JP2016217839A - モータの出力軸の精度を測定する軸精度測定装置 - Google Patents

モータの出力軸の精度を測定する軸精度測定装置 Download PDF

Info

Publication number
JP2016217839A
JP2016217839A JP2015102050A JP2015102050A JP2016217839A JP 2016217839 A JP2016217839 A JP 2016217839A JP 2015102050 A JP2015102050 A JP 2015102050A JP 2015102050 A JP2015102050 A JP 2015102050A JP 2016217839 A JP2016217839 A JP 2016217839A
Authority
JP
Japan
Prior art keywords
unit
motor
output shaft
measurement
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102050A
Other languages
English (en)
Other versions
JP6267154B2 (ja
Inventor
昇▲峻▼ 李
Seung-Jun Lee
昇▲峻▼ 李
秀俊 植松
Hidetoshi Uematsu
秀俊 植松
智浩 関
Tomohiro Seki
智浩 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2015102050A priority Critical patent/JP6267154B2/ja
Priority to US15/081,192 priority patent/US10247549B2/en
Priority to CN201610245464.8A priority patent/CN106168462B/zh
Priority to CN201620331519.2U priority patent/CN205919780U/zh
Priority to DE102016005889.7A priority patent/DE102016005889B4/de
Publication of JP2016217839A publication Critical patent/JP2016217839A/ja
Application granted granted Critical
Publication of JP6267154B2 publication Critical patent/JP6267154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Testing Of Balance (AREA)

Abstract

【課題】モータの軸精度を非接触で短時間かつ容易に測定する軸精度測定装置を提供する。
【解決手段】軸精度測定装置10は、測定光を投光する投光部21および投光部により投光された測定光を受光する受光部22を含む測定部20と、投光部と受光部との間にモータMの出力軸が配置されるように、モータを設置するモータ設置部11と、測定部の測定結果に基づいて、モータの軸振れ、芯振れおよび面振れのうちの少なくとも一つを算出する算出部20とを含む。
【選択図】図1

Description

本発明は、モータの出力軸の精度を測定する軸精度測定装置に関する。
モータの出力軸(出力シャフト)は、ステータ内において前方軸受および後方軸受に挿入されている。このとき、ステータの組立精度および加工精度などにより、出力軸の軸精度が低下する場合がある。具体的には、モータの出力軸のたわみ(軸振れ)、軸中心のずれ(芯振れ)および軸の傾き(面振れ)が起きる場合がある。そのように軸精度が低下したモータが工作機械などに取付けられると、工作機械の駆動時に振動や異音が発生したり、工作機械により加工された加工精度も低下する。
このため、モータを組立てた後で、モータの軸精度を確認する必要がある。具体的には、ダイヤルゲージをモータまたはモータの軸に取付けた状態で、軸を回転させつつ、ダイヤルゲージの値を通じて軸精度を確認している。
ところが、ダイヤルゲージを用いた場合には、操作者自身がダイヤルゲージをモータなどに取付けて、ダイヤルゲージの測定子を調整し、ダイヤルゲージの値を読取って記録する必要がある。このような作業は煩雑であり時間もかかる。このため、多数のモータが生産される生産現場においては、多数のモータの全てを検査することはできず、抜き取り検査を行っている。また、操作者の熟練度によって測定結果が異なるという問題もある。
このため、引用文献1および引用文献2は、静電容量センサを用いて非接触でモータの軸の芯振れを測定する技術を開示している。さらに、引用文献3は、複数の投光部と複数の受光部とを用いて回転体の振れを非接触で測定する技術を開示している。
特開平04−269601号公報 特開平05−227710号公報 特開平07−260425号公報
しかしながら、静電容量センサを用いたり、複数の投光部および複数の受光部を用いる場合には、測定装置の費用が増すという問題がある。
また、モータの軸精度は、モータの軸振れ、芯振れおよび面振れを通じて総合的に判断するのが望ましい。
本発明はこのような事情に鑑みてなされたものであり、費用を抑えつつ、モータの軸振れ、芯振れおよび面振れを非接触で容易に測定することのできる軸精度測定装置を提供することを目的とする。
前述した目的を達成するために1番目の発明によれば、測定光を投光する投光部および該投光部により投光された前記測定光を受光する受光部を含む測定部と、前記投光部と前記受光部との間にモータの出力軸が配置されるように、前記モータを設置するモータ設置部と、前記測定部の測定結果に基づいて、前記モータの軸振れ、芯振れおよび面振れのうちの少なくとも一つを算出する算出部と、を具備する軸精度測定装置が提供される。
2番目の発明によれば、1番目の発明において、さらに、前記モータ設置部に設置された前記モータの出力軸を回転させる駆動部を具備し、前記駆動部が前記モータの出力軸を回転させているときの前記測定部の前記測定結果に基づいて、前記算出部が前記出力軸の軸振れを算出する。
3番目の発明によれば、1番目の発明において、さらに、前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させる駆動部を具備し、前記駆動部が前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させつつ、前記算出部が前記測定部の前記測定結果に基づいて前記出力軸の芯振れを測定する。
4番目の発明によれば、1番目の発明において、さらに、前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させる駆動部を具備し、前記駆動部が前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させつつ、前記算出部が前記測定部の前記測定結果に基づいて前記出力軸の面振れを測定する。
5番目の発明によれば、3番目または4番目の発明において、さらに、前記モータの端面において前記モータの出力軸近傍に配置されていて該端面に対して所定の角度を有する基準軸部を備えた測定治具を具備する。
6番目の発明によれば、1番目の発明において、前記測定部が複数組の前記発光部および前記受光部を含んでいる。
7番目の発明によれば、1番目から6番目のいずれかの発明において、さらに、前記投光部および対応する前記受光部を一体的に並進移動させる移動部を具備する。
1番目の発明においては、投光部および受光部はそれぞれ一つで足りるので、軸精度測定装置に要する費用を抑えつつ、モータの軸振れ、芯振れおよび面振れを非接触で容易に測定することができる。このため、操作者の熟練度に関わらずにモータの軸精度を自動的に測定できる。さらに、多数のモータを生産する場合であっても、全てのモータの軸精度を容易に測定することができる。
2番目の発明においては、モータの軸精度のうちの軸振れを容易に測定することができる。
3番目の発明においては、モータの軸精度のうちの芯振れを容易に測定することができる。
4番目の発明においては、モータの軸精度のうちの面振れを容易に測定することができる。
5番目の発明においては、モータのインロー部とモータの端面との間の距離が短い場合であっても、測定治具を用いてモータの面振れおよび芯振れを容易に測定することができる。
6番目の発明においては、少ない測定回数で、モータの軸精度のうちの芯振れおよび面振れを測定することができる。
7番目の発明においては、移動部により測定部を移動させられるので、モータの軸精度のうちの芯振れおよび面振れをより短時間で測定することができる。移動部は特定のガイド機構を備えるのが好ましく、また移動部は多関節ロボットであるのが好ましい。
添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれら目的、特徴および利点ならびに他の目的、特徴および利点がさらに明解になるであろう。
本発明に基づく軸精度測定装置の概略図である。 本発明の軸精度測定装置により測定されるべきモータの斜視図である。 モータの出力軸の軸振れを説明するための図である。 モータの出力軸の芯振れを説明するための図である。 モータの出力軸の面振れを説明するための図である。 本発明に基づく軸精度測定装置が軸振れを測定するときの動作を示すフローチャートである。 軸振れを測定するときの測定部およびモータ設置部の頂面図である。 軸振れを測定するときのモータの第一の側面図である。 軸振れを測定するときのモータの第二の側面図である。 本発明に基づく軸精度測定装置が芯振れを測定するときの動作を示すフローチャートである。 測定部およびモータ設置部の第一の頂面図である。 測定部およびモータ設置部の第二の頂面図である。 測定部およびモータ設置部の第三の頂面図である。 測定部およびモータ設置部の第四の頂面図である。 芯振れを測定するときのモータの側面図である。 インロー部および出力軸の頂面図である。 本発明に基づく軸精度測定装置が芯振れを測定するときの追加の動作を示すフローチャートである。 一つの例におけるインロー部および出力軸の頂面図である。 出力軸およびインロー部の側面図である。 出力軸を示す第一の略図である。 出力軸を示す第二の略図である。 出力軸を示す第三の略図である。 出力軸を示す第四の略図である。 出力軸およびインロー部の他の側面図である。 測定部が二つの投光部および受光部を含む場合の頂面図である。 測定部が四つの投光部および受光部を含む場合の頂面図である。 移動可能な投光部および受光部を示す頂面図である。 移動可能な二つの投光部および受光部を示す頂面図である。
以下、添付図面を参照して本発明の実施形態を説明する。以下の図面において同様の部材には同様の参照符号が付けられている。理解を容易にするために、これら図面は縮尺を適宜変更している。
図1は本発明に基づく軸精度測定装置の概略図である。図1に示されるように、軸精度測定装置10は、軸精度が測定されるべきモータMが設置されるモータ設置部11を含んでいる。図示されるように、モータ設置部11は、モータMの出力軸が鉛直方向上方を向くようにモータMを設置する。ただし、モータ設置部11は、出力軸が既知の他の方向に向くようにモータMを設置してもよい。駆動部15、例えば別のモータによって、モータ設置部11は、モータMの出力軸回りに回転できる。つまり、モータ設置部11の回転軸線OはモータMの出力軸の軸線に一致する。
さらに、測定光を投光する投光部21と投光部21により投光された測定光を受光する受光部22とを含む測定部20が、モータ設置部11の上方に配置されている。図示されるように、モータ設置部11により設置されたモータMの出力軸は、投光部21と受光部22との間に位置する。また、測定部20は、モータ設置部11を取囲むように配置された枠体12に、駆動部15によって回転可能に取付けられている。図1から分かるように、測定部20の回転軸線は、モータMの出力軸と同一軸線でありうる。また、測定部20はモータMの出力軸31自体を回転させられる。
さらに、制御装置25は、測定部20の測定結果に基づいて、モータMの軸振れ、芯振れおよび面振れのうちの少なくとも一つを算出する算出部26を含んでいる。なお、測定部20の測定結果は、所定の制御周期毎に順次、制御装置25の記憶部(図示しない)に記憶される。
図2は、本発明の軸精度測定装置により測定されるべきモータの斜視図である。図2に示されるようにモータM、例えばサーボモータは、略円筒形のモータ本体38を有しており、その上方に略矩形のフランジ35が配置されている。また、モータMの円筒形の出力軸31は、フランジ35のフランジ面36から上方に突出している。そして、出力軸31の周りには、インロー部32が形成されている。さらに、フランジ35の四つのコーナ部には開口部が形成されている。
モータMが結合されるべき他の部材、例えば減速機には、モータMの開口部およびインロー部32に対応した別の開口部およびインロー部が形成されている。モータMを他の部材に結合するときには、モータMのインロー部32が他の部材のインロー部に嵌合される。そして、モータMの開口部および他の部材の開口部にネジを螺合させて、モータMと他の部材とを結合させる。
図3Aから図3Cはモータの出力軸の軸振れ、芯振れおよび面振れをそれぞれ説明するための図である。図3Aは、モータMの出力軸31を回転させたときに、出力軸31の特に先端部が回転によって振れる「軸振れ」を示している。さらに、図3Bは、モータMの出力軸31の中心がインロー部32の中心からズレている「芯振れ」を示している。さらに、図3Cは、モータMの出力軸31がフランジ35の上面(フランジ面)およびインロー部32の上面に対して傾斜している「面振れ」を示している。
本発明に基づく軸精度測定装置10は、これら軸振れ、芯振れおよび面振れを測定することができる。これらのうち軸振れを測定するためには、モータMの出力軸31を回転させ続ける必要がある。また、モータMの出力軸31を回転させ続けることなく、芯振れと面振れを測定することができる。
はじめに、軸精度測定装置10が軸振れを測定することについて説明する。図4は、本発明に基づく軸精度測定装置10が軸振れを測定するときの動作を示すフローチャートである。以下、図4を参照して、軸振れの測定について説明する。はじめに、図4のステップS11において、出力軸31が上方に向くように、モータMをモータ設置部11に設置する。次いで、ステップS12において、駆動部15によって、モータMの出力軸31を回転軸線O回りに回転させる。そして、出力軸31が回転している状態で、測定部20を起動する。
図5は軸振れを測定するときの測定部およびモータ設置部の頂面図である。図5に示されるように測定部20の投光部21が測定光を投光し、受光部22が測定光を受光する。そして、測定部20の測定結果に基づいて、算出部26は軸振れを算出する(ステップS13、ステップS14)。
以下、算出部26による軸振れの算出手法について説明する。図6は軸振れを測定するときのモータの第一の側面図である。図6においては、インロー部32の縁部が測定部20の円形の投影面29内に包含されている。図6において実線で示される出力軸31は部分的に投影面29から逸脱している。しかしながら、出力軸31の回転角度によっては、出力軸31全体が投影面29内に包含される場合がある(破線で示される出力軸31’を参照されたい)。
このように出力軸31全体が投影面29内に少なくとも一時的に包含される場合には、以下のようにして軸振れが算出される。図6に示されるように、インロー部32の縁部から回転軸線Oに対して平行な基準軸線A1を延ばす。そして、出力軸31の先端において、基準軸線A1と出力軸31との間の最大距離Dmaxおよび最小距離Dminを求める。そして、算出部26は、前述した最大距離Dmaxから最小距離Dminを減算した偏差(=Dmax−Dmin)を軸振れとして算出する。
ところが、測定部20の投影面29には制限があるので、モータMの寸法が大きい場合には、出力軸31全体が投影面29内に包含されない。このような場合には、軸振れを測定するときのモータの第二の側面図である図7を参照して、以下のようにして軸振れが算出される。
図7は、出力軸31が投影面29の中心から最も遠ざかる位置にある状態を示している。この状態は、ステップS13における測定部20の測定結果から求められる。また、図7においては、円形の投影面29内に「+字」形状をなす二つの基準線が示されている。これら二つの基準線は投影面29の直径に対応している。また、回転軸線Oに対して平行な基準線を基準線A3と呼び、回転軸線Oに対して垂直な基準線を基準線A4と呼ぶ。
ここで、モータMのインロー部32、フランジ35および関連する部材の寸法は既知であるものとする。そして、図7におけるフランジ35の内部に対応した場所に位置する軸受の中央位置に、基準軸線A2が回転軸線Oに対して垂直に延びている。次いで、基準軸線A2と投影面29の基準線A3との仮想の交点から、基準線A3に沿った投影面29内の適切な位置、例えば基準線A3、A4の交点の近傍の位置までの距離L1を取得する。距離L1を取得する際には、モータMの寸法が適宜利用される。
そして、測定部20の測定結果に基づいて距離L1の終端において基準線A3と出力軸31との間の距離F1を取得する。次いで、算出部26は、出力軸31の先端における軸振れF2を以下の式(1)に基づいて算出する。なお、式(1)は、図7に示される出力軸31がまっすぐに傾斜していることを前提としている。
F2=F1・(L2/L1) (1)
このようにして、本発明の軸精度測定装置10はモータMの出力軸31の軸振れを容易に算出することができる。
次に、軸精度測定装置10が芯振れを測定することについて説明する。図8は、本発明に基づく軸精度測定装置が芯振れを測定するときの動作を示すフローチャートである。さらに、図9Aから図9Dは測定部およびモータ設置部の第一〜第四の頂面図である。さらに、図10は芯振れを測定するときのモータの側面図である。
以下、これら図面を参照して、芯振れの測定について説明する。はじめに、図8のステップS21において、出力軸31が上方に向くように、モータMをモータ設置部11に前述したように設置する。この場合には、モータMの出力軸の先端が少なくとも部分的に測定部20の投影面29内に包含されるのが好ましい。
次いで、ステップS22においては、モータMがモータ設置部11に設置された設置位置を0°位置として設定する。そして、図10に示されるようにインロー部32の縁部から回転軸線Oに対して平行な基準軸線A1を設定する。そして、図9Aおよび図10に示されるように測定部20によりモータMの出力軸31と基準軸線A1との間の距離r1を測定する。測定結果は制御装置25の記憶部(図示しない)に記憶される。
次いで、ステップS23において、図9Bに示されるように駆動部15がモータ設置部11を回転軸線O回りに所定方向に90°だけ回転させる(モータMのコネクタ39を参照されたい)。そして、測定部20と出力軸31との間の位置関係を維持するために、出力軸31を反対方向に90°だけ回転させる。このため、図9Aおよび図9Bに黒三角印で示されるように、出力軸31の回転位置は変化しない。従って、投影面29内における出力軸31の位置は変化しない。そして、図10に示されるのと同様な基準軸線(図示しない)を設定する。そして、図9Bに示されるように、90°位置において測定部20によりモータMの出力軸31と基準軸線との間の距離r2を測定し、記憶部に記憶する。
さらに、ステップS24において、図9Cに示されるように駆動部15がモータ設置部11を回転軸線O回りに所定方向にさらに90°だけ回転させる。そして、測定部20と出力軸31との間の位置関係を維持するために、出力軸31を反対方向に90°だけ同様に回転させる。そして、図9Cに示されるように、180°位置において測定部20によりモータMの出力軸31と図10に示されるのと同様な基準軸線との間の距離r3を測定し、記憶部に記憶する。
さらに、ステップS25において、図9Dに示されるように駆動部15がモータ設置部11を回転軸線O回りに所定方向にさらに90°だけ回転させる。そして、測定部20と出力軸31との間の位置関係を維持するために、出力軸31を反対方向に90°だけ同様に回転させる。そして、図9Dに示されるように、270°位置において測定部20によりモータMの出力軸31と図10に示されるのと同様な基準軸線との間の距離r4を測定し、記憶部に記憶する。
図11はインロー部および出力軸の頂面図である。ステップS22〜ステップS25においては、図11に示される出力軸31とインロー部32との間の距離r1〜r4が測定される。図11から分かるように、距離r1、r3はインロー部32の同一直径上にあり、距離r2、r4はインロー部32の別の同一直径上にある。図11に示される出力軸31の互いに垂直な二つの外径d1、d2は事前に操作者が別途測定することなどにより取得される。
ここで、図12は本発明に基づく軸精度測定装置が芯振れを測定するときの追加の動作を示すフローチャートであり、図8のステップS26を詳細に説明したものである。はじめに、算出部26は、ステップS31において、インロー部32の互いに垂直な二つの外径D1、D2を以下の式(2)、(3)に基づいて算出する(図11を参照されたい)。
D1=d1+r1+r3 (2)
D2=d2+r2+r4 (3)
次いで、ステップS32においては、出力軸31の外径d1、d2のそれぞれが出力軸31の最大外径と最小外径との間にあるか否かを判定する。これら出力軸31の最大外径および最小外径は設計値である。ステップS32でYES判定の場合には、ステップS33に進む。
ステップS33においては、インロー部32の外径D1、D2のそれぞれがインロー部32の最大外径と最小外径との間にあるか否かを判定する。これらインロー部32の最大外径および最小外径は設計値である。ステップS32およびステップS33でNO判定の場合には、ステップS35に進み、モータMに何らかの加工不良または組立不良があるものとして処理を終了する。
ステップS33でYES判定の場合には、ステップS34に進む。ステップS34においては、以下の式(4)に基づいて、算出部26が出力軸31の芯振れを算出する。
Figure 2016217839
このようにして、本発明の軸精度測定装置10はモータMの出力軸31の芯振れを容易に算出することができる。
図13は一つの例におけるインロー部および出力軸の頂面図である。図13においては、r1=39.641mm、r2=39.628mm、r3=39.625mm、r4=39.651mmが測定されたものとする。この場合、第一偏差(r3−r1)が−0.016であり、第二偏差(r4−r2)が0.023であることから、これらの合計偏差は以下の式(5)で表される。
Figure 2016217839
合計偏差(=0.028)は芯振れ量に相当する。そして、合計偏差の向きは、図13の黒矢印A5の方向である。従って、本発明の軸精度測定装置10によって、芯振れ量と芯振れの方向とを把握することができる。
次に、軸精度測定装置10が面振れを測定することについて説明する。ここで、図14は出力軸およびインロー部の側面図である。図14に示されるように、測定部20の投影面29はインロー部32の縁部と出力軸31の基端を含む周面の一部とを包含している。
図14においては、インロー部32の縁部から回転軸線Oに対して平行な基準軸線A1が延びている。そして、出力軸31の基端近傍における出力軸31と基準軸線A1との間の距離rが設定される。この距離rは、図11に示される距離r1〜r4のそれぞれに対応する。
さらに、出力軸31の基端から出力軸31の周面に沿った投影面29内の適切な位置、例えばインロー部32から所定位置にある距離Lを設定する。距離Lは投影面29の半径より大きいのが好ましい。
ここで、図15A〜図15Dは出力軸を示す略図である。図14および図15Aから分かるように、xy平面をインロー部32の上面とし、出力軸31の基端の中心がx軸とy軸との交点に位置するものとする。
さらに、図14および図15Dに示されるように、出力軸31が鉛直軸(z軸)に対して最も傾斜する方向を方向eと設定する。また、インロー部32から突出する出力軸31の長さをAとし、出力軸31の中心と方向eとがなす角度を角度αとする。そして、図14に示されるように、出力軸31の基端から距離Lの終端に対応した方向e上の位置において、基準軸線A1と方向eを示す線分との間の距離aを設定する。
距離aは図11に示される距離r1〜r4を測定するのと同時に測定できる。このため、軸精度測定装置10が面振れを測定する際には、図8のステップS22〜ステップS25において、距離r1〜r4と一緒に距離a1〜a4が測定されるものとする。
ここで、図15Bを参照すると、図15Bに示されるyz平面において、出力軸31とy軸との間の角度をY°とすると、y軸に沿った出力軸31の長さはAcosYで表される。同様に、図15Cに示されるxz平面において、出力軸31とx軸との間の角度をX°とすると、x軸に沿った出力軸31の長さはAcosXで表される。従って、図15Aおよび図15Dに示されるように、方向aに沿った出力軸31の長さは以下の式(6)で表される。
Figure 2016217839
このため、角度αは、以下の式(7)で表される。
Figure 2016217839
そして、図14を再び参照して、方向eに対して垂直な、インロー部32の基端の中心を通る線分を線分gと設定する。さらに、インロー部32の基端の中心から線分gに沿った所定距離Bを設定する。所定距離Bはインロー部32の半径であるのが好ましい。
図14から分かるように、面振れ量2Cは、以下の式(8)から求められる。
Figure 2016217839
そして、式(8)における「r−a」は以下の式(9)から求められる。
Figure 2016217839
従って、軸精度測定装置10の算出部26は面振れ量を上記のように容易に測定できる。
このように、本発明においては、投光部21および受光部22はそれぞれ一つで足りるので、軸精度測定装置10に要する費用を抑えつつ、モータの軸振れ、芯振れおよび面振れを非接触で容易に測定することができる。本発明では非接触で測定しているので、操作者の熟練度に関わらずにモータMの軸精度を自動的に測定できる。このため、多数のモータを生産する場合であっても、全てのモータの軸精度を容易に測定することが可能である。
ところで、図16は出力軸およびインロー部の他の側面図である。図16においてはフランジ35の上面(フランジ面)に測定治具が設置されている。
測定治具40は、インロー部32を包囲する円環部41と、円環部41に対して垂直に延びる一つの基準軸部42とを含んでいる。基準軸部42は、円環部41に対して所定の角度で延びていても良い。図16から分かるように、円環部41はインロー部32を包囲するのに十分に大きい。また、円環部41の下面には、三点支持のための三つの支持部43が設けられるのが好ましい。
そして、測定治具40を使用する場合には、図16に示されるように、基準軸部42と基端近傍における出力軸31との間の距離を距離rと設定し、基準軸部42と先端近傍における出力軸31との間の距離を距離aと設定する。そして、前述したのと同様に、面振れを測定する。当然のことながら、測定治具40を使用した状態で芯振れのみを測定することも可能である。
モータMのインロー部32とフランジ面との間の距離が短い場合には、図14に示される基準軸線A1を適切に設定できない可能性がある。このような場合であっても、測定治具40をフランジ35に設置することにより、距離rおよび距離aを適切に測定できる。従って、モータの面振れおよび/または芯振れを容易に測定することができる。
ところで、図17Aに示されるように、測定部20が、二つの投光部21a、21bおよび二つの受光部22a、22bを含んでいても良い。図示されるように、投光部21aからの測定光は受光部22aに受光され、投光部21bからの測定光は受光部22bに受光される。そして、投光部21aからの測定光と投光部21bからの測定光とが互いに垂直になるように、二つの投光部21a、21bおよび二つの受光部22a、22bが配置されている。
このような場合には、図17Aに示される状態で、図8に示されるステップS22およびステップS23の測定を行う。次いで、モータ設置部11を180°回転させ、出力軸31を反対方向に180°回転させる。そして、その状態で図8に示されるステップS24およびステップS25の測定を行う。次いで、取得したデータに基づいて、ステップS26において、前述した芯振れおよび/または面振れの算出を行う。
このような場合には、単にモータ設置部11を180°回転させることのみによって、芯振れおよび/または面振れを算出することができる。また、測定回数が二回で足りるので、測定に要する時間を少なくすることも可能である。
さらに、図17Bに示されるように、測定部20が、四つの投光部21a〜21dおよび四つの受光部22a〜22dを含んでいても良い。図示されるように、投光部21aおよび投光部21bは互いに隣接して配置されており、受光部22aおよび受光部22bも互いに隣接して配置されている。投光部21cおよび投光部21dは互いに隣接して配置されており、受光部22cおよび受光部22dも互いに隣接して配置されている。
さらに、投光部21aおよび投光部21bからの測定光と投光部21cおよび投光部21dからの測定光とが互いに垂直になるように、四つの投光部21a〜21dおよび四つの受光部22a〜22dが配置されている。
図17Bから分かるように、二つの投光部21a、21bの測定領域(投影面29に相当)は、出力軸31の直径部分全体を含んでいる。同様に、二つの投光部21c、21dの測定領域(投影面29に相当)も、出力軸31の直径部分全体を含んでいる。このような場合には、モータ設置部11を回転させることなしに、出力軸31を適宜回転させることのみによって、図8のステップS22〜ステップS26の測定を行えるのが分かるであろう。従って、測定に要する時間をさらに少なくすることができる。なお、出力軸31を回転させる理由は、測定部20と出力軸31との間の位置関係を維持するためである。同様な理由により、後述する図18Aおよび図18Bに示される実施形態においても出力軸31を回転させる必要がある。
ところで、図1には、投光部21および受光部22を含む測定部20を一体的に移動させる移動部16が示されている。移動部16は特定のガイド機構を備えるのが好ましく、それにより、測定部20を適切に所望位置まで移動させられる。あるいは、移動部16は多関節ロボットであるのが好ましく、それにより、測定部20を複雑に移動させることも可能である。
このように移動部16を備えている場合には、図9A〜図9D等において、モータ設置部11を回転させる代わりに、移動部16が測定部20をモータ設置部11に対して相対的に回転させてもよい。
また、移動部16は、投光部21および受光部22を含む測定部20を一体的に並進移動させることも可能である。投光部および受光部を示す頂面図である図18Aに示されるように、移動部16は、投光部21および受光部22を一体的に回転軸線Oに対して垂直な方向に摺動させられる。
はじめに、図18Aに示される位置にある投光部21および受光部22により、図8に示されるステップS22の処理を行う。次いで、移動部16により、投光部21および受光部22を図18Aに示される破線位置までそれぞれ移動させる。その後、図8に示されるステップS24の処理を行う。
次いで、モータ設置部11を所定方向に90°回転させ、出力軸31を反対方向に90°回転させる。そして、図8に示されるステップS25の処理を行う。次いで、移動部16により、投光部21および受光部22を図18Aに示される実線位置までそれぞれ移動させる。その後、図8に示されるステップS23の処理を行う。次いで、取得したデータに基づいて、ステップS26において、前述した芯振れおよび/または面振れの算出を行う。このような場合には、図8に示される処理を短時間で行うことができる。
さらに、図18Bは移動可能な二つの投光部および受光部を示す頂面図である。図18Bにおいては、投光部21a、21bおよび受光部22a、22bが図17Aと同様に配置されている。
このような場合には、図18Bに示される状態において、ステップS22およびステップS23の測定を行う。次いで、移動部16により、投光部21a、21bおよび受光部22a、22bを図18Bに示される実線位置までそれぞれ移動させる。そして、その状態で図8に示されるステップS24およびステップS25の測定を行う。次いで、取得したデータに基づいて、ステップS26において、前述した芯振れおよび/または面振れの算出を行う。このような場合には、モータ設置部11を回転させることなしに、図8のステップS22〜ステップS26の測定を行えるのが分かるであろう。このような場合には、図8に示される処理をさらに短時間で行うことができる。
典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、前述した変更および種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
10 軸精度測定装置
11 モータ設置部
12 枠体
15 駆動部
16 移動部
20 測定部
21、21a〜21d 投光部
22、22a〜22d 受光部
25 制御装置
26 算出部
31 出力軸
32 インロー部
35 フランジ
38 モータ本体
40 測定治具
41 円環部
42 基準軸部
43 支持部
M モータ

Claims (7)

  1. 測定光を投光する投光部および該投光部により投光された前記測定光を受光する受光部を含む測定部と、
    前記投光部と前記受光部との間にモータの出力軸が配置されるように、前記モータを設置するモータ設置部と、
    前記測定部の測定結果に基づいて、前記モータの軸振れ、芯振れおよび面振れのうちの少なくとも一つを算出する算出部と、を具備する軸精度測定装置。
  2. さらに、前記モータ設置部に設置された前記モータの出力軸を回転させる駆動部を具備し、
    前記駆動部が前記モータの出力軸を回転させているときの前記測定部の前記測定結果に基づいて、前記算出部が前記出力軸の軸振れを算出する請求項1に記載の軸精度測定装置。
  3. さらに、前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させる駆動部を具備し、
    前記駆動部が前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させつつ、前記算出部が前記測定部の前記測定結果に基づいて前記出力軸の芯振れを測定する請求項1に記載の軸精度測定装置。
  4. さらに、前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させる駆動部を具備し、
    前記駆動部が前記モータ設置部を前記測定部に対して相対的に回転させると共に前記モータの出力軸を回転させつつ、前記算出部が前記測定部の前記測定結果に基づいて前記出力軸の面振れを測定する請求項1に記載の軸精度測定装置。
  5. さらに、前記モータの端面において前記モータの出力軸近傍に配置されていて該端面に対して所定の角度を有する基準軸部を備えた測定治具を具備する、請求項3または4に記載の軸精度測定装置。
  6. 前記測定部が複数組の前記発光部および前記受光部を含んでいる請求項1に記載の軸精度測定装置。
  7. さらに、前記投光部および対応する前記受光部を一体的に並進移動させる移動部を具備する請求項1から6のいずれか一項に記載の軸精度測定装置。
JP2015102050A 2015-05-19 2015-05-19 モータの出力軸の精度を測定する軸精度測定装置 Active JP6267154B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015102050A JP6267154B2 (ja) 2015-05-19 2015-05-19 モータの出力軸の精度を測定する軸精度測定装置
US15/081,192 US10247549B2 (en) 2015-05-19 2016-03-25 Shaft accuracy measuring device for measuring accuracy of output shaft of motor
CN201610245464.8A CN106168462B (zh) 2015-05-19 2016-04-19 轴精度测定装置
CN201620331519.2U CN205919780U (zh) 2015-05-19 2016-04-19 轴精度测定装置
DE102016005889.7A DE102016005889B4 (de) 2015-05-19 2016-05-12 Wellengenauigkeitsmessvorrichtung zum Messen der Genauigkeit einer Abtriebswelle eines Motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102050A JP6267154B2 (ja) 2015-05-19 2015-05-19 モータの出力軸の精度を測定する軸精度測定装置

Publications (2)

Publication Number Publication Date
JP2016217839A true JP2016217839A (ja) 2016-12-22
JP6267154B2 JP6267154B2 (ja) 2018-01-24

Family

ID=57231329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102050A Active JP6267154B2 (ja) 2015-05-19 2015-05-19 モータの出力軸の精度を測定する軸精度測定装置

Country Status (4)

Country Link
US (1) US10247549B2 (ja)
JP (1) JP6267154B2 (ja)
CN (2) CN205919780U (ja)
DE (1) DE102016005889B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933672B2 (en) 2018-05-28 2021-03-02 Seiko Epson Corporation Motor unit and printing apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267154B2 (ja) * 2015-05-19 2018-01-24 ファナック株式会社 モータの出力軸の精度を測定する軸精度測定装置
JP6316858B2 (ja) * 2016-03-11 2018-04-25 ファナック株式会社 モータの軸精度自動測定装置
US11105202B2 (en) * 2019-02-14 2021-08-31 Saudi Arabian Oil Company Method for aligning a rotor of a rotary equipment
CN110360959A (zh) * 2019-07-08 2019-10-22 东莞理工学院 一种用于大型精密轴类零件的视觉检测系统
JP7341005B2 (ja) * 2019-09-12 2023-09-08 株式会社ユーシン精機 成形品取出システムのティーチング方法及び成形品取出機
JP7478084B2 (ja) * 2020-11-20 2024-05-02 株式会社キーエンス 光学測定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260425A (ja) * 1994-03-17 1995-10-13 Union Tool Kk 回転体の振れ測定装置
US20070036624A1 (en) * 2005-07-21 2007-02-15 Thomas Bayha Method for Testing the Fit or Imbalance of a Tool

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269601A (ja) 1991-02-25 1992-09-25 Nippon Densan Corp モータの偏心測定方法およびその装置
JPH05227710A (ja) 1991-03-29 1993-09-03 Nippon Densan Corp モータの偏心測定装置
US5365458A (en) 1991-03-29 1994-11-15 Nippon Densan Corporation Motor eccentricity measuring apparatus
US5736735A (en) * 1995-09-21 1998-04-07 Nikon Corporation Optical scanning device and foreign matter inspection apparatus
JP3613899B2 (ja) * 1996-09-04 2005-01-26 日本精工株式会社 転がり軸受装置の軸振れを低減する方法と軸振れを低減した転がり軸受装置
US6332942B1 (en) * 1999-09-30 2001-12-25 Imation Corp. Method for assembling a hub to an optical disk
JP2002257648A (ja) * 2001-02-28 2002-09-11 Honda Motor Co Ltd トルク検出装置及びトルク検出装置を搭載した電動パワーステアリング装置
AU2002347124A1 (en) * 2001-12-20 2003-07-09 Unaxis Balzers Limited Method of making a rotational optical arrangement and an optical arrangement made by the method
US7107168B2 (en) * 2002-07-22 2006-09-12 Raytheon Company System for measuring the effect of bearing errors in an active device
AU2003204227B2 (en) * 2003-05-16 2009-02-19 Dana Australia Pty Ltd Method and Apparatus for Measuring Centreline Runout and Out of Roundness of a Shaft
WO2007124902A2 (de) * 2006-04-28 2007-11-08 Prueftechnik Dieter Busch Ag Vorrichtung und verfahren zur beurteilung der relativen raumlage zweier gegenstände
SE532983C2 (sv) * 2008-10-10 2010-06-01 Elos Fixturlaser Ab Anordning och metod för uppmätning och inriktning av en första komponent och en andra komponent i förhållande till varandra
JP5341999B2 (ja) * 2009-07-31 2013-11-13 住友電装株式会社 ワークの寸法測定用治具
US9216716B2 (en) * 2011-05-19 2015-12-22 Asmo Co. Ltd. Wiper device, method for manufacturing wiper device, and apparatus for manufacturing wiper device
WO2013008970A1 (ko) * 2011-07-14 2013-01-17 주식회사 센트랄 하이브리드 스태빌라이저 링크 제조장치
US9080862B2 (en) * 2011-11-08 2015-07-14 Prüftechnik Ag Device and method for determining the orientation of two shafts connected via two universal joints and a third shaft with a pivot joint
JP2013104719A (ja) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal 鋼管の外面曲がり測定方法
CN102410813B (zh) * 2011-12-12 2014-03-19 上海博泽电机有限公司 电机跳动检测装置及检测方法
CN102494613B (zh) * 2011-12-12 2014-10-22 上海博泽电机有限公司 转子跳动检测装置和检测方法
JP6267154B2 (ja) * 2015-05-19 2018-01-24 ファナック株式会社 モータの出力軸の精度を測定する軸精度測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260425A (ja) * 1994-03-17 1995-10-13 Union Tool Kk 回転体の振れ測定装置
US20070036624A1 (en) * 2005-07-21 2007-02-15 Thomas Bayha Method for Testing the Fit or Imbalance of a Tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933672B2 (en) 2018-05-28 2021-03-02 Seiko Epson Corporation Motor unit and printing apparatus

Also Published As

Publication number Publication date
CN106168462A (zh) 2016-11-30
DE102016005889B4 (de) 2019-05-09
DE102016005889A1 (de) 2016-11-24
JP6267154B2 (ja) 2018-01-24
CN205919780U (zh) 2017-02-01
CN106168462B (zh) 2020-07-10
US20160341548A1 (en) 2016-11-24
US10247549B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP6267154B2 (ja) モータの出力軸の精度を測定する軸精度測定装置
JP6316858B2 (ja) モータの軸精度自動測定装置
JP5628873B2 (ja) パラレルリンクロボット
KR20110065334A (ko) 안경 프레임 형상 측정 장치
US20100250178A1 (en) Corrected ball diameter calculating method and form measuring instrument
EP2957383B1 (en) Machine tool
CN108151669B (zh) 一种圆度误差测量方法及测量系统
JP6657552B2 (ja) 平面度測定方法
US20130116817A1 (en) System and method for machining and inspecting a workpiece
CN109724636A (zh) 一维转台
JP6783116B2 (ja) 外径測定装置及び測定方法
JP2010071778A (ja) 大径管の外径測定装置
JP2010137321A (ja) ダブルボールバー
JP5297749B2 (ja) 自動寸法測定装置
JP6893850B2 (ja) 転がり軸受直角度測定装置および転がり軸受の直角度測定方法
JP2012058056A (ja) 管路の内径測定装置、及び、管路の内径測定方法
CN113405517B (zh) 一种航空发动机零件装配方法、装置、系统和工控机
JP6648583B2 (ja) 測定装置
JP2007183145A (ja) 筒状内径測定方法および筒状内径測定装置
CN110231001B (zh) 光学孔检测装置
CN110567399B (zh) 孔的辅助检测设备及检测方法
KR101314359B1 (ko) 공작기계 주축의 변위측정장치
JP4210789B2 (ja) ボビン検査装置及びこれを用いた検査方法
CN211161280U (zh) 矫孔装备
JP6137544B2 (ja) 真円度測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6267154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150