JP2017001558A - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
JP2017001558A
JP2017001558A JP2015118507A JP2015118507A JP2017001558A JP 2017001558 A JP2017001558 A JP 2017001558A JP 2015118507 A JP2015118507 A JP 2015118507A JP 2015118507 A JP2015118507 A JP 2015118507A JP 2017001558 A JP2017001558 A JP 2017001558A
Authority
JP
Japan
Prior art keywords
tire
polyamide
reinforcing cord
resin material
thermoplastic elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015118507A
Other languages
English (en)
Other versions
JP6404777B2 (ja
Inventor
碧 須河
Midori Sugawa
碧 須河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2015118507A priority Critical patent/JP6404777B2/ja
Publication of JP2017001558A publication Critical patent/JP2017001558A/ja
Application granted granted Critical
Publication of JP6404777B2 publication Critical patent/JP6404777B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)

Abstract

【課題】熱可塑性樹脂材料を用いて形成され、耐湿性及び耐熱性に優れたタイヤを提供する。【解決手段】クラウン部16には、補強コード26がタイヤケース17の周方向に巻き回されている。タイヤケース17は熱可塑性樹脂材料で形成され、環状のタイヤ骨格体を構成する。前記熱可塑性樹脂材料は、ハードセグメントと、シロキサン結合を含むソフトセグメントとを有するポリアミド系熱可塑性エラストマーを含有する。ソフトセグメントがシロキサン結合を含むため、耐湿性が向上する。また、本発明のシロキサン結合は、ハードセグメントの結晶化を阻害しないため耐熱性が維持される。【選択図】図1

Description

本発明は、リムに装着されるタイヤにかかり、特に、少なくとも一部が熱可塑性材料で形成されたタイヤに関する。
従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。
これらの熱可塑性の高分子材料(熱可塑性エラストマー、熱可塑性樹脂等)は、射出成形が可能であるなど、生産性の向上の観点から有利な点が多い。例えば、前記熱可塑性の高分子材料としてポリアミド系熱可塑性エラストマーを用いたタイヤが提案されている(例えば、特許文献1参照)。
特開2012−46030号公報
熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易でかつ低コストである。特許文献1に記載のようにポリアミド系熱可塑性エラストマーを含むタイヤは、耐熱性が高く、引張弾性率や引張強度に優れるなど利点が多い。一方、ポリアミド系熱可塑性エラストマーは、吸水性を有する場合が多い。例えば、ポリアミド系熱可塑性エラストマーが、空気中の水分を吸収すると、破断応力等の物性が変化することがある。そのため、ポリアミド系熱可塑性エラストマーをタイヤに用いた場合には、空気中の水分への耐性(耐湿性)の向上が求められる。
また、ポリアミド系熱可塑性エラストマーの耐湿性を向上させる方法としては、比較的分子量が小さくポリアミドとの相溶性を有し、かつ、疎水性の構造を有する化合物を用いる方法が挙げられる。当該方法においては、ポリアミド系熱可塑性エラストマー中に前記疎水性の構造を導入することができる。しかし、ポリアミド系熱可塑性エラストマー中にポリアミドとの相溶性が高く分子量が小さい構造を導入すると、耐熱性が低下する傾向にある。このように、ポリアミド系熱可塑性エラストマーにおいて、耐湿性と耐熱性とは二律背反の関係にあり、この両者をともに向上させることは容易ではない。
本発明は、前記事情を踏まえ、熱可塑性樹脂材料を用いて形成され、耐湿性及び耐熱性に優れたタイヤを提供することを目的とする。
[1]熱可塑性樹脂材料で形成されかつ環状のタイヤ骨格体を有し、前記熱可塑性樹脂材料は、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーを含有するタイヤ。
[2]前記ソフトセグメントの数平均分子量が、400〜4400である[1]に記載のタイヤ。
[3]前記ソフトセグメントは、主鎖に下記一般式(3a)で示される構造を含む[1]又は[2]に記載のタイヤ。
一般式(3a)中、Rは、それぞれ独立に、水素原子、水酸基、直鎖若しくは分岐鎖の炭素数1〜10のアルキル基、又はフェニル基を示す。nは、3〜30を示す。
本発明によれば、熱可塑性樹脂材料を用いて形成され、耐湿性及び耐熱性に優れたタイヤが提供される。
(A)は本発明の一実施形態に係るタイヤの一部の断面を示す斜視図であり、(B)は、リムに装着したビード部の断面図である。 第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。 コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。 (A)は本発明の一実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。(B)はタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。 第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
本発明のタイヤは、熱可塑性樹脂材料で形成されかつ環状のタイヤ骨格体を有する。そして、前記熱可塑性樹脂材料は、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーを含有する。
ここで、「ポリアミド系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体からなる熱可塑性の高分子材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。
<熱可塑性樹脂材料>
熱可塑性樹脂材料は、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーの少なくとも1種を含有する。
熱可塑性樹脂材料は、ポリアミド系熱可塑性エラストマー以外の熱可塑性エラストマーや任意の成分を含んでいてもよいが、前記樹脂材料の総量に対する本発明におけるポリアミド系熱可塑性エラストマーの含有量が30質量%以上であることが好ましく、50質量%以上であることが更に好ましく、70質量%以上であることが特に好ましい。また、本明細書において「樹脂」とは、熱可塑性樹脂及び熱硬化性樹脂を含む概念であるが、天然ゴムは含まない。
ポリアミド系熱可塑性エラストマーは、タイヤ骨格体を形成する材料として用いられる場合、耐熱性を有するとともに、引張弾性率、引張強度及び破断ひずみに優れるという利点がある。更に、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、結果タイヤの軽量化を実現することが可能となる。このため、タイヤ骨格体として形成した場合にタイヤの耐摩耗性、耐久性を向上させることができる。さらに、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料は、融点を100℃〜250℃付近に設定できるため扱いやすく、タイヤ骨格体を成形する際のエネルギー消費を抑制でき生産性を向上させることができる。
[ポリアミド系熱可塑性エラストマー]
本発明におけるポリアミド系熱可塑性エラストマーは、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有する。
ポリアミド系熱可塑性エラストマーは、主鎖にアミド結合(−CONH−)を含むハードセグメントを有するため耐熱性が高い。また、本発明におけるポリアミド系熱可塑性エラストマーは、シロキサン結合を含むソフトセグメントを有することで、耐湿性を有している。そのため、前記エラストマーを含む熱可塑性樹脂材料で形成されたタイヤ骨格を有するタイヤは、耐湿性及び耐熱性に優れる。
ポリアミド系熱可塑性エラストマーは、エラストマーの耐熱性を維持しつつ耐湿性を付与する観点から、シロキサン結合を含む化合物を用いてソフトセグメントが形成される。ソフトセグメントは、化合物の反応性の観点から、両末端に反応性基を有し、シロキサン結合を含み、数平均分子量が400〜4400の化合物から形成されることが好ましい。
従来、数平均分子量の小さい化合物を用いて形成されたソフトセグメントを有するポリアミド系熱可塑性エラストマーは、耐熱性が低い傾向にあった。特に、ポリエーテルを用いて形成されたソフトセグメントを有するポリアミド系熱可塑性エラストマーは、ポリエーテルの酸素原子とポリアミドとの間で水素結合が形成されるため、ハードセグメントの結晶化を阻害され、耐熱性が低い傾向にあった。これに対して、本発明におけるポリアミド系熱可塑性エラストマーは、シロキサン結合を含む化合物を用いて形成されるソフトセグメントを有するため、ハードセグメントの結晶化を阻害せず、ハードセグメントの結晶化が進行しやすい。その結果、従来のポリアミド系熱可塑性エラストマーと比べ、耐熱性と耐湿性とが優れたポリアミド系熱可塑性エラストマーとなる。
前記ポリアミド系熱可塑性エラストマーとしては、ポリアミドが結晶性で融点の高いハードセグメントを構成し、主鎖にシロキサン結合を含む化合物が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤に由来の構造を有していてもよい。
(ハードセグメント)
前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で示されるモノマーによって生成されるポリアミドを挙げることができる。
一般式(1)

一般式(1)中、Rは、炭素数2〜20の炭化水素の分子鎖、又は、炭素数2〜20のアルキレン基を表す。
一般式(2)

一般式(2)中、Rは、炭素数3〜20の炭化水素の分子鎖、又は、炭素数3〜20のアルキレン基を表す。
一般式(1)中、Rとしては、炭素数3〜18の炭化水素の分子鎖又は炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖又は炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖又は炭素数10〜15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3〜18の炭化水素の分子鎖又は炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖又は炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖又は炭素数10〜15のアルキレン基が特に好ましい。
前記一般式(1)又は一般式(2)で示されるモノマーとしては、ω−アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
前記ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸などの炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドンなどの炭素数5〜20の脂肪族ラクタムなどを挙げることができる。
前記ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミンなどの炭素数2〜20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC−(R)m−COOH(R:炭素数3〜20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2〜20 の脂肪族ジカルボン酸を挙げることができる。
前記ハードセグメントを形成するポリアミドとしては、ε−カプロラクタムを開環重縮合したポリアミド(ポリアミド6)、ウンデカンラクタムを開環重縮合したポリアミド(ポリアミド11)、ラウリルラクタムを開環重縮合したポリアミド(ポリアミド12)、12−アミノドデカン酸を重縮合したポリアミド(ポリアミド12)、ジアミンと二塩基酸との重縮合ポリアミド(ポリアミド66)又はメタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を挙げることができる。
前記ポリアミド6は、例えば、{CO−(CH−NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2〜100が好ましく、3〜50が更に好ましい。
前記ポリアミド11は、例えば、{CO−(CH10−NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2〜100が好ましく、3〜50が更に好ましい。
前記ポリアミド12は、例えば、{CO−(CH11−NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2〜100が好ましく、3〜50が更に好ましい。
前記ポリアミド66は、例えば、{CO(CHCONH(CHNH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2〜100が好ましく、3〜50が更に好ましい。
また、メタキシレンジアミンを構成単位として有するアミドMXは、例えば、下記構成単位(A−1)〔(A−1)中、nは任意の繰り返し単位数を表す〕で表わすことができ、例えば、2〜100が好ましく、3〜50が更に好ましい。
前記ポリアミド熱可塑性エラストマーは、ハードセグメントとして、−[CO−(CH−NH]−で示される単位構造を有するポリアミド(ポリアミド6)、−[CO−(CH11−NH]−で示される単位構造を有するポリアミド(ポリアミド12)を有することが好ましい。
更には、−[CO−(CH−NH]−で示される単位構造を有するポリアミド(ポリアミド6)を有することが好ましい。特にポリアミド6を有することにより、耐熱性に優れたタイヤ骨格体とすることができる。
(ソフトセグメント)
前記ソフトセグメントの構造としては、シロキサン結合を含む構造であれば、特に制限されず、適宜選定できる。
シロキサン結合を含む構造とは、構造中に少なくとも1つシロキサン結合を含むことを意味し、シロキサン結合は、主鎖に含まれていてもよく、側鎖に含まれていてもよい。ポリアミド系熱可塑性エラストマーの耐湿性向上の観点から、ソフトセグメントは主鎖にシロキサン結合を含むことが好ましい。
前記シロキサン結合を含む構造としては、例えば、下記一般式(3)で示される構造が挙げられる。
一般式(3)中、Rは、それぞれ独立に、水素原子、水酸基、ハロゲン原子、又は1価の有機基を表す。
1価の有機基としては、例えば、アルキル基、アリール基、アルケニル基、アルコキシ基、アリールオキシ基等が挙げられる。
アルキル基としては、直鎖アルキル基、分岐鎖アルキル基、及び環状アルキル基(シクロアルキル基)のいずれであってもよい。アルキル基としては、炭素数1〜20のアルキル基が好ましく、炭素数1〜10のアルキル基がより好ましい。
アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ヘキシル基、2−エチルヘキシル基、ドデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基等が挙げられる。
アリール基としては、炭素数6〜20のアリール基が好ましく、炭素数6〜12のアリール基がより好ましい。
アリール基の具体例としては、フェニル基、4−メトキシフェニル基、ヘキシルオキシフェニル基、オクチルオキシフェニル基、2,6−ジメチルフェニル基、4−ジブチルアミノフェニル基、4−(2−エチルヘキサノイルアミノ)フェニル基、4−ヘキシルフェニル基等が挙げられる。
アルケニル基としては、直鎖アルケニル基、分岐鎖アルケニル基、及び環状アルケニル基のいずれであってもよい。
炭素数1〜20のアルケニル基が好ましく、炭素数1〜10のアルケニル基がより好ましい。
アルケニル基の具体例としては、ビニル基、アリル基、3−ブテニル基、2−メチル−2−ブテニル基、4−ペンテニル基、3−ペンテニル基、3−メチル−3−ペンテニル基、5−ヘキセニル基、4−ヘキセニル基、3−ヘキセニル基、2−ヘキセニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
アルコキシ基としては、炭素数1〜20のアルコキシ基が好ましく、炭素数1〜10のアルコキシ基がより好ましい。
アルコキシ基の具体例としては、メトキシ基、エトキシ基、ノルマルブトキシ基、第3ブトキシ基、3−ヘプチルオキシ基、ノルマルヘキシルオキシ基、2−エチルヘキシルオキシ基、ノルマルノニルオキシ基等が挙げられる。
アリールオキシ基としては、炭素数6〜20のアリールオキシ基が好ましく、炭素数6〜12のアリールオキシ基がより好ましい。
アリールオキシ基の具体例としては、フェノキシ基、2−メチルフェノキシ基、4−t−ブチルフェノキシ基、3−ニトロフェノキシ基、3−t−ブチルオキシカルバモイルフェノキシ基、3−メトキシカルバモイル基等が挙げられる。
上記のアルキル基、アリール基、アルケニル基、アルコキシ基及びアリールオキシ基は、無置換であってもよいし、置換基を有していてもよい。上記の各基が置換基を有する場合、該置換基としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基等が挙げられる。
一般式(3)におけるRとしては、水素原子、水酸基、アルキル基、又はアリール基であることが好ましい。
一般式(3)中、nは、1〜60を示す。nは、1〜40が好ましく、3〜30がより好ましい。
ソフトセグメントは、ポリアミド系熱可塑性エラストマーの耐湿性及び耐熱性の観点から、主鎖に下記一般式(3a)で示される構造を含むことがより好ましい。
一般式(3a)中、Rは、それぞれ独立に、水素原子、水酸基、直鎖若しくは分岐鎖の炭素数1〜10のアルキル基、又はフェニル基を示す。nは、3〜30を示す。
上記のソフトセグメントは、シロキサン結合を含む化合物から形成することができる。
ソフトセグメントを形成する化合物としては、例えば、下記一般式(4)〜一般式(9)に示される化合物が挙げられる。

一般式(4)〜一般式(9)中、Mは、それぞれ独立に、単結合、又は2価の有機基を表す。
2価の有機基としては、例えば、アルキレン基、アリーレン基等が挙げられる。
アルキレン基としては、炭素数1〜20のアルキレン基が好ましく、炭素数1〜10のアルキレン基がより好ましい。炭素数1〜10のアルキレン基の具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。
アリーレン基としては、炭素数6〜20のアリーレン基が好ましく、炭素数6〜12のアリーレン基がより好ましい。炭素数6〜10のアリーレン基の具体例としては、フェニレン基、ナフチレン基等が挙げられる。
中でも、一般式(4)〜一般式(9)におけるMとしては、単結合、炭素数1〜10のアルキレン基、又は、炭素数6〜10のアリーレン基が好ましく、単結合がより好ましい。
一般式(4)〜一般式(9)中、Rは、それぞれ独立に、水素原子、水酸基、又は1価の有機基を表す。
1価の有機基は、前記一般式(3)におけるRで示される1価の有機基と同義であり、好ましい態様も同じである。
一般式(4)〜一般式(9)中、nは、1〜60を示す。nとしては、1〜40が好ましく、3〜30がより好ましい。
一般式(4)〜一般式(9)で示される化合物としては、Mが単結合、炭素数1〜10のアルキレン基、又は炭素数6〜10のアリーレンであり、Rが、それぞれ独立に、水素原子、水酸基、直鎖もしくは分岐鎖の炭素数1〜10のアルキル基、又はフェニル基であり、nは、3〜30である態様が好ましい。
さらに、一般式(4)〜一般式(9)で示される化合物としては、Mが単結合であり、Rが、それぞれ独立に、直鎖若しくは分岐鎖の炭素数1〜10のアルキル基、又はフェニル基であり、nは、3〜30である態様がより好ましい。
一般式(4)、又は一般式(5)で示される化合物の具体例としては、両末端にアミノ基を有するポリジメチルシロキサン、両末端にアミノ基を有するポリジフェニルシロキサン、両末端にアミノ基を有するポリメチルフェニルシロキサン等が挙げられる。
一般式(6)、又は一般式(7)で示される化合物の具体例としては、両末端に水酸基を有するポリジメチルシロキサン、両末端に水酸基を有するポリジフェニルシロキサン、両末端に水酸基を有するポリメチルフェニルシロキサン等が挙げられる。
一般式(8)、又は一般式(9)で示される化合物の具体例としては、両末端にカルボキシ基を有するポリジメチルシロキサン、両末端にカルボキシ基を有するポリジフェニルシロキサン、両末端にカルボキシ基を有するポリメチルフェニルシロキサン等が挙げられる。
中でも、ポリアミドとの反応性の観点から、両末端にアミノ基を有するポリジメチルシロキサン、両末端にアミノ基を有するポリメチルフェニルシロキサンがさらに好ましい。
前記ハードセグメントと前記ソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。
この中でも、ε−カプロラクタムの開環重縮合体/一般式(4)又は一般式(5)で示される化合物の組合せ、アミノへキサン酸の重縮合体/一般式(4)又は一般式(5)で示される化合物の組合せ、が好ましい。
(鎖長延長剤)
上述のように、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤に由来の構造を有していてもよい。前記ジカルボン酸としては、例えば、脂肪族、脂環式及び芳香族ジカルボン酸から選ばれる少なくとも一種又はこれらの誘導体を用いることができる。
前記ジカルボン酸の具体例としては、アジピン酸、デカンジカルボン酸、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2〜25の直鎖脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14〜48の二量化脂肪族ジカルボン酸及びこれらの水素添加物等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、及びテレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。
前記ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300〜15000が好ましい。
また、前記ソフトセグメントを構成する化合物の数平均分子量としては、耐湿性及びポリアミドとの反応性の観点から、400〜4400が好ましく、600〜4000がより好ましく、1000〜3500がさらに好ましい。
ソフトセグメントを構成する化合物の数平均分子量が400以上であると、ポリアミド系熱可塑性エラストマーにおいてソフトセグメントとして機能しやすく、4400以下であるとポリアミドとの反応性が向上する点で有利である。
ソフトセグメントを構成する化合物から構成されるソフトセグメントの数平均分子量は、上記と同様の観点から、400〜4400が好ましく、600〜4000がより好ましく、1000〜3500がさらに好ましい。
前記ハードセグメントを構成するポリマーの数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、例えば、東ソー株式会社製の「HLC−8320GPC EcoSEC」等のGPC(ゲル浸透クロマトグラフィー)を用いることができる。
前記ソフトセグメントを構成する化合物の数平均分子量は、末端基定量法により測定することができ、例えば、末端基濃度を滴定により定量する方法を用いることができる。
前記ハードセグメントを構成するポリマー及び前記ソフトセグメントを構成する化合物の数平均分子量が、前述の方法により測定できない場合、NMRを用いて分子量を測定してもよい。
具体的には、H−NMR、13C−NMRを、測定対象のハードセグメントを構成するポリマー又はソフトセグメントを構成する化合物を重水素化したトリフルオロ酢酸に溶解して、定法に従って測定する。次に、それぞれの官能基の帰属を行い、ハードセグメントを構成するポリマー又はソフトセグメントを構成する化合物の構造を同定し、分子量を求めることができる。
更に、前記ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20が更に好ましい。
前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成する化合物を公知の方法によって共重合することで合成することができる。
〜熱可塑性樹脂材料の物性〜
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料の融点としては、通常100℃〜350℃、好ましくは100℃〜250℃程度であるが、タイヤの生産性の観点から120℃〜250℃程度が好ましく、130℃〜200℃が更に好ましい。このように、融点が120℃〜250℃のポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、接合部の加熱温度を、タイヤ骨格体を形成する熱可塑性樹脂材料の融点以上に設定することができる。本発明のタイヤは、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いるため、120℃〜250℃の温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本発明のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成するポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料の融点よりも10℃〜150℃高い温度が好ましく、10℃〜100℃高い温度が更に好ましい。
また、本発明において熱可塑性樹脂材料中のポリアミド系熱可塑性エラストマーの含有率は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50質量%〜100質量%以上が好ましく、90質量%〜100質量%以上が更に好ましい。ポリアミド系熱可塑性エラストマーの含有率が、熱可塑性樹脂材料の総量に対して、50質量%〜100質量%であるとポリアミド系熱可塑性エラストマーの特性を十分に発揮させることができ、タイヤの耐久性や生産性を向上させることができる。前記熱可塑性樹脂材料には、所望に応じて、ゴム、他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)としては、100MPa〜1000MPaが好ましく、100MPa〜800MPaがさらに好ましく、100MPa〜700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100MPa〜1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的におこなうことができる。
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa〜20MPaが好ましく、5MPa〜17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10%〜70%が好ましく、15%〜60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
前記ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料のISO75−2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50℃〜150℃が好ましく、50℃〜130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
<補強コード層を構成する樹脂材料>
本発明のタイヤは、補強コード層を設けることができる。補強コード層は、樹脂材料を用いて構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比して、タイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着及び固定することができる。上述のように単に「樹脂」と表現した場合、「樹脂」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
更に、補強コード部材がスチールコードの場合、タイヤ処分時に補強コード部材をクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コード部材と分離させるのが難しいのに対し、樹脂材料は加熱のみで補強コード部材と分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
補強コード層に用いることのできる前記熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
前記熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
前記熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)、ポリエステル系熱可塑性エラストマー(TPC)、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性と製造時の成形性等を考慮すると熱可塑性エラストマーを用いることが好ましい。
また、樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
補強コード層に用いられる樹脂材料の弾性率(JIS K7113:1995に規定される引張弾性率)は、タイヤ骨格体を形成する熱可塑性樹脂の弾性率の0.1倍〜10倍の範囲内に設定することが好ましい。前記樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、前記樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。
また、前記補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コード部材はその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
<第1の実施形態>
以下に、図面に従って本発明のタイヤの第1の実施形態に係るタイヤを説明する。
本実施形態のタイヤ10について説明する。図1(A)は、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1(B)は、リムに装着したビード部の断面図である。図1に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
図1(A)に示すように、タイヤ10は、図1(B)に示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。
ここで、本実施形態のタイヤケース17は、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成されている。本実施形態においてタイヤケース17は、単一の熱可塑性樹脂材料(ポリアミド系熱可塑性エラストマー)で形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
本実施形態のタイヤケース17は、ポリアミド系熱可塑性エラストマーで形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
ポリアミド系熱可塑性エラストマーで形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
本実施形態において、図1(B)に示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂などで形成されていてもよい。
本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成するポリアミド系熱可塑性エラストマーよりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成するポリアミド系熱可塑性エラストマーよりもシール性に優れた材料としては、タイヤケース17を構成するポリアミド系熱可塑性エラストマーに比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、ポリアミド系熱可塑性エラストマーのみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略してもよく、ポリアミド系熱可塑性エラストマーよりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
図1に示すように、クラウン部16には、タイヤケース17を構成するポリアミド系熱可塑性エラストマーよりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成するポリアミド系熱可塑性エラストマーよりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。
本発明のタイヤは、補強コード層を有することが好ましい。図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成するポリアミド系熱可塑性エラストマーと密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成するポリアミド系熱可塑性エラストマーよりも耐摩耗性に優れる他の種類の熱可塑性樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
以下、本発明のタイヤの製造方法について説明する。
[タイヤケース成形工程]
まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体17Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する熱可塑性樹脂材料の融点以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱及び加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧してタイヤケース半体を接合させてもよい。
[補強コード部材巻回工程]
次に、補強コード巻回工程について図3を用いて説明する。図3は、コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図3において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、及び第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60又は第2のローラ64の表面は、溶融又は軟化したポリアミド系熱可塑性エラストマーの付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60又は第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
また、コード加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱された補強コード26を排出する排出口76とを備えている。
本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100℃〜200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図3の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分のポリアミド系熱可塑性エラストマーが溶融又は軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融又は軟化したポリアミド系熱可塑性エラストマーに加熱された補強コード26が埋設されるため、ポリアミド系熱可塑性エラストマーと補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17のポリアミド系熱可塑性エラストマーの融点よりも高温に加熱することで、補強コード26が接触した部分のポリアミド系熱可塑性エラストマーの溶融又は軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。
そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
[作用]
本実施形態のタイヤ10では、タイヤケース17がポリアミド系熱可塑性エラストマーによって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れ、さらに従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ10は、耐摩擦性及び耐久性が高い。さらに、タイヤケース17を構成するポリアミド系熱可塑性エラストマーは、シロキサン結合を含むソフトセグメントを有するため、空気中の水分に対する耐性に優れる。そのため、空気中の水分を吸収しタイヤの物性値(例えば、破断応力)が低下することを抑制できる。
また、ポリアミド系熱可塑性エラストマーは補強コード26に対する密着性が高く、さらに溶着強度等の固定性能に優れている。このため、補強コード巻回工程において補強コード26の周囲に空気が残る現象(エア入り)を抑制することができる。補強コード26への密着性及び溶着性が高く、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード26が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤ10の耐久性が向上する。
また、本実施形態のタイヤ10では、熱可塑性樹脂材料で形成されたタイヤケース17のクラウン部16の外周面にポリアミド系熱可塑性エラストマーよりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、及びタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、熱可塑性樹脂材料で形成されたタイヤケース17のクリープが防止される。
また、タイヤケース17の軸方向に沿った断面視(図1に示される断面)で、ポリアミド系熱可塑性エラストマーで形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設されかつポリアミド系熱可塑性エラストマーに密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、及びトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
そして、図2に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
このように補強コード層28が、ポリアミド系熱可塑性エラストマーを含んで構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着及び固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26がスチールコードの場合に、タイヤ処分時に補強コード26を加熱によってポリアミド系熱可塑性エラストマーから容易に分離及び回収が可能であるため、タイヤ10のリサイクル性の点で有利である。また、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28がポリアミド系熱可塑性エラストマーを多く含んでいると、タイヤの転がり性を向上させることができる。更には、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
また、路面と接触するトレッド30をポリアミド系熱可塑性エラストマーよりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
またさらに、ビード部12のリム20と接触する部分に、ポリアミド系熱可塑性エラストマーよりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とポリアミド系熱可塑性エラストマーとでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分のポリアミド系熱可塑性エラストマーを溶融又は軟化させる構成としたが、本発明はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
また、第1実施形態では、コード加熱装置59の熱源をヒーター及びファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
さらに、第1実施形態では、補強コード26を埋設した熱可塑性樹脂材料が溶融又は軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されず、熱可塑性樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性樹脂材料の溶融又は軟化した部分を強制的に冷却固化する構成としてもよい。
また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ熱可塑性樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した熱可塑性樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。
また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
<第2の実施形態>
次に、図面に従って本発明のタイヤの製造方法及びタイヤの第2実施形態について説明する。本実施形態のタイヤは、上述の第1実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、前記第1実施形態と同様の構成については同様の番号が付される。図4(A)は、第2実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図4(B)は第2実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図5は、第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
第2実施形態のタイヤは、上述の第1実施形態と同様に、タイヤケース17がハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成されている。本実施形態においてタイヤケース17は、単一の熱可塑性樹脂材料(ポリアミド系熱可塑性エラストマー)で形成されているが、本発明はこの構成に限定されない。本実施形態においてタイヤ200は、図4及び図5に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図5では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面は、タイヤケース17の外周面17Sに含まれる。
この被覆コード部材26Bは、タイヤケース17を形成するポリアミド系熱可塑性エラストマーよりも剛性が高いコード部材26Aにタイヤケース17を形成するポリアミド系熱可塑性エラストマーとは別体の被覆用樹脂材料27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とが接合(例えば、溶接、又は接着剤で接着)されている。
また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍〜10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。なお、本実施形態では、被覆用樹脂材料27として熱可塑性樹脂材料と同様の材料が用いられていることが好ましい。
また、図5に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、本実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本発明はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。
図5に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。
タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸が均一に形成され、その上に接合剤を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸に流れ込んでいる。
また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。
なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。
次に本実施形態のタイヤの製造方法について説明する。
[骨格形成工程]
まず、上述の第1実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱及び押圧し、タイヤケース17を形成する。
[補強コード部材巻回工程]
本実施形態におけるタイヤの製造装置は、上述の第1実施形態と同様であり、上述の第1実施形態の図3に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(本実施形態では熱可塑性材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。
まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融又は軟化した状態となる。
そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融又は軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。
[粗化処理工程]
次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸96を形成する。
このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸96が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
[積層工程]
次に、粗化処理を行なったタイヤケース17の外周面17Sに接合剤を塗布する。
なお、接合剤としては、トリアジンチオール系接着剤、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤、ゴム系接着剤など、特に制限はないが、クッションゴム29が加硫できる温度(90℃〜140℃)で反応することが好ましい。
次に、接合剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済み又は半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。
[加硫工程]
次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96に未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が向上する。
そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。
[作用]
本実施形態のタイヤ200では、タイヤケース17がポリアミド系熱可塑性エラストマーによって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れ、さらに従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性及び耐久性が高い。さらに、タイヤケース17を構成するポリアミド系熱可塑性エラストマーは、シロキサン結合を含むソフトセグメントを有するため、空気中の水分に対する耐性に優れる。そのため、空気中の水分を吸収しタイヤの物性値(例えば、破断応力)が低下することを抑制できる。また、ポリアミド系熱可塑性エラストマーは被覆コード部材26Bに対する接着性が高い。
このように補強コード層28が、被覆コード部材26Bを含んで構成されていると、補強コード26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着及び固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26Aがスチールコードの場合に、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離及び回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28がポリアミド系熱可塑性エラストマーを多く含んでいると、タイヤの転がり性を向上させることができる。更には、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
本実施形態のタイヤの製造方法では、タイヤケース17とクッションゴム29及びトレッドゴム30Aとを一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤケース17とクッションゴム29との接合強度を確保することができる。
特に、タイヤケース17の外周面17Sに凹凸が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケース17とクッションゴム29との接合強度を確保することができる。
一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、タイヤケース17とクッションゴムとの接合強度を効果的に確保することができる。
加硫工程において、クッションゴム29を加硫した場合、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸にクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。
このような、タイヤの製造方法にて製造されたタイヤ200は、タイヤケース17とクッションゴム29との接合強度が確保される、すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が確保される。これにより、走行時などにおいて、タイヤ200のタイヤケース17の外周面17Sとクッションゴム29との間の剥離が抑制される。
また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性及び耐カット性が向上する。
また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、かつ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。
本実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本発明はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
また、タイヤケース17は、タイヤケースのクラウン部に巻回されかつ接合された被覆コード部材を被覆用樹脂材料で覆うようにして補強コード層を形成してもよい。この場合、溶融又は軟化状態の被覆用熱可塑性材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融又は軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
上述の第2実施形態では、ケース分割体(タイヤケース半体)を接合してタイヤケース17を形成する構成としたが、本発明はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。
第2実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状であってもよい。
第2実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本発明はこれに限らず、クッションゴム29を配置しない構成としてもよい。
また、第2実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本発明はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。
第2実施形態では、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、この被覆用樹脂材料27を加熱することにより溶融又は軟化状態にしてクラウン部16の外周面に被覆コード部材26Bを溶着する構成としているが、本発明はこの構成に限定されず、被覆用樹脂材料27を加熱せずに接着剤などを用いてクラウン部16の外周面に被覆コード部材26Bを接着する構成としてもよい。
また、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、被覆コード部材26Bを加熱せずに接着剤などを用いてクラウン部16の外周面に接着する構成としてもよい。
さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。
またさらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態としつつ、被覆用樹脂材料27を加熱し溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。なお、タイヤケース17及び被覆コード部材26Bの両者を加熱して溶融又は軟化状態にした場合、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、及び被覆コード部材26Bを形成する被覆用樹脂材料27をともに熱可塑性樹脂材料とする場合には、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
また、さらに粗化処理を行ったタイヤケース17の外周面17Sにコロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後に接着剤を塗布してもよい。
またさらに、タイヤ200を製造するための順序は、第2実施形態の順序に限らず、適宜変更してもよい。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
更に、本発明の具体的な態様について第1実施形態及び第2実施形態を用いて説明したが本発明は上述の態様に限定されるものではない。
本発明のタイヤは第1実施形態に示されるように以下のように構成することができる。
(1−1)本発明のタイヤは、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(1−2)本発明のタイヤは、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(1−3)本発明のタイヤは、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(1−4)本発明のタイヤは、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(1−5)本発明のタイヤは、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることができる。
このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(1−6)本発明のタイヤは、少なくともポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
前記製造方法においては、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体のタイヤ骨格片を形成することができる。ポリアミド系熱可塑性エラストマーはその融点を100℃〜250℃程度に設定することができるため、例えば300℃以上でタイヤ骨格片の融着工程を実施する必要がなく比較的低温で融着工程を実施できる。このように比較的低温度で融着工程を実施できるため、エネルギー利用率などの観点で、タイヤの生産性を向上させることができる。また、ポリアミド系熱可塑性エラストマーを用いたタイヤ骨格片は、融着してタイヤ骨格体を形成した際、タイヤ骨格片同士の接着強度が十分であり、また、融着時の温度によって骨格体自体の性能が劣化することがないため、製造されたタイヤの耐パンク性や耐摩耗性など走行時における耐久性を向上させることができる。
(1−7)前記タイヤの製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上(例えば、融点+10℃〜+150℃)に加熱するように構成することができる。
このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(1−8)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(1−9)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(1−10)前記タイヤの製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(1−11)前記タイヤの製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(1−12)前記タイヤの製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(1−13)前記製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
また、本発明のタイヤは第2実施形態において説明したように以下のように構成することができる。
(2−1)本発明のタイヤは、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
このように、粗化処理工程を設けると、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2−2)本発明のタイヤは、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2−3)本発明のタイヤは、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種又は別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(2−4) 本発明のタイヤは、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(2−5) 本発明のタイヤは、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(2−6) 本発明のタイヤは、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(2−7) 本発明のタイヤは、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(2−8) 本発明のタイヤは、ポリアミド系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
[実施例1]
(ハードセグメント:ポリアミド12(ナイロン(登録商標)12)の合成)
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積2リットルの反応容器に、アルドリッチ製12−アミノドデカン酸40g、アミノドデカノラクタム550g、ドデカン二酸67gを入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、所望の数平均分子量4800のポリアミド12重合物である白色固体を得た。
・ポリアミド系熱可塑性エラストマーの製造
前記ポリアミド12(ハードセグメントを形成するポリマー、数平均分子量=4800)75質量部と、両末端にアミノ基を有するポリジメチルシロキサン(ソフトセグメントを形成する化合物、数平均分子量=1600)25質量部と、を混合した。
この混合物を窒素気流下、200℃、7時間撹拌を行い、白色のポリアミド系熱可塑性エラストマーを得た。
得られたポリアミド系熱可塑性エラストマーはペレット化し、220℃で射出成形し、サンプル片を得た。各種測定は、このサンプル片から試験片を打ち抜いたサンプルを用いて実施した。
[実施例2]
実施例1のポリアミド系熱可塑性エラストマーの製造において、ソフトセグメントを形成する化合物を両末端にアミノ基を有するポリメチルフェニルシロキサン(ソフトセグメントを形成する化合物)に変更した以外は、同様にして、実施例2のポリアミド系熱可塑性エラストマーを製造した。
[比較例1]
実施例1のポリアミド系熱可塑性エラストマーの製造において、ソフトセグメントを形成する化合物をPPG−PTMG−PPG(HUNTSMAN社製、商品名:JEFFAMINE(登録商標)RT−1000)に変更した以外は、同様にして、比較例1のポリアミド系熱可塑性エラストマーを製造した。
[比較例2]
(ハードセグメント:ポリアミド6(ナイロン(登録商標)6)の合成)
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積2リットルの反応容器に、アルドリッチ製カプロラクタム470g、ドデカン二酸173g、アミノヘキサン酸37gを入れ、容器内を十分窒素置換した後、250℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、水洗工程を経て所望の数平均分子量約1200のポリアミド6重合物である白色固体を得た。
・ポリアミド系熱可塑性エラストマーの製造
前記ポリアミド6(ハードセグメントを形成するポリマー)65質量部と、PPG−PTMG−PPG(ソフトセグメントを形成する化合物、HUNTSMAN社製、商品名:JEFFAMINE(登録商標)RT−1000)35質量部と、を混合した。
この混合物を窒素気流下、230℃、7時間撹拌を行い白色のポリアミド系熱可塑性エラストマーを得た。
得られたポリアミド系熱可塑性エラストマーはペレット化し、220℃で射出成形し、サンプル片を得た。各種測定は、このサンプル片から試験片を打ち抜いたサンプルを用いて実施した。
[実施例3]
比較例2のポリアミド系熱可塑性エラストマーの製造において、ソフトセグメントを形成する化合物を両末端にアミノ基を有するポリジメチルシロキサンに変更した以外は、同様にして、比較例2のポリアミド系熱可塑性エラストマーを製造した。
[実施例4]
比較例2のポリアミド系熱可塑性エラストマーの製造において、ソフトセグメントを形成する化合物を両末端にアミノ基を有するポリメチルフェニルシロキサンに変更した以外は、同様にして、比較例2のポリアミド系熱可塑性エラストマーを製造した。
<評価>
実施例及び比較例から得た熱可塑性エラストマーを用いて、以下の項目について評価した。結果を表1に示す。
(耐熱性)
示差走査型熱量分析(DSC)装置〔ティー・エイ・インスツルメント・ジャパン株式会社製、DSC Q2000〕を用い、各実施例及び比較例で得られた熱可塑性エラストマーを、0℃から200℃まで10℃/分で昇温した。融解開始温度が145℃以上の場合を「A」、130℃以上145℃未満の場合を「B」、130℃未満の場合を「C」とした。なお、融解開始温度が175℃以上の場合を「A」とした。
(リム組み性)
各実施例及び比較例で得られた熱可塑性エラストマーを用いて、それぞれ上述の第1の実施形態を参照し、タイヤを形成した。次いで、タイヤをリムに装着し、エアシール性が確保できた場合を「A」、リム組みの際に、硬くてハンドリング性に劣る場合を「B」、割れの発生や、エアシール性が確保できなかった場合を「C」とした。
(耐湿性)
各実施例及び比較例で得られた熱可塑性エラストマーを用いて、それぞれ上述の第1の実施形態を参照し、タイヤを形成した。次いで、80℃、相対湿度95%の条件に設定した恒温槽にタイヤを入れ、2000時間放置した。放置前のタイヤと放置後のタイヤよりJIS3形状のサンプルを打抜き、それぞれ引張試験にて物性評価を行った。放置前後のサンプルの引張試験結果から物性維持率を求め、実施例1における物性維持率を100とし、各サンプルについて耐湿性(耐湿熱劣化)を評価した。なお、物性維持率は数値が低いほど耐湿性に劣る。
表1に記載の表記について、以下に示す。
−ハードセグメント用ポリマー−
ナイロン6:前記方法で合成したポリアミド6(ナイロン(登録商標)6)
ナイロン12:前記方法で合成したポリアミド12(ナイロン(登録商標)12)
−ソフトセグメント用ポリマー−
PPG :ポリプロピレングリコール
PTMG :ポリトリメチルグリコール
表1より、シロキサン結合を有するソフトセグメントを有するポリアミド系熱可塑性エラストマーを用いた実施例と従来のポリアミド系熱可塑性エラストマーを用いた比較例との比較から、実施例のタイヤは、耐熱性を維持しつつ耐湿熱劣化に優れることがわかる。
また、いずれの実施例においてもリム組性が良好であり、タイヤとしての性能が良好であることがわかる。
10,200 タイヤ、12 ビード部、16 クラウン部(外周部)、17 タイヤケース(タイヤ骨格体)、18 ビードコア、20 リム、21 ビードシート、22 リムフランジ、24 シール層(シール部)、26 補強コード(補強コード部材)、28 補強コード層、30 トレッド、D 補強コードの直径(補強コード部材の直径)、L 補強コードの埋設量(補強コード部材の埋設量)

Claims (3)

  1. 熱可塑性樹脂材料で形成されかつ環状のタイヤ骨格体を有し、
    前記熱可塑性樹脂材料は、ハードセグメントと、シロキサン結合を含むソフトセグメントと、を有するポリアミド系熱可塑性エラストマーを含有するタイヤ。
  2. 前記ソフトセグメントの数平均分子量が、400〜4400である請求項1に記載のタイヤ。
  3. 前記ソフトセグメントは、主鎖に下記一般式(3a)で示される構造を含む請求項1又は請求項2に記載のタイヤ。

    一般式(3a)中、Rは、それぞれ独立に、水素原子、水酸基、直鎖若しくは分岐鎖の炭素数1〜10のアルキル基、又はフェニル基を示す。nは、3〜30を示す。
JP2015118507A 2015-06-11 2015-06-11 タイヤ Expired - Fee Related JP6404777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118507A JP6404777B2 (ja) 2015-06-11 2015-06-11 タイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118507A JP6404777B2 (ja) 2015-06-11 2015-06-11 タイヤ

Publications (2)

Publication Number Publication Date
JP2017001558A true JP2017001558A (ja) 2017-01-05
JP6404777B2 JP6404777B2 (ja) 2018-10-17

Family

ID=57751261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118507A Expired - Fee Related JP6404777B2 (ja) 2015-06-11 2015-06-11 タイヤ

Country Status (1)

Country Link
JP (1) JP6404777B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158906A (ja) * 1998-11-27 2000-06-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006327584A (ja) * 2006-07-07 2006-12-07 Yokohama Rubber Co Ltd:The タイヤサイドケーシングおよびその製造方法
WO2009014232A1 (ja) * 2007-07-23 2009-01-29 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
JP2010125891A (ja) * 2008-11-25 2010-06-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012045790A (ja) * 2010-08-25 2012-03-08 Bridgestone Corp タイヤの製造方法
JP2012046030A (ja) * 2010-08-25 2012-03-08 Bridgestone Corp タイヤ
JP2014166825A (ja) * 2013-02-28 2014-09-11 Bridgestone Corp タイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158906A (ja) * 1998-11-27 2000-06-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006327584A (ja) * 2006-07-07 2006-12-07 Yokohama Rubber Co Ltd:The タイヤサイドケーシングおよびその製造方法
WO2009014232A1 (ja) * 2007-07-23 2009-01-29 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
JP2010125891A (ja) * 2008-11-25 2010-06-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012045790A (ja) * 2010-08-25 2012-03-08 Bridgestone Corp タイヤの製造方法
JP2012046030A (ja) * 2010-08-25 2012-03-08 Bridgestone Corp タイヤ
JP2014166825A (ja) * 2013-02-28 2014-09-11 Bridgestone Corp タイヤ

Also Published As

Publication number Publication date
JP6404777B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
JP5993545B2 (ja) タイヤ
JP5775320B2 (ja) タイヤ
JP6560973B2 (ja) タイヤ
WO2016163425A1 (ja) ポリアミド系熱可塑性エラストマー及びタイヤ
JP6001488B2 (ja) タイヤ
JP5623825B2 (ja) タイヤの製造方法
WO2014157558A1 (ja) タイヤ
WO2014157559A1 (ja) タイヤ
JP5893439B2 (ja) タイヤの製造方法
JP6014715B2 (ja) タイヤ
WO2017146069A1 (ja) タイヤ
JP5818578B2 (ja) タイヤ
JP5628003B2 (ja) タイヤ、及びタイヤの製造方法
JP5778403B2 (ja) タイヤ
JP6404777B2 (ja) タイヤ
JP5960875B2 (ja) タイヤ
JP5628002B2 (ja) タイヤ、及びタイヤの製造方法
JP5901735B2 (ja) タイヤ
JP5893440B2 (ja) タイヤおよびタイヤの製造方法
JP5881776B2 (ja) タイヤ
JP6654835B2 (ja) タイヤ
JP2015155304A (ja) タイヤ
JP5758097B2 (ja) タイヤ
JP5788654B2 (ja) タイヤの製造方法
JP6014714B2 (ja) タイヤ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees