WO2019106752A1 - 水浄化システム - Google Patents

水浄化システム Download PDF

Info

Publication number
WO2019106752A1
WO2019106752A1 PCT/JP2017/042794 JP2017042794W WO2019106752A1 WO 2019106752 A1 WO2019106752 A1 WO 2019106752A1 JP 2017042794 W JP2017042794 W JP 2017042794W WO 2019106752 A1 WO2019106752 A1 WO 2019106752A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
storage tank
chlorine
pipe
purification system
Prior art date
Application number
PCT/JP2017/042794
Other languages
English (en)
French (fr)
Inventor
廣田 達哉
真二郎 野間
哲章 平山
太輔 五百崎
和大 齋藤
稲本 吉宏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to PCT/JP2017/042794 priority Critical patent/WO2019106752A1/ja
Priority to CN201780097176.5A priority patent/CN111386247A/zh
Publication of WO2019106752A1 publication Critical patent/WO2019106752A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a water purification system.
  • the present invention relates to a water purification system capable of purifying water to be treated inexpensively and reliably.
  • the quality of well water varies depending on the area, and for example, in many parts of the world, many iron components may be dissolved in the well water.
  • Such well water is not suitable for direct use as drinking water and other household water. Therefore, it is preferable to remove the iron component dissolved in the well water using a water purifier and purify it to water suitable as household water.
  • the water purification system includes a primary storage tank for storing raw water such as well water, a water quality improvement device for purifying the raw water in the primary storage tank with ozone and hypochlorous acid, and two for storing water purified by the water quality improvement device. It is equipped with the next water storage tank. Furthermore, the water purification system is provided between a pump for transferring the purified water in the primary water storage tank to the secondary water storage tank, and between the primary water storage tank and the secondary water storage tank, and filters the water purified by the water quality improvement device. It comprises an apparatus and control means for driving the pump.
  • the water purification system of Patent Document 1 is a system having a very excellent purification performance, and has an advantage that the entire system can be miniaturized.
  • Patent No. 5436813 gazette
  • Patent Document 1 the water purification system described in Patent Document 1 is complicated in control and requires a plurality of water storage tanks and a circulation pump and a water pump, which complicates the piping configuration. As a result, there is a problem that the water purification system becomes a very expensive system.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a water purification system capable of purifying the water to be treated inexpensively and reliably.
  • the water purification system concerning the mode of the present invention is provided with a spring pump which pumps up treated water, solid chlorine medicine, solid medicine which carries out oxidation treatment of treated water with chlorine medicine.
  • the solid drug dissolver is located on the downstream side of the brine pump and the solid drug dissolver
  • a filtration device is provided between the and water reservoirs.
  • FIG. 1A is a schematic view showing a piping configuration when well water is stored in a reservoir tank.
  • FIG. 1B is a schematic view showing a piping configuration in the case of using well water directly as domestic water.
  • FIG. 2 is a schematic view showing an example of a water purification apparatus for purifying well water.
  • FIG. 3 is a schematic view showing an example of a water purification apparatus for purifying well water.
  • FIG. 4 is schematic which shows an example of the water purification system which combined the water purification apparatus and the water storage tank.
  • FIG. 5 is a schematic view showing an example of a water purification system in which a water purifier and a water storage tank are combined.
  • FIG. 6A is a schematic view showing an example of a water purification system in which a water purifier and a water storage tank are combined.
  • FIG. 6B is a schematic view showing the configuration of the water purifier.
  • FIG. 7A is a schematic view showing an example of a water purification system in which a water purifier and a water storage tank are combined.
  • FIG. 7B is a schematic view showing the configuration of the water purifier.
  • FIG. 8A is a schematic view showing an example of a water purification system in which a water purifier and a water storage tank are combined.
  • FIG. 8B is a schematic view showing the configuration of the water purifier.
  • FIG. 9A is a schematic view showing an example of a water purification system in which a water purifier and a water storage tank are combined.
  • FIG. 9B is a schematic view showing the configuration of the water purifier.
  • FIG. 10A shows an example of a water purification system according to an embodiment of the present invention, and is a schematic view showing a water purification system in which a water purification device and a water storage tank are combined.
  • FIG. 10B is a schematic view showing the configuration of the water purifier.
  • FIG. 11 is a cross-sectional view schematically showing an example of a solid drug dissolver.
  • FIG. 12 is a cross-sectional view schematically showing an example of a filtration device.
  • FIG. 13 is a schematic view showing another example of the water purification system according to the embodiment of the present invention.
  • raw water water or rainwater pumped from a water source such as a well, a river, or a pond whose water quality is improved by a water purification system
  • clean water water or rainwater pumped from a water source such as a well, a river, or a pond whose water quality is improved by a water purification system
  • the water storage tank 110 is installed in the roof 2 of the building 1, and the water for daily life is stored.
  • One end of the first pipe 120 is connected to the upper portion of the water storage tank 110, and the other end of the first pipe 120 is in a state of being immersed in the well water.
  • the spring pump 130 for pumping up raw water (well water) from a well is installed in the 1st piping 120.
  • one end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a water level sensor 111 for detecting the water level of the stored water inside the water storage tank is provided.
  • the water level sensor 111 can detect two water levels, for example, a predetermined low water level WL and a predetermined high water level (full water level) WH.
  • the spring pump 130 is operated according to the output of the water level sensor 111. That is, when the water level sensor 111 detects the low water level WL, the spring pump 130 is turned on, and the well water is pumped up through the first pipe 120 and supplied to the water storage tank 110.
  • the 300 to 2000 L storage tank is so large and heavy that it can not be easily installed on the roof or roof of a building.
  • a water storage tank is installed, when the water storage tank is full, a large load is applied to the roof and the roof that support it, so it is necessary to increase the load resistance of the building.
  • the storage tank is not inexpensive, as a result, the storage tank can often not be used except for the high-income class (wealthy group).
  • FIG. 1B the storage tank is not installed on the roof 2 of the building 1, and the well water is pumped up using a spring pump 130 which is an automatic pump, and used as domestic water.
  • a spring pump 130 which is an automatic pump, and used as domestic water.
  • Such an automatic pump is a pump having a built-in pressure switch, and operates only when the faucet is opened.
  • the purification may not be easy.
  • ionic silica ionic silica
  • the purification may not be easy.
  • countries with many volcanoes are rich in silica in raw water in the world.
  • silica tends to be contained more in well water than surface water (such as rivers).
  • the concentration of silica is 40-50 ppm or more It has been described in detail that it becomes very difficult to process. Therefore, in the case of well water, when it is pumped up and left in a water storage tank, colloidal iron silicate may be formed, and it may not be possible to filter by ordinary chlorination or coagulant.
  • oxidation treatment such as chlorination or ozone treatment immediately after drawing up well water.
  • a liquid drug feeder 150 is provided downstream of the brine pump 130, and a chlorine-based drug such as an aqueous solution of sodium hypochlorite is introduced immediately after the well water is pumped.
  • a chlorine-based drug such as an aqueous solution of sodium hypochlorite
  • the iron ions in the raw water become insoluble iron hydroxide (Fe (OH) 3 ) before becoming colloidal iron silicate.
  • the insoluble iron hydroxide can be separated by filtration using the filtration device 160 installed downstream of the liquid medicine supply device 150, whereby the purified water can be easily obtained.
  • the liquid drug feeder 150 connects the chlorine drug tank 151 holding the liquid chlorine drug, the chlorine drug tank 151 and the first pipe 120, and sends the chlorine drug from the chlorine drug tank 151 to the first pipe 120.
  • a drug delivery tube 152 for Furthermore, the liquid medicine supply device 150 is provided with a medicine supply pipe 152, and is provided with a metering pump 153 for supplying a predetermined amount of chlorine-based medicine.
  • a predetermined amount of chlorine-based drug can be injected into the raw water from the chlorine drug tank 151 by the drug delivery pipe 152 and the metering pump 153.
  • the solid medicine dissolver 170 includes a solid medicine holder 171 which holds therein, for example, a solid medicine such as calcium hypochlorite solidified in the form of a tablet, and the raw water can come into contact with the solid medicine can do.
  • a solid medicine such as calcium hypochlorite solidified in the form of a tablet
  • the raw water can come into contact with the solid medicine can do.
  • the calcium hypochlorite contacts water
  • the calcium hypochlorite is hydrolyzed to release chlorine into the raw water, which can oxidize iron ions to insoluble iron hydroxide.
  • the solid medicine holder 171 can be connected to the first pipe 120 using the bypass pipe 172.
  • FIG. As a water purification system which combined such a water purifier and the water storage tank 110, it can be set as the structure shown in FIG.
  • the water purification system 100 includes a water storage tank 110 installed on the roof 2 of the building 1.
  • One end of the first pipe 120 is connected to the upper portion of the water storage tank 110, and the other end of the first pipe 120 is immersed in the well water.
  • One end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a spring pump 130 for pumping up well water is installed, and between the spring pump 130 and the water storage tank 110, the chlorine medicine tank 151 and the medicine feed pipe 152 and the quantity are determined.
  • a liquid drug feeder 150 comprising a pump 153 is connected.
  • a filtration unit 160 holding manganese sand inside and a chlorine removal unit 180 provided downstream of the filtration unit 160 and filled with activated carbon inside are installed.
  • a water pump 190 is provided between the water storage tank 110 and the filtration device 160 for transferring stored water in the water storage tank 110 to the filtration device 160 and the chlorine removal device 180. .
  • the metering pump 153 for injecting a predetermined amount of chlorine-based drug from the chlorine-based drug tank 151 into the raw water is expensive because it needs to be resistant to chlorine. Therefore, the metering pump 153 can not be easily used even by the high-income group.
  • the water purification system 102 includes a water storage tank 110 installed on the roof 2 of the building 1.
  • One end of the first pipe 120 is connected to the upper portion of the water storage tank 110, and the other end of the first pipe 120 is immersed in the well water.
  • One end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a spring pump 130 for pumping well water is installed in the first pipe 120, and the well water pumped by the spring pump 130 is directly charged into the water storage tank 110 and stored.
  • the second pipe 140 is provided with a water purification device 200 provided with a solid medicine dissolver 170, a filtration device 160, and a chlorine removal device 180.
  • a water pump 190 for transferring the stored water of the water storage tank 110 to the solid medicine dissolver 170, the filtering device 160 and the chlorine removing device 180 is also installed.
  • oxidation treatment such as chlorination or ozone treatment can not be performed immediately after pumping up well water, and well water is stored for a long time in the water storage tank 110 Therefore, colloidal iron silicate is produced. Therefore, even if the solid drug dissolver 170, the filter 160, and the chlorine remover 180 are used, there is a risk that iron in the raw water can not be sufficiently removed.
  • the water purification system 103 includes a water storage tank 110 installed on the roof 2 of the building 1.
  • One end of the first pipe 120 is connected to the upper portion of the water storage tank 110, and the other end of the first pipe 120 is immersed in the well water.
  • One end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a spring pump 130 for pumping well water is installed in the first pipe 120, and the well water pumped by the spring pump 130 is directly charged into the water storage tank 110 and stored.
  • the water purification apparatus 201 provided with the filtration apparatus 160 and the chlorine removal apparatus 180 is installed in the 2nd piping 140.
  • a water pump 190 for transferring the stored water of the water storage tank 110 to the filtration device 160 and the chlorine removal device 180 is also installed in the second pipe 140.
  • the solid medicine holder 171 is suspended from the ceiling surface of the water storage tank 110.
  • the solid medicine holder 171 holds therein a solid medicine, such as calcium hypochlorite, which is solidified into a tablet.
  • the solid medicine holder 171 is immersed in stored water, and chlorine is gradually released from the solid medicine. Then, the primary treated water oxidized in the water storage tank 110 is transferred to the filter device 160 and the chlorine removal device 180 by the water pump 190 and purified.
  • a water pump 190 for transferring the primary treated water of the water storage tank 110 to the filtration device 160 is required. Further, since chlorine is dissolved in the primary treated water, it is necessary to use a chlorine resistant specification as the water supply pump 190, which causes an increase in cost.
  • Patent Document 1 As an example in which a water purification device is provided on the upstream side of such a water storage tank 110, there is a water purification system described in Patent Document 1.
  • the water purification system of Patent Document 1 is complicated in configuration and control, and becomes a very expensive system. Therefore, as a water purification system, the structure which combined the simplified water purification apparatus 202 and the water storage tank 110 as shown to FIG. 8A and 8B can be mentioned.
  • the water purification system 104 is equipped with the water storage tank 110 installed in the roof 2 of the building 1. As shown in FIG. One end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a water purifier 202 shown in FIG. 8B is provided upstream of the water storage tank 110.
  • One end of the first pipe 120 is connected to the water purifier 202, and the other end of the first pipe 120 is immersed in the well water.
  • a spring pump 130 for pumping up well water is installed in the first pipe 120.
  • the water purification apparatus 202 is equipped with the water storage tank 210 which temporarily stores the well water pumped up by the spring pump 130, as shown to FIG. 8B.
  • a third pipe 220 is connected to the water storage tank 210, and the third pipe 220 is provided with a filtering device 160 and a three-way valve 230.
  • the water purification apparatus 202 is provided with a circulation pipe 240, one end of the circulation pipe 240 is connected to the three-way valve 230, and the other end of the circulation pipe 240 is connected to the water storage tank 210.
  • a circulation pump 250 is provided between the water storage tank 210 and the filtering device 160, and an oxidizing agent supply consisting of the liquid drug feeder 150 or the solid drug dissolver 170 between the filtering device 160 and the three-way valve 230.
  • the device is connected.
  • a chlorine removing device 180 filled with activated carbon is provided downstream of the water storage tank 110.
  • the well water pumped up by the spring pump 130 is directly input to the water storage tank 210 and stored. Then, when the circulation pump 250 operates, the stored water accumulated in the water storage tank 210 is transferred to the filtering device 160, passes through the filtering device 160, and then the oxidizing agent is introduced into the stored water by the oxidizing agent supply device. Thereafter, the stored water into which the oxidizing agent has been injected passes through the three-way valve 230 and is returned to the water storage tank 210 through the circulation pipe 240.
  • the stored water accumulated in the water storage tank 210 is circulated inside the water purifier 202 by the circulation pump 250 provided in the third pipe 220, the filter 160, the oxidant supply device and the three-way valve 230, and the circulation pipe 240. Do. As a result, after the oxidation treatment and filtration treatment of iron and manganese are repeated to be purified water, the three-way valve 230 is switched, and the purified water is transferred to the water storage tank 110 through the third pipe 220. Then, the purified water of the storage tank 110 is used as domestic water after excess chlorine is removed through the chlorine removal device 180.
  • the water purification system 104 As in the water purification system 104, by providing the water purification device 202 on the upstream side of the water storage tank 110 and storing the water purified by the water purification device 202 in the water storage tank 110, it is possible to always use purified water It becomes. In addition, by making use of the buffer capacity of the water storage tank 110 and lowering the processing capacity of the water purifier 202, it is possible to miniaturize the entire water purification system. However, the water purification system 104 also needs to use the water storage tank 210 and the circulation pump 250, and further requires a control device for controlling the three-way valve 230 and the circulation pump 250. Therefore, as with the water purification system of Patent Document 1, the configuration and control become complicated, resulting in an expensive system.
  • the water purification system 105 includes a water storage tank 110 installed on the roof 2 of the building 1.
  • One end of the second pipe 140 is connected to the lower portion of the water storage tank 110, and the other end of the second pipe 140 is connected to a faucet or the like inside the building 1.
  • a water purifier 203 shown in FIG. 9B is provided upstream of the water storage tank 110.
  • One end of the first pipe 120 is connected to the water purifier 203, and the other end of the first pipe 120 is immersed in the well water.
  • a spring pump 130 for pumping up well water is installed in the first pipe 120.
  • the water purifier 203 is provided with the water storage tank 210 which temporarily stores the well water pumped up by the spring pump 130, as shown to FIG. 9B.
  • the third pipe 220 is connected to the water storage tank 210, and the third pipe 220 is provided with a water pump 260 for transferring the water purified by the water storage tank 210.
  • a flat membrane 270 such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is provided inside the water storage tank 210.
  • the water purifier 203 air is blown into well water to generate activated sludge, and this is used to purify well water by an activated sludge method of decomposing and purifying organic matter in water. Then, separation of the treated water and the activated sludge is performed by the flat membrane 270. That is, the water purifier 203 purifies the well water by the membrane separation activated sludge method (MBR).
  • MLR membrane separation activated sludge method
  • MLR membrane separation activated sludge method
  • the flat membrane 270 in order to prevent fouling of the flat membrane 270, the flat membrane 270 needs to be periodically cleaned with a chemical such as hypochlorous acid or an alkali.
  • problems such as the need for regular replacement of the flat membrane 270 and the need for energy such as electric power for aeration of the surface of the flat membrane 270 or circulation of activated sludge and suction of treated water is there.
  • the water purification system 105 is simpler than the water purification system of Patent Document 1 and the water purification system 104 shown in FIGS. 8A and 8B, it is necessary to use the water reservoir 210 and the water pump 260. is there. In some cases, an air pump for aeration is also required. Furthermore, even if the water purification system 105 is used, if raw water is contaminated with iron as in a developing country, there is a risk that iron removal can not be performed or the flat membrane 270 may be clogged immediately. Furthermore, in order to prevent clogging of the flat membrane 270 in a short time, it is necessary to secure a certain membrane area and to suck slowly, so that it is not possible to miniaturize an expensive membrane. As a result, there is a problem that the water purification system 105 is not cheap and does not become a system that exhibits stable performance.
  • the water purification system 10 is a water purification device 20 for purifying raw water (well water) which is to be treated, and a water purification device A water storage tank 11 for storing the water purified by 20 is provided.
  • the water purification device 20 includes a solid drug dissolver 17 that oxidizes raw water, and a filter device 16 that filters primary treated water that has been oxidized by the solid drug dissolver 17.
  • the water purification system 10 is provided with a water storage tank 11 installed on the roof 2 of the building 1 as shown in FIG. 10A.
  • the structure and material of the water storage tank 11 are not particularly limited as long as the water storage tank 11 can store secondary treated water filtered by the filter device 16. Further, the capacity of the water storage tank 11 is also not particularly limited, and can be, for example, 300 L to 2000 L.
  • One end of the first pipe 12 is connected to the upper portion of the water storage tank 11, and the other end of the first pipe 12 is in a state of being immersed in raw water (well water). Further, one end of the second pipe 14 is connected to the lower portion of the water storage tank 11 and the other end of the second pipe 14 is connected to a faucet inside the building 1 or the like.
  • a spring pump 13 for pumping up the raw water is installed in the first pipe 12.
  • the spring pump 13 is not particularly limited as long as it can pump the raw water and feed it to the water storage tank 11 through the solid medicine dissolver 17 and the filter device 16.
  • an automatic pump having a built-in pressure switch can be used as the brine pump 13.
  • the spring pump 13 can be configured to operate when at least one of the on-off valve 12c and the on-off valve 17c described later is opened.
  • the feed water pump 13 usually includes an impeller with wings in a casing.
  • the water in the spring pump 13 is pushed outward from the center of the impeller while receiving the force from the blades by the rotation of the impeller. And a rotational speed is given to water by an impeller, and pressure rises by the centrifugal force.
  • the spring pump 13 can pump water by repeating this operation. However, at this time, water always needs to be present at the inlet of the impeller, and the piping on the suction side needs to be filled with water.
  • the spring pump 13 has a check valve on the discharge side and a foot valve on the suction side, and even if the spring pump 13 is stopped, the inside of the spring pump 13 and the suction pipe (first pipe 12) It is preferable that the water be prevented from falling.
  • a solid medicine dissolver 17 is disposed downstream of the spring 13.
  • the solid drug dissolver 17 includes a solid chlorine drug, a solid drug holder 17a for holding the chlorine drug inside, and a bypass pipe 17b for connecting the solid drug holder 17a to the first pipe 12 .
  • the bypass pipe 17b on the upstream side of the solid medicine holder 17a is provided with an on-off valve 17c as a flow rate adjustment mechanism for adjusting the flow rate of the raw water pumped up by the spring 13.
  • the first pipe 12 between the connection parts 12a and 12b between the first pipe 12 and the bypass pipe 17b is also provided with an on-off valve 12c that adjusts the flow rate of the raw water.
  • Solid chlorine-based drugs cause oxidation to iron ions in raw water.
  • a divalent iron ion is oxidized to a trivalent iron ion by a chlorine-based drug to form insoluble iron hydroxide (Fe (OH) 3 ).
  • a chlorine agent is not particularly limited, and, for example, at least one selected from the group consisting of sodium hypochlorite, calcium hypochlorite and chlorinated isocyanuric acid can be used.
  • calcium hypochlorite at least one of exfoliated powder (available chlorine 30%) and highly exfoliated powder (available chlorine 70%) can be used.
  • chlorinated isocyanuric acid at least one selected from the group consisting of sodium trichloroisocyanurate, potassium trichloroisocyanurate, sodium dichloroisocyanurate and potassium dichloroisocyanurate can be used.
  • a chlorine-based drug which is tablet-shaped so as to be gradually dissolved in raw water.
  • the solid medicine dissolver 17 for example, the medicine supply device described in Japanese Patent Application Laid-Open No. 6-501418 can be used.
  • the solid medicine dissolver 17 can also be configured as shown in FIG. 11, for example.
  • the solid medicine dissolver 17A includes a solid medicine holder 17a for holding the chlorine-based medicine 17d therein, and a bypass pipe 17b for connecting the solid medicine holder 17a to the first pipe 12.
  • the bypass pipe 17b on the upstream side of the solid medicine holder 17a is provided with an on-off valve 17c as a flow rate adjustment mechanism for adjusting the flow rate of the raw water.
  • the solid medicine holder 17a includes a lid 17e that covers the entire top surface of the holder. Then, by opening and closing the lid 17e, it is possible to replenish the chlorine-based drug 17d to the inside of the solid drug holder 17a.
  • the lower part of the solid medicine holder 17 a is connected to the first pipe 12, and the primary treated water oxidized by the chlorine-based medicine 17 d passes through the connection portion 12 b and is sent to the first pipe 12.
  • one end of the bypass pipe 17b is connected to the first pipe 12 at the connection portion 12a, and the other side of the bypass pipe 17b is provided with a drug support 17f.
  • the drug support 17f is hollow so that the raw water that has passed through the bypass pipe 17b can contact the chlorine-based drug 17d.
  • the drug support 17f is provided with a support surface 17g for holding the chlorine-based drug 17d horizontally, and an opening 17h through which the raw water passes is provided at the center of the support surface 17g.
  • an orifice 12d is provided instead of the on-off valve 12c inside the first pipe 12 between the connecting portions 12a and 12b between the first pipe 12 and the solid medicine dissolver 17A. .
  • the orifice 12 d can adjust the flow rate of the raw water flowing through the first pipe 12.
  • the solid medicine dissolver 17A In the solid medicine dissolver 17A, first, part of the raw water pumped up by the spring 13 passes through the on-off valve 17c and the first pipe 12. Then, the raw water that has reached the drug support 17 f passes through the opening 17 h of the support surface 17 g, contacts with the chlorine-based drug 17 d, and is oxidized. The primary treatment water subjected to the oxidation treatment is sent from the lower portion of the solid medicine dissolver 17A to the first pipe 12 through the connection portion 12b and reaches the filtration device 16.
  • the filtration apparatus 16 is arrange
  • the filtration device 16 is for removing iron hydroxide from primary treated water in which iron ions in raw water are precipitated as iron hydroxide by the solid medicine dissolver 17.
  • a filtering device 16 is internally provided with a filter medium for removing iron hydroxide.
  • inexpensive filter sand can be used.
  • manganese sand coated with hydrated manganese dioxide can also be used as a filter medium for the filtration device 16. By using manganese sand as a filter medium, it becomes possible to remove not only iron hydroxide present in primary treated water but also manganese.
  • the filtration device 16 can have, for example, the configuration shown in FIG.
  • the filtering device 16A includes the above-described filter medium 16a, a container 16b for storing the filter medium 16a therein, and a gravel 16c provided at the bottom of the container 16b.
  • an outflow pipe 16d is provided to allow the water filtered through the filter medium 16a and the gravel 16c to flow out of the filtration device 16A.
  • a screen portion 16e provided with a plurality of slit-like elongated holes is provided so that the gravel 16c does not intrude into the inside of the outflow pipe 16d.
  • a lid portion 16f provided with a flow path switching valve is provided.
  • the lid 16f is connected to the first pipe 12, and the inlet 16g through which the primary treatment water oxidized by the solid drug dissolver 17 passes, the outlet 16h in communication with the outlet pipe 16d, and the backwashed water And a discharge port 16i for discharging.
  • the flow path switching valve switches between a state in which primary treated water flows in the forward direction X from the inlet 16g to the outlet 16h and a state in which it flows in the reverse direction Y from the inlet 16g to the outlet 16i.
  • the primary treated water flows in the order of the inlet 16g, the filter medium 16a, the gravel 16c, the screen portion 16e, the outlet pipe 16d, and the outlet 16h.
  • the primary treated water flows in the order of the inlet 16g, the outlet pipe 16d, the screen 16e, the gravel 16c, the filter medium 16a, and the outlet 16i.
  • the outlet 16i is positioned downstream of the filter medium 16a in a state where the primary treated water flows in the reverse direction Y, and discharges the primary treated water to the outside. Therefore, by switching the flow path switching valve, the filtering device 16A can flow the primary treatment water in the forward direction X and perform the filtering process with the filtering material 16a. In addition, by switching the flow path switching valve, it is possible to flow primary treated water or raw water in the reverse direction Y to backwash the filter medium 16a.
  • the water purification system 10 is further provided with the chlorine removal apparatus 18 provided in the downstream of the water storage tank 11, and removing the excess chlorine contained in to-be-processed water, as shown to FIG. 10A.
  • the second pipe 14 of the water purification system 10 is provided with a chlorine removal device 18 for removing excess chlorine contained in the secondary treated water stored in the water storage tank 11.
  • the chlorine removal apparatus 18 what filled the particle
  • the on-off valve 17c provided in the bypass pipe 17b is opened, and the on-off valve 12c provided in the first pipe 12 is closed. And the well water which is raw water is pumped up by the spring pump 13.
  • the pumped raw water passes through the first pipe 12, the connection portion 12a, and the bypass pipe 17b, reaches the inside of the solid medicine holder 17a, and contacts the tablet-like chlorine-based medicine.
  • the chlorine-based drug is dissolved in the raw water, and divalent iron in the raw water is oxidized to insoluble iron hydroxide (Fe (OH) 3 ) as shown in the reaction formula (1).
  • iron may be dissolved in the state of iron hydrogen carbonate (Fe (HCO 3 ) 2 ), but as shown in reaction formula (2), it is oxidized by a chlorine-based agent It becomes insoluble iron hydroxide.
  • the primary treatment water oxidized by the solid medicine dissolver 17 passes through the connection portion 12 b and the first pipe 12 to reach the filtration device 16. At this time, insoluble iron hydroxide present in the primary treated water is filtered and removed by passing between the filter media 16a.
  • manganese sand coated with hydrated manganese dioxide (MnO 2 ⁇ H 2 O) is used as the filter material of the filtration device 16, manganese ions (Mn 2+ ) dissolved in the primary treatment water are also removed. Ru.
  • reaction formula (3) manganese ions in primary treated water are rapidly oxidized with chlorine using hydrated manganese dioxide supported on the surface of manganese sand as a catalyst to form hydrated manganese dioxide, manganese Removed by sand.
  • the secondary treated water filtered by the filtration device 16 is stored in the water storage tank 11 through the first pipe 12. Then, the stored secondarily treated water passes through the second pipe 14 and reaches the chlorine removing device 18. In the chlorine removal apparatus 18, as shown to the following reaction formula (4), the excess chlorine dissolved in secondary treated water is removed by activated carbon. Cl 2 + H 2 O + C (activated carbon) ⁇ 2 H + + 2 Cl ⁇ + O + C (activated carbon) (4)
  • the tertiary treated water dechlorinated by the chlorine removing device 18 passes through the second pipe 14 and reaches a faucet or the like.
  • the water purifier 20 including the solid drug dissolver 17 and the filter 16 and the water purified by the chlorine remover 18 are used by the user as domestic water.
  • the solid drug dissolver 17 oxidizes the raw water immediately after the raw water is pumped up by the spring pump 13, the formation of colloidal iron silicate is suppressed. Furthermore, since the filtration device 16 is disposed immediately after the solid medicine dissolver 17 and the oxidized primary treatment water is filtered, the secondary treatment water from which iron is removed is stored in the water storage tank 11. Therefore, even if the secondary treated water is stored for a long time inside the water storage tank 11, the insoluble iron hydroxide is prevented from settling in the lower part of the water storage tank 11 and accumulated as sludge, and the clean state is maintained. Can. Therefore, it is possible to save time and effort for removing the deposited sludge from the water storage tank 11 provided on the roof 2 and to facilitate maintenance and management of the water storage tank 11.
  • the water purification device 20 is provided on the upstream side of the water storage tank 11 and the water purified by the water purification device 20 is stored in the water storage tank 11, clean water can always be used It becomes possible.
  • the processing capacity of the water purifier 20 by making use of the buffer capacity of the water storage tank 11, it is possible to achieve downsizing and cost reduction of the entire water purification system.
  • the backwashing of the filter device 160 can be easily performed.
  • the on-off valve 17c provided in the bypass pipe 17b is closed, and the on-off valve 12c provided in the first pipe 12 is opened. Then, the flow path switching valve of the filtration device 160 is switched to flow the raw water in the reverse direction Y, whereby the filter medium 16a can be backwashed.
  • the water storage tank 11 is preferably installed at a height higher than the brine pump 13, the solid medicine dissolver 17 and the filter device 16. Specifically, it is preferable that the water storage tank 11 be installed on the roof 2 or the roof of the building 1 and the spring pump 13, the solid medicine dissolver 17 and the filter 16 be installed at a lower position than the water storage tank 11. Moreover, it is preferable to be installed in the place where maintenance work can be performed easily, such as near the ground, the first floor of the building 1 or a veranda, of the spring pump 13, the solid medicine dissolver 17, and the filtration device 16.
  • the chlorine removal apparatus 18 is also installed in a lower place than the water storage tank 11, for example, it is preferable to be installed in the ground floor, the 1st floor of the building 1, or a veranda. .
  • the water purification system 10 includes the spring pump 13 for pumping the water to be treated, and the solid drug dissolver 17 for oxidizing the water to be treated with the chlorine agent and having a solid chlorine drug. Equipped with The water purification system 10 further includes a filtering device 16 that filters the water to be treated that has been oxidized by the solid drug dissolver 17, and a water storage tank 11 that stores the water to be treated that has been filtered by the filtration device 16. And in the main piping (the 1st piping 12 and the 2nd piping 14) to which the brine pump 13, the solid medicine dissolver 17, the filtering device 16 and the water storage tank 11 are connected and the water to be treated flows, the solid medicine dissolver 17 is It is located downstream of the spring pump 13. Furthermore, a filtering device 16 is provided between the solid medicine dissolver 17 and the water storage tank 11. And to-be-processed water can use the raw water containing soluble silica.
  • the raw water which is the water to be treated
  • the filtration process is performed immediately, so that the inside of the water storage tank 11 can be always kept clean.
  • the water purification system 10 can be miniaturized by utilizing the buffer effect of the water storage tank, the price can be reduced also in that respect.
  • complicated control and piping are unnecessary, and if the filtration device 16 is backwashed, it is not necessary to consider the frequency of replacement such as membrane treatment.
  • a water pump at the rear stage of the water storage tank is also unnecessary, it is possible to reduce the price also in that respect. Further, maintenance such as replenishment of chlorine-based chemicals and backwashing of the filtration device 16 can be easily performed.
  • the water purification system 10 further includes a chlorine removing device 18 provided downstream of the water storage tank 11 in the main pipe and removing excess chlorine contained in the water to be treated. This makes it possible to remove excess chlorine dissolved in the secondary treated water and obtain safer purified water.
  • the chlorine removal device 18 is an optional component. That is, in the case where excess chlorine remains in the secondary treated water treated by the filtration device 16, it is preferable to use the chlorine removal device 18. However, if excess chlorine does not remain in the secondary treated water, the chlorine removal device 18 may not be provided.
  • the solid drug dissolvers 17 and 17A are connected to the main pipe, and provided in the bypass pipe 17b and the bypass pipe 17b for passing the water to be treated up to the chlorine-based medicine.
  • the apparatus further comprises a flow rate adjustment mechanism for adjusting the flow rate.
  • a flow rate adjustment mechanism for adjusting the flow rate.
  • a foot valve is provided on the upstream side of the spring pump 13 so that water in the spring pump 13 and the first pipe 12 will not fall into the well even if the spring pump 13 is stopped. It is preferable to do. However, when the foot valve bites a foreign substance, the water in the fill water pump 13 may be drained, and the water in the solid medicine dissolver 17 and the filter device 16 may be backflowed accordingly. However, since the resistance of the filtration device 16 itself is large, even in this case, the possibility of backflow is low.
  • the chlorine drug 17d is supported by the drug support 17f, so it is not always immersed in the raw water. Therefore, it is difficult for the chlorine concentration in the raw water to rise excessively. Therefore, even if the water present inside the solid drug dissolver 17A flows back and contacts the spring pump 13, corrosion of the spring pump 13 due to chlorine can be suppressed.
  • the solid medicine dissolver 17A Furthermore, in the solid medicine dissolver 17A, an air layer is present between the chlorine medicine 17d and the lid inside the solid medicine holder 17a. Therefore, when backflow occurs from the inside of the filling water pump 13, the water inside the first pipe 12 flows back through the orifice 12d rather than the water inside the solid medicine holder 17a. Therefore, it becomes difficult for water containing high concentration of chlorine to flow into the spring pump 13. Therefore, by using the solid medicine dissolver 17A, it is not necessary to provide a device such as a check valve on the discharge side of the spring 13 and the initial cost and the maintainability can be greatly improved.
  • the spring pump 13 can use an automatic pump that operates when at least one of the on-off valve 12c and the on-off valve 17c is opened.
  • the present invention is not limited to such an automatic pump.
  • a water level sensor for detecting the water level of the stored water is provided on the ceiling surface of the water storage tank 11.
  • the configuration may be such that the spring pump 130 operates. That is, when the water level sensor detects a low water level, the spring pump 13 may be turned on to pump up the raw water.
  • the water purification system 10A includes a spring pump 13 for pumping raw water (well water) to be treated, a solid drug dissolver 17 for oxidizing raw water, and oxidation treatment. And a filter device 16 for filtering the treated primary treated water. Furthermore, the water purification system 10A is provided with a water storage tank 11 for storing primary treated water oxidized by the solid medicine dissolver 17. And in the main piping (the 1st piping 12 and the 2nd piping 14) to which the brine pump 13, the solid medicine dissolver 17, the filtering device 16 and the water storage tank 11 are connected and the water to be treated flows, the solid medicine dissolver 17 is It is located downstream of the spring pump 13. Furthermore, a water storage tank 11 is provided between the solid medicine dissolver 17 and the filter device 16.
  • the water purification system 10A is provided with the water storage tank 11 installed in the roof 2 of the building 1, as shown in FIG.
  • the structure and the material of the water storage tank 11 are not particularly limited as long as it can store the primary treated water oxidized by the solid medicine dissolver 17.
  • one end of the first pipe 12 is connected to the upper portion of the water storage tank 11, and the other end of the first pipe 12 is in a state of being immersed in raw water (well water).
  • one end of the second pipe 14 is connected to the lower portion of the water storage tank 11 and the other end of the second pipe 14 is connected to a faucet inside the building 1 or the like.
  • a spring pump 13 for pumping up the raw water is installed in the first pipe 12.
  • the spring pump 13 is not particularly limited as long as it can pump the raw water and feed the raw water to the water storage tank 11 through the solid medicine dissolver 17, and can have the same configuration as that of the first embodiment.
  • a solid medicine dissolver 17 is disposed downstream of the spring pump 13.
  • the second pipe 14 is connected to a filtration device 16 and a chlorine removal device 18 provided downstream of the filtration device 16.
  • a water supply pump provided between the water storage tank and the filtration device for transferring the stored water in the water storage tank to the filtration device and the chlorine removal device. Not equipped.
  • the water storage tank 11 is preferably installed at a height higher than the spring 13, the solid medicine dissolver 17 and the filtration device 16. Specifically, it is preferable that the water storage tank 11 be installed on the roof 2 or the roof of the building 1 and the spring pump 13, the solid medicine dissolver 17 and the filter 16 be installed at a lower position than the water storage tank 11. Moreover, it is preferable to be installed in the place where maintenance work can be performed easily, such as near the ground, the first floor of the building 1 or a veranda, of the spring pump 13, the solid medicine dissolver 17, and the filtration device 16. Furthermore, when using the chlorine removal apparatus 18, it is preferable that the chlorine removal apparatus 18 is also installed at a lower position than the water storage tank 11, for example, installed near the ground, on the first floor of the building 1, or on a veranda .
  • the on-off valve 17c is first opened, the on-off valve 12c is closed, and the well water, which is raw water, is pumped up by the spring pump 13.
  • the pumped raw water passes through the first pipe 12, the connection portion 12a and the bypass pipe 17b, reaches the inside of the solid medicine holder 17a, and divalent iron in the raw water is oxidized to insoluble iron hydroxide. Ru.
  • the primary treated water oxidized by the solid medicine dissolver 17 passes through the connection portion 12 b and the first pipe 12 to reach the water storage tank 11, and is temporarily stored in the water storage tank 11.
  • the water storage tank 11 since the water storage tank 11 is installed at a height higher than the filtration device 16, between the water surface of the primary treated water stored in the water storage tank 11 and the upper surface of the filtration device 16 There is a height difference h. Therefore, the primary treated water moves from the water storage tank 11 to the filtration device 16 by the water pressure by the potential energy. Thereafter, the primary treated water is filtered by the filter 16 to remove iron hydroxide. Further, the secondary treated water filtered by the filter device 16 passes through the second pipe 14 and reaches the chlorine removal device 18, and excess chlorine is removed.
  • the tertiary treated water dechlorinated by the chlorine removing device 18 passes through the second pipe 14 and reaches a faucet or the like.
  • the water purified by the solid medicine dissolver 17, the filtering device 16 and the chlorine removing device 18 is used by the user as household water.
  • the filtration device 16 is not disposed immediately after the solid medicine dissolver 17, and the oxidized primary treatment water is stored in the water storage tank 11, so iron hydroxide is in the lower part of the water storage tank 110. May precipitate.
  • primary treatment water is not stored in the water storage tank 110 for a long time, precipitation of iron hydroxide can be minimized.
  • the water pump which is essential in the system of FIG. 5 is not necessary, so it is possible to achieve simplification and cost reduction of the system.
  • the chlorine removing device 18 is an optional component, and when the excess chlorine does not remain in the secondary treated water, the chlorine removing device 18 is not provided. May be
  • water purification system 11 water storage tank 12, 14 main piping (first piping, second piping) 13 spring pump 16 filtration device 17 solid drug dissolver 18 chlorine removal device

Abstract

水浄化システム(10)は、被処理水を汲み上げる汲水ポンプ(13)と、固体の塩素系薬剤を備え、塩素系薬剤により被処理水を酸化処理する固形薬剤溶解器(17)とを備える。さらに水浄化システムは、固形薬剤溶解器により酸化処理された被処理水を濾過する濾過装置(16)と、濾過装置により濾過された被処理水を貯留する貯水タンク(11)とを備える。そして、汲水ポンプ、固形薬剤溶解器、濾過装置及び貯水タンクが接続され、被処理水が流れる主配管において、固形薬剤溶解器は汲水ポンプの下流側に位置し、かつ、固形薬剤溶解器と貯水タンクの間に濾過装置を設けている。

Description

水浄化システム
 本発明は、水浄化システムに関する。詳細には、本発明は、被処理水を安価で確実に浄化することが可能な水浄化システムに関する。
 従来より、被処理水の浄化を行う浄水装置として、種々の装置が提案されている。そして、このような浄水装置を用いることで、例えば、被処理水としての井水を浄化して浄水を得ることができる。
 ところで、井水の水質は地域によって異なるものであり、例えば世界各地で、井水の中に多くの鉄成分が溶存していることがある。このような井水は、そのまま飲料水等の生活用水として用いるのには適していない。そのため、浄水装置を用いて井水中に溶存している鉄成分を除去し、生活用水として適した水に浄化するのが好ましい。
 このような井水を浄化する装置として、例えば特許文献1に記載の水質浄化システムが提案されている。当該水質浄化システムは、井水などの原水を溜める一次貯水槽と、一次貯水槽内の原水をオゾンや次亜塩素酸によって浄化する水質改善装置と、水質改善装置で浄化された水を溜める二次貯水槽とを備えている。さらに、水質浄化システムは、一次貯水槽内の浄水を二次貯水槽へ移すポンプと、一次貯水槽と二次貯水槽との間に設けられ、水質改善装置で浄化された水を濾過するフィルタ装置と、当該ポンプを駆動させる制御手段とを備えている。特許文献1の水質浄化システムは非常に優れた浄化性能を持ったシステムであり、システム全体を小型化できるメリットがある。
特許第5436813号公報
 しかしながら、特許文献1に記載の水質浄化システムは制御が複雑であり、さらに複数の貯水タンク、並びに循環ポンプ及び送水ポンプが必要となることから、配管構成が複雑になる。結果として、当該水質浄化システムは、非常に高価なシステムとなってしまうという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、被処理水を安価で確実に浄化することが可能な水浄化システムを提供することにある。
 上記課題を解決するために、本発明の態様に係る水浄化システムは、被処理水を汲み上げる汲水ポンプと、固体の塩素系薬剤を備え、塩素系薬剤により被処理水を酸化処理する固形薬剤溶解器と、固形薬剤溶解器により酸化処理された被処理水を濾過する濾過装置と、濾過装置により濾過された被処理水を貯留する貯水タンクとを備える。そして、汲水ポンプ、固形薬剤溶解器、濾過装置及び貯水タンクが接続され、被処理水が流れる主配管において、固形薬剤溶解器は汲水ポンプの下流側に位置し、かつ、固形薬剤溶解器と貯水タンクの間に濾過装置を設けている。
図1Aは井水を貯水タンクに溜め置きする場合の配管構成を示す概略図である。 図1Bは井水を生活用水として直接使用する場合の配管構成を示す概略図である。 図2は井水を浄化する水浄化装置の一例を示す概略図である。 図3は井水を浄化する水浄化装置の一例を示す概略図である。 図4は水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図5は水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図6Aは水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図6Bは当該水浄化装置の構成を示す概略図である。 図7Aは水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図7Bは当該水浄化装置の構成を示す概略図である。 図8Aは水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図8Bは当該水浄化装置の構成を示す概略図である。 図9Aは水浄化装置と貯水タンクを組み合わせた水浄化システムの一例を示す概略図である。 図9Bは当該水浄化装置の構成を示す概略図である。 図10Aは、本発明の実施形態に係る水浄化システムの一例を示しており、水浄化装置と貯水タンクを組み合わせた水浄化システムを示す概略図である。 図10Bは、水浄化装置の構成を示す概略図である。 図11は固形薬剤溶解器の一例を概略的に示す断面図である。 図12は濾過装置の一例を概略的に示す断面図である。 図13は本発明の実施形態に係る水浄化システムの他の例を示す概略図である。
 以下、本実施形態に係る水浄化システムについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。また、本明細書において、水浄化システムで水質が改善される、井戸、河川若しくは池等の水源から汲み出した水又は雨水を「原水」という。そして、水質が改善されて浄化された原水を「浄水」という。
[第一実施形態]
 電力が安定供給されないことが多い発展途上国では、停電時でも水が使えるように、屋根や屋上に設けた貯水タンクに生活用水を溜め置きする場合が多い。そして、貯め置きした水を浄化して、生活用水として使用している。
 例えば、図1Aに示すように、建物1の屋根2に、貯水タンク110を設置し、生活用水を貯め置きしている。貯水タンク110の上部には第一配管120の一方が接続されており、第一配管120の他方は井水に浸かった状態となっている。そして、第一配管120には、井戸から原水(井水)を汲み上げるための汲水ポンプ130が設置されている。さらに、貯水タンク110の下部には第二配管140の一方が接続されており、第二配管140の他方は建物1の内部の蛇口などに接続されている。
 貯水タンク110の天井面には、貯水タンク内部の貯留水の水位を検知するための水位センサ111が設けられている。水位センサ111は、例えば所定の低水位WLと、所定の高水位(満水位)WHという2つの水位を検知することができる。そして、汲水ポンプ130は、水位センサ111の出力に応じて動作される。つまり、水位センサ111が低水位WLを検知した場合には、汲水ポンプ130はオン状態になり、第一配管120を通じて井水を汲み上げ、貯水タンク110へ供給する。
 ここで、300~2000Lの貯水タンクは非常に大きくて重いので、建物の屋根や屋上に容易に設置することはできない。また、たとえ貯水タンクを設置したとしても、貯水タンクが満タンになると、それを支える屋根や屋上には大きな荷重負荷が掛かるため、建物の耐荷重性を高める必要がある。さらに、貯水タンクは安価ではないので、結果として高所得層(富裕層)以外は、貯水タンクを使用できない場合が多い。
 そのため、近年、安価な自動ポンプが普及し、低所得層はこちらを選択することから、タンクレス化が進んでいる。つまり、図1Bに示すように、建物1の屋根2に貯水タンクを設置せず、自動ポンプである汲水ポンプ130を用いて井水を汲み上げ、生活用水として使用している。なお、このような自動ポンプは、圧力スイッチを内蔵したポンプであり、蛇口を開けたときにのみポンプが作動するものである。
 一方で、日本等の先進国とは異なり、発展途上国では原水となる井水や水道水は汚染されている場合が多く、図1Bに示すように、直接井水を使用することは衛生面で問題が多い。そのため、高所得層では浄化システムを導入し、水を浄化して使用したいという要望が高まっている。そして、日本の浄水場で培った技術を活用すれば、原水に鉄やマンガンが含まれている場合でも、酸化処理して濾過すれば容易く対応できる。
 しかしながら、原水に溶解性シリカ(イオン状シリカ)が含まれている場合は、容易に浄化できない場合がある。つまり、火山が多い国は、世界的に見て原水にシリカが多く含まれている。特に、シリカは表流水(河川等)よりも井水に多く含まれる傾向がある。そして、参考文献(高井雄、中西弘著、「用水の除鉄・除マンガン処理」、第1版、株式会社産業用水調査会、1987年6月)では、シリカの含有濃度が40~50ppm以上になると、非常に処理がし難くなることが詳しく説明されている。そのため、井水の場合、汲み上げて貯水タンクで放置しておくとコロイド状のケイ酸鉄が生成し、通常の塩素処理や凝集剤では濾別できなくなってしまうことがある。
 このように、原水にシリカが多く含まれている状況で鉄やマンガンを除去するためには、井水を汲み上げた直後に塩素処理やオゾン処理などの酸化処理を行うことが好ましい。酸化処理を素早く行うことにより、コロイド状のケイ酸鉄の生成を防ぎ、鉄及びマンガンの除去を容易に行うことが可能となる。
 具体的には、図2に示すように、汲水ポンプ130の下流に液体薬剤供給器150を設け、井水を汲み上げた直後に次亜塩素酸ナトリウム水溶液などの塩素系薬剤を投入する。これにより、原水中の鉄イオンがコロイド状のケイ酸鉄になる前に、不溶性の水酸化鉄(Fe(OH))となる。そして、液体薬剤供給器150の下流に設置した濾過装置160を用いて不溶性の水酸化鉄を濾別することにより、浄水を容易に得ることができる。
 液体薬剤供給器150は、液体の塩素系薬剤を保持する塩素薬剤タンク151と、塩素薬剤タンク151と第一配管120とを接続し、塩素薬剤タンク151から第一配管120に塩素系薬剤を送るための薬剤送給管152とを備えている。さらに液体薬剤供給器150は、薬剤送給管152に設けられ、塩素系薬剤を所定量送給するための定量ポンプ153を備えている。液体薬剤供給器150では、薬剤送給管152及び定量ポンプ153により、塩素薬剤タンク151から所定量の塩素系薬剤を原水に注入することができる。
 また、図3に示すように、液体薬剤供給器150の代わりに固形薬剤溶解器170を使用することも可能である。固形薬剤溶解器170は、例えば、次亜塩素酸カルシウムなどの固形薬剤を錠剤状に固めたものを内部に保持した固形薬剤保持具171を備え、原水が固形薬剤と接触することができる構成とすることができる。次亜塩素酸カルシウムが水と接触すると、次亜塩素酸カルシウムが加水分解されて塩素が原水中に放出され、鉄イオンを不溶性の水酸化鉄に酸化することができる。なお、固形薬剤保持具171は、バイパス配管172を用いて第一配管120に接続することができる。
 そして、上述の液体薬剤供給器150又は固形薬剤溶解器170と濾過装置160とを備えた水浄化装置を、貯水タンク110と組み合わせることにより、浄水を安定的に使用することが可能となる。このような水浄化装置と貯水タンク110とを組み合わせた水浄化システムとしては、図4に示す構成とすることができる。水浄化システム100は、建物1の屋根2に設置された貯水タンク110を備えている。貯水タンク110の上部には第一配管120の一方が接続されており、さらに第一配管120の他方は井水に浸かった状態となっている。貯水タンク110の下部には第二配管140の一方が接続されており、さらに第二配管140の他方は建物1の内部の蛇口などに接続されている。
 第一配管120には、井水を汲み上げるための汲水ポンプ130が設置されており、さらに汲水ポンプ130と貯水タンク110との間には、塩素薬剤タンク151と薬剤送給管152と定量ポンプ153とを備えた液体薬剤供給器150が接続されている。また、第二配管140には、内部にマンガン砂を保持した濾過装置160と、濾過装置160の下流に設けられ、内部に活性炭を充填した塩素除去装置180とが設置されている。さらに第二配管140には、貯水タンク110と濾過装置160との間に設けられ、貯水タンク110の貯留水を濾過装置160及び塩素除去装置180に移送するための送水ポンプ190が設置されている。
 しかしながら、塩素薬剤タンク151から原水に所定量の塩素系薬剤を注入するための定量ポンプ153は、耐塩素対策が必要であることから高価格となる。そのため、定量ポンプ153は、たとえ高所得層といえども容易に使用することができない。
 また、井水を汲み上げた直後に塩素系薬剤により酸化処理した場合には、原水中の鉄イオンが即座に不溶性の水酸化鉄(Fe(OH))となる。ただ、図4に示す構成では、原水を酸化処理した一次処理水が貯水タンク110の内部で長時間貯留されるため、不溶性の水酸化鉄が貯水タンク110の下部に沈殿し、汚泥として蓄積してしまう。そのため、屋根2に設けられた貯水タンク110から沈殿した汚泥を除去しなければならず、維持管理が非常に煩雑となる。さらに、図4に示す構成では、一次処理水中に不溶性の水酸化鉄が含まれているため、貯水タンク110内の一次処理水を濾過装置160に移送するための送水ポンプ190が必要となり、コストが上昇する原因となる。
 そのため、図5に示す水浄化システム101のように、液体薬剤供給器150の代わりに、固形薬剤溶解器170を使用する方法がある。この場合には、液体薬剤供給器150で必須であった定量ポンプ153が不要となるため、水浄化装置の価格は低下する。ただ、図5に示す構成でも、貯水タンク110に汚泥が蓄積してしまうという問題や、送水ポンプ190が必須となってしまうという問題は全く改善されていない。
 水浄化装置と貯水タンク110とを組み合わせた水浄化システムとしては、図6A及び図6Bに示す構成とすることも可能である。図6Aに示すように、水浄化システム102は、建物1の屋根2に設置された貯水タンク110を備えている。貯水タンク110の上部には第一配管120の一方が接続されており、さらに第一配管120の他方は井水に浸かった状態となっている。貯水タンク110の下部には第二配管140の一方が接続されており、さらに第二配管140の他方は建物1の内部の蛇口などに接続されている。
 第一配管120には、井水を汲み上げるための汲水ポンプ130が設置されており、汲水ポンプ130で汲み上げられた井水は、貯水タンク110に直接投入されて貯留される。第二配管140には、図6Bに示すように、固形薬剤溶解器170、濾過装置160及び塩素除去装置180を備えた水浄化装置200が設置されている。さらに第二配管140には、貯水タンク110の貯留水を、固形薬剤溶解器170、濾過装置160及び塩素除去装置180に移送するための送水ポンプ190も設置されている。
 しかしながら、図6A及び図6Bに示す水浄化システム102では、井水を汲み上げた直後に塩素処理やオゾン処理などの酸化処理を行うことができず、貯水タンク110において井水が長時間貯留されるため、コロイド状のケイ酸鉄が生成してしまう。そのため、たとえ固形薬剤溶解器170、濾過装置160及び塩素除去装置180を用いたとしても、原水中の鉄を十分に除去することができない恐れがある。
 水浄化装置と貯水タンク110とを組み合わせた水浄化システムとしては、図7A及び図7Bに示す構成とすることも可能である。図7Aに示すように、水浄化システム103は、建物1の屋根2に設置された貯水タンク110を備えている。貯水タンク110の上部には第一配管120の一方が接続されており、さらに第一配管120の他方は井水に浸かった状態となっている。貯水タンク110の下部には第二配管140の一方が接続されており、さらに第二配管140の他方は建物1の内部の蛇口などに接続されている。
 第一配管120には、井水を汲み上げるための汲水ポンプ130が設置されており、汲水ポンプ130で汲み上げられた井水は、貯水タンク110に直接投入されて貯留される。第二配管140には、図7Bに示すように、濾過装置160及び塩素除去装置180を備えた水浄化装置201が設置されている。さらに第二配管140には、貯水タンク110の貯留水を、濾過装置160及び塩素除去装置180に移送するための送水ポンプ190も設置されている。
 図7A及び図7Bに示す水浄化システム103では、固形薬剤保持具171を貯水タンク110の天井面から吊るしている。そして、固形薬剤保持具171は、次亜塩素酸カルシウムなどの固形薬剤を錠剤状に固めたものを内部に保持している。固形薬剤保持具171は貯留水に浸漬し、固形薬剤から塩素が徐々に放出される構成となっている。そして、貯水タンク110の内部で酸化処理された一次処理水は、送水ポンプ190により濾過装置160及び塩素除去装置180に移送されて浄化される。
 図7A及び図7Bに示す水浄化システム103では、塩素を補給し続けるために、固形薬剤保持具171を定期的に補充する必要がある。ただ、貯水タンク110は建物1の屋根2に設置されているため、固形薬剤保持具171の交換が非常に煩雑である。さらに、原水を酸化処理した一次処理水が貯水タンク110の内部で長時間貯留されるため、不溶性の水酸化鉄が貯水タンク110の下部に沈殿し、汚泥として蓄積してしまう。そのため、貯水タンク110から沈殿した汚泥を除去しなければならず、維持管理が非常に煩雑となる。さらに、一次処理水中に不溶性の水酸化鉄が含まれているため、貯水タンク110の一次処理水を濾過装置160に移送するための送水ポンプ190が必要となる。また、一次処理水には塩素が溶存していることから、送水ポンプ190として耐塩素仕様のものを使用する必要があるため、コストが上昇する原因となる。
 このように図4、図5、図7A及び図7Bに示す水浄化システム100,101,103のように、原水を汲み上げた直後に酸化処理したとしても、濾過装置160を用いて早期に濾過しない場合には、貯水タンク110に汚泥が蓄積してしまうという問題が生じる。また、図6A及び図6Bに示す水浄化システム102のように、原水を汲み上げた直後に酸化処理しない場合にはコロイド状のケイ酸鉄が生成し、原水中の鉄を十分に除去することができない恐れがある。そのため、水浄化システムとしては、貯水タンク110の上流側に水浄化装置を設け、当該水浄化装置により浄化された水を貯水タンク110に溜め置きする構成とすることが好ましい。
 このような貯水タンク110の上流側に水浄化装置を設けた例としては、特許文献1に記載の水質浄化システムが存在する。しかし、上述のように特許文献1の水質浄化システムは、構成及び制御が複雑であり、非常に高価なシステムとなってしまう。そのため、水浄化システムとして、図8A及び図8Bに示すような、簡略化した水浄化装置202と貯水タンク110とを組み合わせた構成を挙げることができる。
 図8Aに示すように、水浄化システム104は、建物1の屋根2に設置された貯水タンク110を備えている。貯水タンク110の下部には第二配管140の一方が接続されており、さらに第二配管140の他方は建物1の内部の蛇口などに接続されている。
 水浄化システム104において、貯水タンク110の上流側には図8Bに示す水浄化装置202が設けられている。水浄化装置202には第一配管120の一方が接続されており、さらに第一配管120の他方は井水に浸かった状態となっている。なお、第一配管120には、井水を汲み上げるための汲水ポンプ130が設置されている。
 水浄化装置202は、図8Bに示すように、汲水ポンプ130で汲み上げられた井水を一時的に貯留する貯水槽210を備えている。貯水槽210には第三配管220が接続されており、第三配管220には濾過装置160及び三方弁230が設けられている。そして、水浄化装置202には循環配管240が設けられており、循環配管240の一方は三方弁230に接続され、循環配管240の他方は貯水槽210に接続されている。また、貯水槽210と濾過装置160との間には循環ポンプ250が設けられ、濾過装置160と三方弁230との間には、液体薬剤供給器150又は固形薬剤溶解器170からなる酸化剤供給装置が接続されている。なお、図8Aに示すように、貯水タンク110の下流には、内部に活性炭を充填した塩素除去装置180が設けられている。
 水浄化装置202では、まず汲水ポンプ130で汲み上げられた井水が、貯水槽210に直接投入されて貯留される。そして、循環ポンプ250が作動することにより、貯水槽210にたまった貯留水が濾過装置160に移送され、濾過装置160を通過した後、酸化剤供給装置によって貯留水に酸化剤が投入される。その後、酸化剤が投入された貯留水は三方弁230を通過し、循環配管240を通じて貯水槽210に戻される。つまり、貯水槽210に溜まった貯留水は、第三配管220に設けられた循環ポンプ250、濾過装置160、酸化剤供給装置及び三方弁230、並びに循環配管240によって水浄化装置202の内部で循環する。これにより、鉄及びマンガンの酸化処理と濾過処理が繰り返されて浄水となった後に、三方弁230を切り替え、第三配管220を通じて浄水が貯水タンク110に移送される。そして、貯水タンク110の浄水は、塩素除去装置180を通じて過剰の塩素が除去された後、生活用水として使用される。
 水浄化システム104のように、貯水タンク110の上流側に水浄化装置202を設け、水浄化装置202により浄化された水を貯水タンク110に溜め置きすることにより、常に浄水を使用することが可能となる。また、貯水タンク110のバッファ能力を生かし、水浄化装置202の処理能力を低くすることで、水浄化システム全体の小型化を図ることが可能となる。ただ、水浄化システム104でも貯水槽210や循環ポンプ250を使用する必要があり、さらに三方弁230及び循環ポンプ250を制御する制御装置も必要となる。そのため、特許文献1の水質浄化システムと同様に、構成及び制御が複雑になり、高価なシステムとなってしまう。
 また、貯水タンク110の上流側に水浄化装置を設ける水浄化システムとして、図9A及び図9Bに示す構成も挙げることができる。図9Aに示すように、水浄化システム105は、建物1の屋根2に設置された貯水タンク110を備えている。貯水タンク110の下部には第二配管140の一方が接続されており、さらに第二配管140の他方は建物1の内部の蛇口などに接続されている。水浄化システム105において、貯水タンク110の上流側には図9Bに示す水浄化装置203が設けられている。水浄化装置203には第一配管120の一方が接続されており、さらに第一配管120の他方は井水に浸かった状態となっている。なお、第一配管120には、井水を汲み上げるための汲水ポンプ130が設置されている。
 水浄化装置203は、図9Bに示すように、汲水ポンプ130で汲み上げられた井水を一時的に貯留する貯水槽210を備えている。貯水槽210には第三配管220が接続されており、第三配管220には、貯水槽210で浄化された水を移送するための送水ポンプ260が設けられている。そして、貯水槽210の内部には、精密濾過膜(MF膜)または限外濾過膜(UF膜)などの平膜270が設けられている。
 水浄化装置203では、井水に空気を吹き込んで活性汚泥を発生させ、これを利用して水中の有機物を分解して浄化する活性汚泥法により、井水を浄化している。そして、処理された水と活性汚泥との分離を平膜270により行っている。つまり、水浄化装置203は、膜分離活性汚泥法(MBR)により井水の浄化を行っている。このような膜分離活性汚泥法は、汚泥沈降性状の変化による処理機能への影響を受けず、安定して活性汚泥を処理することが可能である。また、膜分離活性汚泥法は、設備が小型になることや、処理水が平膜270を通るため水質がよく、濾過装置が不要となるなどのメリットがある。
 しかしながら、膜分離活性汚泥法は、平膜270のファウリングを防ぐため、平膜270を定期的に次亜塩素酸やアルカリなどの薬品で洗浄する必要が生じる。また、平膜270の定期的な交換が必要であることや、平膜270の表面の曝気または活性汚泥の循環、および処理水の吸引のため、電力などのエネルギーが必要になるなどの問題がある。
 このように、水浄化システム105は、特許文献1の水質浄化システムや図8A及び図8Bに示す水浄化システム104よりも構成はシンプルであるが、貯水槽210や送水ポンプ260を使用する必要がある。また、場合によっては、曝気用のエアーポンプも必要となる。さらに、水浄化システム105を用いたとしても、発展途上国のように原水が鉄で汚染されている場合には除鉄できなかったり、平膜270がすぐ詰まったりする恐れもある。さらに、短時間で平膜270が目詰まりしないようにするためには、ある程度の膜面積を確保して、ゆっくり吸い込む必要があるため、高価な膜を小型化できない。結果として、水浄化システム105も安価で安定した性能を発揮するシステムとはならないという問題がある。
 上述の問題点を解決するために、本実施形態に係る水浄化システム10は、図10Aに示すように、被処理水である原水(井水)を浄化する水浄化装置20と、水浄化装置20によって浄化された水を貯留する貯水タンク11を備えている。水浄化装置20は、図10Bに示すように、原水を酸化処理する固形薬剤溶解器17と、固形薬剤溶解器17によって酸化処理された一次処理水を濾過する濾過装置16とを備えている。
 水浄化システム10は、図10Aに示すように、建物1の屋根2に設置された貯水タンク11を備えている。貯水タンク11は濾過装置16により濾過された二次処理水を貯留できれば、その構造及び材質は特に限定されない。また、貯水タンク11の容量も特に限定されず、例えば300L~2000Lとすることができる。
 貯水タンク11の上部には第一配管12の一方が接続されており、さらに第一配管12の他方は原水(井水)に浸かった状態となっている。また、貯水タンク11の下部には第二配管14の一方が接続されており、さらに第二配管14の他方は建物1の内部の蛇口などに接続されている。
 第一配管12には、原水を汲み上げるための汲水ポンプ13が設置されている。汲水ポンプ13は、原水を汲み上げ、固形薬剤溶解器17及び濾過装置16を通じて貯水タンク11まで送水することが可能ならば、特に限定されない。汲水ポンプ13としては、例えば、圧力スイッチを内蔵した自動ポンプを用いることができる。具体的には、汲水ポンプ13は、後述する開閉弁12c及び開閉弁17cの少なくとも一方が開いたときに作動するような構成とすることができる。
 ここで、汲水ポンプ13は、通常、ケーシング内に、翼を有した羽根車を備えている。汲水ポンプ13内の水は、羽根車の回転によって翼から力を受けながら、羽根車の中心部から外周方向に押し出される。そして、羽根車によって水に回転速度が与えられ、その遠心力によって圧力が上昇する。この際、羽根車の中心部から外周部へ水が流れることにより、羽根車の中心部の圧力が低くなり、羽根車の入口部の水が引き込まれる。汲水ポンプ13は、この動作を繰り返すことにより水を送り出すことができる。ただ、この際、羽根車の入口部に常に水が存在し、吸い込み側の配管が水で満たされている必要がある。そのため、汲水ポンプ13は、吐出側に逆止弁を設け、吸い込み側にフート弁を設け、汲水ポンプ13が停止しても汲水ポンプ13や吸い込み管(第一配管12)の内部の水が落水しないような構成とすることが好ましい。
 図10Bに示すように、第一配管12において、汲水ポンプ13の下流には固形薬剤溶解器17が配置されている。固形薬剤溶解器17は、固体の塩素系薬剤と、塩素系薬剤を内部に保持する固形薬剤保持具17aと、固形薬剤保持具17aを第一配管12に接続するバイパス配管17bとを備えている。そして、固形薬剤保持具17aの上流側におけるバイパス配管17bには、汲水ポンプ13により汲み上げられた原水の流量を調整する流量調整機構としての開閉弁17cが設けられている。さらに、第一配管12とバイパス配管17bとの接続部12a,12bの間における第一配管12にも、原水の流量を調整する開閉弁12cが設けられている。
 固体の塩素系薬剤は、原水中の鉄イオンに対し酸化作用を生じさせる。具体的には、塩素系薬剤によって、二価の鉄イオンは三価の鉄イオンに酸化され、さらに不溶性の水酸化鉄(Fe(OH))となる。このような塩素系薬剤は特に限定されず、例えば次亜塩素酸ナトリウム、次亜塩素酸カルシウム及び塩素化イソシアヌル酸からなる群より選ばれる少なくとも一つを用いることができる。次亜塩素酸カルシウムとしては、さらし粉(有効塩素30%)及び高度さらし粉(有効塩素70%)の少なくとも一つを用いることができる。塩素化イソシアヌル酸としては、トリクロロイソシアヌル酸ナトリウム、トリクロロイソシアヌル酸カリウム、ジクロロイソシアヌル酸ナトリウム、及びジクロロイソシアヌル酸カリウムからなる群より選ばれる少なくとも一つを用いることができる。なお、固形薬剤溶解器17において、塩素系薬剤は、徐々に原水に溶解するように錠剤状に固めたもの用いることが好ましい。固形薬剤溶解器17としては、例えば特表平6-501418号公報に記載の薬品供給装置を用いることができる。
 固形薬剤溶解器17としては、例えば図11に示す構成とすることもできる。固形薬剤溶解器17Aは、塩素系薬剤17dを内部に保持する固形薬剤保持具17aと、固形薬剤保持具17aを第一配管12に接続するバイパス配管17bとを備えている。そして、固形薬剤保持具17aの上流側におけるバイパス配管17bには、原水の流量を調整する流量調整機構としての開閉弁17cが設けられている。
 固形薬剤保持具17aは、保持具の上面全体を覆う蓋部17eを備えている。そして、蓋部17eを開閉することで、固形薬剤保持具17aの内部に塩素系薬剤17dを補充することが可能となる。また、固形薬剤保持具17aの下部は第一配管12と接続されており、塩素系薬剤17dによって酸化処理された一次処理水は、接続部12bを通過して第一配管12に送られる。
 図11に示すように、バイパス配管17bの一方は、接続部12aにおいて第一配管12に接続されており、バイパス配管17bの他方には、薬剤支持台17fが設けられている。薬剤支持台17fは、バイパス配管17bを通過した原水が塩素系薬剤17dと接触できるように中空となっている。さらに、薬剤支持台17fは、塩素系薬剤17dを水平に保持するための支持面17gを備え、支持面17gの中央には、原水が通過する開口部17hが設けられている。
 なお、図11に示す構成では、第一配管12と固形薬剤溶解器17Aとの接続部12a,12bの間における第一配管12の内部に、開閉弁12cの代わりにオリフィス12dが設けられている。オリフィス12dは、第一配管12を流れる原水の流量を調整することができる。
 固形薬剤溶解器17Aでは、まず、汲水ポンプ13により汲み上げられた原水の一部が、開閉弁17c及び第一配管12を通過する。そして、薬剤支持台17fに到達した原水は、支持面17gの開口部17hを通過し、塩素系薬剤17dと接触して酸化処理される。酸化処理された一次処理水は、固形薬剤溶解器17Aの下部から接続部12bを通過して第一配管12に送られ、濾過装置16に到達する。
 図10Bに示すように、第一配管12において、汲水ポンプ13及び固形薬剤溶解器17の下流には、濾過装置16が配置されている。濾過装置16は、固形薬剤溶解器17によって原水中の鉄イオンを水酸化鉄として析出させた一次処理水から、水酸化鉄を除去するものである。このような濾過装置16は、内部に水酸化鉄を除去するための濾材を備えている。濾材としては、安価な濾過砂を使用することができる。また、濾過装置16の濾材として、水和二酸化マンガンをコートしたマンガン砂を用いることもできる。濾材としてマンガン砂を用いることにより、一次処理水中に存在する水酸化鉄だけでなく、マンガンも除去することが可能となる。
 濾過装置16としては、例えば図12に示す構成とすることができる。濾過装置16Aは、上述の濾材16aと、内部に濾材16aを収納する容器16bと、容器16bの底部に設けられた砂利16cとを備えている。そして、容器16bの中心には、濾材16a及び砂利16cを通じて濾過された水を濾過装置16Aの外部へ流出させるための流出パイプ16dが設けられている。流出パイプ16dの下端には、砂利16cが流出パイプ16dの内部に侵入しないように、スリット状の長穴が複数設けられたスクリーン部16eが設けられている。
 容器16bの上端には、流路切替弁を備えた蓋部16fが設けられている。蓋部16fは、第一配管12に接続され、固形薬剤溶解器17によって酸化処理された一次処理水が通過する流入口16gと、流出パイプ16dと連通した流出口16hと、逆流洗浄した水を排出する排出口16iとを備えている。流路切替弁は、一次処理水が流入口16gから流出口16hへ向かう順方向Xに流れる状態と、流入口16gから排出口16iへ向かう逆方向Yに流れる状態とを切り替える。順方向Xの場合において、一次処理水は、流入口16g、濾材16a、砂利16c、スクリーン部16e、流出パイプ16d、流出口16hの順番で流れる。逆方向Yの場合において、一次処理水は、流入口16g、流出パイプ16d、スクリーン部16e、砂利16c、濾材16a、排出口16iの順番で流れる。
 排出口16iは、一次処理水が逆方向Yに流れる状態において濾材16aの下流に位置付けられ、一次処理水を外部へ排出する。そのため、濾過装置16Aは、流路切替弁を切り替えることによって、一次処理水を順方向Xに流して濾材16aにより濾過処理を行うことができる。また、流路切替弁を切り替えることによって、一次処理水又は原水を逆方向Yに流して濾材16aを逆流洗浄することもできる。
 水浄化システム10は、図10Aに示すように、貯水タンク11の下流側に設けられ、被処理水に含まれる過剰な塩素を除去する塩素除去装置18をさらに備えている。具体的には、水浄化システム10の第二配管14には、貯水タンク11で貯留された二次処理水に含まれる過剰な塩素を除去する塩素除去装置18が設けられている。塩素除去装置18としては、容器の内部に活性炭の粒子を充填したものを使用することができる。
 次に、本実施形態の水浄化システム10を用いて原水を浄化する方法について説明する。水浄化システム10では、まずバイパス配管17bに設けられた開閉弁17cを開状態とし、第一配管12に設けられた開閉弁12cを閉状態とする。そして、汲水ポンプ13により、原水である井水を汲み上げる。
 汲み上げられた原水は、第一配管12、接続部12a及びバイパス配管17bを通過して、固形薬剤保持具17aの内部に到達し、錠剤状の塩素系薬剤と接触する。それにより塩素系薬剤が原水に溶解し、反応式(1)に示すように、原水中の二価の鉄が不溶性の水酸化鉄(Fe(OH))に酸化される。なお、地下水の場合には、鉄が炭酸水素鉄(Fe(HCO)の状態で溶解している場合があるが、反応式(2)に示すように、塩素系薬剤により酸化されて不溶性の水酸化鉄となる。
2Fe2++Cl+6HO→2Fe(OH)+6H+2Cl (1)
2Fe(HCO+Cl+2HO→2Fe(OH)+4CO+2HCl (2)
 固形薬剤溶解器17によって酸化処理された一次処理水は、接続部12b及び第一配管12を通過して、濾過装置16に到達する。この際、一次処理水に存在する不溶性の水酸化鉄は、濾材16aの間を通過することによって濾過されて除去される。また、濾過装置16の濾材として、水和二酸化マンガン(MnO・HO)をコートしたマンガン砂を用いた場合には、一次処理水に溶存しているマンガンイオン(Mn2+)も除去される。つまり、一次処理水中のマンガンイオンは、反応式(3)に示すように、マンガン砂の表面に担持されている水和二酸化マンガンを触媒として塩素により速やかに酸化されて水和二酸化マンガンとなり、マンガン砂により除去される。
Mn2++MnO・HO+Cl+3H
           →2MnO・HO+4H+2Cl (3)
 濾過装置16によって濾過処理された二次処理水は、第一配管12を通じて貯水タンク11に貯留される。そして、貯留された二次処理水は、第二配管14を通過して塩素除去装置18に到達する。塩素除去装置18では、以下の反応式(4)に示すように、二次処理水に溶存する余剰の塩素を活性炭により除去する。
Cl+HO+C(活性炭)→2H+2Cl+O+C(活性炭) (4)
 塩素除去装置18により脱塩素処理された三次処理水は第二配管14を通過して、蛇口等に到達する。このように、固形薬剤溶解器17及び濾過装置16からなる水浄化装置20、並びに塩素除去装置18により浄化された水は、ユーザーによって生活用水として使用される。
 本実施形態の水浄化システム10では、汲水ポンプ13によって原水を汲み上げた直後に固形薬剤溶解器17によって酸化処理しているため、コロイド状のケイ酸鉄の生成を抑制している。さらに固形薬剤溶解器17の直後に濾過装置16を配置し、酸化処理された一次処理水を濾過しているため、貯水タンク11には、鉄が除去された二次処理水が貯留される。そのため、二次処理水が貯水タンク11の内部で長時間貯留されたとしても、不溶性の水酸化鉄が貯水タンク11の下部に沈殿して汚泥として蓄積することを防ぎ、清潔な状態を保つことができる。そのため、屋根2に設けられた貯水タンク11から、沈殿した汚泥を除去する手間が省け、貯水タンク11の維持管理を容易にすることが可能となる。
 また、図4及び図5に示すように、貯水タンク110の下流に濾過装置160及び塩素除去装置180を設ける場合、不溶性の水酸化鉄が含まれる貯留水を濾過装置160に移送するための送水ポンプ190が必要となる。しかしながら、水浄化システム10では、貯水タンク11には鉄が除去された二次処理水が貯留される。そのため、位置エネルギーによる水圧のみで、貯留水は塩素除去装置180を通過し、建物1の蛇口等に到達できることから、送水ポンプが不要となり、システムの簡素化を図ることができる。
 さらに、水浄化システム10では、貯水タンク11の上流側に水浄化装置20を設け、水浄化装置20により浄化された水を貯水タンク11に溜め置きしているため、常に浄水を使用することが可能となる。また、貯水タンク11のバッファ能力を生かし、水浄化装置20の処理能力を低くすることで、水浄化システム全体の小型化及び低価格化を図ることが可能となる。
 また、水浄化システム10では、濾過装置160の逆流洗浄を容易に行うことができる。例えば、バイパス配管17bに設けられた開閉弁17cを閉状態とし、第一配管12に設けられた開閉弁12cを開状態とする。そして、濾過装置160の流路切替弁を切り替え、原水を逆方向Yに流すことにより、濾材16aを逆流洗浄することができる。
 このように、水浄化システム10では、濾過装置160を逆流洗浄することにより長期に亘り使用することができるため、膜分離活性汚泥法で使用する平膜のように、定期的な交換を考慮する必要がない。さらに、図8A及び図8Bの水浄化装置202で必須の貯水槽210、三方弁230及び循環配管240なども不要となるため、複雑な構成及び制御を用いなくても、簡易な構成により容易に浄水を得ることができる。
 水浄化システム10において、貯水タンク11は、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16よりも高所に設置されていることが好ましい。具体的には、貯水タンク11は建物1の屋根2や屋上に設置され、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16は貯水タンク11よりも低所に設置されることが好ましい。また、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16は、地面近傍、建物1の一階又はベランダなど、容易に保守作業を行うことが可能な場所に設置されることが好ましい。汲水ポンプ13、固形薬剤溶解器17及び濾過装置16をこのような場所に設置することにより、これらの点検や塩素系薬剤の補充を容易に行うことが可能となる。なお、塩素除去装置18を用いる場合には、塩素除去装置18も貯水タンク11よりも低所に設置されることが好ましく、例えば地面近傍、建物1の一階又はベランダに設置されることが好ましい。
 このように、本実施形態の水浄化システム10は、被処理水を汲み上げる汲水ポンプ13と、固体の塩素系薬剤を備え、塩素系薬剤により被処理水を酸化処理する固形薬剤溶解器17とを備える。さらに水浄化システム10は、固形薬剤溶解器17により酸化処理された被処理水を濾過する濾過装置16と、濾過装置16により濾過された被処理水を貯留する貯水タンク11を備える。そして、汲水ポンプ13、固形薬剤溶解器17、濾過装置16及び貯水タンク11が接続され、被処理水が流れる主配管(第一配管12、第二配管14)において、固形薬剤溶解器17は汲水ポンプ13の下流側に位置している。さらに固形薬剤溶解器17と貯水タンク11の間に濾過装置16を設けている。そして、被処理水は、溶解性シリカを含有する原水を使用することができる。
 本実施形態では、汲み上げ直後に被処理水である原水を酸化処理し、すぐに濾過処理を行うため、貯水タンク11内は常に清潔な状態に維持することができる。また、貯水タンクのバッファ効果を活用することで、水浄化システム10を小型化できるので、その点でも低価格化が可能となる。また、複雑な制御も配管も不要であり、濾過装置16を逆洗すれば、膜処理のような交換頻度も殆ど考慮する必要がない。さらに、貯水タンク後段の送水ポンプも不要であるため、その点でも低価格化が可能である。また、塩素系薬剤の補給や濾過装置16の逆洗等のメンテナンスも簡単に行うことができる。
 水浄化システム10は、主配管において、貯水タンク11の下流側に設けられ、被処理水に含まれる過剰な塩素を除去する塩素除去装置18をさらに備えることが好ましい。これにより、二次処理水に溶存する余剰の塩素を除去し、より安全な浄水を得ることが可能となる。なお、水浄化システム10において、塩素除去装置18は任意の構成要素である。つまり、濾過装置16により処理された二次処理水に余剰の塩素が残留する場合には、塩素除去装置18を用いることが好ましい。しかし、二次処理水に余剰の塩素が残留しない場合には、塩素除去装置18を設けなくてもよい。
 水浄化システム10において、固形薬剤溶解器17,17Aは、主配管に接続し、被処理水を塩素系薬剤まで通水するためのバイパス配管17bと、バイパス配管17bに設けられ、被処理水の流量を調整するための流量調整機構とをさらに備えることが好ましい。このように、塩素系薬剤によって酸化処理される被処理水の流量を流量調整機構によって調節することにより、被処理水の状況に応じて塩素濃度の調整を図ることが可能となる。つまり、被処理水に含まれる鉄の含有量や、塩素を消費するアンモニア及び有機物の量に応じて、塩素濃度の調整を容易に行うことが可能となる。なお、流量調整機構を用いることによって、被処理水の流量に応じた塩素濃度の調整も、ある程度可能となる。
 上述のように、汲水ポンプ13の上流側にはフート弁を設け、汲水ポンプ13が停止しても汲水ポンプ13や第一配管12の内部の水が井戸に落水しないような構成とすることが好ましい。ただ、フート弁が異物を噛み込んだ場合、汲水ポンプ13の内部の水が落水し、それに伴い、固形薬剤溶解器17及び濾過装置16の内部の水が逆流する可能性がある。しかし、濾過装置16自体の抵抗が大きいため、この場合でも逆流が生じる可能性が低い。
 また、固形薬剤溶解器として、図11に示す固形薬剤溶解器17Aを使用した場合、塩素系薬剤17dは薬剤支持台17fによって支持されているため、常に原水に浸漬しているわけではない。そのため、原水中の塩素濃度が過度に上昇し難い。そのため、たとえ固形薬剤溶解器17Aの内部に存在する水が逆流して汲水ポンプ13と接触したとしても、汲水ポンプ13が塩素により腐食することを抑制することができる。
 さらに、固形薬剤溶解器17Aにおいて、固形薬剤保持具17aの内部では、塩素系薬剤17dと蓋部との間に空気層が存在する。そのため、汲水ポンプ13の内部から逆流が生じた場合、固形薬剤保持具17aの内部の水よりも、第一配管12の内部の水がオリフィス12dを通過して逆流する。そのため、高濃度の塩素を含む水が汲水ポンプ13の内部に流れ込み難くなる。そのため、固形薬剤溶解器17Aを用いることにより、汲水ポンプ13の吐出側に逆止弁等の装置を設ける必要がなく、イニシャルコストやメンテナンス性を大きく向上させることが可能となる。
 水浄化システム10において、汲水ポンプ13は開閉弁12c及び開閉弁17cの少なくとも一方が開いたときに作動するような自動ポンプを用いることができる。ただ、このような自動ポンプに限定されず、例えば図1A及び図1Bに示すように、貯水タンク11の天井面に貯留水の水位を検知するための水位センサが設け、水位センサの出力に応じて、汲水ポンプ130が動作するような構成であってもよい。つまり、水位センサが低水位を検知した場合には、汲水ポンプ13がオン状態になり、原水を汲み上げるような構成であってもよい。
[第二実施形態]
 次に、第二実施形態に係る水浄化システムについて、図面に基づき詳細に説明する。なお、第一実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る水浄化システム10Aは、図13に示すように、被処理水である原水(井水)を汲み上げる汲水ポンプ13と、原水を酸化処理する固形薬剤溶解器17と、酸化処理された一次処理水を濾過する濾過装置16とを備えている。さらに、水浄化システム10Aは、固形薬剤溶解器17によって酸化処理された一次処理水を貯留する貯水タンク11を備えている。そして、汲水ポンプ13、固形薬剤溶解器17、濾過装置16及び貯水タンク11が接続され、被処理水が流れる主配管(第一配管12、第二配管14)において、固形薬剤溶解器17は汲水ポンプ13の下流側に位置している。さらに固形薬剤溶解器17と濾過装置16の間に貯水タンク11を設けている。
 水浄化システム10Aは、図13に示すように、建物1の屋根2に設置された貯水タンク11を備えている。貯水タンク11は、固形薬剤溶解器17によって酸化処理された一次処理水を貯留できれば、その構造及び材質は特に限定されない。そして、第一実施形態と同様に、貯水タンク11の上部には第一配管12の一方が接続されており、さらに第一配管12の他方は原水(井水)に浸かった状態となっている。また、貯水タンク11の下部には第二配管14の一方が接続されており、さらに第二配管14の他方は建物1の内部の蛇口などに接続されている。
 第一配管12には、原水を汲み上げるための汲水ポンプ13が設置されている。汲水ポンプ13は、原水を汲み上げ、固形薬剤溶解器17を通じて貯水タンク11まで送水することが可能ならば、特に限定されず、第一実施形態と同様の構成とすることができる。また、第一配管12において、汲水ポンプ13の下流には固形薬剤溶解器17が配置されている。
 水浄化システム10Aにおいて、第二配管14には、濾過装置16と、濾過装置16の下流に設けられた塩素除去装置18とが接続されている。なお、図5に示す水浄化システム101とは異なり、水浄化システム10Aでは、貯水タンクと濾過装置の間に設けられ、貯水タンクの貯留水を濾過装置及び塩素除去装置に移送するための送水ポンプを備えていない。
 そして、第一実施形態と同様に、貯水タンク11は、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16よりも高所に設置されていることが好ましい。具体的には、貯水タンク11は建物1の屋根2や屋上に設置され、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16は貯水タンク11よりも低所に設置されることが好ましい。また、汲水ポンプ13、固形薬剤溶解器17及び濾過装置16は、地面近傍、建物1の一階又はベランダなど、容易に保守作業を行うことが可能な場所に設置されることが好ましい。さらに、塩素除去装置18を用いる場合には、塩素除去装置18も貯水タンク11よりも低所に設置されることが好ましく、例えば地面近傍、建物1の一階又はベランダに設置されることが好ましい。
 次に、本実施形態の水浄化システム10Aを用いて原水を浄化する方法について説明する。水浄化システム10Aでは、第一実施形態と同様に、まず開閉弁17cを開状態とし開閉弁12cを閉状態とし、汲水ポンプ13により原水である井水を汲み上げる。汲み上げられた原水は、第一配管12、接続部12a及びバイパス配管17bを通過して、固形薬剤保持具17aの内部に到達し、原水中の二価の鉄が不溶性の水酸化鉄に酸化される。固形薬剤溶解器17によって酸化処理された一次処理水は、接続部12b及び第一配管12を通過して貯水タンク11に到達し、貯水タンク11により一時的に貯留される。
 そして、図13に示すように、貯水タンク11は濾過装置16よりも高所に設置されているため、貯水タンク11に貯留されている一次処理水の水面と濾過装置16の上面との間には高低差hがある。そのため、位置エネルギーによる水圧により、一次処理水が貯水タンク11から濾過装置16に移動する。その後、一次処理水は濾過装置16によって濾過され、水酸化鉄が除去される。さらに濾過装置16によって濾過処理された二次処理水は、第二配管14を通過して塩素除去装置18に到達し、余剰の塩素が除去される。
 その後、塩素除去装置18により脱塩素処理された三次処理水は第二配管14を通過して、蛇口等に到達する。このように、固形薬剤溶解器17、濾過装置16及び塩素除去装置18により浄化された水は、ユーザーによって生活用水として使用される。
 このように、本実施形態の水浄化システム10Aでも、汲水ポンプ13によって原水を汲み上げた直後に固形薬剤溶解器17によって酸化処理しているため、コロイド状のケイ酸鉄の生成を抑制することができる。なお、本実施形態では固形薬剤溶解器17の直後に濾過装置16を配置しておらず、酸化処理された一次処理水が貯水タンク11に貯留されるため、水酸化鉄が貯水タンク110の下部に沈殿する可能性がある。ただ、一次処理水を貯水タンク110に長時間貯留しない場合には、水酸化鉄の沈殿を最小限に抑制することが可能となる。
 また、水浄化システム10Aでは、図5のシステムで必須であった送水ポンプが不要となるため、システムの簡素化及び低価格化を達成することが可能となる。なお、第一実施形態と同様に、水浄化システム10Aにおいて、塩素除去装置18は任意の構成要素であり、二次処理水に余剰の塩素が残留しない場合には、塩素除去装置18を設けなくてもよい。
 特願2016-200096号(出願日:2016年10月11日)の全内容は、ここに援用される。
 以上、本実施形態に係る水浄化システムの内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明によれば、被処理水を安価で確実に浄化することが可能な水浄化システムを得ることができる。
 10 水浄化システム
 11 貯水タンク
 12,14 主配管(第一配管、第二配管)
 13 汲水ポンプ
 16 濾過装置
 17 固形薬剤溶解器
 18 塩素除去装置

Claims (4)

  1.  被処理水を汲み上げる汲水ポンプと、
     固体の塩素系薬剤を備え、前記塩素系薬剤により前記被処理水を酸化処理する固形薬剤溶解器と、
     前記固形薬剤溶解器により酸化処理された前記被処理水を濾過する濾過装置と、
     前記濾過装置により濾過された前記被処理水を貯留する貯水タンクと、
     を備え、
     前記汲水ポンプ、固形薬剤溶解器、濾過装置及び貯水タンクが接続され、前記被処理水が流れる主配管において、前記固形薬剤溶解器は前記汲水ポンプの下流側に位置し、かつ、前記固形薬剤溶解器と前記貯水タンクの間に前記濾過装置を設けている、水浄化システム。
  2.  前記主配管において、前記貯水タンクの下流側に設けられ、前記被処理水に含まれる過剰な塩素を除去する塩素除去装置をさらに備える、請求項1に記載の水浄化システム。
  3.  前記固形薬剤溶解器は、前記主配管に接続し、前記被処理水を前記塩素系薬剤まで通水するためのバイパス配管と、前記バイパス配管に設けられ、前記被処理水の流量を調整するための流量調整機構とをさらに備える、請求項1又は2に記載の水浄化システム。
  4.  前記貯水タンクは、前記汲水ポンプ、固形薬剤溶解器及び濾過装置よりも高所に設置されている、請求項1乃至3のいずれか一項に記載の水浄化システム。
PCT/JP2017/042794 2017-11-29 2017-11-29 水浄化システム WO2019106752A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/042794 WO2019106752A1 (ja) 2017-11-29 2017-11-29 水浄化システム
CN201780097176.5A CN111386247A (zh) 2017-11-29 2017-11-29 水净化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042794 WO2019106752A1 (ja) 2017-11-29 2017-11-29 水浄化システム

Publications (1)

Publication Number Publication Date
WO2019106752A1 true WO2019106752A1 (ja) 2019-06-06

Family

ID=66665089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042794 WO2019106752A1 (ja) 2017-11-29 2017-11-29 水浄化システム

Country Status (2)

Country Link
CN (1) CN111386247A (ja)
WO (1) WO2019106752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262230A1 (ja) * 2019-06-24 2020-12-30 パナソニックIpマネジメント株式会社 薬剤溶解装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429042A (zh) * 2021-06-23 2021-09-24 中石化宁波工程有限公司 一种净水处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106578U (ja) * 2004-07-14 2005-01-06 耕一郎 鈴木 給水浄化装置
JP2006247633A (ja) * 2005-03-11 2006-09-21 Shoei:Kk 残留塩素,Ph,ORPを用いたインバータ電力制御法
JP2009095822A (ja) * 2007-08-07 2009-05-07 Sanyo Electric Co Ltd 水質浄化システム
JP2013086034A (ja) * 2011-10-19 2013-05-13 Panasonic Corp 水質浄化システム
JP2017131798A (ja) * 2016-01-25 2017-08-03 パナソニックIpマネジメント株式会社 水処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155465A (ja) * 1994-04-12 1996-06-18 Kuratani Kagaku Sangyo Kk 固形薬剤溶解装置
DE19681419T1 (de) * 1995-05-22 1998-07-23 Wastech International Inc Behandlungssystem
JP2779146B2 (ja) * 1995-09-28 1998-07-23 壽工業株式会社 非常用浄水装置
JP2003164710A (ja) * 2001-12-04 2003-06-10 Kawamoto Pump Mfg Co Ltd ろ過装置
EP1853523B1 (en) * 2004-12-30 2012-07-18 Dewatering Filtration Technology Services Pty Ltd Method for ground water and wastewater treatment
KR101198643B1 (ko) * 2008-11-11 2012-11-07 웅진케미칼 주식회사 필터부의 구성이 단순화된 역삼투 정수기
JP5358169B2 (ja) * 2008-12-15 2013-12-04 株式会社川本製作所 浄水装置
CN201395538Y (zh) * 2009-03-31 2010-02-03 上海穆特环保科技有限公司 应急饮用水处理设备
WO2016145487A1 (en) * 2015-03-16 2016-09-22 Water Science Technologies Pty Ltd Process and apparatus for treating water
CN205442890U (zh) * 2016-03-23 2016-08-10 南华大学 地下水除铁锰装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106578U (ja) * 2004-07-14 2005-01-06 耕一郎 鈴木 給水浄化装置
JP2006247633A (ja) * 2005-03-11 2006-09-21 Shoei:Kk 残留塩素,Ph,ORPを用いたインバータ電力制御法
JP2009095822A (ja) * 2007-08-07 2009-05-07 Sanyo Electric Co Ltd 水質浄化システム
JP2013086034A (ja) * 2011-10-19 2013-05-13 Panasonic Corp 水質浄化システム
JP2017131798A (ja) * 2016-01-25 2017-08-03 パナソニックIpマネジメント株式会社 水処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262230A1 (ja) * 2019-06-24 2020-12-30 パナソニックIpマネジメント株式会社 薬剤溶解装置

Also Published As

Publication number Publication date
CN111386247A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US10266441B2 (en) Water treatment apparatus and sterilizing and cleansing method thereof
CN101838071B (zh) 电镀中水回用处理系统
WO2018131650A1 (ja) 水処理装置及び水処理システム
US11905187B2 (en) System and method for removal of recalcitrant organic compounds from water
WO2019106752A1 (ja) 水浄化システム
JP2018061921A (ja) 水浄化システム
US20160023166A1 (en) System for cleaning a membrane
JP5210787B2 (ja) 水処理装置及び水処理方法
KR101795694B1 (ko) 도장폐수를 정수하는 알오 플랜트 수처리 장치 및 방법
WO2019038994A1 (ja) 水処理装置及び水処理システム
CN104936904A (zh) 用于水处理的方法和设备
JP5358169B2 (ja) 浄水装置
JP2005279614A (ja) 浄水装置
JP4200118B2 (ja) アルカリイオン整水器
KR20170075085A (ko) 막여과 정수 시스템 및 이를 이용한 망간 저감방법
US20220220017A1 (en) Ferrate based water treatment
JP2020049447A (ja) 固形薬剤供給装置
KR101445209B1 (ko) 이동형 음용수 공급장치
KR102006397B1 (ko) 유입튜브를 이용하여 전처리 침전 필터의 오염물질 배출이 가능한 정수시스템
WO2018221088A1 (ja) 水浄化システム
KR100816714B1 (ko) 고도정수처리장치
CN115477404B (zh) 具有废水循环利用功能的净水设备及其控制方法
JP7284545B1 (ja) 膜ろ過装置及びそれを用いた浄水システム
JP5987646B2 (ja) 有機物含有水の処理方法
JP4087318B2 (ja) 水浄化システムの運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP