキオキサン)の1H−NMRスペクトルのチャートである。 合成例1で得られた生成物(ビニル基及びフェニル基を有するポリオルガノシルセスキオキサン)のFT−IRスペクトルのチャートである。
<硬化性シリコーン樹脂組成物>
本発明の硬化性シリコーン樹脂組成物は、下記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分を必須成分として含む硬化性組成物である。即ち、本発明の硬化性シリコーン樹脂組成物は、ヒドロシリル化反応により硬化させることができる付加硬化型シリコーン樹脂組成物である。なお、本発明の硬化性シリコーン樹脂組成物は、これら必須成分以外の任意成分を含んでいてもよい。
(A):分子内に1個以上のヒドロシリル基を有し、脂肪族不飽和基を有しないポリオルガノシロキサン
(B):白金族金属を含むヒドロシリル化触媒
(C):分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサン
(D):1次粒子の平均粒径が5〜5000nmのシリカフィラー
(E):ポリエーテル変性レベリング剤
[(A)成分]
本発明の硬化性シリコーン樹脂組成物における(A)成分は、分子内に1個以上のヒドロシリル基(Si−H)を有し、脂肪族不飽和基を有しないポリオルガノシロキサンである。従って、本発明の硬化性シリコーン樹脂組成物において(A)成分は、アルケニル基を有する成分(例えば、(C)成分等)とヒドロシリル化反応を生じる成分である。本発明の硬化性シリコーン樹脂組成物が(A)成分を含むことにより、ヒドロシリル化反応による硬化反応を効率的に進行させることができる。また、その硬化物が優れた硫黄バリア性を発揮する。
(A)成分が分子内に有するヒドロシリル基の数は、1個以上であればよく、特に限定されないが、硬化性シリコーン樹脂組成物の硬化性の観点で、2個以上(例えば2〜50個)が好ましい。
(A)成分としては、例えば、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有し脂肪族不飽和基を有しないポリオルガノシロキサン(A1)(単に「ポリオルガノシロキサン(A1)」と称する場合がある)、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有し脂肪族不飽和基を有しないポリオルガノシロキシシルアルキレン(A2)(単に「ポリオルガノシロキシシルアルキレン(A2)」と称する場合がある)等が挙げられる。
本明細書におけるポリオルガノシロキシシルアルキレン(A2)とは、主鎖として−Si−O−Si−(シロキサン結合)に加えて、−Si−RA−Si−(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。そして、本明細書におけるポリオルガノシロキサン(A1)は、主鎖として上記シルアルキレン結合を含まないポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるRA(アルキレン基)としては、例えば、直鎖又は分岐鎖状のC1-12アルキレン基が挙げられ、好ましくは直鎖又は分岐鎖状のC2-4アルキレン基(特に、エチレン基)である。
なお、(A)成分は、上述のように、分子内に脂肪族不飽和基を有しない。上記脂肪族不飽和基とは、非芳香族性の炭素−炭素不飽和結合を有する脂肪族炭化水素基であり、例えば、エチレン性不飽和基、アセチレン性不飽和基等が挙げられる。エチレン性不飽和基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、5−ヘキセニル基等のアルケニル基(例えば、C2-20アルケニル基(特にC2-10アルケニル基)等);1,3−ブタジエニル基等のアルカジエニル基(特に、C4-10アルカジエニル基等);アクリロイルオキシ基、メタクリロイルオキシ基等のアルケニルカルボニルオキシ基;アクリルアミド基等のアルケニルカルボニルアミノ基等が挙げられる。アセチレン性不飽和基としては、例えば、エチニル基、プロパルギル基等のアルキニル基(例えば、C2-20アルキニル基(特にC2-10アルキニル基)等);エチニルカルボニルオキシ基等のアルキニルカルボニルオキシ基;エチニルカルボニルアミノ基等のアルキニルカルボニルアミノ基が挙げられる。
1.ポリオルガノシロキサン(A1)
ポリオルガノシロキサン(A1)としては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するもの等が挙げられる。なお、ポリオルガノシロキサン(A1)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキサン(A1)の2種以上を併用することができ、具体的には、直鎖状のポリオルガノシロキサン(A1)と分岐鎖状のポリオルガノシロキサン(A1)とを併用する態様等が挙げられる。
ポリオルガノシロキサン(A1)が有するケイ素原子に結合した基の中でも水素原子以外の基は、特に限定されないが、例えば、アルキル基[例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等]、シクロアルキル基[例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等]、アリール基[例えば、フェニル基、トリル基、キシリル基、ナフチル基等]、シクロアルキル−アルキル基[例えば、シクロへキシルメチル基、メチルシクロヘキシル基等]、アラルキル基[例えば、ベンジル基、フェネチル基等]、炭化水素基における1以上の水素原子がハロゲン原子で置換されたハロゲン化炭化水素基[例えば、クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等]等の一価の置換又は無置換炭化水素基(但し、脂肪族不飽和基は除かれる)、より詳しくは、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
ポリオルガノシロキサン(A1)の性状は、特に限定されず、例えば25℃において、液状であってもよいし、固体状であってもよい。中でも液状であることが好ましく、25℃における粘度が0.1〜1000000000mPa・sの液状であることがより好ましい。
ポリオルガノシロキサン(A1)としては、下記平均単位式:
(R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(XO1/2a5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R1は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基(但し、脂肪族不飽和基は除かれる)であり、例えば、水素原子、上述の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R1の一部は水素原子(ヒドロシリル基を構成する水素原子)であり、その割合は、ヒドロシリル基が分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R1の全量(100モル%)に対する水素原子の割合は、0.1〜40モル%が好ましい。水素原子の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR1としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記平均単位式中、Xは、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。
上記平均単位式中、a1は0又は正数、a2は0又は正数、a3は0又は正数、a4は0又は正数、a5は0又は正数であり、かつ、(a1+a2+a3)は正数である。
ポリオルガノシロキサン(A1)の一例としては、例えば、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有する直鎖状ポリオルガノシロキサンが挙げられる。上記直鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基(但し、脂肪族不飽和基は除かれる)が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対する水素原子(ケイ素原子に結合した水素原子)の割合は、特に限定されないが、0.1〜40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、20〜99モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、40〜80モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45〜70モル%)であるものを使用することにより、硬化物の硫黄バリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(例えば、95〜99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
上記直鎖状ポリオルガノシロキサンは、例えば、下記式(I−1)で表される。
Figure 2017036416
[上記式中、R11は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基(但し、脂肪族不飽和基は除かれる)である。但し、R11の少なくとも1個(好ましくは少なくとも2個)は水素原子である。m1は、5〜1000の整数である。]
ポリオルガノシロキサン(A1)の他の例としては、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。この分岐鎖状ポリオルガノシロキサンには、網目状等の三次元構造のポリオルガノシロキサンも含まれる。なお、Rは、水素原子、又は、一価の置換若しくは無置換炭化水素基(但し、脂肪族不飽和基は除かれる)である。上記分岐鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基(但し、脂肪族不飽和基は除かれる)が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、水素原子、上述の一価の置換又は無置換炭化水素基(但し、脂肪族不飽和基は除かれる)が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。上記T単位中のRの全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、硬化物の硫黄バリア性の観点で、30モル%以上が好ましい。
上記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、70〜95モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、10〜70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が10モル%以上(例えば、10〜70モル%)であるものを使用することにより、硬化物の硫黄バリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(例えば、50〜90モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
上記分岐鎖状ポリオルガノシロキサンは、例えば、a1が正数である上記平均単位式で表すことができる。この場合、特に限定されないが、a2/a1は0〜10の数、a3/a1は0〜0.5の数、a4/(a1+a2+a3+a4)は0〜0.3の数、a5/(a1+a2+a3+a4)は0〜0.4の数であることが好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は特に限定されないが、標準ポリスチレン換算の重量平均分子量が300〜10000であることが好ましく、より好ましくは500〜3000である。
2.ポリオルガノシロキシシルアルキレン(A2)
ポリオルガノシロキシシルアルキレン(A2)は、上述のように、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、例えば、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(A2)は、ポリオルガノシロキサン(A1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(−SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(A2)を使用した場合、硬化性シリコーン樹脂組成物の硬化物の表面粘着性が低減され、より黄変し難くなる傾向がある。
ポリオルガノシロキシシルアルキレン(A2)としては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するもの等が挙げられる。なお、ポリオルガノシロキシシルアルキレン(A2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキシシルアルキレン(A2)の2種以上を併用することができ、具体的には、直鎖状のポリオルガノシロキシシルアルキレン(A2)と分岐鎖状のポリオルガノシロキシシルアルキレン(A2)とを併用する態様等が挙げられる。
ポリオルガノシロキシシルアルキレン(A2)が有する水素原子以外のケイ素原子に結合した基は、特に限定されないが、例えば、脂肪族不飽和基以外の有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基(但し、脂肪族不飽和基は除かれる)等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
ポリオルガノシロキシシルアルキレン(A2)の性状は、特に限定されず、例えば25℃において、液状であってもよいし、固体状であってもよい。
ポリオルガノシロキシシルアルキレン(A2)としては、下記平均単位式:
(R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5(XO)b6
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R2は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基(但し、脂肪族不飽和基は除かれる)であり、水素原子及び上述の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R2の一部は水素原子であり、その割合は、分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R2の全量(100モル%)に対する水素原子の割合は、0.1〜50モル%が好ましく、より好ましくは5〜35モル%である。水素原子の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR2としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。特に、R2の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、5モル%以上(例えば、5〜80モル%)が好ましく、より好ましくは10モル%以上である。
上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。
上記平均単位式中、Xは、上記と同じく、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。
上記平均単位式中、b1は正数、b2は正数、b3は0又は正数、b4は0又は正数、b5は正数、b6は0又は正数である。中でも、b1は1〜50が好ましく、b2は1〜50が好ましく、b3は0〜10が好ましく、b4は0〜5が好ましく、b5は1〜30が好ましい。
ポリオルガノシロキシシルアルキレン(A2)としては、より具体的には、例えば、下記式(II−1)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure 2017036416
上記式(II−1)中、R21は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基(但し、脂肪族不飽和基は除かれる)である。R21としては、上述の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R21の少なくとも1個(好ましくは少なくとも2個)は水素原子である。また、水素原子以外のR21としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記式(II−1)中、RAは、上記と同じく、アルキレン基を示し、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。
上記式(II−1)中、q1は1以上の整数(例えば、1〜100)を示す。なお、q1が2以上の整数の場合、q1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(II−1)中、q2は1以上の整数(例えば、1〜400)を示す。なお、q2が2以上の整数の場合、q2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(II−1)中、q3は0又は1以上の整数(例えば、0〜50)を示す。なお、q3が2以上の整数の場合、q3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(II−1)中、q4は0又は1以上の整数(例えば、0〜50)を示す。なお、q4が2以上の整数の場合、q4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(II−1)中、q5は0又は1以上の整数(例えば、0〜50)を示す。なお、q5が2以上の整数の場合、q5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
また、上記式(II−1)における各構造単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。また、各構造単位の配列の順番も特に限定されない。
式(II−1)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、q5が付された括弧内の構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、ヒドロシリル基等の各種の基が導入されていてもよい。
ポリオルガノシロキシシルアルキレン(A2)は公知乃至慣用の方法により製造することができ、その製造方法は特に限定されないが、例えば、特開2012−140617号公報に記載の方法により製造できる。
なお、本発明の硬化性シリコーン樹脂組成物において(A)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物における(A)成分の含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、1〜60重量%が好ましく、より好ましくは5〜55重量%、さらに好ましくは10〜50重量%である。(A)成分の含有量を1重量%以上とすることにより、硬化性シリコーン樹脂組成物の硬化性がより向上し、硫黄バリア性がより向上する傾向がある。一方、(A)成分の含有量を60重量%以下とすることにより、硬化物の耐熱衝撃性がより向上し、また、光半導体装置における色度ばらつきがより抑制される傾向がある。
本発明の硬化性シリコーン樹脂組成物における(A)成分としては、ポリオルガノシロキサン(A1)のみを使用することもできるし、ポリオルガノシロキシシルアルキレン(A2)のみを使用することもできるし、また、ポリオルガノシロキサン(A1)とポリオルガノシロキシシルアルキレン(A2)とを併用することもできる。ポリオルガノシロキサン(A1)とポリオルガノシロキシシルアルキレン(A2)とを併用する場合、これらの割合は特に限定されず、適宜設定可能である。
[(B)成分]
本発明の硬化性シリコーン樹脂組成物における(B)成分は、白金族金属を含むヒドロシリル化触媒である。即ち、(B)成分は、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、及び白金からなる群より選択される少なくとも1種の金属(白金族金属)を含むヒドロシリル化触媒である。本発明の硬化性シリコーン樹脂組成物が(B)成分を含むことにより、加熱により硬化性シリコーン樹脂組成物中のアルケニル基とヒドロシリル基の間のヒドロシリル化反応を効率的に進行させることができる。
(B)成分としては、公知乃至慣用のヒドロシリル化触媒(例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒等)を使用することができ、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金−カルボニルビニルメチル錯体等の白金のカルボニル錯体、白金−ジビニルテトラメチルジシロキサン錯体や白金−シクロビニルメチルシロキサン錯体等の白金−ビニルメチルシロキサン錯体、白金−ホスフィン錯体、白金−ホスファイト錯体等の白金系触媒、並びに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒等が挙げられる。中でも、(B)成分としては、白金系触媒(白金を含むヒドロシリル化触媒)が好ましく、特に、白金−ビニルメチルシロキサン錯体や白金−カルボニルビニルメチル錯体や塩化白金酸とアルコール、アルデヒドとの錯体が、反応速度が良好であるため好ましい。
なお、本発明の硬化性シリコーン樹脂組成物において(B)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物における(B)成分の含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物に含まれるアルケニル基の全量1モル(1モル当たり)に対して、1×10-8〜1×10-2モルが好ましく、より好ましくは1.0×10-6〜1.0×10-3モルである。(B)成分の含有量を1×10-8モル以上とすることにより、より効率的に硬化物を形成させることができる傾向がある。一方、(B)成分の含有量を1×10-2モル以下とすることにより、より色相に優れた(着色の少ない)硬化物を得ることができる傾向がある。
また、本発明の硬化性シリコーン樹脂組成物における(B)成分の含有量(配合量)は、特に限定されないが、例えば、ヒドロシリル化触媒中の白金族金属が重量単位で、0.01〜1000ppmの範囲内となる量が好ましく、0.1〜500ppmの範囲内となる量がより好ましい。(B)成分の含有量がこのような範囲にあると、より効率的に硬化物を形成させることができ、また、より色相に優れた硬化物を得ることができる傾向がある。
[(C)成分]
本発明の硬化性シリコーン樹脂組成物における(C)成分は、上述のように、分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサン(「(C)成分」と称する場合がある)である。本発明の硬化性シリコーン樹脂組成物において(C)成分は、ヒドロシリル基を有する成分(例えば、(A)成分等)とヒドロシリル化反応を生じる成分である。本発明の硬化性シリコーン樹脂組成物が(C)成分を含むことにより、硬化物の耐熱性、耐熱衝撃性、硫黄バリア性がさらに向上する場合がある。
(C)成分は、分子内に1個以上のアルケニル基を有し、なおかつ主鎖として−Si−O−Si−(シロキサン結合)を有し、シルアルキレン結合を有しない分岐鎖状のポリオルガノシロキサン(分岐状の主鎖を有するポリオルガノシロキサン)である。なお、(C)成分には、網目状等の三次元構造のポリオルガノシロキサンも含まれる。但し、(C)成分には、後述の(G)成分は含まれない。
(C)成分が分子内に有するアルケニル基としては、上述の置換又は無置換アルケニル基が挙げられ、中でも、ビニル基が好ましい。また、(C)成分は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。(C)成分が有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。
(C)成分が分子内に有するアルケニル基の数は、1個以上であればよく、特に限定されないが、硬化性シリコーン樹脂組成物の硬化性の観点で、2個以上(例えば2〜50個)が好ましい。
(C)成分が有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の有機基(例えば、アルキル基、シクロアルキル基、アリール基、シクロアルキル−アルキル基、アラルキル基、ハロゲン化炭化水素基等の置換又は無置換炭化水素等)が挙げられる。
また、(C)成分は、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
(C)成分の性状は、特に限定されず、例えば25℃において、液状であってもよいし、固体状であってもよい。
(C)成分としては、下記平均単位式:
(R3SiO3/2c1(R3 2SiO2/2c2(R3 3SiO1/2c3(SiO4/2c4(XO1/2c5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R3は、同一又は異なって、一価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R3の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R3の全量(100モル%)に対するアルケニル基の割合は、0.1〜40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR3としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記平均単位式中、Xは、上記と同様、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。
上記平均単位式中、c1は0又は正数、c2は0又は正数、c3は0又は正数、c4は0又は正数、c5は0又は正数であり、かつ、(c1+c2+c3)及び(c1+c4)がそれぞれ正数である。
(C)成分の具体例としては、分子内に2個以上のアルケニル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。なお、Rは、一価の置換又は無置換炭化水素基である。この分岐鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記分岐鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、特に限定されないが、硬化性シリコーン樹脂組成物の硬化性の観点で、0.1〜40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、10〜40モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、5〜70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45〜60モル%)であるものを使用することにより、硬化物の硫黄バリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(例えば、60〜99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
上記分岐鎖状ポリオルガノシロキサンは、c1が正数である上記平均単位式で表すことができる。この場合、特に限定されないが、c2/c1は0〜10の数、c3/c1は0〜0.5の数、c4/(c1+c2+c3+c4)は0〜0.3の数、c5/(c1+c2+c3+c4)は0〜0.4の数であることが好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は特に限定されないが、標準ポリスチレン換算の重量平均分子量が500〜10000であることが好ましく、より好ましくは700〜3000である。
(C)成分の具体例としては、例えば、上記平均単位式中、c1及びc2が0であり、Xが水素原子である下記平均単位式:
(R3a 23bSiO1/2c6(R3a 3SiO1/2c7(SiO4/2c8(HO1/2c9
で表されるポリオルガノシロキサンが挙げられる。上記平均単位式中、R3aは、同一又は異なって、炭素数1〜10のアルキル基、シクロアルキル基、又はアリール基を示し、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基、フェニル基等が挙げられ、中でもメチル基が好ましい。また、R3bは、同一又は異なって、アルケニル基を示し、中でもビニル基が好ましい。さらに、c6、c7、c8及びc9はいずれも、c6+c7+c8=1、c6/(c6+c7)=0.15〜0.35、c8/(c6+c7+c8)=0.53〜0.62、c9/(c6+c7+c8)=0.005〜0.03を満たす正数である。なお、c7は0であってもよい。硬化性シリコーン樹脂組成物の硬化性の観点で、c6/(c6+c7)は0.2〜0.3であることが好ましい。また、硬化物の硬度や機械強度の観点で、c8/(c6+c7+c8)は0.55〜0.60であることが好ましい。さらに、硬化物の接着性や機械強度の観点で、c9/(c6+c7+c8)は0.01〜0.025であることが好ましい。このようなポリオルガノシロキサンとしては、例えば、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位とで構成されるポリオルガノシロキサン、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位と(CH33SiO1/2単位とで構成されるポリオルガノシロキサン等が挙げられる。
なお、本発明の硬化性シリコーン樹脂組成物において(C)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物における(C)成分の含有量(配合量)は、特に限定されないが、(A)成分100重量部に対して、50〜300重量部が好ましく、より好ましくは75〜275重量部、さらに好ましくは100〜250重量部である。(C)成分の含有量を上記範囲に制御することにより、硬化物の耐熱衝撃性、硫黄バリア性、及び耐熱性がさらに向上する場合がある。
[(D)成分]
本発明の硬化性シリコーン樹脂組成物における(D)成分は、一次粒子の平均粒径が5〜5000nmのシリカフィラーである。本発明の硬化性シリコーン樹脂組成物が(D)成分を含むことにより、該硬化性シリコーン樹脂組成物を加熱した場合(例えば、LEDパッケージへの充填や硬化のために加熱した場合等)に粘度が大きく低下しにくくなって蛍光体の沈降が抑制され(即ち、優れた分散性が維持され)、その結果、光半導体装置の色度ばらつきが抑制され、光取り出し効率の高い光半導体装置を安定的に製造することが可能となる。また、その硬化物において(D)成分が優れた応力緩和効果を発揮するため、耐熱衝撃性に優れた硬化物が得られる。さらに、硬化物の被着体に対する密着強度(密着性)がより向上し、なおかつタックが低減するため、高品質の光半導体装置が得られる。
(D)成分の一次粒子の平均粒径は、上述のように5〜5000nmであればよく、特に限定されないが、5〜1000nmが好ましく、より好ましくは5〜500nm、さらに好ましくは6〜100nmである。(D)成分の一次粒子の平均粒径が5〜5000nmであることにより、硬化性シリコーン樹脂組成物を調製する際の取り扱いが容易であり、また、加熱時の硬化性シリコーン樹脂組成物の粘度が低下しにくくなるため蛍光体の沈降が抑制され、光半導体装置の色度ばらつきが抑制される。また、(D)成分の一次粒子の平均粒径が5000nm以下であることにより、光半導体素子の封止材として使用した場合の光散乱が抑制され、光取り出し効率の高い光半導体装置を得ることができる。なお、本明細書において(D)成分の一次粒子の平均粒径とは、TEM(透過型電子顕微鏡)によって撮影された写真から、任意に選択した微粒子100個についてその粒径を測定し、これらを平均した値である。
(D)成分としては、一次粒子の平均粒径が5〜5000nmである限り、公知乃至慣用のシリカフィラーを使用することができる。シリカフィラーを構成するシリカとしては、沈降法やゲル法等の湿式法、燃焼法やアーク法等の乾式法等の公知乃至慣用の方法により製造されたものを使用することができ、例えば、ヒュームドシリカ、溶融シリカ、結晶シリカ、破砕シリカ、微細シリカ、高純度合成シリカ、コロイダルシリカ、沈澱シリカ等が挙げられる。中でも、上述の粘度低下の抑制効果がより得られやすい点で、ヒュームドシリカが好ましい。
また、(D)成分としては、表面処理が施されたシリカフィラーを使用することもできる。表面処理を施すための表面処理剤としては、公知乃至慣用の表面処理剤が挙げられ、特に限定されないが、例えば、シランカップリング剤[例えば、アルキル基含有シランカップリング剤、アルケニル基含有シランカップリング剤、エポキシ基含有シランカップリング剤、(メタ)アクリロイル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、イソシアヌレート基含有シランカップリング剤、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等の各種シランカップリング剤];有機シラン[例えば、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、オクチルトリエトキシシラン、ヘキサメチルジシラザン等];シリコーンオイル;変性シリコーンオイル;環状シロキサン(例えば、D4等)等が挙げられる。中でも、硬化物の耐熱衝撃性、密着性、光半導体装置の色度ばらつき抑制の観点で、ジアルキルジハロシラン(特に、ジC1-4アルキルジクロロシラン等)、シリコーンオイル(特に、ジC1-4アルキルポリシロキサン等)が好ましい。
上述の(D)成分としての表面処理が施されたシリカフィラーは、特に限定されないが、例えば、表面未処理のシリカフィラー(例えば、上述のシリカフィラー)を公知乃至慣用の方法により表面処理することによって得ることができる。表面処理の方法としては、例えば、ミキサー(ヘンシェルミキサー、V型ミキサー等)中にシリカフィラーを入れ、撹拌しながら上述の表面処理剤を添加する乾式法;シリカフィラーのスラリー中に上述の表面処理剤を添加するスラリー法;シリカフィラーの乾燥後に上述の表面処理剤をスプレー付与するスプレー法等が挙げられる。上記表面処理にあたり、上述の表面処理剤はそのまま使用することもできるし、溶液又は分散液の状態で使用することもできる。
中でも、(D)成分としては、硬化物の耐熱衝撃性、密着性、光半導体装置の色度ばらつき抑制の観点で、表面処理剤(例えば、上述の表面処理剤)により表面処理されたシリカフィラーが好ましく、より好ましくはジアルキルジハロシラン(特に、ジC1-4アルキルジクロロシラン等)、及びシリコーンオイル(特に、ジC1-4アルキルポリシロキサン等)からなる群より選択された少なくとも1種により表面処理されたシリカフィラーである。
(D)成分の形状は、特に限定されず、例えば、球状、破砕状、繊維状、針状、鱗片状、ウィスカー状、フレーク状、平板状等が挙げられる。また、(D)成分は、中空粒子、中実粒子、多孔粒子、これらの混合物等のいずれであってもよい。
なお、本発明の硬化性シリコーン樹脂組成物において(D)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、(D)成分は、上述の公知乃至慣用の方法により製造することもできるし、市販品を使用することもできる。市販品としては、例えば、商品名「AEROSIL R805」、「AEROSIL RX200」、「AEROSIL RX300」、「AEROSIL RY50」、「AEROSIL RY300」、「AEROSIL RY200」、「AEROSIL R976」、「AEROSIL R976S」、「AEROSIL RM50」、「AEROSIL R711」、「AEROSIL R7200」、「AEROSIL OX50」、「AEROSIL 50」、「AEROSIL 90G」、「AEROSIL 130」、「AEROSIL 150」、「AEROSIL 200」、「AEROSIL 200CF」、「AEROSIL 300」、「AEROSIL 380」(以上、日本アエロジル(株)製);商品名「メタノールシリカゾル」、「MA−ST−M」、「IPA−ST」、「EG−ST」、「EG−ST−ZL」、「NPC−ST」、「DMAC−ST」、「MEK−ST」、「XBA−ST」、「MIBK−ST」(以上、日産化学工業(株)製)等が挙げられる。
本発明の硬化性シリコーン樹脂組成物における(D)成分の含有量(配合量)は、特に限定されないが、(A)成分及び(C)成分の合計100重量部に対して、好ましくは0.1〜20重量部であり、より好ましくは0.2〜15重量部、さらに好ましくは0.5〜10重量部である。(D)成分の含有量を0.1重量部以上とすることにより、硬化性シリコーン樹脂組成物の加熱時の粘度低下が抑制され、これにより蛍光体の沈降が抑制され、光半導体装置の色度ばらつきが抑制される。また、(D)成分が優れた応力緩和効果を発揮することによって、硬化物及び光半導体装置の耐熱衝撃性が向上する。さらに、リフレクターや電極への密着強度が向上し、タックが低減される。一方、(D)成分の含有量を20重量部以下とすることにより、光半導体素子の封止材とした場合の光散乱が抑制され、光取り出し効率の高い光半導体装置が得られる。また、硬化性シリコーン樹脂組成物の粘度が高くなりすぎず、硬化物の作製時(特に、光半導体素子の封止作業時)の良好な作業性が確保される。
本発明の硬化性シリコーン樹脂組成物における(D)成分の含有量(配合量)は、特に限定されないが、加熱時の粘度低下の抑制(及びこれによる色度ばらつきの抑制)、硬化物の耐熱衝撃性向上、密着性向上、タック低減の観点で、硬化性シリコーン樹脂組成物(100重量%)に対して、0.1〜20重量%が好ましく、より好ましくは0.2〜15重量%、さらに好ましくは0.5〜10重量%である。
[(E)成分]
本発明の硬化性シリコーン樹脂組成物における(E)成分は、ポリエーテル変性レベリング剤である。レベリング剤は、組成物の表面張力を低下、均一化して、封止剤として使用した場合の表面の浮きまだらやハジキを防止して表面の平滑性、透明性、光沢、滑り性などを改良するものであるが、本発明の硬化性シリコーン樹脂組成物が(E)成分としてポリエーテル変性レベリング剤を含むことにより、該硬化性シリコーン樹脂組成物中に分散した(D)成分であるシリカフィラーが、保存中(例えば、該硬化性シリコーン樹脂組成物を製造後に光半導体装置の封止材として使用される間の保存中)に凝集されにくくなり、硬化性シリコーン樹脂組成物の粘度上昇が抑制されるため、例えば、光半導体装置の製造する際に型に注入しやすくなり、取り扱いが容易になり、作業効率の低下を防止するという予想外の効果が発揮される。
ポリエーテル変性レベリング剤としては、ポリエーテル基が構造中に含まれる慣用のレベリング剤(例えば、アセチレングリコールのエチレンオキサイド付加体など)を使用できるが、表面張力低下能に優れることから、ポリエーテル変性シリコーン系レベリング剤、ポリエーテル変性フッ素系レベリング剤が好ましい。
ポリエーテル変性レベリング剤の構造中に含まれるポリエーテル基としては、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基、ポリオキシエチレン−ポリオキシプロピレン基などのポリオキシC2-4アルキレン基などが挙げられる。ポリエーテル基において、オキシアルキレン基の繰り返し数(付加モル数)は、例えば、2〜1000、好ましくは3〜100、より好ましくは5〜50程度である。これらのうち、ポリオキシエチレン基、ポリオキシプロピレン基などのポリオキシC2-3アルキレン基(特に、ポリオキシエチレン基)が好ましい。
ポリエーテル基は、後述のポリオルガノシロキサン骨格又はフルオロ脂肪族炭化水素骨格に対して、直接結合で導入されていてもよく、連結基(例えば、アルキレン基、シクロアルキレン基、エーテル基、エステル基、アミド基、ウレタン基、又はこれらを組み合わせた連結基など)を介して導入されていてもよい。
ポリエーテル変性シリコーン系レベリング剤としては、構造中にポリエーテル基を有し、ポリオルガノシロキサン骨格を有するレベリング剤であればよい。ポリオルガノシロキサン骨格としては、R3SiO1/2で表されるシロキサン単位(M単位)、R2SiO2/2で表されるシロキサン単位(D単位)、RSiO3/2で表されるシロキサン単位(T単位)、SiO4/2で表されるシロキサン単位(Q単位)で形成されたポリオルガノシロキサンであればよいが、通常、D単位で形成されたポリオルガノシロキサンが使用される。Rは、上述の通り、水素原子、又は、一価の置換若しくは無置換炭化水素基である。ポリオルガノシロキサンの置換基(R)としては、上述のポリエーテル基の他、通常、C1-4アルキル基、アリール基が使用され、メチル基、フェニル基(特に、メチル基)が汎用される。シロキサン単位の繰り返し数(重合度)は、特に限定されないが、例えば、2〜3000、好ましくは3〜2000、より好ましくは5〜1000程度である。
ポリエーテル変性フッ素系レベリング剤としては、構造中にポリエーテル基を有し、フルオロ脂肪族炭化水素骨格を有するレベリング剤であればよい。フルオロ脂肪族炭化水素骨格としては、例えば、フルオロメタン、フルオロエタン、フルオロプロパン、フルオロイソプロパン、フルオロブタン、フルオロイソブタン、フルオロt−ブタン、フルオロペンタン、フルオロヘキサンなどのフルオロC1-10アルカンなどが挙げられる。
これらフルオロ脂肪族炭化水素骨格は、少なくとも一部の水素原子がフッ素原子に置換されていればよいが、滑り性、耐汚染性の向上、保存中の組成物の粘度上昇の抑制効果の向上の観点から、全ての水素原子がフッ素原子で置換されたパーフルオロ脂肪族炭化水素骨格が好ましい。
さらに、フルオロ脂肪族炭化水素骨格は、エーテル結合を介した繰り返し単位であるポリフルオロアルキレンエーテル骨格を形成していてもよい。繰り返し単位としてのフルオロ脂肪族炭化水素基は、フルオロメチレン、フルオロエチレン、フルオロプロピレン、フルオロイソプロピレンなどのフルオロC1-4アルキレン基からなる群より選択された少なくとも1種であってもよい。これらフルオロ脂肪族炭化水素基は、同一であってもよく、複数種の組み合わせであってもよい。フルオロアルキレンエーテル単位の繰り返し数(重合度)は、特に限定されないが、例えば、10〜3000、好ましくは30〜1000、さらに好ましくは50〜500程度であってもよい。
これらの骨格のうち、硬化性シリコーン樹脂組成物との親和性に優れるポリオルガノシロキサン骨格が好ましい。
このような骨格を有するポリエーテル変性レベリング剤は、各種の機能性を付与するために、ポリエーテル基の他に、加水分解縮合性基、エポキシ基に対する反応性基などの機能性基、ラジカル重合性基、ポリエステル基、ポリウレタン基などを有していてもよい。また、ポリエーテル変性シリコーン系レベリング剤が、フルオロ脂肪族炭化水素基を有していてもよく、ポリエーテル変性フッ素系レベリング剤が、ポリオルガノシロキサン基を有していてもよい。
加水分解性縮合基としては、例えば、ヒドロキシシリル基;トリクロロシリル基などのトリハロシリル基;ジクロロメチルシリル基などのジハロC1-4アルキルシリル基;ジクロロフェニルシリル基などのジハロアリールシリル基;クロロジメチルシリル基などのクロロジC1-4アルキルシリル基などのハロジC1-4アルキルシリル基;トリメトキシシリル基、トリエトキシシリル基などのトリC1-4アルコキシシリル基;ジメトキシメチルシリル基、ジエトキシメチルシリル基などのジC1-4アルコキシC1-4アルキルシリル基;ジメトキシフェニルシリル基、ジエトキシフェニルシリル基などのジC1-4アルコキシアリールシリル基;メトキシジメチルシリル基、エトキシジメチルシリル基などのC1-4アルコキシジC1-4アルキルシリル基;メトキシジフェニルシリル基、エトキシジフェニルシリル基などのC1-4アルコキシジアリールシリル基;メトキシメチルフェニルシリル基、エトキシメチルフェニルシリル基などのC1-4アルコキシC1-4アルキルアリールシリル基などが挙げられる。これらのうち、反応性などの観点から、トリメトキシシリル基などのトリC1-4アルコキシシリル基が好ましい。
エポキシ基に対する反応性基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、酸無水物基(無水マレイン酸基など)、イソシアネート基などが挙げられる。これらのうち、反応性などの観点から、ヒドロキシル基、アミノ基、酸無水物基、イソシアネート基などが汎用され、取扱い性や入手容易性などの点から、ヒドロキシル基がより好ましい。
ラジカル重合性としては、例えば、(メタ)アクリロイルオキシ基、ビニル基などが挙げられる。これらのうち、(メタ)アクリロイルオキシ基が汎用される。
ポリエステル基としては、例えば、ジカルボン酸(テレフタル酸などの芳香族カルボン酸やアジピン酸などの脂肪族カルボン酸など)とジオール(エチレングリコールなどの脂肪族ジオールなど)との反応により形成されるポリエステル基、環状エステル(例えば、カプロラクトンなどのラクトン類)の開環重合により形成されるポリエステル基などが挙げられる。
ポリウレタン基としては、例えば、慣用のポリエステル型ウレタン基、ポリエーテル型ウレタン基などが挙げられる。
これらの機能性基は、ポリオリガノシロキサン骨格又はフルオロ脂肪族炭化水素骨格に対して、直接結合で導入されていてもよく、連結基(例えば、アルキレン基、シクロアルキレン基、エーテル基、エステル基、アミド基、ウレタン基、又はこれらを組み合わせた連結基など)を介して導入されていてもよい。
これらの機能性基のうち、硬化性シリコーン樹脂と反応性の観点から、加水分解縮合基、エポキシ基に対する反応性基が好ましく、トリC1-4アルコキシシリル基、ヒドロキシル基が特に好ましい。
なお、ヒドロキシル基は、ポリオキシアルキレン基[ポリオキシエチレン基など]の末端ヒドロキシル基であってもよい。このようなポリエーテル変性レベリング剤としては、例えば、ポリジメチルシロキサンなどのポリオルガノシロキサン骨格の側鎖にポリオキシエチレン基などのポリオキシC2-3アルキレン基が導入されたシリコーン系レベリング剤(ポリジメチルシロキサンポリオキシエチレンなど)、ポリオキシエチレンなどのポリオキシC2-3アルキレン骨格の側鎖にフルオロ脂肪族炭化水素基が導入されたフッ素系レベリング剤(フルオロアルキルポリオキシエチレンなど)などが挙げられる。
ポリエーテル変性レベリング剤としては、公知乃至慣用のポリエーテル変性レベリング剤を使用でき、特に限定されないが、例えば、商品名「BYK−300」、「BYK−301/302」、「BYK−306」、「BYK−307」、「BYK−320」、「BYK−325」、「BYK−330」、「BYK−331」、「BYK−333」、「BYK−337」、「BYK−341」、「BYK−344」、「BYK−345/346」、「BYK−347」、「BYK−348」、「BYK−349」、「BYK−375」、「BYK−377」、「BYK−378」、「BYK−3455」、「BYK−UV3500」、「BYK−UV3510」、「BYK−3530」、「BYK−3535」、「BYK−3550」、「BYK−SILCLEAN3720」(以上、ビックケミー・ジャパン(株)製)、商品名「KF−6011/6011P」、「KF−6012」、「KF−6013」、「KF−6015」、「KF−6016」、「KF−6017/6017P」、「KF−6004」、「KF−6043」、「KF−6028/6028P」、「KF−6038」、「KF−351A」、「KF−352A」、「KF−353」、「KF−354L」、「KF−355A」、「KF−615A」、「KF−945」、「KF−640」、「KF−642」、「KF−643」、「KF−644」、「KF−6020」、「KF−6204」、「KF−6123」、「KF−6011」、「KF−6011」、「KF−6011」、「KF−6011」、「KF−6011」、「KF−6011」、「KF−1002」、「X−22−4272」、「X−22−4952」、「X−22−2516」、「X−22−4155」、「X−22−4741」、「X−22−3939A」(以上、信越化学工業(株)製)、商品名「SILSTYLE 104」、「SILSTYLE 201」、「SILSTYLE 401」、「CE−8411 Smoothing Plus Emulsion」、「SH3771M」、「SH3773M」、「SH3775M」、「SS−2802」、「SS−2804」、「2501Cosmetic Wax」、「FZ−2222」、「FZ−2233」、「CB−2250」、「SS−2804」、「BY11−008 M」、「BY11−030」、「BY25−337」、「5200」、「ES−5612」、「ES−5300」、「ES−5600」、「BY25−339」、「FB−2540」、「RM 2051」(以上、東レ・ダウコーニング(株)製)などの市販品を使用することができる。
これらポリエーテル変性レベリング剤は1種を単独で、又は2種以上を組み合わせて使用することができる。
ポリエーテル変性レベリング剤の使用量は、特に限定されないが、本発明の硬化性シリコーン樹脂組成物(100重量%)に対して、好ましくは0.001〜5重量%であり、その上限は、好ましくは4重量%以下、特に好ましくは3重量%以下、最も好ましくは2重量%以下である。下限は、好ましくは0.005重量%以上、より好ましくは0.01重量%以上、さらに好ましくは0.1重量%以上、さらにより好ましくは0.2重量%以上、さらに一層好ましくは0.3重量%以上、特に好ましくは0.4重量%以上である。ポリエーテル変性レベリング剤の使用量が0.001重量%以上であることにより、光半導体の封止剤として使用した場合に表面平滑性が向上し、また、保存中のシリカフィラー凝集による粘度上昇が改善される傾向がある。一方、ポリエーテル変性レベリング剤の使用量が5重量%を超えると、硬化物の硬度が低下する傾向がある。
[(F)成分]
本発明の硬化性シリコーン樹脂組成物は、分子内に2個以上のアルケニル基及び1個以上のアリール基を有するポリオルガノシロキシシルアルキレン(「(F)成分」と称する場合がある)を含んでいてもよい。従って、本発明の硬化性シリコーン樹脂組成物において(F)成分は、ヒドロシリル基を有する成分(例えば、(A)成分等)とヒドロシリル化反応を生じる成分である。
(F)成分は、分子内に2個以上のアルケニル基及び1個以上のアリール基を有し、主鎖として−Si−O−Si−(シロキサン結合)に加えて、−Si−RA−Si−(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサン(ポリオルガノシロキシシルアルキレン)である。即ち、(F)成分には、上述の(C)成分のようなシルアルキレン結合を有しないポリオルガノシロキサンは含まれない。本発明の硬化性シリコーン樹脂組成物はこのような(F)成分を含むために、硬化物の硬度の上昇、重量の減少、及び透明性の低下がより生じにくく、硫黄バリア性と耐熱衝撃性とに優れた硬化物を形成できる傾向がある。さらに、本発明の硬化性シリコーン樹脂組成物を光半導体装置における封止剤として使用することにより、光半導体装置の色度ばらつきが抑制され、光取り出し効率の高い光半導体装置を安定的に製造することが可能となる。さらに、硬化させることにより、硫黄バリア性が高く、黄変し難く、タックの低い又は無い硬化物とすることができるため、これを封止材とする光半導体装置の品質が向上する。
(F)成分が分子内に有するシルアルキレン結合におけるアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基等の直鎖又は分岐鎖状のC1-12アルキレン基等が挙げられ、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。(F)成分は、主鎖がシロキサン結合のみからなり、シルアルキレン結合を有しないポリオルガノシロキサンと比較して、製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(−SiOH)を生じ難いため、(F)成分を使用することにより、硬化性シリコーン樹脂組成物の硬化物の表面粘着性(タック性)が低減され、より黄変し難くなる傾向がある。
(F)成分としては、直鎖状、分岐鎖状(例えば、一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するもの等が挙げられる。中でも、(F)成分としては、分岐鎖状の分子構造を有するものが、硬化物の機械強度の観点で好ましい。
(F)成分が分子内に有するアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の置換又は無置換アルケニル基が挙げられる。当該置換アルケニル基における置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられる。中でも、上記アルケニル基としては、ビニル基が好ましい。また、(F)成分は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。(F)成分が有するアルケニル基は、特に限定されないが、ケイ素原子に結合した基であることが好ましい。
(F)成分が分子内に有するアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、アラルキル基(例えば、ベンジル基、フェネチル基等)等の置換又は無置換C6-14アリール基等が挙げられる。当該置換アリール基における置換基としては、置換又は無置換C1-8アルキル基、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられる。中でも、上記アリール基としては、フェニル基が好ましい。また、(F)成分は、1種のみのアリール基を有するものであってもよいし、2種以上のアリール基を有するものであってもよい。(F)成分が有するアリール基は、特に限定されないが、ケイ素原子に結合した基であることが好ましい。(F)成分は、分子内に1個以上のアリール基を有することにより、アリール基を有しないポリオルガノシロキシシルアルキレンと比較して、硫黄バリア性に優れた硬化物を形成できる。
(F)成分が分子内に有するアルケニル基及びアリール基以外のケイ素原子に結合した基としては、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基等が挙げられる。なお、本明細書において「ケイ素原子に結合した基」とは、通常、ケイ素原子を含まない基を指すものとする。中でも、アルキル基(特にメチル基)が好ましい。
また、(F)成分は、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
(F)成分の性状は、特に限定されず、例えば25℃において、液状であってもよいし、固体状であってもよい。
(F)成分としては、下記平均単位式:
(R4 2SiO2/2d1(R4 3SiO1/2d2(R4SiO3/2d3(SiO4/2d4(RAd5(XO)d6
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R4は、同一又は異なって、一価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アラルキル基、ハロゲン化アルキル基等)、上述のアルケニル基、及び上述のアリール基が挙げられる。但し、R4の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R4の全量(100モル%)に対するアルケニル基の割合は、0.1〜40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、R4の一部はアリール基(特にフェニル基)であり、その割合は、分子内に1個以上となる範囲に制御される。例えば、R4の全量(100モル%)に対するアリール基の割合は、10〜60モル%が好ましい。アリール基の割合を上記範囲に制御することにより、硬化物の硫黄バリア性がより向上する傾向がある。また、アルケニル基、アリール基以外のR4としては、アルキル基(特にメチル基)が好ましい。
上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。
上記平均単位式中、Xは、上述のように水素原子又はアルキル基である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基が好ましい。
上記平均単位式中、d1は正数、d2は正数、d3は0又は正数、d4は0又は正数、d5は正数、d6は0又は正数である。中でも、d1は1〜200が好ましく、d2は1〜200が好ましく、d3は0〜10が好ましく、d4は0〜5が好ましく、d5は1〜100が好ましい。特に、(d3+d4)が正数の場合には、(F)成分が分岐鎖(分岐状の主鎖)を有し、硬化物の機械強度がより向上する傾向がある。
(F)成分としては、より具体的には、例えば、下記式(III−1)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure 2017036416
上記式(III−1)中、R31は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基である。R31としては、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R31の少なくとも2個はアルケニル基(特にビニル基)であり、R31の少なくとも1個はアリール基(特にフェニル基)である。また、アルケニル基、アリール基以外のR31としては、アルキル基(特にメチル基)が好ましい。
上記式(III−1)中、RAは、上記と同じく、アルキレン基を示し、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。
上記式(III−1)中、r1は1以上の整数(例えば、1〜100)を示す。なお、r1が2以上の整数の場合、r1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(III−1)中、r2は1以上の整数(例えば、1〜400)を示す。なお、r2が2以上の整数の場合、r2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(III−1)中、r3は0又は1以上の整数(例えば、0〜50)を示す。なお、r3が2以上の整数の場合、r3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(III−1)中、r4は0又は1以上の整数(例えば、0〜50)を示す。なお、r4が2以上の整数の場合、r4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
上記式(III−1)中、r5は0又は1以上の整数(例えば、0〜50)を示す。なお、r5が2以上の整数の場合、r5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
また、上記式(III−1)における各構造単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。また、各構造単位の配列の順番も特に限定されない。
式(III−1)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、r5が付された括弧内の構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、アルケニル基やヒドロシリル基等の各種の基が導入されていてもよい。
(F)成分は公知乃至慣用の方法により製造することができ、その製造方法は特に限定されないが、例えば、特開2012−140617号公報に記載の方法により製造できる。また、(F)成分を含む製品として、例えば、商品名「ETERLED GD1130」、「ETERLED GD1125」、「ETERLED GS5145」、「ETERLED GS5155」、「ETERLED GS5135」、「ETERLED GS5120」(いずれも長興材料工業製)等が入手可能である。
なお、本発明の硬化性シリコーン樹脂組成物において(F)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なる(F)成分の2種以上を併用することができ、具体的には、直鎖状の(F)成分と分岐鎖状の(F)成分とを併用する態様等が挙げられる。
本発明の硬化性シリコーン樹脂組成物が(F)成分を含有する場合、本発明の硬化性シリコーン樹脂組成物における(F)成分の含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、0.1〜60重量%が好ましく、より好ましくは0.1〜55重量%、さらに好ましくは0.1〜50重量%である。(F)成分の含有量を0.1重量%以上とすることにより、硬化物の硫黄バリア性がより向上する傾向がある。また、硬化物のタックが低減され、耐黄変性が向上するため、光半導体装置の品質及び耐久性が向上する傾向もある。一方、(F)成分の含有量を60重量%以下とすることにより、硬化物の耐熱衝撃性がより向上する傾向があり、また、(A)〜(D)成分の増量による効果(例えば硬化性向上、硫黄バリア性向上、密着性向上、色度ばらつき抑制等)を効率的に得られる傾向がある。
[(G)成分]
本発明の硬化性シリコーン樹脂組成物は、分子内に1個以上のアルケニル基及び1個以上のアリール基を有するラダー型ポリオルガノシルセスキオキサン(「(G)成分」と称する場合がある)を含んでいてもよい。本発明の硬化性シリコーン樹脂組成物が(G)成分を含むことにより、硬化物の硫黄バリア性(特に、SOXバリア性)が著しく向上する傾向がある。(G)成分としては、分子内に1個以上(好ましくは2個以上)のアルケニル基と1個以上(好ましくは2〜50個)のアリール基を有し、ラダー構造の−Si−O−Si−骨格を有するポリオルガノシルセスキオキサンを使用することができ、特に限定されない。
(G)成分が分子内に有するアルケニル基、アリール基としては、(F)成分が分子内に有するアルケニル基、アリール基として上記で例示したものと同様のものが挙げられる。(G)成分が有するアルケニル基、アリール基は、特に限定されないが、ケイ素原子に結合した基であることが好ましい。
(G)成分が分子内に有するアルケニル基及びアリール基以外のケイ素原子に結合した基としては、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基等が挙げられる。なお、本明細書において「ケイ素原子に結合した基」とは、通常、ケイ素原子を含まない基を指すものとする。中でも、アルキル基(特にメチル基)が好ましい。
また、(G)成分は、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
前記(G)成分全体(100重量%)に占めるアルケニル基の割合は、分子内に1個以上となる範囲に制御される限り特に限定されないが、例えば、2.0〜10.0重量%、好ましくは3.0〜5.0重量%である。アリール基の割合は、分子内に1個以上となる範囲に制御される限り特に限定されないが、例えば、10.0〜30.0重量%、好ましくは10.0〜20.0重量%である。アルキル基の割合は、特に限定されないが、例えば20.0〜35.0重量%、好ましくは20.0〜30.0重量%である。尚、(G)成分におけるアルケニル基、アリール基、アルキル基の割合は、例えば、NMRスペクトル(例えば、1H−NMRスペクトル)測定等により算出することができる。
(G)成分の特に好ましい態様として、例えば、下記のラダー型ポリオルガノシルセスキオキサン(a)、ラダー型ポリオルガノシルセスキオキサン(b)が挙げられる。但し、(G)成分は、以下のラダー型ポリオルガノシルセスキオキサンには限定されない。
・ラダー型ポリオルガノシルセスキオキサン(a):分子内に2個以上のアルケニル基及び1個以上のアリール基を有るラダー型ポリオルガノシルセスキオキサン。
・ラダー型ポリオルガノシルセスキオキサン(b):ラダー構造を有するポリオルガノシルセスキオキサンの分子鎖末端の一部又は全部に、式(IV−3−1)で表される構成単位(T単位)及び式(IV−3−2)で表される構成単位(M単位)を含むポリオルガノシルセスキオキサン残基(「ポリオルガノシルセスキオキサン残基(a)」と称する場合がある)を有するラダー型ポリオルガノシルセスキオキサン。
Figure 2017036416
Figure 2017036416
・ラダー型ポリオルガノシルセスキオキサン(a)
ラダー型ポリオルガノシルセスキオキサン(a)はラダー構造を有するが、このことは、FT−IRスペクトルにおいて1050cm-1付近(例えば、1000〜1100cm-1)と1150cm-1付近(例えば、1100cm-1を超え1200cm-1以下)にそれぞれ固有吸収ピークを有する(即ち、1000〜1200cm-1に少なくとも2本の吸収ピークを有する)ことから確認される[参考文献:R.H.Raney, M.Itoh, A.Sakakibara and T.Suzuki, Chem. Rev. 95, 1409(1995)]。なお、FT−IRスペクトルは、例えば、下記の装置及び条件により測定することができる。
測定装置:商品名「FT−720」((株)堀場製作所製)
測定方法:透過法
分解能:4cm-1
測定波数域:400〜4000cm-1
積算回数:16回
但し、ラダー型ポリオルガノシルセスキオキサン(a)は、ラダー構造に加えて、さらにカゴ構造やランダム構造等のその他のシルセスキオキサン構造を有するものであってもよい。
ラダー型ポリオルガノシルセスキオキサン(a)の窒素雰囲気下における5%重量減少温度(Td5)は、特に限定されないが、150℃以上が好ましく、より好ましくは240℃以上、さらに好ましくは260〜500℃、特に好ましくは262℃以上、最も好ましくは265℃以上である。5%重量減少温度が150℃未満(特に、240℃未満)であると、用途によっては要求される耐熱性を満たすことができない場合がある。なお、5%重量減少温度は、一定の昇温速度で加熱した時に加熱前の重量の5%が減少した時点での温度であり、耐熱性の指標となる。上記5%重量減少温度は、TGA(熱重量分析)により、窒素雰囲気下、昇温速度20℃/分の条件で測定することができる。
ラダー型ポリオルガノシルセスキオキサン(a)は、特に限定されないが、室温(25℃)で液体であることが好ましい。具体的には、その25℃における粘度は、特に限定されないが、30000Pa・s以下(例えば、1〜30000Pa・s)が好ましく、より好ましくは25000Pa・s以下、さらに好ましくは10000Pa・s以下である。上記粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1〜100(1/s)、温度:25℃の条件で測定することができる。
ラダー型ポリオルガノシルセスキオキサン(a)としては、例えば、下記式(IV−2)で表されるラダー型ポリオルガノシルセスキオキサンが挙げられる。
Figure 2017036416
上記式(IV−2)中、R42は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R42の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基及びアリール基も含まれる)が挙げられる。
ラダー型ポリオルガノシルセスキオキサン(a)は、上記式(IV−2)中のアルケニル基以外のR42として、アリール基を有することが好ましく、さらにアルキル基(好ましくは、メチル基)を有していてもよい。
ラダー型ポリオルガノシルセスキオキサン(a)の上記式(IV−2)におけるR42の全量(100重量%)中の、アリール基、アルケニル基、及びアルキル基の割合(合計含有量)は、特に限定されないが、50〜100重量%が好ましく、より好ましくは70〜100重量%、さらに好ましくは80〜100重量%である。
ラダー型ポリオルガノシルセスキオキサン(a)の上記式(IV−2)におけるR42の全量(100モル%)中の、アリール基(好ましくは、フェニル基)の割合(含有量)は、特に限定されないが、30〜90モル%が好ましく、より好ましくは40〜80モル%、さらに好ましくは50〜70モル%である。ラダー型ポリオルガノシルセスキオキサン(a)の上記式(IV−2)におけるR42の全量(100重量%)中の、アルケニル基の割合(含有量)は、特に限定されないが、5〜30モル%が好ましく、より好ましくは10〜25モル%、さらに好ましくは15〜20モル%である。ラダー型ポリオルガノシルセスキオキサン(a)の上記式(IV−2)におけるR42の全量(100モル%)中の、アルキル基の割合(含有量)は、特に限定されないが、0〜90モル%が好ましく、より好ましくは1〜80モル%、さらに好ましくは5〜70モル%である。
なお、ラダー型ポリオルガノシルセスキオキサン(a)の上記式(IV−2)におけるR42の組成(例えば、アリール基、アルケニル基、アルキル基の割合等)は、例えば、NMRスペクトル(例えば、1H−NMRスペクトル)測定等により算出することができる。
上記式(IV−2)中、R43は、ラダー構造の分子鎖末端に結合する基(以下、「末端基」と称する場合がある)であり、同一又は異なって、水素原子、アルキル基、下記式(IV−2−1)で表される一価の基、下記式(IV−2−2)で表される一価の基、又は、下記式(IV−2−3)で表される一価の基を示す。
Figure 2017036416
Figure 2017036416
Figure 2017036416
上記式(IV−2−1)中、R44は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R44の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、中でもアルキル基が好ましい。また、上記式(IV−2−1)中、R45は、同一又は異なって、一価の置換又は無置換炭化水素基である。R45の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、中でもアルキル基が好ましい。上記式(IV−2−1)中、n1は、0以上の整数を示す。n1としては、0〜5が好ましく、より好ましくは0〜3、さらに好ましくは0である。
上記式(IV−2−2)中、R44は、式(IV−2−1)におけるR44と同じく、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R44としては、中でもアルキル基が好ましい。また、上記式(IV−2−2)中、R45は、式(IV−2−1)におけるR45と同じく、同一又は異なって、一価の置換又は無置換炭化水素基である。R45としては、中でもアルキル基が好ましい。上記式(IV−2−2)中、R46はアルケニル基であり、中でもビニル基が好ましい。また、上記式(IV−2−2)中、n2は、0以上の整数を示す。n2としては、0〜5が好ましく、より好ましくは0〜3、さらに好ましくは0である。
上記式(IV−2−3)中、R44は、式(IV−2−1)におけるR44と同じく、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R44としては、中でもアルキル基が好ましい。また、上記式(IV−2−3)中、R47は、同一又は異なって、一価の飽和脂肪族炭化水素基であり、例えば、アルキル基、シクロアルキル基等が挙げられるが、中でもアルキル基(特にメチル基)が好ましい。上記式(IV−2−3)中、n3は、0以上の整数を示す。n3としては、0〜5が好ましく、より好ましくは0〜3、さらに好ましくは0である。
上記式(IV−2)中、nは0以上の整数を示す。上記nは、通常、0以上の偶数(例えば、2以上の偶数)である。特に、ラダー型ポリオルガノシルセスキオキサン(a)は、nが1以上(特に2以上)の成分を必須成分として含有することが好ましい。
ラダー型ポリオルガノシルセスキオキサン(a)は、分子内に2個以上のアルケニル基を有する。ラダー型ポリオルガノシルセスキオキサン(a)が有するアルケニル基としては、特にビニル基が好ましい。ラダー型ポリオルガノシルセスキオキサン(a)が式(IV−2)で表される場合、例えば、式(IV−2)におけるR42のいずれかがアルケニル基であるもの、R44及びR45のいずれかがアルケニル基である式(IV−2−1)で表される一価の基を有するもの、式(IV−2−2)で表される一価の基を有するもの、R44のいずれかがアルケニル基である式(IV−2−3)で表される一価の基を有するもの等が挙げられる。
ラダー型ポリオルガノシルセスキオキサン(a)は、周知慣用の方法により製造でき、特に限定されないが、例えば、特開平4−28722号公報、特開2010−518182号公報、特開平5−39357号公報、特開2004−99872号公報、国際公開第1997/007156号、特開平11−246662号公報、特開平9−20826号公報、国際公開第2006/033147号、特開2005−239829号公報、国際公開第2013/176238号等の文献に開示された方法等により製造できる。
・ラダー型ポリオルガノシルセスキオキサン(b)
ラダー型ポリオルガノシルセスキオキサン(b)におけるラダー構造を有するポリオルガノシルセスキオキサンは、例えば、下記式(IV−3)で表される。
Figure 2017036416
上記式(IV−3)において、pは1以上の整数(例えば、1〜5000)を示し、好ましくは1〜2000の整数、さらに好ましくは1〜1000の整数である。式(IV−3)中のR48は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。Tは末端基を示す。
ラダー型ポリオルガノシルセスキオキサン(b)における上記ポリオルガノシルセスキオキサン中のケイ素原子に直接結合した基(例えば、式(IV−3)におけるR48)は、特に限定されないが、上記基の全量(100モル%)に対する一価の置換若しくは無置換炭化水素基の占める割合が50モル%以上であることが好ましく、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。特に、上記基の全量(100モル%)に対する、置換又は無置換のC1-10アルキル基(特に、メチル基、エチル基等のC1-4アルキル基)、置換又は無置換のC6-10アリール基(特に、フェニル基)、置換又は無置換のC7-10アラルキル基(特に、ベンジル基)の合計量が、50モル%以上であることが好ましく、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。
ラダー型ポリオルガノシルセスキオキサン(b)は、上記ラダー構造を有するポリオルガノシルセスキオキサンの分子鎖末端の一部又は全部に、ポリオルガノシルセスキオキサン残基(a)を有する。上記ポリオルガノシルセスキオキサンが上記式(IV−3)で表される場合、ラダー型ポリオルガノシルセスキオキサン(b)は、式(IV−3)中のTの一部又は全部が上記ポリオルガノシルセスキオキサン残基(a)で置換されたものである。
上記ポリオルガノシルセスキオキサン残基(a)は、上述のように、式(IV−3−1)で表される構成単位及び式(IV−3−2)で表される構成単位を少なくとも含む残基である。
上記式(IV−3−1)におけるR49は、アルケニル基を示す。上記アルケニル基としては、上述の具体例が挙げられ、中でも、C2-10アルケニル基が好ましく、より好ましくはC2-4アルケニル基、さらに好ましくはビニル基である。
上記式(IV−3−2)中のR50は、同一又は異なって、一価の置換若しくは無置換炭化水素基を示す。上記置換又は無置換炭化水素基としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)等が挙げられる。R50としては、中でもアルキル基が好ましく、より好ましくはC1-20アルキル基、さらに好ましくはC1-10アルキル基、特に好ましくはC1-4アルキル基、最も好ましくはメチル基である。特に、式(IV−3−2)中のR50がいずれもメチル基であることが好ましい。
上記ポリオルガノシルセスキオキサン残基(a)は、上記式(IV−3−1)で表される構成単位と上記式(IV−3−2)で表される構成単位以外にも、例えば、下記式(IV−3−1’)で表される構成単位を有していてもよい。
Figure 2017036416
上記式(IV−3−1’)中のR49'は、アルケニル基を除く一価の基を示す。具体的には、例えば、水素原子、ハロゲン原子、アルケニル基を除く一価の有機基、一価の酸素原子含有基、一価の窒素原子含有基、又は一価の硫黄原子含有基等が挙げられる。
上記ポリオルガノシルセスキオキサン残基(a)における式(IV−3−1)に表された3つの酸素原子が結合したケイ素原子の量は、特に限定されないが、ポリオルガノシルセスキオキサン残基(a)を構成するケイ素原子の全量(100モル%)に対して、20〜80モル%が好ましく、より好ましくは25〜60モル%である。含有量が20モル%未満であると、ラダー型ポリオルガノシルセスキオキサン(b)が有するアルケニル基の量が不十分となって、硬化物の硬度が十分得られない場合がある。一方、含有量が80モル%を超えると、ラダー型ポリオルガノシルセスキオキサン(b)中にシラノール基や加水分解性シリル基が多く残存するため、ラダー型ポリオルガノシルセスキオキサン(b)が液状で得られない場合がある。さらに生成物中で縮合反応が進行して分子量が変化するため、保存安定性が悪化する場合がある。
上記ポリオルガノシルセスキオキサン残基(a)における式(IV−3−2)に表された1つの酸素原子が結合したケイ素原子の量は、特に限定されないが、ポリオルガノシルセスキオキサン残基(a)を構成するケイ素原子の全量(100モル%)に対して、20〜85モル%が好ましく、より好ましくは30〜75モル%である。含有量が20モル%未満であると、ラダー型ポリオルガノシルセスキオキサン(b)中にシラノール基や加水分解性シリル基が残存しやすく、ラダー型ポリオルガノシルセスキオキサン(b)が液状で得られない場合がある。さらに生成物中で縮合反応が進行して分子量が変化するため、保存安定性が悪化する場合がある。一方、含有量が85モル%を超えると、ラダー型ポリオルガノシルセスキオキサン(b)が有するアルケニル基の量が不十分となって、硬化物の硬度が十分得られない場合がある。
上記ポリオルガノシルセスキオキサン残基(a)が有するSi−O−Si構造(骨格)としては、特に限定されず、例えば、ラダー構造、カゴ構造、ランダム構造等が挙げられる。
ラダー型ポリオルガノシルセスキオキサン(b)は、例えば、下記式(IV−3’)で表すことができる。式(IV−3’)中のp、R48としては、上記式(IV−3)と同様のものが例示される。式(IV−3’)中のAは、ポリオルガノシルセスキオキサン残基(a)、又は、ヒドロキシ基、ハロゲン原子、アルコキシ基、若しくはアシルオキシ基を示し、Aの一部又は全部はポリオルガノシルセスキオキサン残基(a)である。4つのAは、それぞれ同一であってもよいし、異なっていてもよい。なお、式(IV−3’)中の複数(2〜4個)のAがポリオルガノシルセスキオキサン残基(a)である場合、それぞれのAは互いに又は他の式(IV−3’)で表される分子が有するAと1以上のSi−O−Si結合を介して結合していてもよい。
Figure 2017036416
ラダー型ポリオルガノシルセスキオキサン(b)における、分子内のアルケニル基の数は2個以上であればよく、特に限定されないが、2〜50個が好ましく、より好ましくは2〜30個である。上述の範囲でアルケニル基を有することにより、耐熱性等の各種物性、耐クラック性、硫黄化合物に対するバリア性に優れた硬化物が得られやすい傾向がある。なお、アルケニル基の数は、例えば、1H−NMRスペクトル測定等により算出できる。
ラダー型ポリオルガノシルセスキオキサン(b)中のアルケニル基の含有量は、特に限定されないが、0.7〜5.5mmol/gが好ましく、より好ましくは1.1〜4.4mmol/gである。また、ラダー型ポリオルガノシルセスキオキサン(b)に含まれるアルケニル基の割合(重量基準)は、特に限定されないが、ビニル基換算で、2.0〜15.0重量%が好ましく、より好ましくは3.0〜12.0重量%である。
ラダー型ポリオルガノシルセスキオキサン(b)における、分子内のアリール基の数は1個以上であればよく、特に限定されないが、2〜50個が好ましく、より好ましくは2〜30個である。上述の範囲でアリール基を有することにより、耐熱性等の各種物性、耐クラック性、硫黄化合物に対するバリア性に優れた硬化物が得られやすい傾向がある。なお、アリール基の数は、例えば、1H−NMRスペクトル測定等により算出できる。
ラダー型ポリオルガノシルセスキオキサン(b)中のアリール基の含有量は、特に限定されないが、0.7〜5.5mmol/gが好ましく、より好ましくは1.1〜4.4mmol/gである。また、ラダー型ポリオルガノシルセスキオキサン(b)に含まれるアリール基の割合(重量基準)は、特に限定されないが、ビニル基換算で、2.0〜15.0重量%が好ましく、より好ましくは3.0〜12.0重量%である。
ラダー型ポリオルガノシルセスキオキサン(a)及びラダー型ポリオルガノシルセスキオキサン(b)の重量平均分子量(Mw)は、特に限定されないが、100〜80万が好ましく、より好ましくは200〜10万、さらに好ましくは300〜1万、特に好ましくは500〜8000、最も好ましくは1700〜7000である。Mwが100未満であると、硬化物の耐熱性が低下する場合がある。一方、Mwが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mwは、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量より算出することができる。
ラダー型ポリオルガノシルセスキオキサン(a)及びラダー型ポリオルガノシルセスキオキサン(b)の数平均分子量(Mn)は、特に限定されないが、80〜80万が好ましく、より好ましくは150〜10万、さらに好ましくは250〜1万、特に好ましくは400〜8000、最も好ましくは1500〜7000である。Mnが80未満であると、硬化物の耐熱性が低下する場合がある。一方、Mnが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mnは、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量より算出することができる。
ラダー型ポリオルガノシルセスキオキサン(a)及びラダー型ポリオルガノシルセスキオキサン(b)の、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、特に限定されないが、好ましくは1.00〜1.40であり、より好ましくは1.35以下(例えば、1.05〜1.35)、さらに好ましくは1.30以下(例えば、1.10〜1.30)である。分子量分散度が1.40を超えると、例えば、低分子シロキサンが増加し、硬化物の密着性や硫黄バリア性等が低下する傾向がある。一方、例えば、分子量分散度を1.05以上とすることにより、室温で液体(液状)となりやすく、取り扱い性が向上する場合がある。
なお、ラダー型ポリオルガノシルセスキオキサン(a)及びラダー型ポリオルガノシルセスキオキサン(b)の数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
Alliance HPLCシステム 2695(Waters製)
Refractive Index Detector 2414(Waters製)
カラム:Tskgel GMHHR−M×2(東ソー(株)製)
ガードカラム:Tskgel guard column HHRL(東ソー(株)製)
カラムオーブン:COLUMN HEATER U−620(Sugai製)
溶媒:THF
測定温度:40℃
分子量:標準ポリスチレン換算
ラダー型ポリオルガノシルセスキオキサン(b)は、常温(約25℃)で液体であることが好ましい。より具体的には、その23℃における粘度は、100〜100000mPa・sが好ましく、より好ましくは500〜10000mPa・s、さらに好ましくは1000〜8000mPa・sである。粘度が100mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が100000mPa・sを超えると、硬化性シリコーン樹脂組成物の調製や取り扱いが困難となる場合がある。なお、23℃における粘度は、レオメーター(商品名「Physica UDS−200」、Anton Paar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:23℃、回転数:8rpmの条件で測定することができる。
ラダー型ポリオルガノシルセスキオキサン(b)の製造方法は、特に限定されないが、例えば、ラダー構造を有し、分子鎖末端にシラノール基及び/又は加水分解性シリル基(シラノール基及び加水分解性シリル基のいずれか一方又は両方)を有するポリオルガノシルセスキオキサンの分子鎖末端に対して、上記シルセスキオキサン残基(a)を形成する方法が挙げられる。具体的には、国際公開第2013/176238号等の文献に開示された方法等により製造できる。
なお、本発明の硬化性シリコーン樹脂組成物において(G)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物は、硬化物の硫黄バリア性と強度(樹脂強度)の観点で、(G)成分を含むことが好ましく、より好ましくはラダー型ポリオルガノシルセスキオキサン(a)及び/又はラダー型ポリオルガノシルセスキオキサン(b)を含むことである。
本発明の硬化性シリコーン樹脂組成物が(G)成分を含む場合、本発明の硬化性シリコーン樹脂組成物における(G)成分の含有量(配合量)は、特に限定されないが、(A)成分及び(C)成分の合計100重量部に対して、0.05〜50重量部が好ましく、より好ましくは0.1〜45重量部、さらに好ましくは0.2〜40重量部である。また、特に限定されないが、上記(G)成分の含有量(配合量)は、硬化性シリコーン樹脂組成物(100重量%)に対して、0.01〜20重量%が好ましく、より好ましくは0.05〜15重量%、さらに好ましくは0.1〜10重量%である。上記(G)成分の含有量を上記範囲に制御することにより、硬化物の硫黄バリア性が著しく向上する傾向がある。
[(H)成分]
本発明の硬化性シリコーン樹脂組成物は、分子内に下記式(Y)で表される基及び/又は下記式(Z)で表される基(式(Y)で表される基及び式(Z)で表される基のいずれか一方又は両方)を少なくとも有するイソシアヌレート化合物(「(H)成分」と称する場合がある)を含んでいてもよい。本発明の硬化性シリコーン樹脂組成物が(H)成分を含むことにより、硬化物の硫黄バリア性が著しく向上し、さらに、硬化物の被着体に対する密着性が向上する傾向がある。
Figure 2017036416
Figure 2017036416
式(Y)及び式(Z)中、R6及びR7は、同一又は異なって、水素原子又は炭素数1〜8の直鎖若しくは分岐鎖状のアルキル基を表す。炭素数1〜8の直鎖若しくは分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、エチルヘキシル基等が挙げられる。上記アルキル基の中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1〜3の直鎖又は分岐鎖状のアルキル基が好ましい。式(Y)及び式(Z)におけるR6、R7は、それぞれ水素原子であることが特に好ましい。
(H)成分は、イソシアヌル酸骨格を有し、1個以上の式(Y)で表される基及び/又は1個以上の式(Z)で表される基を分子内に少なくとも有する化合物であればよい。中でも(H)成分としては、下記式(X)で表される化合物が好ましい。
Figure 2017036416
式(X)中、Rx、Ry、及びRzは、同一又は異なって、アルキル基、式(Y)で表される基、又は式(Z)で表される基を示す。但し、Rx、Ry、及びRzのうち少なくとも1つは、式(Y)で表される基及び式(Z)で表される基からなる群より選択される基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜12のアルキル基等が挙げられる。中でも、硬化物の硫黄バリア性向上の観点で、式(X)中のRx、Ry、及びRzは、同一又は異なって、式(Y)で表される基又は式(Z)で表される基であることが好ましい。特に、式(X)におけるRx、Ry、及びRzのうち、いずれか1つ以上(好ましくは1つ又は2つ、より好ましくは1つ)が式(Z)で表される基であることが好ましい。
(H)成分は、他の成分との相溶性を向上させる観点で、シランカップリング剤やその部分縮合物とあらかじめ混合してから他の成分への配合(混合)を行ってもよい。
(H)成分としては、具体的には、例えば、モノアリルジメチルイソシアヌレート、ジアリルモノメチルイソシアヌレート、トリアリルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、1−アリル−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート、1−(2−メチルプロペニル)−3,5−ジグリシジルイソシアヌレート、1−(2−メチルプロペニル)−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート、1,3−ジアリル−5−(2−メチルエポキシプロピル)イソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−グリシジルイソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−(2−メチルエポキシプロピル)イソシアヌレート、トリス(2−メチルプロペニル)イソシアヌレート等が挙げられる。中でも、モノアリルジグリシジルイソシアヌレートが好ましい。
本発明の硬化性シリコーン樹脂組成物において(H)成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物における(H)成分の含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、0.01〜10重量%が好ましく、より好ましくは0.03〜5重量%、さらに好ましくは0.05〜3重量%である。(H)成分の含有量を0.01重量%以上とすることにより、硬化物の硫黄バリア性、被着体に対する密着性がより向上する傾向がある。一方、(H)成分の含有量を10重量%以下とすることにより、均一であって、より優れた硬化性を有する硬化性シリコーン樹脂組成物が得られやすい傾向がある。
本発明の硬化性シリコーン樹脂組成物における(H)成分の含有量(配合量)は、特に限定されないが、硬化物の硫黄バリア性向上の観点で、(A)成分と(C)成分の合計100重量部に対して、0.01〜0.5重量部が好ましい。
[その他のポリオルガノシロキサン]
本発明の硬化性シリコーン樹脂組成物は、上述の(C)成分、(F)成分、及び(G)成分以外にも、分子内にアルケニル基を有するその他のポリオルガノシロキサン(「その他のポリオルガノシロキサン」と称する場合がある)を含んでいてもよい。その他のポリオルガノシロキサンを含むことにより、硬化性シリコーン樹脂組成物の粘度を調整したり、硬化物の物性(例えば、機械物性)のバランスを調整することができる場合がある。
その他のポリオルガノシロキサンとしては、例えば、分子内に1個以上のアルケニル基を有する直鎖状ポリオルガノシロキサン(分子内に1個以上のアルケニル基を有し、主鎖としてシロキサン結合を有し、シルアルキレン結合を有しない直鎖状のポリオルガノシロキサン)等が挙げられる。
本発明の硬化性シリコーン樹脂組成物において上記直鎖状ポリオルガノシロキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
上記直鎖状ポリオルガノシロキサンが分子内に有するアルケニル基としては、上述の置換又は無置換アルケニル基が挙げられ、中でも、ビニル基が好ましい。また、上記直鎖状ポリオルガノシロキサンは、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。上記直鎖状ポリオルガノシロキサンが有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。
上記直鎖状ポリオルガノシロキサンが分子内に有するアルケニル基の数は1個以上であればよく、特に限定されないが、硬化性シリコーン樹脂組成物の硬化性の観点で、2個以上(例えば2〜50個)が好ましい。
上記直鎖状ポリオルガノシロキサンが有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の有機基(例えば、アルキル基、シクロアルキル基、アリール基、シクロアルキル−アルキル基、アラルキル基、ハロゲン化炭化水素基等の置換又は無置換炭化水素基等)が挙げられる。
また、上記直鎖状ポリオルガノシロキサンは、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
上記直鎖状ポリオルガノシロキサンの性状は、特に限定されず、例えば25℃において、液状であってもよいし、固体状であってもよい。
上記直鎖状ポリオルガノシロキサンとしては、下記平均単位式:
(R5 2SiO2/2e1(R5 3SiO1/2e2(XO1/2e3
で表されるポリオルガノシロキサンが挙げられる。上記平均単位式中、R5は、同一又は異なって、一価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R5の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R5の全量(100モル%)に対するアルケニル基の割合は、0.1〜40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR5としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記平均単位式中、Xは、上記と同様、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。
上記平均単位式中、e1は正数、e2は0又は正数、e3は0又は正数である。
上記直鎖状ポリオルガノシロキサンの一例としては、例えば、分子内に2個以上のアルケニル基を有する直鎖状ポリオルガノシロキサンが挙げられる。この直鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記直鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
上記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、特に限定されないが、0.1〜40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、1〜20モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、30〜90モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45〜80モル%)であるものを使用することにより、硬化物の硫黄バリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(例えば、95〜99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
上記直鎖状ポリオルガノシロキサンは、例えば、下記式(V−1)で表される。
Figure 2017036416
[上記式中、R51は、同一又は異なって、一価の置換又は無置換炭化水素基である。但し、R51の少なくとも1個(好ましくは少なくとも2個)はアルケニル基である。m2は、5〜1000の整数である。]
なお、本発明の硬化性シリコーン樹脂組成物においてその他のポリオルガノシロキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物におけるその他のポリオルガノシロキサンの含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、0.01〜30重量%が好ましく、より好ましくは0.1〜20重量%である。その他のポリオルガノシロキサンの含有量を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の粘度や硬化物の物性のバランスの調整が可能となる場合がある。
[ヒドロシリル化反応抑制剤]
本発明の硬化性シリコーン樹脂組成物は、硬化反応(ヒドロシリル化反応)の速度を調整するために、ヒドロシリル化反応抑制剤を含んでいてもよい。上記ヒドロシリル化反応抑制剤としては、公知乃至慣用のヒドロシリル化反応抑制剤を使用でき、特に限定されないが、例えば、3−メチル−1−ブチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、フェニルブチノール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;チアゾール、ベンゾチアゾール、ベンゾトリアゾール等が挙げられる。上記ヒドロシリル化反応抑制剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。上記ヒドロシリル化反応抑制剤の含有量(配合量)は、硬化性シリコーン樹脂組成物の架橋条件等により異なるが、実用上、硬化性シリコーン樹脂組成物(100重量%)に対する含有量として、0.00001〜5重量%の範囲内が好ましい。
[環状シロキサン]
本発明の硬化性シリコーン樹脂組成物は、上述のポリオルガノシロキサン((A)成分、(C)成分、(F)成分、(G)成分、その他のポリオルガノシロキサン)以外のシロキサン化合物として、例えば、分子内に2個以上の脂肪族炭素−炭素二重結合(特に、アルケニル基)を有する環状シロキサンを含んでいてもよい。また、本発明の硬化性シリコーン樹脂組成物は、上記シロキサン化合物として、分子内に2個以上のヒドロシリル基を有する環状シロキサンを含んでいてもよい。上記各環状シロキサンは1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。本発明の硬化性シリコーン樹脂組成物における上記環状シロキサンの含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、0.01〜30重量%が好ましく、より好ましくは0.1〜20重量%、さらに好ましくは0.5〜10重量%である。
[溶媒]
本発明の硬化性シリコーン樹脂組成物は溶媒を含んでいてもよい。溶媒としては、公知乃至慣用の有機溶媒や水等が挙げられ、特に限定されないが、例えば、トルエン、ヘキサン、イソプロパノール、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、その含有量は特に限定されず、適宜選択できる。
[蛍光体]
本発明の硬化性シリコーン樹脂組成物は蛍光体を含んでいてもよい。蛍光体としては、公知乃至慣用の蛍光体(例えば、光半導体装置分野で周知の蛍光体等)を使用することができ、特に限定されないが、例えば、青色光の白色光への変換機能を封止材に対して付与したい場合には、一般式A3512:M[式中、Aは、Y、Gd、Tb、La、Lu、Se、及びSmからなる群より選択された1種以上の元素を示し、Bは、Al、Ga、及びInからなる群より選択された1種以上の元素を示し、Mは、Ce、Pr、Eu、Cr、Nd、及びErからなる群より選択された1種以上の元素を示す]で表されるYAG系の蛍光体微粒子(例えば、Y3Al512:Ce蛍光体微粒子、(Y,Gd,Tb)3(Al,Ga)512:Ce蛍光体微粒子等);シリケート系蛍光体微粒子(例えば、(Sr,Ca,Ba)2SiO4:Eu等)等が挙げられる。なお、蛍光体は、周知慣用の表面処理がされたものであってもよい。また、蛍光体は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
本発明の硬化性シリコーン樹脂組成物における蛍光体の含有量(配合量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、0.01〜20重量%が好ましく、より好ましくは0.5〜10重量%である。蛍光体を上記範囲で含有することにより、光半導体装置において封止材による光の波長変換機能を十分に発揮させることができ、なおかつ、硬化性シリコーン樹脂組成物の粘度が高くなり過ぎず、硬化物作製(特に、封止作業)時の作業性がより向上する傾向がある。
[その他の成分]
本発明の硬化性シリコーン樹脂組成物は、上述の成分以外の成分(「その他の成分」と称する場合がある)を含んでいてもよい。その他の成分としては、特に限定されないが、例えば、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤等)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤等)、難燃助剤、補強材(他の充填剤等)、核剤、カップリング剤(例えば、シランカップリング剤やその部分縮合物等)、滑剤、ワックス、可塑剤、離型剤、耐衝撃性改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料等)、表面調整剤(例えば、各種ポリエーテル変性シリコーン、ポリエステル変性シリコーン、フェニル変性シリコーン、アルキル変性シリコーン等の化合物)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、その他の機能性添加剤(例えば、カルボン酸の亜鉛塩等の亜鉛化合物等)等の周知慣用の添加剤等が挙げられる。これらその他の成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、その他の成分の含有量(配合量)は、特に限定されず、適宜選択することが可能である。
本発明の硬化性シリコーン樹脂組成物は、特に限定されないが、硬化性シリコーン樹脂組成物中に存在するヒドロシリル基1モルに対して、アルケニル基が0.2〜4モルとなるような組成(配合組成)であることが好ましく、より好ましくは0.5〜1.5モル、さらに好ましくは0.8〜1.2モルである。ヒドロシリル基とアルケニル基との割合を上記範囲に制御することにより、硬化物の耐熱衝撃性、硫黄バリア性がいっそう向上する傾向がある。
本発明の硬化性シリコーン樹脂組成物に含まれる(A)成分、(C)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)又は溶媒(溶剤)を除く硬化性シリコーン樹脂組成物(100重量%)に対して、70重量%以上(例えば、70重量%以上、100重量%未満)が好ましく、より好ましくは80重量%以上(例えば、80〜99重量%)、さらに好ましくは90重量%以上(例えば、90〜98重量%)である。上記総量を70重量%以上とすることにより、硬化物の耐熱性、透明性がより向上する傾向がある。
本発明の硬化性シリコーン樹脂組成物に含まれる(A)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量)は、特に限定されないが、硬化性シリコーン樹脂組成物(100重量%)に対して、5〜80重量%が好ましく、より好ましくは10〜60重量%、さらに好ましくは15〜40重量%である。上記総量を5重量%以上とすることにより、硬化物の耐久性、透明性がより向上する傾向がある。一方、上記総量を80重量%以下とすることにより、硬化性がより向上する傾向がある。
本発明の硬化性シリコーン樹脂組成物における(A)成分の含有量(配合量)は、特に限定されないが、(C)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量)100重量部に対して、1〜200重量部が好ましい。(A)成分の含有量を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上し、効率的に硬化物を形成することができる傾向がある。(A)成分の含有量が上記範囲を外れると、硬化反応が十分に進行しない等の理由により、硬化物の耐熱性、耐熱衝撃性、耐リフロー性、硫黄バリア性等の特性が低下する傾向がある。
本発明の硬化性シリコーン樹脂組成物に含まれる(C)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量;100重量%)に対する(F)成分の割合は、特に限定されないが、10重量%以上(例えば、10〜100重量%)が好ましく、より好ましくは20重量%以上(例えば、20〜90重量%)、さらに好ましくは30重量%以上(例えば、30〜80重量%)である。上記割合を10重量%以上とすることにより、硬化物の硫黄化合物(特にSOX)に対するバリア性がより向上し、また、タックが低減し、黄変が抑制される傾向がある。
本発明の硬化性シリコーン樹脂組成物に含まれる(C)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量;100重量%)に対する、(C)成分と(G)成分の割合(合計割合)は、特に限定されないが、0〜90重量%が好ましく、より好ましくは5〜85重量%、さらに好ましくは10〜80重量%である。上記割合を90重量%以下とすることにより、相対的に(F)成分を増量できるため、硬化物の硫黄化合物(特にSOX)に対するバリア性がより向上し、また、タックが低減し、黄変が抑制される場合がある。一方、例えば、上記割合を10重量%以上とすることにより、硬化物の機械特性や光学特性等のバランスがより良好となる場合がある。
本発明の硬化性シリコーン樹脂組成物に含まれる(A)成分、(C)成分、(F)成分、(G)成分、及びその他のポリオルガノシロキサンの総量(総含有量;100重量%)に対する、(F)成分とポリオルガノシロキシシルアルキレン(A2)の割合(合計割合)は、特に限定されないが、5重量%以上(例えば、60〜100重量%)が好ましく、より好ましくは10重量%以上、さらに好ましくは15〜50重量%である。上記割合を5重量%以上とすることにより、硬化物のタックがより低減し、硫黄バリア性、耐熱衝撃性が良好となる傾向がある。
本発明の硬化性シリコーン樹脂組成物は、特に限定されないが、例えば、上記の各成分を室温で(又は必要に応じて加熱しながら)撹拌・混合することにより調製することができる。なお、本発明の硬化性シリコーン樹脂組成物は、各成分が全てあらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に調製しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。
本発明の硬化性シリコーン樹脂組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本発明の硬化性シリコーン樹脂組成物は、25℃における粘度として、300〜20000mPa・sが好ましく、より好ましくは500〜10000mPa・s、さらに好ましくは1000〜8000mPa・sである。上記粘度が300mPa・s以上であることにより、硬化物の耐熱性がより向上する傾向がある。また、例えば、蛍光体の沈降が効果的に抑制され、光半導体装置の色度ばらつきが抑制される傾向がある。一方、上記粘度が20000mPa・s以下であることにより、硬化性シリコーン樹脂組成物の調製がしやすく、その生産性や取り扱い性がより向上し、また、硬化物に気泡が残存しにくくなるため、硬化物(特に、封止材)の生産性や品質がより向上する傾向がある。なお、硬化性シリコーン樹脂組成物の粘度は、上述のラダー型ポリオルガノシルセスキオキサン(b)の粘度と同様の方法で測定される。
本発明の硬化性シリコーン樹脂組成物のチクソトロピー値(T.I.値)は、特に限定されないが、1.05〜2が好ましく、より好ましくは1.10〜1.80、さらに好ましくは1.20〜1.60である。チクソトロピー値を上記範囲に制御することにより、加熱時の粘度低下がより抑制され、蛍光体の沈降及び色度ばらつきの問題がより抑制される傾向がある。
本発明の硬化性シリコーン樹脂組成物のチクソトロピー値は、下記手順により測定される値である。
[チクソトロピー値]=[回転数1rpmで測定される硬化性シリコーン樹脂組成物の粘度(mPa・s)]/[回転数10rpmで測定される硬化性シリコーン樹脂組成物の粘度(mPa・s)]
なお、上記「回転数1rprで測定される硬化性シリコーン樹脂組成物の粘度」は、本発明の硬化性シリコーン樹脂組成物の、レオメーター(商品名「Physica MCR−302」、Anton Paar社製)とパラレルプレート(円錐直径:25mm、テーパ角度=0°)を用いて、温度:25℃、回転数:1rpmの条件で測定される粘度である。一方、上記「回転数10rpmで測定される硬化性シリコーン樹脂組成物の粘度」は、本発明の硬化性シリコーン樹脂組成物の、レオメーター(商品名「Physica MCR−302」、Anton Paar社製)とパラレルプレート(円錐直径:25mm、テーパ角度=0°)を用いて、温度:25℃、回転数:10rpmの条件で測定される粘度である。
本発明の硬化性シリコーン樹脂組成物のチクソトロピー値は、特に(D)成分の種類の選択(例えば、上述の好ましい(D)成分)及び(D)成分の量(例えば、上述の好ましい含有量)の制御によって、上記範囲に制御することができる。
本発明の硬化性シリコーン組成物は、(E)成分を含有するため、保存中(例えば、硬化性シリコーン組成物の製造から光半導体装置製造までの保存中)に、(D)成分のシリカフィラーが凝集することによる粘度の上昇が抑制され、光半導体装置製造の際の取り扱い性の低下を防止することができる。保存中の粘度上昇の抑制は、硬化性シリコーン組成物製造直後のチクソトロピー値又は粘度を上記の方法で測定し、常温(例えば、10〜40℃)で一定時間(例えば、1〜60日後)保存した後のチクソトロピー値又は粘度の上昇率で評価することができる。
本発明の硬化性シリコーン組成物においては、例えば、40℃で11日間保存した後のチクソトロピー値(T.I.値)の上昇率を以下の基準で判定することができる。
A(とても良好):上昇率が20%未満
B(良好) :上昇率が20%以上24%未満
C(不良) :上昇率が24%以上27%未満
D(とても不良):上昇率が27%以上
また、23℃で1ヵ月(30日間)保存した後のチクソトロピー値(T.I.値)の上昇率を以下の基準で判定することができる。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
40℃で11日間保存した後の粘度(Pa・s)の上昇率を以下の基準で判定することができる。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
23℃で1ヵ月(30日間)保存した後の粘度(Pa・s)の上昇率を以下の基準で判定することができる。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
また、保存中における(D)成分のシリカフィラーの凝集抑制効果は、硬化性シリコーン組成物製造直後の平均粒子径を測定し、常温(例えば、10〜40℃)で一定時間(例えば、1〜60日後)保存した後の平均粒子径の変化率で評価することができる。ここでのシリカフィラーの平均粒子径は、レーザー回折・散乱法(商品名「Nanotrac UPA−EX150、日機装(株)製)により求めた粒度分布における積算値50%(d50:nm)での粒径を意味する。
本発明の硬化性シリコーン組成物においては、例えば、23℃で1ヵ月(30日間)保存した後の平均粒子径(d50:nm)の変化率を以下の基準で判定することができる。
A(とても良好):上昇率が15%未満
B(良好) :上昇率が15%以上30%未満
C(不良) :上昇率が30%以上50%未満
D(とても不良):上昇率が50%以上
また、本発明の硬化性シリコーン樹脂組成物としては、150℃で加熱した時の最低粘度が200mPa・s以上である硬化性シリコーン樹脂組成物が好ましい。このような硬化性シリコーン樹脂組成物とすることにより、加熱時の粘度低下がより抑制され、蛍光体の沈降及び色度ばらつきの問題がより抑制される傾向がある。
なお、本明細書における「最低粘度」は、以下のように定義される値である。
最低粘度:本発明の硬化性シリコーン樹脂組成物の粘度を、レオメーター(商品名「Physica MCR−302」、Anton Paar社製)とパラレルプレート(円錐直径:25mm、テーパ角度=0°)を用いて、測定条件を、温度:30℃から0.5℃/秒の昇温速度で昇温させ、150℃に達してから1時間加熱する条件、振動数:1Hzの条件とした場合の、測定される粘度の最小値。
本発明の硬化性シリコーン樹脂組成物を150℃で加熱した時の最低粘度は、200〜10000mPa・sであることが好ましく、より好ましくは300〜8000mPa・s、さらに好ましくは500〜6000mPa・sである。
本発明の硬化性シリコーン樹脂組成物の上記最低粘度(150℃で加熱した時の最低粘度)は、特に、(D)成分の種類の選択(例えば、上述の好ましい(D)成分)及び(D)成分の量(例えば、上述の好ましい含有量)の制御によって、上記範囲に制御することができる。
<硬化物>
本発明の硬化性シリコーン樹脂組成物を硬化(特に、ヒドロシリル化反応により硬化)させることによって、硬化物(「本発明の硬化物」と称する場合がある)が得られる。硬化の際の条件は、特に限定されず、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25〜180℃(より好ましくは60〜150℃)が好ましく、時間(硬化時間)は5〜720分が好ましい。本発明の硬化物は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有することに加え、耐熱衝撃性、被着体に対する密着性、及び硫黄バリア性に優れ、また、硬化性シリコーン樹脂組成物の加熱時の粘度低下が抑制されるため、蛍光体を含む場合にはその沈降が起こりにくく、蛍光体の分散性に優れた硬化物が得られる。さらに、(H)成分を含む場合には、特に優れた耐熱衝撃性を有する硬化物が得られ、(F)成分を含む場合には、耐黄変性、低タック性を有する硬化物が得られやすい。
<封止剤、光半導体装置>
本発明の硬化性シリコーン樹脂組成物は、特に、光半導体装置における光半導体素子(LED素子)の封止用樹脂組成物(光半導体封止用樹脂組成物)(「本発明の封止剤」と称する場合がある)として好ましく使用できる。本発明の封止剤を硬化させることにより得られる封止材(硬化物)は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有することに加え、耐熱衝撃性、被着体に対する密着性、及び硫黄バリア性にも優れる。さらに、加熱時(封止材形成時)の硬化性シリコーン樹脂組成物(封止剤)の粘度低下が生じにくいため、蛍光体を含む場合にはその沈降及び光半導体装置の色度ばらつきが効果的に抑制され、光取り出し効率の高い光半導体装置の安定的な製造が可能となる。このため、本発明の封止剤は、特に、高輝度、短波長の光半導体素子の封止剤等として好ましく使用できる。本発明の封止剤を使用して光半導体素子を封止することにより、光半導体装置(「本発明の光半導体装置」と称する場合がある)を得ることができる。即ち、本発明の光半導体装置は、光半導体素子と、該光半導体素子を封止する封止材とを少なくとも含み、上記封止材が本発明の硬化性シリコーン樹脂組成物(本発明の封止剤)の硬化物(本発明の硬化物)である光半導体装置である。なお、光半導体素子の封止は、公知乃至慣用の方法により実施でき、特に限定されないが、例えば、本発明の封止剤を所定の成形型内に注入し、所定の条件で加熱硬化することで実施できる。本発明の硬化性シリコーン樹脂組成物は、保存中の粘度上昇が抑制されるので、光半導体装置製造の際に成形型内に注入しやすいなど、取扱い容易に使用することができる。硬化温度と硬化時間は、特に限定されず、硬化物の調製時と同様の範囲で適宜設定することができる。本発明の光半導体装置の一例を図1に示す。図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線(電極)、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
<光半導体用レンズの形成用組成物、光半導体装置>
また、本発明の硬化性シリコーン樹脂組成物は、光半導体装置に備えられるレンズ(光半導体用レンズ)を形成するための組成物(光半導体用レンズの形成用組成物)(「本発明のレンズ形成用組成物」と称する場合がある)としても好ましく使用できる。本発明のレンズ形成用組成物を硬化させることにより得られるレンズは、高い耐熱性及び透明性を有することに加えて、被着体に対する密着性及び硫黄バリア性にも優れる。さらに、レンズを形成するために加熱した際の硬化性シリコーン樹脂組成物の粘度低下が生じにくいため、蛍光体を含む場合にはその沈降及び光半導体装置の色度ばらつきが効果的に抑制され、光取り出し効率の高い光半導体装置の安定的な製造が可能となる。本発明のレンズ形成用組成物を使用することにより、光半導体装置(これも「本発明の光半導体装置」と称する場合がある)を得ることができる。即ち、本発明の光半導体装置は、光半導体素子とレンズとを少なくとも含み、上記レンズが本発明の硬化性シリコーン樹脂組成物(本発明のレンズ形成用組成物)の硬化物(本発明の硬化物)である光半導体装置である。なお、本発明のレンズ形成用組成物を用いた光半導体用レンズの製造は、公知乃至慣用の方法により実施でき、特に限定されないが、例えば、本発明のレンズ形成用組成物を所定の成形型内に注入して所定の条件で加熱硬化する方法や、ディスペンサー等によって塗布して所定の条件で加熱硬化する方法等によって実施できる。本発明の硬化性シリコーン樹脂組成物は、保存中の粘度上昇が抑制されるので、成形型内に注入しやすい、ディスペンサー等によって塗布しやすいなど、取扱い容易に使用することができる。硬化温度と硬化時間は、特に限定されず、硬化物の調製時と同様の範囲で適宜設定することができる。本発明の光半導体装置が上記レンズを備える態様は特に限定されず、例えば、本発明の光半導体装置が封止材を有する場合には、該封止材の表面上の一部又は全部に配置された態様、上記光半導体装置の光半導体素子を封止する態様(即ち、本発明の硬化物が封止材とレンズとを兼ねる態様)等であってもよい。より具体的には、例えば、国際公開第2012/147342号、特開2012−188627号公報、特開2011−233605号公報等に開示された態様等が挙げられる。
本発明の光半導体装置は、光半導体素子と、該光半導体素子を封止する封止材と、レンズとを含み、上記封止材が本発明の硬化性シリコーン樹脂組成物(本発明の封止剤)の硬化物(本発明の硬化物)であり、なおかつ、上記レンズが本発明の硬化性シリコーン樹脂組成物(本発明のレンズ形成用組成物)の硬化物(本発明の硬化物)である光半導体装置であってもよい。
本発明の硬化性シリコーン樹脂組成物は、上述の封止剤用途(光半導体素子の封止剤用途)及びレンズ形成用途(光半導体装置におけるレンズ形成用途)に限定されず、例えば、光半導体装置以外の半導体装置における半導体素子の封止剤、機能性コーティング剤、耐熱プラスチックレンズ、透明機器、接着剤(耐熱透明接着剤等)、電気絶縁材(絶縁膜等)、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の光学関連や半導体関連の用途に好ましく使用できる。
特に、本発明の硬化性シリコーン樹脂組成物は、従来の樹脂材料では対応することが困難であった、高輝度・短波長の光半導体装置において光半導体素子を被覆する封止材、高耐熱・高耐電圧の半導体装置(パワー半導体等)において半導体素子を被覆する封止材等の用途に好ましく使用できる。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1に示す各成分の配合割合の単位は重量部である。
合成例で製造した生成物及び製品の1H−NMR分析は、JEOL ECA500(500MHz)により行った。また、上記生成物並びに製品の数平均分子量及び重量平均分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR−M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U−620(Sugai製)、溶媒:THF、測定条件:40℃、分子量:標準ポリスチレン換算により行った。
合成例1
[ビニル基及びフェニル基を有するラダー型ポリオルガノシルセスキオキサンの製造]
温度計、撹拌装置、還流冷却器、及び窒素導入管を取り付けた100mlのフラスコ(反応容器)に、窒素気流下でビニルトリメトキシシラン65ミリモル(9.64g)、フェニルトリメトキシシラン195ミリモル(38.67g)、及びメチルイソブチルケトン(MIBK)8.31gを仕込み、この混合物を10℃以下に冷却した。上記混合物に、水360ミリモル(6.48g)及び5Nの塩酸0.24g(塩化水素として1.2ミリモル)を滴下した。その後、MIBKを40g添加して、反応溶液を希釈した。
次に、反応容器の温度を70℃まで昇温した。ここに水520ミリモル(9.36g)を添加し、窒素気流下で重縮合反応を行った。続いて、重縮合反応後の反応溶液にヘキサメチルジシロキサン130ミリモル(21.11g)を添加し、70℃で撹拌してシリル化反応を行った。その後、冷却し、下層液が中性になるまで水洗を行い、上層液を分取した後、1mmHg、40℃の条件で上層液から溶媒を留去し、無色透明の液状の生成物(38.6g;ビニル基及びフェニル基を有するポリオルガノシルセスキオキサン)を得た。
上記生成物(シリル化反応後の生成物)の数平均分子量は1280であり、分子量分散度は1.13であった。また、図2には、上記生成物の1H−NMRスペクトルのチャート(溶媒:重クロロホルム)を示す。さらに、上記生成物のFT−IRスペクトルを上述の条件で測定したところ、1000〜1200cm-1に2本の吸収ピークを有することが確認された。図3には、上記生成物のFT−IRスペクトルのチャートを示す。
上記生成物(シリル化反応後の生成物)は、上述の(G)成分(詳しくは、ラダー型ポリオルガノシルセスキオキサン(a))に該当する。
表1に記載の各成分の説明を以下に示す。
(A剤)
GS5145A:商品名「ETERLED GS5145A」[(F)成分を含むシリコーン樹脂]、長興材料工業製、ヒドロシリル化触媒[(B)成分]を含む。
MA−DGIC:商品名「MA−DGIC」[モノアリルジグリシジルイソシアヌレート、(H)成分]、四国化成工業(株)製
R976:商品名「AEROSIL R976」[ジメチルシリル処理シリカ、一次粒子の平均粒径(一次粒子平均径)7nm、(D)成分]、日本アエロジル(株)製
BYK−325:商品名「BYK−325」[ポリエーテル変性レベリング剤、(E)成分]、ビックケミー(株)製
BYK−347:商品名「BYK−347」[ポリエーテル変性レベリング剤、(E)成分]、ビックケミー(株)製
(B剤)
GS5145B:商品名「ETERLED GS5145B」[シリコーン樹脂、(A)成分及び(C)成分を含む]、長興材料工業製
実施例1
表1に示すように、まず、商品名「ETERLED GS5145A」20重量部と、合成例1で製造した「ビニル基及びフェニル基を有するラダー型ポリオルガノシルセスキオキサン」0.2重量部と、商品名「MA−DGIC」0.1重量部と、商品名「BYK−325」0.2重量部とを混合し、その後、商品名「AEROSIL R976」1重量部を加えて、ディスパー(プライミクス(株)製、型番:LB)を用いて、これらの混合物中で(D)成分(AEROSIL R976)を分散させることによって、A剤を調製した。
次に、表1に示す配合割合となるように、上記で調製したA剤と、商品名「ETERLED GS5145B」(B剤)とを自公転式撹拌装置(商品名「あわとり練太郎」、(株)シンキー製、型番:ARE−310)を用いて混練し、硬化性シリコーン樹脂組成物を製造した。
実施例2〜12、比較例1、2
硬化性シリコーン樹脂組成物の組成を表1に示すように変更したこと以外は実施例1と同様にして、硬化性シリコーン樹脂組成物を製造した。
(評価)
上記で得られた硬化性シリコーン樹脂組成物について、以下の評価を行った。結果を表1に示す。
[チクソトロピー値(T.I.値)の上昇率]
実施例及び比較例で得られた製造直後の各硬化性シリコーン樹脂組成物について、上述の方法でチクソトロピー値(T.I.値)を測定した。
恒温保存装置(ADVANTEC社製DRM620DB)にて、40℃で11日保存後(実施例4、比較例2)又は23℃、湿度50%に調整された環境下で1ヵ月(30日間)保存後(実施例1〜3、5〜12、比較例1、2)の各硬化性シリコーン樹脂組成物について、上述の方法でチクソトロピー値(T.I.値)を測定した。
チクソトロピー値(T.I.値)の上昇率を、次式により算出した。
[チクソトロピー値(T.I.値)の上昇率](%)=[保存後の各硬化性シリコーン樹脂組成物のT.I.値]−[製造直後の各硬化性シリコーン樹脂組成物のT.I.値]/[製造直後の各硬化性シリコーン樹脂組成物のT.I.値]×100
40℃で11日間保存した後のチクソトロピー値(T.I.値)の上昇率を以下の基準で判定した。
A(とても良好):上昇率が20%未満
B(良好) :上昇率が20%以上24%未満
C(不良) :上昇率が24%以上27%未満
D(とても不良):上昇率が27%以上
また、23℃で1ヵ月(30日間)保存した後のチクソトロピー値(T.I.値)の上昇率を以下の基準で判定した。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
[粘度の上昇率]
実施例及び比較例で得られた製造直後の各硬化性シリコーン樹脂組成物について、粘度(Pa・s)を測定した。
恒温保存装置(ADVANTEC社製DRM620DB)にて、40℃で11日保存後(実施例4、比較例2)又は23℃、湿度50%に調整された環境下で1ヵ月(30日間)保存後(実施例1〜3、5〜12、、比較例1、2)の各硬化性シリコーン樹脂組成物について、粘度(Pa・s)を測定した。
粘度は、レオメーター(商品名「Physica UDS−200」、Anton Paar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:23℃、回転数:8rpmの条件で測定した。
粘度の上昇率を、次式により算出した。
[粘度の上昇率](%)=[保存後の各硬化性シリコーン樹脂組成物の粘度(Pa・s)]−[製造直後の各硬化性シリコーン樹脂組成物の粘度(Pa・s)]/[製造直後の各硬化性シリコーン樹脂組成物の粘度(Pa・s)]×100
40℃で11日間保存した後の粘度(Pa・s)の上昇率を以下の基準で判定した。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
23℃で1ヵ月(30日間)保存した後の粘度(Pa・s)の上昇率を以下の基準で判定した。
A(とても良好):上昇率が5%未満
B(良好) :上昇率が5%以上10%未満
C(不良) :上昇率が10%以上15%未満
D(とても不良):上昇率が15%以上
[粒子径変化率]
実施例及び比較例で得られた製造直後の各硬化性シリコーン樹脂組成物について、シリカフィラーの平均粒子径を測定した。
恒温保存装置(ADVANTEC社製DRM620DB)にて、23℃、湿度50%に調整された環境下で1ヵ月(30日間)保存後(実施例1〜3、5〜12、比較例1、2)の各硬化性シリコーン樹脂組成物について、同様にシリカフィラーの平均粒子径を測定した。
シリカフィラーの平均粒子径は、レーザー回折・散乱法(商品名「Nanotrac UPA−EX150、日機装(株)製)により積算値50%(d50:nm)での粒径を求めた。
粒子径変化率を、次式により算出した。
[粒子径変化率](%)=[保存後の各硬化性シリコーン樹脂組成物における平均粒子径(d50、nm)]−[製造直後の各硬化性シリコーン樹脂組成物における平均粒子径(d50、nm)]/[製造直後の各硬化性シリコーン樹脂組成物における平均粒子径(d50、nm)]×100
[総合判定]
実施例及び比較例で得られた硬化性シリコーン樹脂組成物について、チクソトロピー値(T.I.値)の上昇率、粘度の上昇率、及び粒子径変化率の3項目の評価結果に基づき、以下の基準で総合判定を行った。
◎(極めて良好である): 比較例に対して、3項目効果あり。
○(良好である) : 比較例に対して、1項目以上効果あり。
×(極めて不良である): 比較例に対して効果なし。
なお、実施例1〜3については比較例1の判定結果を超える場合を「効果あり」、同判定以下の場合を「効果なし」と評価し、実施例4〜12においては比較例2の判定結果を超える場合を「効果あり」、同判定以下の場合を「効果なし」と評価した。また、実施例4については、チクソトロピー値(T.I.値)の上昇率、粘度の上昇率の2項目のみで評価したが、上記に従い総合判定した。
Figure 2017036416
本発明の硬化性シリコーン樹脂組成物は、耐熱性、透明性、耐熱衝撃性、被着体に対する密着性、耐リフロー性、硫黄化合物(例えば、SOX、H2S等)等の腐食性物質に対するバリア性が求められる接着剤、コーティング剤、封止剤等の用途に有用である。特に、本発明の硬化性シリコーン樹脂組成物は、光半導体素子(LED素子)の封止剤として好ましく使用できる。
100:リフレクター(光反射用樹脂組成物)
101:金属配線(電極)
102:光半導体素子
103:ボンディングワイヤ
104:硬化物(封止材)

Claims (11)

  1. 下記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分を含むことを特徴とする硬化性シリコーン樹脂組成物。
    (A):分子内に1個以上のヒドロシリル基を有し、脂肪族不飽和基を有しないポリオルガノシロキサン
    (B):白金族金属を含むヒドロシリル化触媒
    (C):分子内に1個以上のアルケニル基を有する分岐鎖状のポリオルガノシロキサン
    (D):1次粒子の平均粒径が5〜5000nmのシリカフィラー
    (E):ポリエーテル変性レベリング剤
  2. (E)成分の含有量が、硬化性シリコーン樹脂組成物(100重量%)に対して、0.001〜5重量%である、請求項1に記載の硬化性シリコーン樹脂組成物。
  3. 下記の(F)成分を含む、請求項1又は2に記載の硬化性シリコーン樹脂組成物。
    (F):分子内に2個以上のアルケニル基及び1個以上のアリール基を有するポリオルガノシロキシシルアルキレン
  4. 下記の(G)成分を含む、請求項1〜3のいずれか1項に記載の硬化性シリコーン樹脂組成物。
    (G):分子内に1個以上のアルケニル基及び1個以上のアリール基を有するラダー型ポリオルガノシルセスキオキサン
  5. 下記の(H)成分を含む、請求項1〜4のいずれか1項に記載の硬化性シリコーン樹脂組成物。
    (H):分子内に下記式(Y)で表される基及び下記式(Z)で表される基のいずれか一方若しくは両方を有するイソシアヌレート化合物
    Figure 2017036416
    Figure 2017036416
    [式(Y)中のR6、式(Z)中のR7は、同一又は異なって、水素原子又は炭素数1〜8の直鎖若しくは分岐鎖状のアルキル基を示す。]
  6. さらに蛍光体を含む,請求項1〜5のいずれか1項に記載の硬化性シリコーン樹脂組成物。
  7. 請求項1〜6のいずれか1項に記載の硬化性シリコーン樹脂組成物を硬化させることにより得られる硬化物。
  8. 光半導体封止用樹脂組成物である,請求項1〜6のいずれか1項に記載の硬化性シリコーン樹脂組成物。
  9. 光半導体用レンズの形成用樹脂組成物である請求項1〜6のいずれか1項に記載の硬化性シリコーン樹脂組成物。
  10. 光半導体素子と、該光半導体素子を封止する封止材とを含み、前記封止材が請求項8に記載の硬化性シリコーン樹脂組成物の硬化物であることを特徴とする光半導体装置。
  11. 光半導体素子とレンズとを含み、前記レンズが請求項9に記載の硬化性シリコーン樹脂組成物の硬化物であることを特徴とする光半導体装置。
JP2015159650A 2015-08-12 2015-08-12 硬化性シリコーン樹脂組成物及びその硬化物 Ceased JP2017036416A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159650A JP2017036416A (ja) 2015-08-12 2015-08-12 硬化性シリコーン樹脂組成物及びその硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159650A JP2017036416A (ja) 2015-08-12 2015-08-12 硬化性シリコーン樹脂組成物及びその硬化物

Publications (1)

Publication Number Publication Date
JP2017036416A true JP2017036416A (ja) 2017-02-16

Family

ID=58048771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159650A Ceased JP2017036416A (ja) 2015-08-12 2015-08-12 硬化性シリコーン樹脂組成物及びその硬化物

Country Status (1)

Country Link
JP (1) JP2017036416A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125463A1 (ja) * 2010-03-31 2011-10-13 積水化学工業株式会社 光半導体装置用封止剤及び光半導体装置
JP2012012524A (ja) * 2010-07-01 2012-01-19 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2013181061A (ja) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法
WO2013176238A1 (ja) * 2012-05-25 2013-11-28 株式会社ダイセル 硬化性樹脂組成物及びその硬化物、封止剤、並びに光半導体装置
WO2014050318A1 (ja) * 2012-09-27 2014-04-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 光半導体素子封止用シリコーン組成物および光半導体装置
JP2014114446A (ja) * 2012-11-16 2014-06-26 Toray Ind Inc ポリオルガノシロキサン組成物、その硬化物、蛍光体シート、その製造方法、発光デバイスおよびその製造方法
JP2014522313A (ja) * 2011-06-06 2014-09-04 ダウ コーニング コーポレーション ポリエーテル及びシリカ質充填剤を含有するシリコーン組成物から誘導される膜
WO2016043082A1 (ja) * 2014-09-17 2016-03-24 株式会社ダイセル 硬化性シリコーン樹脂組成物及びその硬化物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125463A1 (ja) * 2010-03-31 2011-10-13 積水化学工業株式会社 光半導体装置用封止剤及び光半導体装置
JP2012012524A (ja) * 2010-07-01 2012-01-19 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2014522313A (ja) * 2011-06-06 2014-09-04 ダウ コーニング コーポレーション ポリエーテル及びシリカ質充填剤を含有するシリコーン組成物から誘導される膜
JP2013181061A (ja) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法
WO2013176238A1 (ja) * 2012-05-25 2013-11-28 株式会社ダイセル 硬化性樹脂組成物及びその硬化物、封止剤、並びに光半導体装置
WO2014050318A1 (ja) * 2012-09-27 2014-04-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 光半導体素子封止用シリコーン組成物および光半導体装置
JP2014114446A (ja) * 2012-11-16 2014-06-26 Toray Ind Inc ポリオルガノシロキサン組成物、その硬化物、蛍光体シート、その製造方法、発光デバイスおよびその製造方法
WO2016043082A1 (ja) * 2014-09-17 2016-03-24 株式会社ダイセル 硬化性シリコーン樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BYK コーティング・インキ用添加剤, JPN6019004024, May 2015 (2015-05-01), ISSN: 0003973348 *

Similar Documents

Publication Publication Date Title
KR101795109B1 (ko) 경화성 폴리오르가노실록산 조성물
WO2016043082A1 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP4804775B2 (ja) シール用硬化性ポリオルガノシロキサン組成物、およびガスケット
JPWO2005100445A1 (ja) 光半導体封止用組成物、光半導体封止材および光半導体封止用組成物の製造方法
JP5068988B2 (ja) 接着性ポリオルガノシロキサン組成物
KR20100074227A (ko) 표시소자용 실링제
JP5805348B1 (ja) 付加硬化型シリコーン組成物
JP6502658B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
KR20130090351A (ko) 형광체 함유 접착성 실리콘 조성물 시트, 및 그것을 사용하는 발광 장치의 제조 방법
WO2015163352A1 (ja) 硬化性樹脂組成物及びその硬化物
JP2019151695A (ja) 接着性ポリオルガノシロキサン組成物
JP4522816B2 (ja) 難燃性を有する接着性ポリオルガノシロキサン組成物
WO2015186722A1 (ja) 硬化性樹脂組成物、硬化物、封止材、及び半導体装置
JP2008280368A (ja) 低透湿性ポリオルガノシロキサン組成物
JP6453730B2 (ja) 硬化性オルガノポリシロキサン組成物
WO2015163355A1 (ja) 硬化性樹脂組成物及びその硬化物、グリコールウリル誘導体及びその製造方法
JP4530177B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP6496185B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP4553562B2 (ja) 接着性ポリオルガノシロキサン組成物
KR20210091754A (ko) 접착성 폴리오르가노실록산 조성물
JP2008280367A (ja) 低透湿性ポリオルガノシロキサン組成物
JP3855040B2 (ja) 硬化性シリコーン組成物
KR101864504B1 (ko) 유기폴리실록산 조성물
JP6452545B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP2017036416A (ja) 硬化性シリコーン樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190917