JP2022525031A - 水から難除去性有機化合物を除去するためのシステムおよび方法 - Google Patents

水から難除去性有機化合物を除去するためのシステムおよび方法 Download PDF

Info

Publication number
JP2022525031A
JP2022525031A JP2021553024A JP2021553024A JP2022525031A JP 2022525031 A JP2022525031 A JP 2022525031A JP 2021553024 A JP2021553024 A JP 2021553024A JP 2021553024 A JP2021553024 A JP 2021553024A JP 2022525031 A JP2022525031 A JP 2022525031A
Authority
JP
Japan
Prior art keywords
spac
line
adsorption reactor
water
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021553024A
Other languages
English (en)
Inventor
リード、テレンス、ケー
ボーマン、ピーター、ジー
Original Assignee
アクア-エアロビック システムズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクア-エアロビック システムズ,インコーポレイテッド filed Critical アクア-エアロビック システムズ,インコーポレイテッド
Publication of JP2022525031A publication Critical patent/JP2022525031A/ja
Priority to JP2023127106A priority Critical patent/JP2023145713A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/40Adsorbents within the flow path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【解決手段】本発明は、サブミクロン粉状活性炭を使用して、水、特に地下水および飲料水から、PFASおよび他の難除去性有機化合物汚染物質の除去を増加させるシステムおよび方法に関する。【選択図】図1

Description

本発明は、水からパーフルオロアルキルおよびポリフルオロアルキル物質を含む難除去性有機化合物を除去するためのシステムおよび方法に関する。特に、本発明は、セラミック膜濾過と組み合わせてサブミクロンの粉状活性炭を使用して、そのような汚染物質を水から除去するためのシステムおよび方法に関する。本発明はまた、使用済み炭素の濃縮および除去のためのシステムおよび方法にも関する。
パーフルオロオクタン硫酸(「PFOS」)やパーフルオロオクタン酸(「PFOA」)などのパーおよびポリフルオロアルキル物質(「PFAS」)は、それらの前駆体および関連する範囲内のものを含めて、水および油に耐性を有する化合物である。それらは、敷物類、室内装飾品、消火泡など、種々様々の産業で使用されている人工の化合物である。しかしながら、そのような化合物は、生体内蓄積性で既知の発がん物質であり、水から、特に地下水および飲料水からそれらを除去することは、重要な環境上の問題である。強いフッ素-炭素結合の故に、PFAS化合物は生物学的および化学的酸化を含む一般的処理方法に耐性を有する。
水からPFASを除去する、より一般的な方法の1つは、粒状活性炭(「GAC」)または粉状活性炭(「PAC」)処理システムである。その名前が示すように、GACは粒状活性炭を使用して、PFAS等などの有機難除去性化合物を含む様々な汚染物質を除去する。典型的なGACシステムでは、タンクは粒状活性炭を含んでおり、そのタンクは、汚染物質がGACと反応するのに十分な時間、処理されるべき水の流れを保持するのに十分なサイズのものである。反応の間、PFASその他の有機化合物は粒状活性炭の表面に付着する、すなわち、それらは粒状活性炭によって吸着される。
使用の後、有機汚染物質化合物の吸着は、システムが機能しなくなる点まで低下する。言い換えれば、汚染物質の吸着量が、求められる処理要件よりも少なくなったときに、破過が生じると言われている。その時点で、典型的なシステムは停止され、粒状活性炭が取り出され、適切に修復されなければならない。濾過された汚染物質に応じて、使用済みGAC、特にPFASを吸着したものは抜き出され、そして焼却処分されなければならない。さらに、GACシステムの急速な破過ならびに頻繁なGACの再生および処理の必要の故に、GAC処理の運転コストは比較的高い。比較的大きいプラント設置面積もGAC処理システムには必要とされる。
GACが汚染物質を吸着する能力および典型的な破過時間は、その炭素の平均粒子径(「MPD」)と関係している。従来のGACシステムでは、MPDはおよそ1,600ミクロンである。PACを使用するシステムでも、PACのMPDは45ミクロン以上である。GACとPACの両方において、PFASの吸着は、マクロ細孔、ミクロ細孔およびメソ細孔を含む炭素の多孔質構造によって促進される。主要な吸着機構は汚染物質のサイズに依存し、マクロ細孔およびメソ細孔がPFASの除去のために最も重要であることが分かっている。GACとPACの両方について、より大きいMPDのものを用いると、内部の細孔へのアクセスが制限されて、炭素粒子内の奥深くに吸着する表面積が利用可能であるにもかかわらず破過に至ることが起こり得る。示されているように、MPDが大きくなると破過時間は短くなり、炭素の除去および廃棄処分コストが増加する。さらに、典型的なGACシステムは、短鎖長の(すなわち、4、6および7炭素鎖長の)PFAS化合物を有効には除去しない。
したがって、水、特に地下水および飲料水から、PFASおよび他の難除去性有機化合物汚染物質の除去を増加させる必要が存在する。典型的なGAC濾過システムの破過時間を増加させ、かつ使用済み材料の廃棄処分の負担および費用を減少させる必要もまた存在する。本発明では、サブミクロンの粉状活性炭(「SPAC」)の使用およびそのより小さい粒子サイズが、より大きい表面積および増加したメソ細孔の量を提供し、より低い使用済み率およびより速い吸着をもたらし、必要な容積がより小さくて済むことが見い出された。SPACはまた、既知の処理法では効果がない短鎖PFASの除去にも有効である。SPACおよび本発明によって提供される、より大きい表面積ならびにメソ細孔およびマクロ細孔への改善されたアクセスは、所定の炭素量基準でPFASの吸着をGACのそれの500倍超増加させることを示した。さらに、本発明は、使用済みSPACの増粘または濃縮をもたらして、廃棄処分コストを低減する。
したがって、本発明は、既知のPFAS除去システムおよび方法の利点を保持し、さらに新規な特徴および利点を提供する。
本発明の目的は、サブミクロン粉状活性炭(「SPAC」)を使用して、水から難除去性有機化合物汚染物質を除去することであり、この汚染物質にはPFAS、1,4-ジオキサン、BTEXおよび他の多くのものが含まれる。
本発明の別の目的は、吸着リアクター、好ましくは加圧吸着リアクターを提供して、SPACが、処理されるべき水の流入液から汚染物質を吸着するのに十分なSPACと水とのスラリーの滞留時間を与えることである。
本発明の追加の目的は、セラミック膜フィルター、好ましくは高速度クロスフローセラミック膜フィルターを使用して、汚染物質を吸着したSPACから濾過された水を分離し、そして大量液体の一部を吸着リアクターに戻すことである。
本発明のさらなる目的は、SPACの回収率および濃度を増加させて、使用済みSPACの除去および廃棄処分を低減することである。
本発明のさらに追加の目的は、処理された水が、高強度、高速度のクロスフローセラミック膜フィルターおよびフィードアンドブリード型のSPAC保存および回収システムを使用してSPACから分離されるときに、SPACを閉ループ系に保持することである。
本発明のさらに別の目的は、SPACおよびその吸着された汚染物質から、処理された水を濾別している間に、セラミック膜濾過システムの膜の汚れを洗い流し、清浄にすることである。
本発明のさらにさらなる目的は、セラミック膜フィルターを使用して、SPACを当該システム内に保持し、それにより、SPACがPFASを含む可溶性および難除去性有機化合物の除去を継続することができるようにすることである。
本発明のさらに別の目的は、高速度クロスフローセラミック膜フィルターを使用して、逆流洗浄頻度および逆流洗浄廃棄物を低減することである。
本発明のもうさらなる目的は、汚染物質吸着量を最大限にし、かつSPACの使用済み率および廃棄処分を低減することである。
本発明のもうさらなる別の目的は、使用済みSPACを濃縮して、除去および/または廃棄処分の頻度および量を低減することである。
本発明の目的に従って、水から汚染物質を除去する方法が提供される。その工程は以下のものを含んでいる:サブミクロン粒状活性炭(SPAC)を、処理されるべき水の流入液流れに加える工程;SPACと、処理されるべき水とを一緒にする工程;SPACと水との混合物またはスラリーを処理のための吸着リアクターに導入する工程;混合物を吸着リアクターの中に、SPACが水の中の汚染物質を吸着するのに十分な滞留時間、保持することを可能にする工程;および吸着リアクターから混合物またはスラリーを、リサイクルポンプを使用してクロスフロー濾過で作動している高速度セラミック膜フィルターユニットへ転送する工程であって、高速度セラミック膜フィルターユニットにおいて、処理された水が透過液として放出され、かつ、SPACスラリーが保持液として吸着リアクターに戻される工程。この方法はまた、以下の工程を含んでいてもよい:SPACが破過に達した後、SPACと吸着された汚染物質との濃縮物をセラミック膜フィルターから濃縮物ラインを経由して除去する工程;および新しいSPACを水の流入液流れに加えて、汚染物質の除去を継続する工程。さらに、好ましい方法では、SPACおよび吸着された汚染物質は、保持液が増粘されその後廃棄処分のための濃縮物ラインを経由して除去されるまで、吸着リアクターへの流入液流れを停止してリサイクルポンプの運転を継続することによって、除去のために増粘される。セラミック膜フィルターの膜は、およそ0.1ミクロンの公称細孔サイズ障壁を有する。好ましい方法では、流入液流れの流量は1Qiであり、SPACと流入液との混合物は、流入液の10倍の流量(10Qi)で吸着リアクターからセラミック膜フィルターまでポンプで送られる。また、好ましくは、透過液は、流入液流れの1倍の流量(1Qi)でセラミック膜フィルターから放出され、かつ、保持液はQrの流量で吸着リアクターに戻され、Qrは好ましくは流入液の9倍の流量(9Qi)である。好ましくは、SPACはおよそ1ミクロン未満の平均粒子径を有する。
また、提供されるのは、水からPFASを含む汚染物質を除去するシステムである。このシステムは、以下のものを含んでいる:流入液ラインと流体連結している加圧吸着リアクター;SPACを流入液に加えるための流入液ラインと連結しているSPAC供給ライン;処理されるべき水の流入液流れおよびサブミクロン粉状活性炭(「SPAC」)を受け入れる吸着リアクターであって、この吸着リアクターは、除去されるべき汚染物質がスラリー中のSPACによって吸着されるように、流入液およびSPACスラリーを十分な保持時間、保持する能力を有する、吸着リアクター;吸着リアクターの放出口と連結しているスラリー流出液ラインおよびスラリー流出液ライン中のリサイクルポンプ;吸着リアクターのスラリー流出液ラインと流体連結しているクロスフローセラミック膜フィルター;汚染物質を吸着したSPACを高流量でセラミック膜フィルターユニットに移送するリサイクルポンプであって、このセラミック膜フィルターユニットが汚染物質を吸着したSPACから処理された水を透過液として分離するリサイクルポンプ;流入液ラインと流体連結している加圧吸着リアクター;SPACを流入液に加えるための流入液ラインと連結しているSPAC供給ライン;処理されるべき水の流入液流れおよびサブミクロン粉状活性炭(「SPAC」)を受け入れる吸着リアクターであって、この吸着リアクターは、流入液およびSPACスラリーを、除去されるべき汚染物質がスラリー中のSPACによって吸着されるように、十分な保持時間、保持する能力を有する、吸着リアクター;吸着リアクターの放出口と連結しているスラリー流出液ラインおよびスラリー流出液ライン中のリサイクルポンプ;吸着リアクターのスラリー流出液ラインと流体連結しているクロスフローセラミック膜フィルター;汚染物質を吸着したSPACを高流量でセラミック膜フィルターユニットに移送するリサイクルポンプであって、このセラミック膜フィルターユニットが汚染物質を吸着したSPACから処理された水を透過液として分離するリサイクルポンプ;処理された水を透過液として除去するためのセラミック膜フィルターと流体連結している透過液ライン;SPACスラリーを流入液ラインに戻す、セラミック膜フィルターおよび吸着リアクターと流体連結している保持液ライン;および破過の後にSPACを除去するための濃縮物ライン。好ましいシステムは、およそ1ミクロン未満の平均粒子径を有するSPACを使用し、その場合にセラミック膜フィルターは、およそ0.1ミクロンの公称細孔サイズ障壁を有する。このシステムの1つの実施形態では、流入液ラインと流体連結しているSPAC供給システムが含まれていてもよい。
発明者の用語の定義
本特許出願の様々な請求項および/または明細書の中で使用されることがある以下の用語は、法律の要件と整合するそれらの最も広い意味を有することが意図されている:
本明細書で使用される「流入液」または「流入液流れ」(Qiとも呼ばれる。)とは、汚染物質除去システム中に導入される、処理されるべき液体(水または排水)を指す。
本明細書で使用される「透過液」または「濾液」とは、汚染物質除去システムによる処理およびSPACとそれに吸着された汚染物質との分離後の、処理された流体または流体流れを指すものとする。
本明細書で使用される「保持液」または「保持液流れ(Qr)」とは、SPACを含有する大量液体またはスラリーであって、それから「透過液」または「濾液」が除去されたものを指す。
本明細書で使用される「SPAC」とは、サブミクロンの、または超微細の粉状活性炭、好ましくは木質ベースの、また好ましくはおよそ1ミクロン未満の平均粒子径を有するものを指す。
本明細書で使用される「PFAS」とは、広範囲のパーまたはポリフルオロアルキル物質を指し、たとえば、パーフルオロオクタンスルホン酸(PFOS)およびパーフルオロオクタン酸(PFOA)とともに短鎖ポリフルオロアルキル酸(PFAA)およびその前駆体が挙げられる。本明細書で使用されるPFASはまた、一般的に他の難除去性有機化合物を指してもよい。
本明細書で使用される「破過」とは、所望の有効な処理のために十分なレベルの汚染物質を吸着することがもはやできないSPACを指す。
代替的な意味が可能な場合には、本明細書または特許請求の範囲においては、当業者の理解と一致するその最も広い意味が意図されている。特許請求の範囲で使用されている全ての言葉は、文法、商業取引および英語の通常の慣習的な使用法で使用されることが意図されている。
本発明の記載されたおよび記載されていない目的、特徴および利点(単数形で使用されることもあるが、複数形を排除するものではない。)は、以下に示される記載および図面から明らかになるだろう。その場合に、同じような参照番号は様々な図面において同じような要素を表す。
本発明の好ましい汚染物質除去システムの基本的な形態の概略図である。
本発明のより包括的な好ましい汚染物質除去システムの概略図である。
以下に記載されているのは、特許請求されている本発明の好ましい実施形態または最良の代表的な実施例であると現在のところ考えられているものの記載である。これらの実施形態および好ましい実施形態に対する将来および現在の代替物および実施形態が検討される。機能、目的、構造または結果における実質的でない変更を加えるどのような代替物または変形物も、本特許出願の特許請求の範囲によってカバーされることが意図されている。
本発明の好ましいPFAS除去システムおよび方法が、その基本的な形態で図1に示される。本システムは流入液ライン11を含んでおり、これは処理されるべき水の流入液の流れ(Qi)を本システムの中に導入する。SPAC12は、典型的には炭素供給システムまたは以下に記載されるような他の手段を使用して、SPAC供給ライン13を経由して流入液(Qi)に加えられる。ミキサー14が任意的に含まれて、処理されるべき大量液体またはスラリーを形成する、流入水とSPAC12とを混合するのを促進してもよい。SPAC12と流入液とのスラリーは、次に供給ポンプ16によってスラリー供給ライン15を通って吸着リアクター20へ輸送される。供給ポンプ16は、流入液流れおよびSPACスラリーを設計流量(Qi)で輸送するようなサイズにされる。供給ポンプ16は、SPACスラリーとともにQiで流入液を、スラリー供給ライン15を経由して吸着リアクター20へ輸送する。
好ましい実施形態では、本システムおよび方法は、およそ1ミクロン未満の平均粒子径(MPD)を有する木質ベースのSPAC12を使用する。サブミクロンの粉状粒子の使用は、単位質量当たりのより大きい外部表面積および粒子に含まれたメソ細孔の量の増加およびそれへのアクセスを提供して、より速い、より有効な汚染物質の吸着を可能にする。サブミクロンの粉状粒子の使用はまた、汚染物質へのより大きい接触およびより低い使用済み率を可能にする。その結果、それは、とりわけ、短鎖PFASの除去に有効であることが判明した。
SPAC12は、現行需要が比較的少ないので、在庫が豊富で容易に入手可能な材料であるとは現在のところ考えられていない。しかし、それは、GACおよび/またはPACから容易に製造されることが可能であり、GACおよび/またはPACについては、当業者は理解しているように、多くのメーカーが知られている。いくつかの知られたGAC/PACメーカーとしては、Asbury Carbons社、Nalco Waters社およびCalgon Carbons社が挙げられる。これらおよび他のGAC/PACメーカーはまた、SPACを製造するのに利用可能な粉砕プロセスを有している。たとえば、Asbury Carbons社は、容易に利用可能な粉砕プロセスを所有し、それは非常に短いリードタイムでGACまたはPACからSPACを製造することができる。このように、本発明のSPACの供給源は、当業者に容易に入手可能である。
好ましい実施形態では、SPAC12は、取り扱いの容易さおよび最終使用のために、液体スラリーで製造され、処理サイトへ出荷されるだろう。たとえば、1ミクロンのSPACおよび水の10%スラリー(100グラム炭素/リットル)が、本発明で使用するのに望ましいことが分かった。以下に記載されるように、当初のSPAC12スラリーは、処理されるべき流入水によって作業濃度にまでさらに希釈されて、吸着リアクター20に移送される。SPACスラリーが100グラム炭素/リットルである好ましい実施形態では、そのスラリーは、吸着リアクター20ではおよそ0.5~2グラム炭素/リットルに希釈される。これらの濃度は単なる例示であり、限定するものではない。
吸着リアクター20は容器であり、その容器内で、PFASがSPAC12によって吸着されることができるように、とりわけ、処理されるべき水がSPAC12またはSPACスラリーと十分な時間、接触している。吸着タンク20は、PFASおよび他の汚染物質が吸着タンク20内でSPAC12によって吸着されるように、SPAC12と処理されるべき水との反応チャンバーとしての役割を果たしている。吸着リアクター20は、PFASおよび他の汚染物質がSPAC12によって十分に吸着されることができるように、SPAC/流入液スラリーの所望のおよび/または設計された滞留時間を提供する。
好ましい実施形態では、吸着リアクター20は、以下に記載されるように、流入液流れの少なくとも10倍(10Qi)を収容するようなサイズである。吸着リアクター20はまた、SPACによるPFASおよび他の汚染物質の吸着を促進するために、所望の滞留時間を提供するようなサイズであることも当業者によって理解されるだろう。所与の流量において吸着リアクター20が大きければ大きいほど、それはそれだけ長い滞留時間を提供することができる。好ましい実施形態では、流入液流量(Qi)で30~60分間の滞留時間は、100ガロン(379リットル)/分の(Qi)の典型的な流入液を有する流入液中のSPACとPFASとの間の反応に十分であると確認された。所望の処理パラメーターおよび流入液流れに応じて、他の滞留時間でも十分であろう。したがって、Qiが100ガロン(379リットル)/分であり、吸着リアクター20中の滞留時間が1時間であるシステムでは、吸着リアクター20は少なくとも6,000ガロン(22.7キロリットル)を収容しなければならない。
本発明の好ましい吸着リアクター20は、大気から閉ざされた加圧タンクである。近道を防ぐために、バッフル21(図2を参照)が吸着リアクター20内に備えられていてもよい。非加圧タンクが使用されてもよいことは当業者に理解されるだろう。しかし、そのようなタンクは比較的背が高くなければならず、および/または実質的により大きいエネルギー必要量が要求されることになるだろう。
SPACは、PFASおよび他の汚染物質を吸着リアクター20内で吸着する。吸着リアクター20内での十分な滞留時間の後、SPACと大量液体とが反応したスラリーは、次にスラリー流出液ライン22を経由してセラミック膜フィルターユニット30にリサイクルポンプ26を使用して輸送される。好ましい実施形態では、リサイクルポンプ26は、スラリー流出液ライン22を通ってセラミック膜フィルター30に流入液流れの10倍(10Qi)を輸送するサイズを有する。
セラミック膜フィルターユニット30は、本発明の重要な独特の機能を提供する。第1に、セラミック膜フィルター30は、SPACおよび吸着された汚染物質を、処理された液から分離し、この処理された液は透過液ライン32を経由して清浄な透過液として排出される。セラミック膜フィルターはまた、流入液のさらなる処理のためにSPACスラリーを吸着リアクター20に戻し、これはSPACの消費量を低減する。第3に、セラミック膜フィルター30はまた、破過または消尽後にSPAC12を濃縮し増粘する役割をし、複雑な追加の装置を必要としないでSPAC12の廃棄処分を助ける。
好ましい実施形態では、セラミック膜フィルター30は、0.1ミクロンの公称細孔サイズ障壁を有する。この小さい細孔サイズは、セラミック膜フィルター30の各膜を通り抜ける際の高い透過性および低減された圧力損失をもたらす。当業者によって理解されるように、適当なセラミック膜フィルター30は、Aqua-Aerobic Systems社(www.aqua-aerobic.comを見よ。)を含む多数のメーカーから入手可能である。
好ましい実施形態では、セラミック膜フィルター30は、クロスフロー濾過モードで操作される。好ましくは、リサイクルポンプ26は、流入液流量の10倍、すなわち10QiでSPAC/液体スラリーをスラリー流出液ライン22経由でセラミック膜フィルター30に送る。セラミック膜フィルター30の膜は、SPACと液体とのスラリーから、処理された液を分離する。処理された水は、好ましくは、当初流入液の流量Qiとおよそ同じ流量で透過液ライン32を経由して透過液として放出される。透過液として放出されなかったSPACおよび大量液体は、セラミック膜フィルター30から保持液(Qr)として保持液ライン36を経由して、好ましくは当初の流量の9倍、すなわち9Qiで放出される。保持液は吸着リアクター20の上流で、スラリー供給ライン15または直接吸着リアクター20のいずれかに戻される。とりわけ、SPACを含んでいる保持液スラリーの戻しは、吸着リアクター20中のSPAC12の濃度を増加させ、それによって、システムに追加する必要のある未使用のSPAC12が少なくて済む。これはまた、SPAC12によって高められたPFAS吸着を促進する。セラミック膜フィルター30はまた、濃縮物出口37を備えており、これは濃縮物抜き出しライン38と流体連結していて、破過の後に使用済みSPAC12を除去する。
重要なことは、透過液としてわずか1Qiを除去しながら、セラミック膜フィルター30へポンプで高速度スラリーを10Qiで送り込むことは、セラミック膜フィルター30の内部の膜31の汚れを洗い流す。これは、清浄な膜31および膜31の高い透過性の維持をもたらす。これはまた、逆流洗浄の必要の頻度も低減する。高い速度でセラミック膜フィルター30を通すことは、生物成長の機会をさらに低減し、これは、濾過効率を維持するのに役立ち、頻繁な逆流洗浄または化学的調整の必要を減らす。好ましい実施形態では、ポンプ26によって10Qがセラミック膜フィルター30に送られる場合に、1Qiが透過液として透過液ライン32を経由して除去される。その結果、9Q(9Qr)が、保持液として保持液ライン36を経由して吸着リアクター20に戻される。これらの流量は例示的および/または好ましいものであり、また他の流量が本発明と一貫性があり使用されてもよいことは当業者によって理解されるだろう。
上記されたものは、本発明のSPAC、吸着リアクター20およびセラミック膜フィルター30を使用してPFASを除去するための基本的なシステムおよび方法である。さらに、本発明のより包括的なシステムが、図2を参照することによって本明細書に記載される。SPACの増粘および除去のシステムおよび方法も、図2を参照することによって記載される。もっとも、増粘および除去はまた、図1に示された基本的なシステムの一部でもある。
図2に示されたように、SPAC供給システム40は、SPAC12の流入液ライン11への直接供給および任意的なミキサー14の使用の代替物として提供される。SPAC供給システム40は、タンク41およびミキサー42を備えており、ミキサー42は本システムでの使用のためにSPACスラリーを混合する。具体的には、好ましい実施形態では、10%SPACスラリー(たとえば、炭素100グラム/リットル)が、タンク41に加えられミキサー42によって混合される。SPACスラリーは、タンク41からSPAC供給ポンプ43を使用してSPAC供給ライン13を通って流入液ライン11に送られる。混合物またはスラリーはその後、供給ポンプ16を使用して、好ましくはQiの流量でスラリー供給ライン15を経由して吸着リアクター20に送られる。好ましい実施形態では、10%のSPAC濃度は、吸着リアクター20でおよそ炭素0.5~2グラム/リットルに希釈される。概略図で示されたように、好ましい吸着リアクター20は、近道を防止するのに役立てるために1つ以上のバッフル21を備えている。SPAC12が汚染物質を吸着するのに十分な滞留時間の後、大量液体は、スラリー流出液ライン22およびリサイクルポンプ26を経由してセラミック膜フィルター30に送られる。この場合もまた、好ましいポンプ輸送量は、セラミック膜フィルター30およびそれに応じたサイズを有するリサイクルポンプ26の中に10Qiで送り込むことである。
図1の実施形態と同じように、セラミック膜フィルター30は、SPAC12およびそれに吸着された汚染物質から透過液を分離する。透過液は、1Qiの流量でセラミック膜フィルター30から透過液ライン32を経由して除去される。しかし、この実施形態では、透過液ライン32と流体連結している透過液タンク50が設けられている。セラミック膜フィルター30からの透過液は透過液タンク50に送られ、処理された流出液として透過液ドレン管52を経由して除去され、またはこれから先に記載されるように逆流洗浄に使用するために貯蔵されてもよい。
図2の実施形態では、逆流ライン62は、逆流洗浄に使用するための透過液の抜き出しのために透過液タンク50と流体連結している。逆流洗浄ポンプ61も逆流ライン62に設けられている。逆流ライン62は逆流洗浄タンク70と流体連結している。逆流洗浄タンク70は次に、セラミックフィルター膜ユニット30の透過液ライン32と流体連結している。逆流洗浄が望ましいまたは要求される場合には、透過液が、透過液タンク50から逆流洗浄ポンプ61によって逆流洗浄タンク70に送られる。逆流洗浄タンク70からの透過液は、逆流洗浄ライン62から透過液ライン32に流れ、透過液ライン32はセラミック膜フィルター30と流体連結している。これは、以下に記載されるように、セラミック膜フィルター30を通る流れを逆方向にして、膜31を逆流洗浄する。
任意的な化学薬品タンク60がまた、設けられてもよい。化学薬品タンク60は化学薬品供給ライン65と流体連結しており、化学薬品供給ライン65は化学薬品供給ポンプ64を備えている。化学薬品供給ライン65も、次の順番として逆流ライン62と流体連結している。化学薬品タンク60は、セラミック膜フィルター30の膜を逆流洗浄する場合に使用されてもよい化学薬品の溶液を保有する。そのような化学薬品としては、膜を清浄にするのを促進するためにNaOClおよびクエン酸が挙げられてもよい。当業者によって理解されるように、他の化学薬品が使用されてもよい。したがって、化学薬品が逆流洗浄への使用に望まれる場合には、その化学薬品溶液が、化学薬品供給ポンプ64によって、化学薬品供給ライン65を通って逆流洗浄ライン62の透過液流れの中に送り込まれる。
さらに、任意的な空気供給器80が設けられてもよい。空気供給器80は、空気供給ライン81と流体連結している。空気供給ライン81は、逆流洗浄タンク70および保持液ライン36と流体連結している。空気供給器80は、逆流洗浄に使用されるために特定のステムで提供されてもよい。逆流洗浄が望まれる場合には、空気供給器80は、圧力設定値に達するまで空気供給ライン81を介して逆流洗浄タンク70を加圧し、その後、空気供給バルブ83が閉じる。それから、その後、逆流洗浄バルブ63が開かれ、逆流タンク70から膜フィルター30を通って加圧された透過液が放出され、膜31を清浄にするのを助ける。
本発明の重要な態様は、使用済みSPAC12の増粘、脱水および除去である。好ましいシステムおよび方法が、図2を参照することによって記載される。PFASおよび他の有機汚染物質の除去については、Qiの流量での流入液の流れが、流入液ライン11で導入される(たとえば、100ガロン(379リットル)/分)。SPAC供給ポンプ43を使用して、SPAC溶液(たとえば、炭素100グラム/リットル)が、SPACタンク41からSPAC供給ライン13を経由して、開かれたSPAC供給バルブ18を通って送られる。流入液とSPACとのスラリーは、供給ポンプ16によってスラリー供給ライン15を経由して吸着タンク20へ送られる。このスラリーは、Qiの流量で吸着リアクター20に送り込まれる。このSPAC12と流入液とのスラリーは、所望の保持時間吸着リアクター20に滞留され、それによってPFASおよび他の汚染物質はSPAC12の中に吸着される。吸着リアクター20の中のSPAC12スラリーの濃度は、典型的には炭素0.5~2グラム/リットルであってもよい。
汚染物質を吸着したSPACと大量液体とのスラリーは、吸着リアクター20から濾過のためにセラミック膜フィルター30に転送される。具体的には、スラリーは、リサイクルポンプ26を使用して、スラリー流出液ライン22を通って、開かれたリサイクルバルブ27を通ってセラミック膜フィルター30の中に送り込まれる。先に議論されたように、リサイクルポンプ26は、流入液流れの10倍の流量(10Qi)をセラミック膜フィルター30の中に送り込むサイズを有する。セラミック膜フィルター30の膜は、SPAC/流入液スラリーから透過液を分離する。
透過液は、セラミック膜フィルター30から透過液ライン32を経由して送り出され、透過液タンク50の中に入れられ、そこで透過液は透過液除去ライン52を経由して除去されてもよい。保持液は、セラミック膜フィルター30から保持液ライン36および開かれた保持液バルブ34を通って送り出され、吸着リアクター20に戻される。保持液は、Qrの流量で吸着リアクター20に戻され、この流量は流入液流量の9倍、すなわち9Qiである。典型的な濾過運転の間、逆流洗浄ポンプ61は停止され、逆流洗浄バルブ66は閉じられ、また、空気供給バルブ83および84が閉じられる。
示されたように、本発明の重要な態様は、使用済みSPAC12(およびそれに吸着された汚染物質)の脱水、増粘および除去である。SPACが破過に達した場合、本システムへの流入液流れは止められ、供給ポンプ16が停止され、また、SPAC供給バルブ18が閉じられる。リサイクルポンプ26は運転し続け、吸着リアクター20から10Qiの流量でスラリーを送り出す。脱水プロセスの間、セラミック膜フィルター30は、1Qiの流量で透過液を送り出し続け、また、保持液は吸着リアクター20に9Qiの流量で戻され続ける。吸着リアクター20のサイズ(保持時間)に基く一定の時間の後、使用済みSPACは、廃棄処分のために除去されるのに十分な程度に脱水され濃縮される。除去されるときのSPAC12スラリーの望ましい濃度は、例として、炭素10グラム/リットルである。濃度が高すぎると、本システムから除去するのが難しい。
吸着リアクター20への流入液流れQiが停止された後、除去のために保持液を濃縮する場合、実際には、透過液は、典型的には全体プロセスのために望ましい十分な1Qの流量では除去されないこともまた、留意されるべきである。そうではなくて、保持液が本システムからの効果的な除去のために増粘され過ぎまたは濃縮され過ぎることがないように、透過液は1Q未満まで一定の比率で減らされる。
セラミック膜フィルター30の膜の逆流洗浄が必要とされる場合、脱水のための上記の流入液流れは停止される。リサイクルポンプ26が閉じられ、ドレンバルブ59が開かれる。透過液バルブ33が閉じられ、逆流洗浄バルブ63および66が開かれる。逆流洗浄ポンプ61が始動され、透過液が透過液タンク50から汲み出される。透過液は逆流洗浄ライン62を通って逆流洗浄タンク70まで流れる。所望であれば、化学薬品が、化学薬品ライン65を経由して逆流洗浄ライン62を通って透過液に加えられてもよい。透過液または化学的に強化された透過液が、逆流洗浄ライン62から透過液ライン32の中に透過液に対して逆流で流れ込む。逆流洗浄された透過液は、濾過とは逆の方向にセラミック膜フィルター30を通り抜ける。逆流洗浄液体は、スラリー流出液ライン22まで逆流し、開かれたドレンバルブ59を通って除去される。
上の記載は、その中で使用された言葉の意味または本発明を画定する以下の請求項の範囲を制限するようには意図されていない。もっと正確に言えば、実質的な変化ではない、構造上、機能上または結果的な修正が存在するであろうこと、および特許請求された発明におけるそのような非実質的な全ての変化は請求項によってカバーされていることが意図されていることが考慮されている。したがって、本発明の好ましい実施形態が例示され記載されてきたけれども、変化および修正が特許請求された発明から逸脱することなく成されることができることが理解されるだろう。さらに、用語「特許請求された発明」または「本発明」が、本明細書において単数形で使用されることがあるけれども、記載されおよび特許請求された複数の発明があることは理解されるだろう。
本発明の様々な特徴は、以下の特許請求の範囲に記載される。

Claims (12)

  1. 水から汚染物質を除去する方法であって、以下の工程を含む方法:
    1)サブミクロン粉状活性炭(SPAC)を、処理されるべき水の流入液流れに加える工程;
    2)前記SPACを、前記処理されるべき水と一緒にする工程;
    3)前記SPACと水との混合物を処理のための吸着リアクターに導入する工程;
    4)前記混合物を前記吸着リアクターの中に、前記SPACが前記水の中の汚染物質を吸着するのに十分な時間保持することを可能にする工程;および
    5)前記混合物を前記吸着リアクターからリサイクルポンプを使用してクロスフロー濾過で作動している高速度セラミック膜フィルターユニットへ移送する工程であって、前記高速度セラミック膜フィルターユニットにおいて前記処理された水が透過液として放出され、かつ、前記SPACが前記吸着リアクターに保持液として戻される工程。
  2. 以下の工程を含む、請求項1に記載の方法:
    1)前記SPACが破過に達した後、前記SPACと吸着された汚染物質との濃縮物を前記セラミック膜フィルターから濃縮物ラインを経由して除去する工程;および
    2)新しいSPACを前記水の流入液流れに加えて、汚染物質の除去を継続する工程。
  3. 前記流入液流れの流量が1Qであり、前記SPACと流入液との混合物が、前記流入液の10倍の流量(10Q)で前記吸着リアクターから前記セラミック膜フィルターまでポンプで送られる、請求項1に記載の方法。
  4. 前記透過液が、前記流入液流れの1倍の流量で前記セラミック膜フィルターから放出され、かつ、前記保持液が、前記流入液流れの9倍の流量(9Q)で前記吸着リアクターに戻される、請求項3に記載の方法。
  5. 前記SPACが、およそ1ミクロン未満の平均粒子径を有する、請求項4に記載の方法。
  6. 前記SPACおよび吸着された汚染物質が、前記保持液が増粘されその後廃棄処分のための前記濃縮物ラインを経由して除去されるまで、前記吸着リアクターへの前記流入液流れを停止して前記リサイクルポンプの運転を継続することによって、除去のために増粘される、請求項2に記載の方法。
  7. 前記セラミック膜フィルターが、およそ0.1ミクロンの公称細孔サイズ障壁を有する、請求項5に記載の方法。
  8. 水から、PFASを含む汚染物質を除去するためのシステムであって、以下を含んでいるシステム:
    1)流入液ラインと流体連結している加圧された吸着リアクター、およびSPACを前記流入液に加えるための前記流入液ラインと連結しているSPAC供給ライン、および処理されるべき水の流入液流れおよびサブミクロン粉状活性炭(SPAC)を受け入れる前記吸着リアクターであって、前記吸着リアクターは、前記流入液およびSPACスラリーを、前記除去されるべき汚染物質が前記スラリー中の前記SPACによって吸着されるように十分な保持時間保持する能力を有する、吸着リアクター;
    2)前記吸着リアクターの放出口と連結しているスラリー流出液ラインおよび前記スラリー流出液ライン中のリサイクルポンプ;
    3)前記吸着リアクターの前記スラリー流出液ラインと流体連結しているクロスフローセラミック膜フィルター、および汚染物質を吸着した前記SPACを高流量で前記セラミック膜フィルターユニットに移送する前記リサイクルポンプであって、前記セラミック膜フィルターユニットが前記汚染物質を吸着したSPACから処理された水を透過液として分離する、セラミック膜フィルターユニット;
    4)前記処理された水を透過液として除去するための前記セラミック膜フィルターと流体連結している透過液ライン;
    5)前記SPACスラリーを前記流入液ラインに戻す、前記セラミック膜フィルターおよび前記吸着リアクターと流体連結している保持液ライン;および
    6)破過の後にSPACを除去するための濃縮物ライン。
  9. 前記SPACが、およそ1ミクロン未満の平均粒子径を有する、請求項8に記載のシステム。
  10. 前記セラミック膜フィルターが、およそ0.1ミクロンの公称細孔サイズ障壁を有する、請求項9に記載のシステム。
  11. 前記流入液ラインと流体連結しているSPAC供給システムを含んでいる、請求項10に記載のシステム。
  12. 前記除去されるべき汚染物質が、パーフルオロアルキルおよびポリフルオロアルキル物質を含むものである、請求項8に記載のシステム。
JP2021553024A 2019-03-05 2020-02-24 水から難除去性有機化合物を除去するためのシステムおよび方法 Pending JP2022525031A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023127106A JP2023145713A (ja) 2019-03-05 2023-08-03 水から難除去性有機化合物を除去するためのシステムおよび方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/293,251 2019-03-05
US16/293,251 US11827537B2 (en) 2019-03-05 2019-03-05 System and method for removal of recalcitrant organic compounds from water
PCT/US2020/019416 WO2020180513A1 (en) 2019-03-05 2020-02-24 System and method for removal of recalcitrant organic compounds from water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023127106A Division JP2023145713A (ja) 2019-03-05 2023-08-03 水から難除去性有機化合物を除去するためのシステムおよび方法

Publications (1)

Publication Number Publication Date
JP2022525031A true JP2022525031A (ja) 2022-05-11

Family

ID=72336236

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021553024A Pending JP2022525031A (ja) 2019-03-05 2020-02-24 水から難除去性有機化合物を除去するためのシステムおよび方法
JP2023127106A Pending JP2023145713A (ja) 2019-03-05 2023-08-03 水から難除去性有機化合物を除去するためのシステムおよび方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023127106A Pending JP2023145713A (ja) 2019-03-05 2023-08-03 水から難除去性有機化合物を除去するためのシステムおよび方法

Country Status (8)

Country Link
US (2) US11827537B2 (ja)
EP (1) EP3935017A4 (ja)
JP (2) JP2022525031A (ja)
KR (2) KR20210134371A (ja)
CN (1) CN113508093A (ja)
AU (2) AU2020233593B2 (ja)
CA (1) CA3131734C (ja)
WO (1) WO2020180513A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686199C1 (ru) * 2018-09-27 2019-04-24 Общество С Ограниченной Ответственностью "Аквафор" (Ооо "Аквафор") Система очистки жидкости
CA3196156A1 (en) * 2020-09-21 2022-03-24 Stride Cross-linked polymeric ammonium salts and their use in absorbing organic contaminants
DE102021131310A1 (de) 2021-11-29 2023-06-01 Mecana Umwelttechnik Gmbh Verfahren zur Entfernung von gelösten organischen Substanzen in Flüssigkeiten mit einem superfeinen Adsorbens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505841A (en) * 1991-03-11 1996-04-09 Pirbazari; Massoud Microfiltration and adsorbent particle suspension for removing contaminants from water
WO2004063097A1 (ja) * 2003-01-16 2004-07-29 Ngk Insulators, Ltd. 浄水処理における活性炭の添加方法及び浄水処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512640A (en) 1967-10-18 1970-05-19 American Standard Inc Countercurrent solid-liquid contacting system
GB9314537D0 (en) * 1993-07-14 1993-08-25 Gore W L & Ass Uk Purification apparatus
JPH0747359A (ja) 1993-08-06 1995-02-21 Babcock Hitachi Kk 水洗性探傷廃液濾過装置
FR2867394B1 (fr) * 2004-03-10 2006-12-15 Degremont Procede de nettoyage de membranes de filtration, et installation pour la mise en oeuvre de ce procede
JP5117433B2 (ja) * 2009-03-13 2013-01-16 株式会社東芝 排水の吸着装置
KR200450007Y1 (ko) 2009-05-01 2010-08-30 웅진코웨이주식회사 정수기의 카본필터
CN201999762U (zh) * 2010-08-13 2011-10-05 广州熙荏环保科技有限公司 自动换碳的水处理吸附装置
WO2014128850A1 (ja) * 2013-02-20 2014-08-28 積水化学工業株式会社 水処理方法及び水処理装置
US10414669B2 (en) * 2014-06-20 2019-09-17 Hydronovation, Inc. Water treatment system tank and method of assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505841A (en) * 1991-03-11 1996-04-09 Pirbazari; Massoud Microfiltration and adsorbent particle suspension for removing contaminants from water
WO2004063097A1 (ja) * 2003-01-16 2004-07-29 Ngk Insulators, Ltd. 浄水処理における活性炭の添加方法及び浄水処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUI ら: "Adsorptive removal of geosmin by ceramic membrane filtration with super-powdered activated carbon", JOURNAL OF WATER SUPPLY:RESEARCH AND TECNOLOGY-AQUA, vol. 56 (6-7) 411-418 (2007), JPN7022004560, September 2007 (2007-09-01), UK, ISSN: 0005029614 *
MURRAY ら: "Removal of per-and polyfluoroalkyl substances using superfine powder activated carbon and ceramic me", JORNAL OF HAZARDOUS MATERIALS, vol. 366,160-168 (2019), JPN7022004559, 15 November 2018 (2018-11-15), NL, ISSN: 0005029613 *

Also Published As

Publication number Publication date
US11905187B2 (en) 2024-02-20
AU2020233593B2 (en) 2023-06-08
KR20240049839A (ko) 2024-04-17
JP2023145713A (ja) 2023-10-11
US20200283309A1 (en) 2020-09-10
AU2020233593A1 (en) 2021-08-26
EP3935017A4 (en) 2022-12-14
CA3131734A1 (en) 2020-09-10
CA3131734C (en) 2023-09-26
KR20210134371A (ko) 2021-11-09
AU2023226766A1 (en) 2023-09-28
EP3935017A1 (en) 2022-01-12
US11827537B2 (en) 2023-11-28
WO2020180513A1 (en) 2020-09-10
US20220220007A1 (en) 2022-07-14
CN113508093A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
AU2013276218B2 (en) Apparatus, systems, and methods for fluid filtration
US11905187B2 (en) System and method for removal of recalcitrant organic compounds from water
JP4903113B2 (ja) 水処理システム及びその運転方法
WO2005092801A1 (ja) 船舶用バラスト水の製造方法、船舶用バラスト水製造装置及び使用
WO2013111826A1 (ja) 造水方法および造水装置
JP2011088053A (ja) 淡水化処理設備及び方法
JP2006320847A (ja) 有機ヒ素含有水の処理方法とその装置
AU2023282288A1 (en) Method and system for removing radioactive nuclides from water
JP2008173539A (ja) 飲料水製造用水処理システム及びその運転方法
JP2002361049A (ja) 洗車排水処理装置
JP3838689B2 (ja) 水処理システム
JP2005246126A (ja) 純水又は超純水の製造装置及び製造方法
US20240051847A1 (en) System and method for removal of multiple recalcitrant organic compounds from water
JP2002336887A (ja) 超純水製造装置及び超純水製造方法
WO2012157668A1 (ja) 濾過処理装置及び濾過処理装置の洗浄方法
JPH04354581A (ja) 水処理装置
JPH0655046A (ja) 膜分離装置
JP2005118708A (ja) 水浄化装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404