JP2016515045A - 膜を清浄化するシステム - Google Patents

膜を清浄化するシステム Download PDF

Info

Publication number
JP2016515045A
JP2016515045A JP2015562077A JP2015562077A JP2016515045A JP 2016515045 A JP2016515045 A JP 2016515045A JP 2015562077 A JP2015562077 A JP 2015562077A JP 2015562077 A JP2015562077 A JP 2015562077A JP 2016515045 A JP2016515045 A JP 2016515045A
Authority
JP
Japan
Prior art keywords
membrane
fluid
gas
supply
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015562077A
Other languages
English (en)
Inventor
ジョセフ エドワード ザバック、
ジョセフ エドワード ザバック、
Original Assignee
ナノストーン ウォーター ゲーエムベーハー
ナノストーン ウォーター ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノストーン ウォーター ゲーエムベーハー, ナノストーン ウォーター ゲーエムベーハー filed Critical ナノストーン ウォーター ゲーエムベーハー
Publication of JP2016515045A publication Critical patent/JP2016515045A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Abstract

膜(122)を清浄化するシステム(100)は、濾過システム内で流体から固体を濾過するためのセラミック又はポリマー膜(122)のうちの少なくとも1つを含み、膜(122)は清浄側と汚染側とを有する。システムは少なくとも、溶解ガスを中に有する高圧流体(132)の第1の供給体を更に含む。高圧流体(132)の第1の供給体は清浄化プロセスの間、膜(122)の清浄側と流体連通する。高圧流体(132)内の溶解ガスは、清浄化プロセスの間に膜(122)の汚染側上でガスの泡が形成されるような濃度であり、溶解ガスは第1のガスを含み、第1のガスは酸化性ガスである。

Description

本発明は、濾過システムの膜を清浄化するシステムと、濾過システムの膜を清浄化す方法とに関する。
濾過システムは、例えば膜を使用して、水などの流体から汚物及び粒子を濾過するために有用である。通常、膜などのフィルタの細孔を源流体が通過し、流体は濾過される。濾過の間、粒子が膜上に蓄積し、これが濾過の効率を妨げる。定期的に膜は交換される。膜の交換により、交換の間の停止時間が発生するため、濾過システムの使用は妨げられる。
欧州特許出願公開第0669159(A1)号明細書
膜の交換の必要性を減らすために、例えば、欧州特許出願公開第0669159(A1)号明細書で提案されたように、濾過された流体を用いて膜を逆洗することによって膜を清浄化して、膜の寿命を延ばすことが可能である。しかしそのようなプロセスには欠点がある。
膜を清浄化するシステムは、濾過システム内で流体から固体を濾過するためのセラミック又はポリマー膜を含み、膜は清浄側と汚染側とを有し、システムは少なくとも、溶解ガスを中に有する高圧流体の第1の供給体を更に含み、高圧流体の第1の供給体は清浄化プロセスの間、膜の清浄側と流体連通し、高圧流体内の溶解ガスは、清浄化プロセスの間に膜の汚染側上で好ましくは泡の形態でガスが放出されるような濃度であり、溶解ガスは第1のガスを含み、第1のガスは酸化性ガスである。
本発明によれば、ガスは、汚物が位置する場所すなわち膜の汚染側上で正確に作用する。この理由は、高圧流体内の溶解ガスの濃度が、清浄化プロセスの間に存在する汚染側動作圧力における、溶解ガスの最大溶解度を超過しているからである。清浄化プロセスの間、流体の圧力は、流体が膜を通して清浄側から汚染側に浸透した場合に汚染側動作圧力まで低下し、汚染側動作圧力は流体内の溶解ガスの最大溶解度より低い。泡が形成された場合、泡は膜の汚染側上の汚物と物理的に協働し、それにより泡は、汚物に付着して汚物が膜から浮上して離れるようにし、かつ/又は洗い流す機能を流体流に追加することによって汚物を除去するのを助ける。ガスは酸化性ガスであるため、ガスは、処理プロセスの間に膜の汚染側に徐々に付着して膜の性能に悪影響を及ぼす有機汚染物と化学的に相互作用し、それによりガスは汚染物を酸化し、これは汚染物を溶解するのに、及び/又は膜から引き離すのに役立ち得る。
従って、本発明のシステムは、改良された清浄化性能を提供し、これは膜の通常の濾過動作の間の改良された濾過特性をもたらす。
1つ以上の実施形態では、システムは、清浄化プロセスの間に、膜において蓄積する汚物と物理的に又は化学的に協働するように選択された清浄化試薬の供給源を更に含む。この実施形態は、オゾン、次亜塩素酸ナトリウム、過酸化水素などの酸化化学物質であってもよい化学成分と、空気などの溶解ガスを含む加圧水との組み合わせを提供し、これにより、泡が形成されるのとほぼ同時に化学物質は汚物と反応する。1つ以上の実施形態では、清浄化試薬とガスとは同じであってもよい。泡は、化学成分との反応を介して「緩められた」汚物を除去するための、洗い流す機能を果たす。化学成分は、pHを低下させ酸化能を増加させる次亜塩素酸ナトリウム及び二酸化炭素などの化学物質の組み合わせであってもよい。
1つ以上の実施形態では、高圧流体の第1の供給体は、オゾンを中に有する加圧ガス、又は、加圧されたイオン化ガスを有する流体のうちの少なくとも1つを含む。
1つ以上の実施形態では、システムは、膜と選択的に流体連通する高圧流体の第2の供給体を含み、高圧流体の第2の供給体は、低濃度の溶解ガスをその中に有する。従って、膜の内部の高濃度の溶解ガスを有する流体を、低濃度の溶解ガスを有する流体で少なくとも部分的に置き換えることが可能であり、これにより通常の動作中の濾過性能が向上し、なぜなら低濃度の溶解ガスを有する流体は、膜から泡を除去するために役立つからである。
1つ以上の実施形態では、溶解ガスを有する高圧流体の第1の供給体は、高圧条件における溶解度の約50%より大きな溶解ガス濃度を有する。
1つ以上の実施形態では、システムは分離タンクを更に含み、分離タンクは逆流路内で膜の下流にある。分離タンクは、除去された汚物を水から分離するのに役立つ。
1つ以上の実施形態では、システムは、高圧流体の第1の供給体から高圧流体の第2の供給体への移行を可能にする移行制御を更に含む。
方法は、酸化性ガスを、清浄化プロセスの間に膜の汚染側上に存在する動作圧力における溶解酸化性ガスの最大溶解度を超過する濃度において、第1の容器内の第1の流体内に溶解し、清浄化プロセスの間に、第1の流体を、それが膜を通過して酸化性ガスが好ましくは泡の形態で膜の汚染側上で放出されるように、膜の清浄側に供給することを含む。
当該方法は、膜の内部の流体を、低濃度の溶解ガスを有する高圧流体の第2の供給体からの流体で少なくとも部分的に置き換えることを更に含んでもよい。
当該方法は、第1の流体及び/又は第2の流体をそれぞれ加圧するステップを含んでもよい。
システムは、膜モジュール内の膜を含み、膜は清浄側と汚染側とを有し、膜は濾過システム内で流体から固体を濾過するように構成される。第1の容器はその中にバックフラッシュ流体を有する。薬注供給源が、膜の清浄側の近位で膜モジュールと流体的に結合される。システムは、源流体供給源と流体的に結合される入口を有する前処理タンクを更に含み、前処理タンクは、汚染側の近くで膜モジュールと流体的に結合される第2の入口を、化学的に処理されたバックフラッシュ流体をそこから受け取るために有する。
システムは、第1の膜モジュール内の膜を含む。膜は清浄側と汚染側とを有し、膜は濾過システム内で流体から固体を濾過するように構成される。第1の容器は、オゾンを有する加圧ガスを中に含む流体、大気圧条件においてオゾンを含む流体、又は加圧されたイオン化ガスを有する流体のうちの1つを有する。第1の容器は膜モジュールと流体連通する。システムは、源流体供給源と流体的に結合される入口と、汚染側の近くで膜モジュールと流体的に結合される第2の入口であって、オゾン化された又はイオン化されたバックフラッシュ流体をそこから受け取るための第2の入口とを有する前処理タンクを更に含む。
1つ以上の実施形態では、方法は、膜モジュール内の蓄積した固体のほとんどを除去するための逆洗プロセス動作に続いて、放出されたガスを有する第1の流体を前置微細凝集タンクに送り出すことを更に含む。膜は、溶解したオゾンを含む加圧水、又は大気圧条件下で流体内にオゾンを含む水などの流体を用いて逆洗される。オゾンは最初に、膜モジュールの内部の有機材料と反応し、次に、タンク内の原水フィードと混合された場合に微細凝集が誘発され、これにより凝固剤の必要性が減るか又はなくなる。タンク内の混合された結果の流体は、次に濾過されてもよい。
1つ以上の実施形態では、方法は、膜を中に有する膜モジュールを水が逆洗し、溶解した化学試薬、オゾン、又は溶解したオゾンのうちの1つ以上を含む水で膜を逆洗し、溶解した化学試薬、オゾン、又は溶解したオゾンのうちの1つ以上を含む水を前処理混合タンク内で原水フィードと混合し、前処理混合タンクからの流体を濾過することを含む。必要に応じて、溶解したオゾンを含む水は加圧される。微細凝集が前処理タンク内で誘発され、これにより凝固剤の必要性が減るか又はなくなる。タンク内の混合された結果の流体は、次に濾過されてもよい。
1つ以上の実施形態では、濾過システムは、清浄側と汚染側とを有する膜を含み、濾過システムは、通常の濾過経路と、逆の清浄化経路とを有する。通常の濾過経路の間に、膜の汚染側上で濾液が蓄積する。システムは、溶解ガスを中に有する高圧流体の第1の供給体を有する第1の容器と、低濃度の溶解ガスを中に有する高圧流体の第2の供給体を有する第2の容器と、第1の容器と動作可能に結合された吐出圧力制御部材とを更に含み、吐出圧力制御部材は、膜の汚染側において第1の供給体から溶解ガスを放出するように構成される。
様々な実施形態は、高圧条件における溶解度の約50%より大きな溶解ガス濃度を有する、溶解ガスを有する高圧流体の第1の供給体を更に含む。
別の実施形態では、システムは分離タンクを更に含み、分離タンクは逆流路内で膜の下流にあり、又は、清浄化試薬の供給源が膜と流体的に結合され、移行制御が、高圧流体の第1の供給体から高圧流体の第2の供給体への移行を可能にし、移行制御は逆流路内で膜の上流にある。
1つ以上の実施形態では、方法は、高圧流体の第1の供給体からの、溶解ガスを含む加圧流体を用いて膜をフラッシュし、膜は第1の側と第2の側とを有し、膜の第2の側において加圧流体からガスを放出させ、ガスから放出された泡を用いて膜を清浄化し、膜の内部の流体を、低濃度の溶解ガスを有する高圧流体の第2の供給体からの加圧流体で置き換えることを含む。
方法の様々な実施形態において、方法は、液状の化学清浄化試薬を膜に導入し、過酸化水素、酸、カセイアルカリ、次亜塩素酸ナトリウムなどの1つ以上の化学清浄化試薬を、第1又は第2の供給体内に導入し、膜を清浄化するために使用された流体を分離タンク内に送り、泡を用いて分離タンク内で汚物を浮上させるか、又は蓄積したパーティを分離タンクの上部からスキミングして除去することを更に含む。一選択肢では、泡を用いて膜を清浄化することは、泡を用いて汚物を膜から離れるよう浮上させることを含む。1つ以上の実施形態では、加圧流体からガスを放出させることは、高圧流体の第1の供給体の吐出圧力を制御することを含む。方法は更に、高圧流体の第1の供給体又は第2の供給体のうちの少なくとも1つの中にオゾンを導入することを必要に応じて含む。
別の実施形態では、方法は、溶解ガスを有する第1の加圧流体を膜の上流で導入し、溶解ガスを有する第1の加圧流体を膜を通して流し、溶解ガスを有する第1の加圧流体上の圧力を膜の下流で低下させて加圧流体からガスの泡を放出させ、泡を用いて膜を清浄化することを含む。
一選択肢では、方法は、低圧オゾン又はイオン化空気、又はオゾンを有する加圧ガスのうちの1つ以上を膜に導入することを更に含む。
1つ以上の実施形態では、システムは、膜モジュール内の膜であって、膜は清浄側と汚染側とを有し、膜は濾過システム内で流体から固体を濾過するように構成される、膜と、バックフラッシュ流体を中に有する第1の容器と、膜の清浄側の近位で膜モジュールと流体的に結合される薬注供給源と、源流体供給源と流体的に結合された入口を有する前処理タンクであって、前処理タンクは、汚染側の近くで膜モジュールと流体的に結合された第2の入口を、化学的に処理されたバックフラッシュ流体をそこから受け取るために有する、前処理タンクとを含む。
1つ以上の実施形態では、システムは、第1の膜モジュール内の膜であって、膜は清浄側と汚染側とを有し、膜は濾過システム内で流体から固体を濾過するためのものである、膜と、オゾンを有する加圧ガスを中に含む流体、又は大気圧条件においてオゾンを含む流体、又は加圧されたイオン化ガスを有する流体のうちの1つを有する第1の容器であって、第1の容器は膜モジュールと流体連通する、第1の容器と、源流体供給源と流体的に結合された入口を有する前処理タンクであって、前処理タンクは、汚染側の近くで膜モジュールと流体的に結合された第2の入口を、オゾン化された又はイオン化されたバックフラッシュ流体をそこから受け取るために有する、前処理タンクとを含む。
システムは、例えば、オゾンが膜の汚染側を清浄化する様々な実施形態を含む。1つ以上の実施形態では、システムは、第1の容器と結合された加圧オゾン発生器、又は、前処理タンクの出口と流体的に結合された1つ以上の濾過膜モジュールを更に含む。一選択肢では、第1の容器は、膜の清浄側の近位に結合される。
1つ以上の実施形態では、方法は、第1の容器内の第1の流体内にガスを溶解し、膜を含む膜モジュールに第1の流体を送り出し、膜は清浄側と汚染側とを有し、流体からガスを放出させて膜の汚染側を清浄化することを含む。
様々な実施形態では、ガスを溶解することは、イオン化ガスを発生器からガス圧縮機に送り出し、圧縮されたガスを第1の容器に送り出すことを含み、又はガスを溶解することは、加圧オゾンを発生器からガス圧縮機に送り出し、圧縮されたオゾンを第1の容器の流体に送り出すことを含む。1つ以上の実施形態では、方法は、実質的に低溶解のガスを有する第2の流体を膜モジュールに送り出して第1の流体を置き換え、放出されたガスを有する流体を前置微細凝集タンクに送り出し、原水フィードをタンクに入力して微細凝集を含め、タンクからの流体を濾過することを、又は、第1の流体を膜に送り出す前に水を用いて膜モジュールを逆洗することを更に含む。
1つ以上の実施形態では、方法は、膜を中に有する膜モジュールを水が逆洗し、溶解した化学試薬、オゾン、又は溶解したオゾンのうちの1つ以上を含む水で膜を逆洗し、水を前処理混合タンク内で原水フィードと混合し、前処理混合タンクからの流体を濾過することを含む。
本発明のこれらの及びその他の実施形態、態様、利点、及び特徴は、一部が以下の説明において述べられ、本発明の以下の説明及び参照図面を参照することによって又は本発明を実施することによって当業者にとって明らかになるであろう。本発明の態様、利点、及び特徴は、添付の特許請求の範囲及びその均等物において特に指摘される手段、手順、及び組み合わせによって実現及び達成される。
1つ以上の実施形態によるシステムの一部のブロック図である。 1つ以上の実施形態によるシステムの一部のブロック図である。 1つ以上の実施形態による、圧力下でガスを溶解するシーケンスのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。 1つ以上の実施形態によるシステムのブロック図である。
以下の詳細な説明は、詳細な説明の一部を形成する添付の図面への参照を含む。図面は、機器を実施し得る特定の実施形態を例として示す。本明細書中で「例」又は「選択肢」とも呼ばれるこれらの実施形態について、当業者が本実施形態を実施することを可能にするよう十分詳細に説明する。本発明の範囲から逸脱することなく、実施形態が組み合わされること、他の実施形態が利用されること、あるいは構造的又は論理的な変更が行われることが可能である。従って、以下の詳細な説明は限定的な意味で解釈されるべきではなく、本発明の範囲は添付の特許請求の範囲及びその法的均等物によって規定される。
本明細書では、用語「a」又は「an」は、1つ又は2つ以上を含むために使用され、用語「又は」は、特に指定しない限り、非排他的な「又は」を意味するために使用される。加えて、本明細書中で使用される表現又は用語は、特に規定しない限り、説明のみを目的とするものであり、限定を目的とするものではないということを理解されたい。
濾過システムは、セラミック膜又はポリマー膜をはじめとする膜122などの濾過部材を含む。図1に示すような通常の濾過流路102の間、水などの汚染流体が膜122を通って流れ、汚物が膜上に収集される。図2を参照すると、膜は清浄側124と汚染側126とを有し、通常の濾過経路102の間に膜の汚染側上に濾液128が蓄積する。膜を洗浄するために、図2に示すように流れの方向が逆流路104に逆転され、清浄な水が膜122を通して流され、汚物又は濾液128が、膜の細孔の内部を含み得る膜表面から除去される。
濾過システムの膜122を清浄化するシステム100について本明細書中で説明する。図3〜図10を参照すると、システム100は、膜122を有する少なくとも1つの膜モジュール120と、タンクなどの第1の容器130と、省略可能な第2の容器140とを含む。本明細書中のモジュールは濾過サービスから一括して又は個別に除去されることが可能であり、すなわち各モジュールが清浄化される順番を有する。
1つ以上のモジュールについて、清浄化プロセスが、例えば30分などの所定の期間にわたって、及び例えば、所定の濾過期間の後、及び/又は動作圧力の低下が一定の限度に到達した後などの所定の頻度で発生する。
第1の容器130は膜モジュール120と流体的に結合される。第1の容器130は、オゾンなどの溶解酸化性ガスを含む水などの高圧流体132の供給体を提供する。その他の好適な流体としては、以下に限定されないが、石油製品及び植物油が含まれる。その他の好適な酸化性ガスとしては、以下に限定されないが、空気中に存在する酸素又は純粋な酸素の一部をオゾンに変換することによって生成される任意の酸化性ガス、あるいは空気又は酸素から生成されるオゾンと混合された、又は塩素、臭素、及びヨウ素などのハロゲンガスと混合された任意のガスが含まれる。第1の容器130は、流体を2バール〜9バールの高圧に加圧し、かつ/又は、2バール〜9バールの高圧を有する高加圧流体を受け取り得る。溶解ガス濃度は、一実施形態では、高圧条件におけるガス溶解度の50%より大きい。
第1の容器130は膜モジュール120と流体的に結合され、弁158が第1の容器130と膜モジュールとの間に、それらの間の流体132の流れを制御するために存在する。一実施形態では、溶解酸化性ガスの放出が、逆流プロセスの間に膜122を清浄化するために使用される。一実施形態では、システム100は、高圧流体132の第1の供給体と動作可能に結合された弁などの吐出圧力制御150を含む。1つ以上の実施形態では、逆流プロセスの間、吐出圧力制御150は膜122の下流にある。吐出圧力制御150が開かれた場合、流体132の第1の供給体上の圧力が低下し、酸化性ガスが膜122の汚染側の近くで放出され、放出された酸化性ガスが膜122を清浄化することが可能になる。例えば、流体132は、膜122の清浄側124から膜122の汚染側126に流れ、泡が放出されて膜122の汚染表面を洗い流す。
加圧流体142の第2の供給体は、膜122と流体連通する第2の容器140内にある。加圧流体142の第2の供給体は、逆流路104内の膜122から上流で、かつ/又は膜122において提供されてもよい。別の実施形態では、流体142の第2の供給体は、膜122の汚染側において提供されてもよい。第2の容器140は、流体142を2バール〜9バールの高圧に加圧し、かつ/又は2バール〜9バールの高圧を有する高加圧流体を受け取り得る。加圧流体142の第2の供給体は、低濃度の溶解ガスをその中に有する。溶解ガスの濃度は0〜5%の溶解度の範囲内である。加圧流体142の第2の供給体は、流体132の第1の供給体を置き換えるために使用される。1つ以上の実施形態では、移行制御が供給ラインと結合されて、高圧流体132の第1の供給体から高圧流体の第2の供給体への移行を可能にする。
システム100は、1つ以上の実施形態において、分離タンク180を更に含む。分離タンク180は、例えば逆流プロセスの間、膜122の下流にあり、清浄化プロセスから汚染流体を受け取って固体を流体から分離するために使用される。更なる実施形態では、流体132の第1の供給体から放出された酸化性ガスの泡が、汚物、油、及びその他の水不混和性流体を分離タンクの上部近くに浮上させるために使用される。1つ以上の実施形態では、浮上可能な固体及び液体を分離タンクの上部又は上面から除去するためのスキマーが備えられる。
1つ以上の実施形態では、清浄化試薬の供給源が膜と流体的に結合され、逆流清浄化プロセスの前、間、又は後に放出されてもよい。例えば、液状の化学清浄化試薬が膜に導入される。1つ以上の化学清浄化試薬としては、以下に限定されないが、第1又は第2の供給体内へのオゾン、過酸化水素、電解プロセスから生成される酸化化学物質の混合物、酸、カセイアルカリ、次亜塩素酸ナトリウムが含まれる。
システム100を使用する方法、及びいくつかの変形を図3〜図10に示す。方法は、第1の容器130を水などの加圧流体の第1の供給体で満たすことを含む。流体は、第1の容器130を流体で満たすことの前、間、又は後に加圧されてもよい。濾液などの流体が容器130内に導入されるにつれて、容器130内のガスが排出される。容器130は閉じられ、加圧酸化性ガスが導入される。流体は約2バール〜9バールの範囲内の高圧にある。溶解酸化性ガスが、流体の第1の供給体内に提供される。溶解酸化性ガスの濃度は、一実施形態では、高圧条件における酸化性ガス溶解度の50%より大きく、ここで高圧条件は2バール〜9バールの範囲内である。
流体の第1の供給体は膜モジュールに進み、膜を清浄化するために使用される。流体の第1の供給体は、一選択肢では、膜122の清浄側124から膜122の汚染側126に進む。溶解酸化性ガスは、一選択肢では、膜の汚染側上で泡が放出されるように放出される。一実施形態では、溶解酸化性ガスが加圧流体から放出され、泡が膜の表面を洗い流すために使用される。別の選択肢では、泡は、膜の表面などの膜の一部から汚物粒子を浮上させる。
更なる実施形態では、方法は、酸化性ガスを流体から放出する様々な手法を含む。一実施形態では、圧力は、弁などの圧力制御部材を用いて管理される。弁は例えば、図5に示すように、逆流路内で膜モジュールの下流にある。圧力を低下させるために弁が開かれ、流体の第1の供給体から酸化性ガスが放出される。圧力は0バール(完全真空)〜2バール(標準大気圧の1バール上)の範囲まで低下されてもよい。
圧力が低下された場合、溶解酸化性ガスが流体から放出され、泡が膜を清浄化するために使用される。汚物及び流体は、別の実施形態では、図4に示すように固体分離タンクに進む。固体はタンクの下部に沈殿してもよい。更なる選択肢では、泡が汚物をタンクの上部に運び、機械的スキミング装置が、必要に応じて、図5に示すように汚染粒子をタンクから更に除去するために使用されてもよい。更なる選択肢では、分離タンクからの浄化された水はリサイクルされて、通常の流路102内で濾過システムを通過してもよい(図1、図7〜図10)。
1つ以上の実施形態では、清浄化試薬が膜に導入されてもよい。例えば、液状の化学清浄化試薬が膜に導入される。1つ以上の化学清浄化試薬としては、以下に限定されないが、第1又は第2の供給体内へのオゾン、電解プロセスから生成される酸化化学物質の混合物、過酸化水素、酸、カセイアルカリ、又は次亜塩素酸ナトリウムが含まれる。
別の実施形態では、第2の容器が、加圧流体の第2の供給体を提供する。流体は、第2の容器を満たすことの前、間、又は後に加圧されてもよい。流体の第2の供給体は、低濃度の溶解ガスをその中に含む。例えば、加圧流体の第2の供給体は、溶解ガスをその中に実質的に含まない。別の選択肢では、加圧流体の第2の供給体は、5%未満の溶解ガスをその中に含む。水などの流体の第2の供給体は、水の第1の供給体を置き換えるために使用される。流体の第2の供給体は、一実施形態では、水の第1の供給体が膜を通して放出されるのとほぼ同時に提供されてもよい。別の実施形態では、流体の第2の供給体は、水の第1の供給体が膜を通して放出された後で提供される。水の第2の供給体は、逆流路における膜の上流の経路内で、又は別の実施形態では、逆流路における膜の下流の経路内で、又は両方で提供されてもよい。水の第2の供給体は、1つ以上の実施形態では、清浄化試薬及び/又はオゾンを備えてもよい。1つ以上の実施形態では、方法は、無機塩類、有機高分子電解質化学物質のうちの1つ以上を含む凝固化学物質のフィードを導入することを含む。清浄化プロセスの後又は間に、膜を清浄化するために使用された流体の第1の供給体及び/又は第2の供給体は、システムを通してリサイクルされて通常の流れプロセスの間に濾過されてもよい。
図11A〜図15を参照すると、1つ以上の実施形態が示されている。図11Aにおいて、システム200は、上述の逆洗清浄化システム100の様々な実施形態を組み込んでいる。一選択肢では、システム200は、ガス圧縮機212と連通するイオン化空気発生器210を更に含む。ガス圧縮機212はイオン化空気を圧縮し、それを第1の容器230に、流体232内の溶解酸化性ガスとして送り出す。第1の容器230は膜と流体連通し、これにより溶解酸化性ガスは膜に進み、上記で更に説明したように泡が膜上又は膜内で、あるいは膜の汚染側上で放出されて、膜を洗い流し清浄化する。容器230は、一選択肢では、バックフラッシュプロセスからのバックフラッシュ流体をその中に含む。更なる選択肢では、溶解ガスを有さないか又は実質的に低濃度の溶解ガスを中に有する高圧流体の第2の容器がシステム200に備えられてもよい。
別の実施形態では、図11Bに示すように、システム200は、上述の逆洗清浄化システム100の様々な実施形態を組み込んでいる。一選択肢では、システム200は、ガス圧縮機222と連通する加圧オゾン発生器220を更に含む。ガス圧縮機222はオゾンを圧縮し、それを第1の容器230に、流体232内の溶解酸化性ガスとして送り出す。第1の容器230は膜と流体連通し、これにより溶解酸化性ガスは膜に進み、上記で更に説明したように泡が膜上又は膜内で、あるいは膜の汚染側上で放出されて、膜を洗い流し清浄化する。容器230は、一選択肢では、バックフラッシュプロセスからのバックフラッシュ流体をその中に含む。更なる選択肢では、溶解ガスを有さないか又は実質的に低濃度の溶解ガスを中に有する高圧流体の第2の容器がシステム200に備えられてもよい。更なる選択肢では、オゾン発生器の前に空気を圧縮するガス圧縮機が備えられ、これはオゾン化ガスが所望の圧力において膜に直接導入され得るように十分な圧力で動作する。
図12は別の選択肢を示し、これは、溶解酸化性ガス232を中に有する加圧流体を有する加圧された第1の容器230と、溶解ガス242を有さないか又は実質的に低濃度の溶解ガス242を中に有する高圧流体の第2の容器240とを有するシステム200を含む。第1及び第2の容器230、240は膜と流体的に結合され、膜を清浄化するために使用される。例えば、逆洗清浄化動作の間、流体232が膜に送られ、同時に、溶解酸化性ガスが流体から逃げるのを防止するために高圧が維持される。圧力は膜の汚染側上でより低く、これにより、泡が流体から放出されて膜の汚染側を洗い流すことが可能になる。清浄化の間又は後に、流体242が第2の容器230から送り出されて、流体232を置き換える。図12の実施形態は、低圧オゾン及び/又はイオン化空気の供給源を更に含む。この実施形態は、オゾン又はイオン化空気を第2の容器240と膜との間の流体ライン内に導入するためのベンチュリエダクタ250を更に含む。水中のオゾン化及び/又はイオン化空気は膜を逆洗するために使用され、結果として生じる廃水は残留オゾン及び/又はイオン化空気を、微細凝集、酸化、又は消毒の利点を提供するために含む。オゾンは、例えば空気、酸素、又は水から生成されてもよい。
図13は、統合型の化学的に強化された逆洗及び給水前処理を更に含む別の実施形態を示す。システム300は、膜322を中に有するセラミックモジュールなどの膜モジュール320と流体的に結合された、バックフラッシュ流体供給源を有する容器330を含む。膜322は清浄側321と汚染側323とを有する。加えて、化学物質の供給源325すなわち薬注が膜モジュール320と流体的に結合される。膜清浄化逆洗プロセスの後で、化学的に処理されたバックフラッシュ水は前処理混合タンク380に送り出され、混合タンク380は原水フィードも受け取り、原水フィードと化学的に処理されたバックフラッシュ廃水との混合物を作る。
使用中に、例えば水のみを用いた、膜モジュール320内の蓄積した固体のほとんどのバックフラッシュ清浄化プロセスに続いて、膜322は、溶解した化学試薬を流体内に含む流体を用いて逆洗される。試薬は、膜モジュールの内部の有機又は無機材料と反応し、次に、原水フィードと混合されて微細凝集及び/又はpH調整を誘発する。タンク380内でフィードが混合されたら、濾過水などの濾過流体を得るために流体は膜モジュール320’及び320”に送られてもよい。本明細書中のモジュールは濾過サービスから一括して又は個別に除去されることが可能であり、すなわち各モジュールは清浄化される順番を有する。1つ以上のモジュールについて、清浄化プロセスが、例えば30分などの所定の期間にわたって、及び例えば、所定の濾過期間の後、及び/又は動作圧力の低下が一定の限度に到達した後などの所定の頻度で発生する。一例では、膜モジュール320が濾過サービスから除去されて清浄化される前、間、又はその後に、モジュール320’及び320”が濾過サービスから除去されて清浄化プロセスを受けてもよい。1つ以上の実施形態では、逆洗動作からの前置微細凝集タンク380内への継続的なオゾン供与が所望され、少なくとも1つのモジュールがオゾンを供給するために逆洗清浄化サイクルにある。
原水の微細凝集を有さない通常の処理環境下では、膜322の表面において除去される粒子のサイズはより小さく、これは多孔性と、膜322の表面上に蓄積した粒子(「汚染層」と呼ばれる)を横切る水輸送(フラックスとも呼ばれる)の速度とを低下させる。オゾンなどの「化学試薬」が追加された固体をリサイクルすることによる微細凝集効果は、より多くの汚物が存在するにもかかわらず、粒子のサイズと汚染層を通した水輸送の速度とを増加させる。視覚的イメージは次のようなものであり、すなわち、凝集されていない汚物は微粉から構成される汚染層を発生させ、これは少量であっても流れを制限するが、凝集は微粉を顆粒に変換し、これはより小さな抵抗を、汚染層内の材料の塊に相対的な流れに対して提供する、というものである。もちろん固体は最終的にこの再循環パターンから除去されなければならず、従って図13の381で示す流出接続が提供される。
図14は、給水前処理を更に含む別の実施形態を示す。システム300は、膜322を中に有するセラミックモジュールなどの膜モジュール320と流体的に結合された、バックフラッシュ流体供給源を有する容器330を含む。膜322は清浄側321と汚染側323とを有する。容器330は加圧された流体を含み、オゾンを有する加圧ガスを含む。膜清浄化逆洗プロセスの間、オゾン処理されたバックフラッシュ流体が膜322を清浄化し洗い流すために最初に使用され、次に、前処理混合タンク380に送り出される。混合タンク380は原水フィードも受け取り、原水フィードとオゾン処理されたバックフラッシュ廃水との混合物を作る。
使用中に、例えば水のみを用いた、膜モジュール320内の蓄積した固体のほとんどのバックフラッシュ清浄化プロセスに続いて、膜322は、流体内にオゾンを含む流体を用いて逆洗される。オゾンは、膜モジュールの内部の有機又は無機材料と反応し、次に、原水フィードと混合されて微細凝集及び/又はpH調整を誘発する。タンク380内でフィードが混合されたら、濾過水などの濾過流体を得るために流体は膜モジュール320’、320”に送られてもよい。
図15は、オゾンを有する加圧ガスを用いた給水前処理を更に含む別の実施形態を示す。システム300は、オゾン加圧ガスを中に有する加圧流体332を有する容器330を含む。流体332は、膜322を中に有するセラミックモジュールなどの膜モジュール320と流体的に結合される。膜322は清浄側321と汚染側323とを有する。容器330は加圧された流体を含み、オゾンを有する加圧ガスを含む。膜清浄化逆洗プロセスの間、オゾン処理されたバックフラッシュ流体が膜322を清浄化し洗い流すために最初に使用され、次に、前処理混合タンク380に送り出される。混合タンク380は原水フィードも受け取り、原水フィードとオゾン処理されたバックフラッシュ廃水との混合物を作る。
使用中に、例えば水のみを用いた、膜モジュール320内の蓄積した固体のほとんどのバックフラッシュ清浄化プロセスに続いて、膜322は、流体内にオゾンを含む流体を用いて逆洗される。オゾンは、膜モジュールの内部の有機又は無機材料と反応し、次に、原水フィードと混合されて微細凝集を誘発し、これにより凝固剤の必要性が減るか又はなくなる。タンク380内でフィードが混合されたら、濾過水などの濾過流体を得るために流体は膜モジュール320’、320”に送られてもよい。
1つ以上の実施形態では、方法は、以下に限定されないが低圧オゾン、イオン化空気、又はオゾンを有する加圧ガスなどの酸化性ガスを、第1の容器内の第1の流体内に溶解し、セラミック膜などの膜を含む膜モジュールに流体を送り出すことを含む。膜は清浄側と汚染側とを有する。方法は、流体から酸化性ガスを放出させて膜の汚染側を清浄化することを更に含む。追加の選択肢は、イオン化ガスを発生器からガス圧縮機に送り出し、圧縮された酸化性ガスを第1の容器に送り出すことによって、又は、加圧オゾンを発生器からガス圧縮機に送り出し、圧縮されたオゾンを第1の容器の流体に送り出すことによって、酸化性ガスを溶解することを含む。1つ以上の実施形態では、方法は、実質的に低溶解のガスを有する第2の流体を膜モジュールに送り出し、第1の流体を置き換えることを更に含む。
1つ以上の実施形態では、方法は、膜モジュール内の蓄積した固体のほとんどを除去するための逆洗プロセス動作に続いて、放出された酸化性ガスを有する第1の流体を前置微細凝集タンクに送り出すことを更に含む。膜は、溶解したオゾンを含む加圧水、又は大気圧条件下で流体内にオゾンを含む水などの流体を用いて逆洗される。オゾンは最初に、膜モジュールの内部の有機材料と反応し、次に、タンク内の原水フィードと混合された場合に微細凝集が誘発され、これにより凝固剤の必要性が減るか又はなくなる。タンク内の混合された結果の流体は、次に濾過されてもよい。1つ以上の実施形態では、方法は、膜を中に有する膜モジュールを水が逆洗し、溶解した化学試薬、オゾン、又は溶解したオゾンのうちの1つ以上を含む水で膜を逆洗し、溶解した化学試薬、オゾン、又は溶解したオゾンのうちの1つ以上を含む水を前処理混合タンク内で原水フィードと混合し、前処理混合タンクからの流体を濾過することを含む。必要に応じて、溶解したオゾンを含む水は加圧される。微細凝集が前処理タンク内で誘発され、これにより凝固剤の必要性が減るか又はなくなる。タンク内の混合された結果の流体は、次に濾過されてもよい。
上記の説明は限定的ではなく例示的であることを意図するものであるということを理解されたい。多くのその他の実施形態は、上記の説明を読んで理解することにより当業者にとって明らかになるであろう。説明の様々な部分において述べられた、又は様々な図面において参照された実施形態は、組み合わされて本発明の追加の実施形態を形成することが可能であるということに留意されたい。従って範囲は、添付の特許請求の範囲を、そのような特許請求の範囲に与えられる均等物の全範囲と共に参照して決定されるべきである。

Claims (14)

  1. 膜(122;322)を清浄化するシステム(100;200;300)であって、
    前記膜(122;322)は濾過システム内で流体から固体を濾過するためのセラミック又はポリマー膜のうちの少なくとも1つを含み、
    前記膜は清浄側(124;321)と汚染側(126;323)とを有し、
    前記システムは少なくとも、溶解ガスを中に有する高圧流体(132;232,332)の第1の供給体を更に備え、
    高圧流体(132;232,332)の前記第1の供給体は清浄化プロセスの間、前記膜(122;322)の前記清浄側(124;321)と流体連通し、
    前記高圧流体(132;232,332)内の前記溶解ガスは、前記清浄化プロセスの間に前記膜(122;322)の前記汚染側(126;323)上で必要に応じて泡の形態でガスが放出されるような濃度であり、前記溶解ガスは第1のガスを含み、前記第1のガスは酸化性ガスである、システム(100;200;300)。
  2. 前記清浄化プロセスの間に、前記膜(122;322)において蓄積する汚物と物理的に又は化学的に協働するように選択された清浄化試薬の供給源(220;325)を更に備える、請求項1に記載のシステム(200;300)。
  3. 前記膜(122)と選択的に流体連通する高圧流体(142;242)の第2の供給体を備え、高圧流体(142;242)の前記第2の供給体は、低濃度の溶解ガスをその中に有する、請求項1又は請求項2に記載のシステム(100;200)。
  4. 溶解ガスを有する高圧流体(132;232,332)の前記第1の供給体は、高圧条件における溶解度の約50%より大きな溶解ガス濃度を有する、請求項1〜請求項3のいずれか一項に記載のシステム(100;200;300)。
  5. 分離タンク(180)を更に備え、前記分離タンク(180)は逆流路(104)内で前記膜(122)の下流にある、請求項1〜請求項4のいずれか一項に記載のシステム(100)。
  6. 高圧流体の前記第1の供給体から高圧流体の前記第2の供給体への移行を可能にする移行制御を更に備える、請求項1〜請求項5のいずれか一項に記載のシステム。
  7. 膜(122;322)を清浄化する方法であって、前記方法は、
    酸化性ガスを、清浄化プロセスの間に前記膜(122;322)の汚染側(126;323)上に存在する動作圧力における溶解酸化性ガスの最大溶解度を超過する濃度において、第1の容器(130;230;330)内の第1の流体内に溶解し、
    前記清浄化プロセスの間に、前記第1の流体を、それが前記膜(122;322)を通過して酸化性ガスが必要に応じて泡の形態で前記膜(122;322)の前記汚染側(126;323)上で放出されるように、前記膜(122;322)の清浄側(124;321)に供給することを含む、方法。
  8. 低量の溶解ガスを有する第2の流体を前記膜(122;322)を通して導入し、前記第1の流体を少なくとも部分的に置き換えることを更に含む、請求項7に記載の方法。
  9. 前記膜(122;322)を前記泡を用いて清浄化することは、前記膜(122;322)を前記泡を用いて洗い流すことを含む、請求項7又は請求項8に記載の方法。
  10. 前記流体を、前記膜(122)を清浄化した後で分離タンク(180)に送り、汚物粒子を、付着したガスを用いて浮上させて、清浄な流体を前記汚物粒子から分離することを更に含む、請求項7〜請求項9のいずれか一項に記載の方法。
  11. 無機塩類、有機高分子電解質化学物質のうちの1つ以上を含む凝固化学物質のフィードを導入することを更に含む、請求項7〜請求項10のいずれか一項に記載の方法。
  12. 前記流体を前記膜の近くの入口にリサイクルすることを更に含む、請求項7〜請求項11のいずれか一項に記載の方法。
  13. 低圧オゾン又はイオン化空気、又はオゾンを有する加圧ガス、又は加圧オゾンのうちの1つ以上を前記膜(322)に導入することを更に含む、請求項7〜請求項12のいずれか一項に記載の方法。
  14. 前記第1の流体及び/又は前記第2の流体をそれぞれ加圧することを含む、請求項7〜請求項13のいずれか一項に記載の方法。
JP2015562077A 2013-03-15 2014-03-11 膜を清浄化するシステム Pending JP2016515045A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13159523.3A EP2777803A1 (en) 2013-03-15 2013-03-15 System for cleaning a membrane
EP13159523.3 2013-03-15
PCT/EP2014/054617 WO2014139969A1 (en) 2013-03-15 2014-03-11 System for cleaning a membrane

Publications (1)

Publication Number Publication Date
JP2016515045A true JP2016515045A (ja) 2016-05-26

Family

ID=47900866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562077A Pending JP2016515045A (ja) 2013-03-15 2014-03-11 膜を清浄化するシステム

Country Status (5)

Country Link
US (1) US20160023166A1 (ja)
EP (1) EP2777803A1 (ja)
JP (1) JP2016515045A (ja)
CA (1) CA2902339A1 (ja)
WO (1) WO2014139969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999674A (zh) * 2018-12-06 2019-07-12 曾杰 基于微波处理的过滤器的清洗干燥工艺及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268324B (zh) * 2015-03-17 2017-06-20 内蒙古君正化工有限责任公司 一种远程自动酸洗系统及控制方法
KR101973431B1 (ko) * 2016-09-29 2019-04-29 삼성전기주식회사 팬-아웃 반도체 패키지
CN106915807A (zh) * 2017-04-07 2017-07-04 北京东方燕京工程技术股份有限公司 高效浓缩机的药剂稀释装置
JP6933033B2 (ja) * 2017-07-31 2021-09-08 ブラザー工業株式会社 画像形成装置
EP3727627A4 (en) 2017-12-22 2021-09-22 Ozono Polaris, S.A. DE C.V. METHOD AND SYSTEM FOR WASHING BACK AND BACK ADSORPTIVE MEDIA

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058222A (ja) * 1983-09-07 1985-04-04 Jgc Corp 多孔質濾過膜の再生方法
JPS63171605A (ja) * 1987-01-09 1988-07-15 Hitachi Ltd 中空糸膜フイルタの炭酸ガス洗浄法
JPH06262173A (ja) * 1993-03-15 1994-09-20 Daicel Chem Ind Ltd 回収率が改善された表流水の膜浄化方法及びその装置の運転方法
JPH07236818A (ja) * 1994-02-25 1995-09-12 Dick Deguremon Kk 内圧式中空糸モジュールの逆洗方法
JP2001070764A (ja) * 1999-09-09 2001-03-21 Asahi Kasei Corp 洗浄の方法
JP2002079064A (ja) * 2000-09-11 2002-03-19 Isomura Housui Kiko Kk 水処理の方法
JP2004130205A (ja) * 2002-10-10 2004-04-30 Fuji Electric Systems Co Ltd オゾン含有水を用いたろ過膜の逆洗方法および逆洗装置
JP2011072939A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 膜処理設備
JP2013086062A (ja) * 2011-10-20 2013-05-13 Metawater Co Ltd 油水分離システムおよび油水分離方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553418B2 (en) * 2007-08-18 2009-06-30 Khudenko Engineering, Inc. Method for water filtration
CA2607713C (en) * 2007-11-14 2009-05-26 Dagua Inc. Water treatment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058222A (ja) * 1983-09-07 1985-04-04 Jgc Corp 多孔質濾過膜の再生方法
JPS63171605A (ja) * 1987-01-09 1988-07-15 Hitachi Ltd 中空糸膜フイルタの炭酸ガス洗浄法
JPH06262173A (ja) * 1993-03-15 1994-09-20 Daicel Chem Ind Ltd 回収率が改善された表流水の膜浄化方法及びその装置の運転方法
JPH07236818A (ja) * 1994-02-25 1995-09-12 Dick Deguremon Kk 内圧式中空糸モジュールの逆洗方法
JP2001070764A (ja) * 1999-09-09 2001-03-21 Asahi Kasei Corp 洗浄の方法
JP2002079064A (ja) * 2000-09-11 2002-03-19 Isomura Housui Kiko Kk 水処理の方法
JP2004130205A (ja) * 2002-10-10 2004-04-30 Fuji Electric Systems Co Ltd オゾン含有水を用いたろ過膜の逆洗方法および逆洗装置
JP2011072939A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 膜処理設備
JP2013086062A (ja) * 2011-10-20 2013-05-13 Metawater Co Ltd 油水分離システムおよび油水分離方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999674A (zh) * 2018-12-06 2019-07-12 曾杰 基于微波处理的过滤器的清洗干燥工艺及装置
CN109999674B (zh) * 2018-12-06 2021-09-10 曾杰 基于微波处理的过滤器的清洗干燥工艺及装置

Also Published As

Publication number Publication date
EP2777803A1 (en) 2014-09-17
US20160023166A1 (en) 2016-01-28
CA2902339A1 (en) 2014-09-18
WO2014139969A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP2016515045A (ja) 膜を清浄化するシステム
JP5908186B2 (ja) 膜を用いた水処理方法および水処理装置
EP2554245A1 (en) Method for cleaning separation membrane module, and method for fresh water generation
CN103619451B (zh) 分离膜组件的清洗方法
CN115121124A (zh) 过滤膜的清洗方法及清洗装置、以及水处理系统
JP5467793B2 (ja) 浸漬型膜分離装置の運転方法
JP2011088053A (ja) 淡水化処理設備及び方法
JP4867180B2 (ja) 浸漬型膜分離装置及びその薬品洗浄方法
JP2018167162A (ja) 中空糸膜モジュールの洗浄方法
CN110709153B (zh) 水处理膜的清洁装置、清洁方法以及水处理系统
JP2007289847A (ja) 水道原水の浄水処理方法及びその装置
JP2022525031A (ja) 水から難除去性有機化合物を除去するためのシステムおよび方法
JP2009000591A (ja) 有機物含有排水の水処理方法
JP2007130587A (ja) 膜ろ過装置及び膜の洗浄方法
JP5801249B2 (ja) 淡水化装置及び淡水化方法
JP2016150283A (ja) 膜処理装置及び膜処理方法
JP5120106B2 (ja) 有機アルカリ排水の処理方法及び処理装置
JP2008246424A (ja) 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置
JP2007216102A (ja) ろ過装置及びろ過装置の膜洗浄方法
WO2019106752A1 (ja) 水浄化システム
JP2013034938A (ja) 膜モジュールの洗浄方法
JP2009274021A (ja) 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置
JP4335193B2 (ja) 有機性廃水の処理方法及び装置
KR101886215B1 (ko) 여과막 세정장치
JP2003340247A (ja) 水処理装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180424