JP2016162779A - 撮像素子、撮像装置、および撮像素子の製造方法 - Google Patents

撮像素子、撮像装置、および撮像素子の製造方法 Download PDF

Info

Publication number
JP2016162779A
JP2016162779A JP2015037425A JP2015037425A JP2016162779A JP 2016162779 A JP2016162779 A JP 2016162779A JP 2015037425 A JP2015037425 A JP 2015037425A JP 2015037425 A JP2015037425 A JP 2015037425A JP 2016162779 A JP2016162779 A JP 2016162779A
Authority
JP
Japan
Prior art keywords
layer
substrate
main surface
sublayer
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037425A
Other languages
English (en)
Other versions
JP6518457B2 (ja
Inventor
崇 中敷領
Takashi Nakashikiryo
崇 中敷領
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015037425A priority Critical patent/JP6518457B2/ja
Priority to PCT/JP2016/001057 priority patent/WO2016136274A1/ja
Priority to EP16755024.3A priority patent/EP3264466B1/en
Priority to US15/551,229 priority patent/US10741597B2/en
Publication of JP2016162779A publication Critical patent/JP2016162779A/ja
Application granted granted Critical
Publication of JP6518457B2 publication Critical patent/JP6518457B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】放熱効果が向上する撮像素子、撮像装置、および撮像素子の製造方法を提供する。【解決手段】撮像素子12は、複数の画素が少なくとも第1の方向に配置された、撮像機能を有する第1の層18と、第1の層18に接合された第2の層19と、を備え、第2の層19は、第1の方向に沿って非金属材料領域と金属材料領域とが交互に配される支持サブ層26を有する。【選択図】図3

Description

本発明は、画像信号を出力する撮像素子、撮像装置、および撮像素子の製造方法に関する。
従来、CCD撮像素子やCMOS撮像素子などの撮像素子と、撮像光学系と、を備える撮像装置が知られている。例えば、特許文献1には、撮像素子に発生した熱を外部に逃がして撮像素子の温度上昇を抑えるために、撮像素子に発生した熱を、熱伝導部材を介して樹脂ハウジングの外部の金属プレートに逃がす構成が開示されている。
特開2001−177023号公報
しかしながら、従来技術は、撮像素子の裏面に熱伝導部材に接触させる構成であり、撮像素子のセンサ部分で発生した熱を、撮像素子の裏面まで十分に伝導させる必要がある。このため、撮像素子の放熱効果に関して改善の余地があった。
かかる事情に鑑みてなされた本発明の目的は、放熱効果が向上する撮像素子、撮像装置、および撮像素子の製造方法を提供することにある。
上記課題を解決するために本発明に係る撮像素子は、
複数の画素が少なくとも第1の方向に配置された、撮像機能を有する第1の層と、
前記第1の層に接合された第2の層と、を備え、
該第2の層は、前記第1の方向に沿って非金属材料領域と金属材料領域とが交互に配される支持サブ層を有する
ことを特徴とする。
また、本発明に係る撮像装置は、
複数の画素が少なくとも第1の方向に配置された、撮像機能を有する第1の層と、該第1の層に接合された第2の層と、を備え、
該第2の層は、前記第1の方向に沿って非金属材料領域と金属材料領域とが交互に配される支持サブ層を有する撮像素子と、
前記第1の層の受光面上に被写体像を結像する撮像光学系と、
を備える
ことを特徴とする。
また、本発明に係る撮像素子の製造方法は、
第1の基板の一方の主面に、フォトダイオードを形成するステップと、
前記第1の基板の一方の主面側に、密着サブ層を形成するステップと、
第2の基板の一方の主面に所定のパターンで形成した溝に、前記第2の基板の主材料と異なる金属材料を堆積させるステップと、
前記第2の基板の一方の主面側に、密着サブ層を形成するステップと、
前記第1の基板の前記密着サブ層と、前記第2の基板の前記密着サブ層と、を接合するステップと、
前記第1の基板の一方の主面に対する他方の主面を研磨して光電変換サブ層を形成するステップと、
前記第2の基板の一方の主面に対する他方の主面を研磨して支持サブ層を形成するステップと、を含む
ことを特徴とする。
本発明に係る撮像素子、撮像装置、および撮像素子の製造方法によれば、撮像素子の放熱効果が向上する。
本発明の第1の実施形態に係る撮像装置の概略構成を示すブロック図である。 図1の撮像素子と撮像光学系との位置関係を示す図である。 図1の撮像素子の要部断面図である。 図3の支持サブ層のバリエーションを示す図である。 図1の撮像素子の製造方法を説明するための基板の要部断面図である。 図1の撮像素子の製造方法を説明するための基板の要部断面図である。 図1の撮像素子の製造方法を説明するための基板の要部断面図である。 図1の撮像素子の製造方法における前工程を説明するフローチャートである。 図1の撮像素子の製造方法における後工程を説明するフローチャートである。 本発明の第2の実施形態に係る撮像素子の底面図である。 本発明の第2の実施形態に係る撮像素子の断面形状を示す図である。
以下、本発明の実施形態について、図面を参照して説明する。
(第1の実施形態)
はじめに、本発明の第1の実施形態に係る撮像装置について説明する。図1に示すように、撮像装置10は、撮像光学系11と、撮像素子12と、画像処理部13と、制御部14と、を備える。
撮像光学系11は、絞りおよび複数のレンズを含んで構成され、被写体像を結像させる。
撮像素子12は、例えばCMOS撮像素子であって、撮像光学系11によって結像する被写体像を撮像する。また、撮像素子12は、撮像によって生成した撮像画像をアナログの画像信号として、画像処理部13に出力する。本実施形態において、撮像素子12は裏面照射型であるものとして説明するが、これに限られない。
画像処理部13は、例えばAFEおよびDSPなどの画像処理専用のプロセッサを含み、撮像素子12から取得した画像信号に対して、CDS、ゲイン調整(AGC)、およびAD変換(ADC)などの前段画像処理を施す。また、画像処理部13は、撮像画像に対して自動露出(AE)、自動ホワイトバランス(AWB)、色補間、明るさ補正、色補正、およびガンマ補正などの所定の後段画像処理を施す。
制御部14は、例えば専用のマイクロプロセッサまたは特定のプログラムを読み込むことによって特定の処理を実行する汎用のCPUである。制御部14は、撮像装置10の動作全体を制御する。
次に、撮像光学系11と、撮像素子12と、の位置関係について説明する。図2に示すように、パッケージ基板15に接合された撮像素子12は、撮像素子12の中心位置が撮像光学系11の光軸16上に位置し、かつ、撮像光学系11を通過した光17、すなわち被写体像が撮像素子12の受光面上で結像するように、撮像装置10の筐体内に配置される。以下、撮像素子12の受光面側(図2において上方側)を前面側といい、パッケージ基板15との接合面側(図2において下方側)を背面側という。
次に、撮像素子12の構成について具体的に説明する。図3に示すように、撮像素子12は、第1の層18と、第2の層19と、を備える。図3においては説明のため、撮像素子12の構成要素ごとに縮尺を異ならせて図示している。また、図3は、撮像素子12の複数の画素が配置された少なくとも1つの方向(第1の方向)に沿った、撮像素子12の断面図である。
第1の層18は、画素からの撮像画像信号を出力する撮像機能を有する層であって、例えば3〜4μm程度の厚みを有する。第1の層18は、光電変換サブ層20と、配線サブ層21と、密着サブ層22と、カラーフィルタ23と、マイクロレンズ24と、を含む。
光電変換サブ層20は、主材料として例えばシリコンなどの半導体材料を含む。光電変換サブ層20の一部領域には、画素を構成するフォトダイオード25およびMOSトランジスタが形成される。光電変換サブ層20の前面側の主面は、撮像素子12の受光面に定められる。
配線サブ層21は、主材料として例えばシリコン酸化物などの絶縁材料を含む。配線サブ層21の一部領域には、画素からの撮像画像信号を読み出す回路が形成される。回路は、例えば銅およびアルミニウムなどを用いた配線が積層して構成される。配線サブ層21は、光電変換サブ層20に隣接して背面側に設けられる。
密着サブ層22は、例えばシリコン窒化物などの密着性が高い材料で構成される。密着サブ層22は、配線サブ層21に隣接して背面側に設けられ、第1の層18と第2の層19とを密着して接合するために用いられる。
カラーフィルタ23は、例えばRGBの各色に対応しており、特定の波長帯域の光を通過させるフィルタである。カラーフィルタ23は、各画素に対応して設けられる。また、カラーフィルタ23は、光電変換サブ層20のフォトダイオード25が形成される領域に、光電変換サブ層20に隣接して前面側に設けられる。
マイクロレンズ24は、各画素に対応して設けられるレンズである。マイクロレンズ24は、撮像光学系11を介して照射された光を、カラーフィルタ23を介して撮像素子12の受光面に集光する。
第2の層19は、第1の層18を支持する層であって、例えば170μm程度の厚みを有する。第2の層19は、支持サブ層26と、金属サブ層27と、密着サブ層28と、を含む。
支持サブ層26は、非金属材料である主材料として、例えばシリコンまたはガラスなどを含む。支持サブ層26において、第1の方向に主材料29と副材料30とが交互に配される(位置する)。支持サブ層26に配される副材料30は、第1の層18で発生した熱を第2の層側から放熱するための放熱板として機能する。各材料の材質と、副材料30の幅方向における分布、すなわち第1の方向における分布とは、所望の放熱効果を得るために任意に定められる。本実施形態では、主材料29(例えば、シリコン)からなる非金属材料領域と、主材料29よりも熱伝導率が大きい金属材料である副材料30、例えば銅などからなる金属材料領域とが交互に配される。好適には、第1の方向の少なくとも一部の領域に亘って、副材料30が均一に分布する。換言すると、支持サブ層26は、第1の方向に沿う断面において、金属材料領域がそれぞれ均一に配置される部分を有する。また、好適には、副材料30は、第2の層19の背面側の主面まで延びる。
ここで、図4を参照して、支持サブ層26に配される副材料30の分布の具体例について説眼する。副材料30の分布は、例えば図4(a)に示すように、第1の方向の全長に亘って均一であってもよい。あるいは、副材料30の分布は、図4(b)に示すように、不均一であってもよい。あるいは、副材料30は、例えば図4(c)に示すように、第1の方向における1つの領域に配され、他の領域に主材料29が配されるように分布してもよい。このように、支持サブ層26に配される副材料30の分布は、所望の放熱効果を得るために任意に定められる。
図3に示す金属サブ層27は、支持サブ層26の主材料29よりも熱伝導率が高い材料からなる層である。本実施形態において、金属サブ層27は、支持サブ層26の副材料30と同一の材料からなる層であるものとして説明するが、異なる材料であってもよい。金属サブ層27は、支持サブ層26に隣接して前面側に設けられ、第1の層18で発生した熱を、第1の層18の全面に亘って支持サブ層26に配された副材料30に伝導する。
密着サブ層28は、例えばシリコン窒化物などの密着性が高い材料で構成される。密着サブ層28は、金属サブ層27に隣接して前面側に設けられ、第1の層18と第2の層19とを密着して接合するために用いられる。
次に、図5乃至図7を参照して、第1の層18および第2の層19を形成する工程について説明する。当該工程は、2つの基板(以下、第1の基板および第2の基板という)を用いて行われる工程である。以下、当該工程の具体例を、第1の基板に対する加工工程と、第2の基板に対する加工工程と、第1の基板および第2の基板を接合して行う工程と、に分けて説明する。第1の層18および第2の層19を形成する当該工程は、例えば半導体プロセスの前工程に組み込まれる。第1の基板および第2の基板は、例えば一般的なシリコン半導体基板であるものとして説明する。
(第1の基板に対する加工工程)
まず、第1の基板に対する加工工程について説明する。はじめに、図5(a)に示すように、第1の基板31の平坦化された一方の主面にフォトダイオード25およびMOSトランジスタを形成する。続いて、図5(b)に示すように、第1の基板31の当該主面に配線サブ層21を形成し、例えばシリコン窒化膜を積層して密着サブ層22をさらに形成する。
(第2の基板に対する加工工程)
次に、第2の基板に対する加工工程について説明する。はじめに、図6(a)に示すように、第2の基板32の平坦化された一方の主面に、シリコン酸化膜33と、シリコン窒化膜34と、を形成し、フォトレジスト35を塗布してパターンニングを行う。続いて、図6(b)に示すように、エッチングを行い、第2の基板32の主面に溝を形成する。続いて、図6(c)に示すように、フォトレジスト35を除去して、副材料30として例えば銅などの金属材料を、例えば蒸着処理やメッキ処理などの任意の処理によって堆積させる。続いて、図6(d)に示すように、平坦化処理を行い、シリコン酸化膜33およびシリコン窒化膜34を除去する。そして、図6(e)に示すように、例えば銅などの金属材料を積層して金属サブ層27を形成し、例えばシリコン窒化膜を積層して密着サブ層28を形成する。
(第1の基板および第2の基板を接合して行う工程)
次に、第1の基板31および第2の基板32を接合して行う工程について説明する。はじめに、図7(a)に示すように、第1の基板31の密着サブ層22と、第2の基板32の密着サブ層28と、を接合する。続いて、図7(b)に示すように、第1の基板31の他方の主面を研磨する。ここで、例えば被研磨面にフォトダイオード25が露出するまで研磨を行い、光電変換サブ層20を形成する。続いて、図7(c)に示すように、光電変換サブ層20の上に、カラーフィルタ23およびマイクロレンズ24を配置する。このようにして、密着サブ層22と、配線サブ層21と、光電変換サブ層20と、カラーフィルタ23と、マイクロレンズ24と、を含む第1の層18が形成される。続いて、図7(d)に示すように、第1の層18が形成された第2の基板32の上下を反転する。そして、図7(e)に示すように、第2の基板32の他方の主面を研磨し、支持サブ層26を形成する。好適には、被研磨面に副材料30が露出するまで研磨を行い、支持サブ層26を形成する。このようにして、支持サブ層26と、金属サブ層27と、密着サブ層28と、を含む第2の層19が形成される。上述の工程を経て、第1の層18および第2の層19を備える撮像素子ウエハを得る。
次に、図8のフローチャートを参照して、上述した第1の層18および第2の層19を形成する工程の流れを説明する。
ステップS100:はじめに、第1の基板31の一方の主面にフォトダイオード25およびMOSトランジスタを形成する。
ステップS101:続いて、第1の基板31の当該主面に配線サブ層21を形成し、例えばシリコン窒化膜を積層して密着サブ層22をさらに形成する。
ステップS102:次に、第2の基板32の一方の主面に対して、シリコン酸化膜33と、シリコン窒化膜34と、フォトレジスト35のパターンと、を形成し、エッチングによって第2の基板32の主面に溝を形成する。
ステップS103:続いて、第2の基板32のフォトレジスト35を除去して、副材料30として例えば銅などの金属材料を堆積させる。
ステップS104:続いて、第2の基板32に対して平坦化処理を行い、シリコン酸化膜33およびシリコン窒化膜34を除去する。
ステップS105:続いて、第2の基板32に対して、例えば銅などの金属材料を積層して金属サブ層27を形成し、例えばシリコン窒化膜を積層して密着サブ層28をさらに形成する。
ステップS106:次に、第1の基板31の密着サブ層22と、第2の基板32の密着サブ層28と、を接合する。
ステップS107:続いて、第1の基板31の、ステップS100の一方の主面に対する他方の主面を研磨し、光電変換サブ層20を形成する。
ステップS108:続いて、光電変換サブ層20の上に、カラーフィルタ23およびマイクロレンズ24を配置する。このようにして、密着サブ層22と、配線サブ層21と、光電変換サブ層20と、カラーフィルタ23と、マイクロレンズ24と、を含む第1の層18が形成される。
ステップS109:続いて、第2の基板32の、ステップS102の一方の主面に対する他方の主面を研磨する。好適には、被研磨面に副材料30が露出するまで研磨を行い、支持サブ層26を形成する。このようにして、支持サブ層26と、金属サブ層27と、密着サブ層28と、を含む第2の層19が形成される。
次に、図9のフローチャートを参照して、第1の層18および第2の層19を形成した撮像素子ウエハに対する加工工程の流れについて説明する。当該工程は、例えば半導体プロセスの後工程に組み込まれる。
ステップS200:はじめに、ダイシングを行い、撮像素子ウエハを所望のチップサイズに切断する。
ステップS201:続いて、ダイスボンディングを行い、所望のチップサイズに切断された撮像素子12をパッケージ基板15に接合する。例えば、撮像素子12は、パッケージ基板15のリードフレームに、接着によって接合される。
ステップS202:そして、ワイヤボンディングを行い、撮像素子12のパッドとパッケージ基板15のパッドとを接続する。
このように、第1の実施形態に係る撮像素子12は、第1の層18と、主材料29および副材料30である金属材料が交互に配される支持サブ層26を有する第2の層19と、を備える。交互に配される副材料30は、第1の層18で発生した熱を第2の層19側から放熱する放熱板として機能する。このように、放熱板として機能する副材料30を含む第2の層19が、発熱する第1の層18に接合して設けられるため、第1の層18で発生した熱の第2の層19の背面側への伝導効率が向上し、放熱効果が向上する。また、第2の層19は、半導体プロセスの前工程において、例えば上述したステップS109の研磨(図8参照)によって形成可能である。このため、第2の層19に含まれる副材料30を放熱板として機能させるために、ステップS109の研磨を行った後に追加の工程、すなわち撮像素子12の厚みが比較的薄い状態で追加の工程を要しないため、撮像素子12の製造難度の増加が抑制される。
また、支持サブ層26内に配される副材料30は、第2の層19の第1の層18と反対側の主面、すなわち第2の層19の背面側の主面まで延びる。このようにして、例えば撮像素子12をパッケージ基板15に接合させると、第2の層19内に配される副材料30とパッケージ基板15とが接触するため、放熱効果がさらに向上する。
また、支持サブ層26において、第1の方向の少なくとも一部の領域に亘って、副材料30が均一に分布する。このようにして、支持サブ層26は、第1の方向に沿う断面において、金属材料領域がそれぞれ均一に配置される部分を有する。副材料30を均一に分布させることにより、当該領域において副材料30を密に配することができ、放熱板の表面積が増加して放熱効果がさらに向上する。
また、第2の層19は、支持サブ層26と、金属サブ層27と、密着サブ層28と、を含む。上述したように、金属サブ層27は、第1の層18で発生した熱を、第1の層18の全面に亘って支持サブ層26に配された副材料30に伝導するため、放熱効果がさらに向上する。
また、撮像素子12は、裏面照射型の撮像素子である。一般に、裏面照射型の撮像素子は、フォトダイオードや配線層などを形成した基板に、支持基板を接合して製造される。したがって、支持基板を本実施形態に係る第2の基板32として用いることができ、コストの増加が抑制され、および撮像素子12の薄型化が可能となる。
また、第1の実施形態に係る撮像素子12の製造方法によれば、第1の基板31の一方の主面にフォトダイオード25を形成し、第2の基板32の一方の主面に形成した溝に副材料30を堆積させ、第1の基板31と第2の基板32とを接合した後、第1の基板31の他方の主面を研磨して光電変換サブ層20を形成し、第2の基板32の他方の主面を研磨して支持サブ層26を形成する。ここで、支持サブ層26を形成するための研磨において、第2の基板32に堆積した副材料30の厚みを基準として、研磨のエンドポイントが決定可能であるため、膜厚制御性が向上する。
上述した第1の実施形態では、第2の層19が金属サブ層27を含むものとして説明したが、これに限られない。例えば、第2の層19が金属サブ層27を含むことなく、支持サブ層26と密着サブ層28とを含んでもよい。かかる場合には、金属サブ層27を形成する必要がないため、撮像素子12の製造コストが低減される。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。概略として、第2の実施形態に係る撮像素子12は、第2の層19の背面側の主面の形状が第1の実施形態と異なる。また、第2の実施形態に係る撮像装置10の製造方法は、第2の層19を形成するために行う研磨(ステップS109)を終了するタイミング、および、ダイスボンディングにおける接合方法(ステップS201)の細部が第1の実施形態と異なる。以下、第1の実施形態との差異について説明する。
第2の実施形態に係る撮像装置10の撮像光学系11は、第1の実施形態と同様に、絞りおよび複数のレンズを含んで構成され、被写体像を結像させる。本実施形態において、撮像光学系11は広い画角を有しており、例えば主光線入射角度が90度以上の主光線を集光可能である。
撮像素子12が備える第2の層19の支持サブ層26には、第1の実施形態と同様に、第1の方向に主材料29と副材料30とが交互に配される。例えば、支持サブ層26の主材料29(例えば、シリコン)と、主材料29と硬度が異なる副材料30、例えば実施形態1と同様に銅などの金属材料が交互に配される。好適には、第2の層19を背面側から見ると、例えば図10に示すように、支持サブ層26の主材料29と副材料30とが、それぞれ直径が異なる略同心円状に交互に配される。
次に、第2の層19を形成するために行う研磨(ステップS109)について説明する。本実施形態において、例えば被研磨面に副材料30が露出したタイミングから所定時間研磨を継続し(以下、過研磨ともいう)、その後終了する。上述のように、第2の層19に含まれる主材料29と副材料30とは硬度が異なる。このため、例えば副材料30の硬度が主材料29の硬度よりも大きい場合には、過研磨によって主材料29がより多く研磨される。また、主材料29と副材料30とが交互に配される領域において、第1の方向における副材料30の分布を調整することによって、当該領域の研磨レートが制御可能である。このため、被研磨面、すなわち撮像素子12の背面側の主面の少なくとも一部は、凹形状または凸形状となる。図11(a)は、撮像素子12の背面側の主面36全体が凹形状である例を図示している。後述するように、撮像素子12の背面側の主面36の形状は、撮像素子12の受光面37の形状に転写される。ここで、各材料の材質、第1の方向の副材料30の分布、および過研磨を行う時間は、撮像素子12の受光面37の所望の形状に応じて任意に定められる。
次に、ダイスボンディングにおける接合方法(ステップS201)の細部について説明する。本実施形態において、ダイスボンディングの際に、撮像素子12をパッケージ基板15側に吸引しながら接合する。吸引によって、撮像素子12の背面側の主面36の形状が、撮像素子12の受光面37の形状に転写される。例えば、図11(b)は、図11(a)に示す撮像素子12、すなわち背面側の主面36全体が凹形状である撮像素子12を、パッケージ基板15側に吸引しながら接合した例を図示している。図11(b)において、撮像素子12の受光面37は、背面側の主面36の形状が転写されて凹形状となっている。
このように、第2の実施形態に係る撮像素子12は、第1の実施形態と同様に、第1の層18と、主材料29と副材料30とが交互に配される第2の層19と、を備える。交互に配される副材料30は、第1の層18で発生した熱を第2の層19側から放熱する放熱板として機能する。このように、放熱板として機能する副材料30を含む第2の層19が、発熱する第1の層18に接合して設けられるため、第1の層18で発生した熱の第2の層19の背面側への伝導効率が増加し、放熱効果が向上する。
また、第2の実施形態に係る撮像素子12は、第2の層19の第1の層18と反対側の主面、すなわち第2の層19の背面側の主面36の少なくとも一部が凹形状または凸形状である。かかる凹凸形状は、撮像素子12を吸引しながらパッケージ基板15に接合することによって、撮像素子12の受光面37(および第1の層18の前面側の主面)の形状に転写される。凹凸形状を有する撮像素子12は、主光線入射角度を大きくとる撮像装置、例えば画角の広い広角レンズを用いる撮像装置に特に好適である。例えば、広角レンズを備える撮像装置において、撮像素子が平坦形状である場合には、撮像素子の撮像領域の中央部と周辺部とで、被写体像の収縮度合いが異なる。このため、撮像画像の周辺領域において、被写体は歪んで撮像される。一方、撮像素子12に所望の凹凸形状を設けることによって、撮像領域の中央部と周辺部との間の、被写体像の収縮度合いの差が低減可能である。このため、撮像画像上の周辺領域において、被写体の歪みが低減される。
また、第2の層19の背面側の主面36の凹凸形状は、半導体プロセスの前工程において、例えば上述したステップS109の研磨(図8参照)によって形成される。このため、所望の凹凸形状を得るために、ステップS109の研磨を行った後に追加の工程、すなわち撮像素子12の厚みが比較的薄い状態で追加の工程を要しないため、撮像素子12の製造難度の増加が抑制される。
また、撮像素子12は、第1の方向に沿う断面において、支持サブ層26の金属材料領域の配置に応じて、第2の層19の背面側の主面の形状が異なる。例えば、主材料29の硬度よりも副材料30の硬度が大きい場合において、副材料30が多く分布する領域ほど、研磨レートが小さい。したがって、第2の層19における副材料30の、第1の方向における分布を調整することによって、撮像素子12を任意の湾曲形状にすることができる。
また、第2の層19における主材料29および副材料30のそれぞれが、第2の層19において略同心円状に配される。したがって、例えば同心円の中心点が撮像光学系11の光軸16上に位置し、かつ、撮像光学系11を通過した光、すなわち被写体像が撮像素子12の受光面37上で結像するように、撮像素子12を撮像装置10の筐体内に配置することによって、撮像画像の円周部の被写体の歪みが均等に低減される。
本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段やステップなどを1つに組み合わせたり、あるいは分割したりすることが可能である。
また、上述した実施形態において、裏面照射型の撮像素子を例に説明したが、表面照射型の撮像素子にも採用可能である。
10 撮像装置
11 撮像光学系
12 撮像素子
13 画像処理部
14 制御部
15 パッケージ基板
16 光軸
17 光
18 第1の層
19 第2の層
20 光電変換サブ層
21 配線サブ層
22 密着サブ層
23 カラーフィルタ
24 マイクロレンズ
25 フォトダイオード
26 支持サブ層
27 金属サブ層
28 密着サブ層
29 主材料
30 副材料
31 第1の基板
32 第2の基板
33 シリコン酸化膜
34 シリコン窒化膜
35 フォトレジスト
36 背面側の主面
37 受光面

Claims (11)

  1. 複数の画素が少なくとも第1の方向に配置された、撮像機能を有する第1の層と、
    前記第1の層に接合された第2の層と、を備え、
    該第2の層は、前記第1の方向に沿って非金属材料領域と金属材料領域とが交互に配される支持サブ層を有する、撮像素子。
  2. 請求項1に記載の撮像素子であって、
    前記金属材料領域は、前記第2の層の前記第1の層と反対側の主面まで延びる、撮像素子。
  3. 請求項1または2に記載の撮像素子であって、
    前記第2の層は、前記第1の層と前記支持サブ層との間に位置する、前記金属材料からなる金属サブ層を含む、撮像素子。
  4. 請求項1乃至3の何れか一項に記載の撮像素子であって、
    前記支持サブ層は、前記第1の方向に沿う断面において、前記金属材料領域がそれぞれ均一に配置される部分を有する、撮像素子。
  5. 請求項1乃至4の何れか一項に記載の撮像素子は、裏面照射型として構成される、撮像素子。
  6. 請求項1乃至5の何れか一項に記載の撮像素子であって、
    前記第2の層の前記第1の層と反対側の主面の少なくとも一部が凹形状または凸形状である、撮像素子。
  7. 請求項6に記載の撮像素子であって、
    前記第2の層の前記第1の層と反対側の前記主面に対する研磨によって、該主面の少なくとも一部に凹形状または凸形状が形成され、
    前記第2の層の前記第1の層と反対側の前記主面がパッケージ基板に接合されると、該主面の形状が、前記第1の層の前記第2の層と反対側の主面に転写される、撮像素子。
  8. 請求項6または7に記載の撮像素子であって、
    前記第1の方向に沿う断面において、前記支持サブ層の前記金属材料領域の配置に応じて、前記第2の層の前記第1の層と反対側の前記主面の形状が異なる、撮像素子。
  9. 請求項6乃至8の何れか一項に記載の撮像素子であって、
    前記第2の層において、前記支持サブ層は、前記非金属材料領域と前記金属材料領域とがそれぞれ略同心円状に交互に配される、撮像素子。
  10. 複数の画素が少なくとも第1の方向に配置された、撮像機能を有する第1の層と、該第1の層に接合された第2の層と、を備え、
    該第2の層は、前記第1の方向に沿って非金属材料領域と金属材料領域とが交互に配される支持サブ層を有する撮像素子と、
    前記第1の層の受光面上に被写体像を結像する撮像光学系と、
    を備える、撮像装置。
  11. 第1の基板の一方の主面に、フォトダイオードを形成するステップと、
    前記第1の基板の一方の主面側に、密着サブ層を形成するステップと、
    第2の基板の一方の主面に所定のパターンで形成した溝に、前記第2の基板の主材料と異なる金属材料を堆積させるステップと、
    前記第2の基板の一方の主面側に、密着サブ層を形成するステップと、
    前記第1の基板の前記密着サブ層と、前記第2の基板の前記密着サブ層と、を接合するステップと、
    前記第1の基板の一方の主面に対する他方の主面を研磨して光電変換サブ層を形成するステップと、
    前記第2の基板の一方の主面に対する他方の主面を研磨して支持サブ層を形成するステップと、
    を含む、撮像素子の製造方法。
JP2015037425A 2015-02-26 2015-02-26 撮像素子、撮像装置、および撮像素子の製造方法 Active JP6518457B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015037425A JP6518457B2 (ja) 2015-02-26 2015-02-26 撮像素子、撮像装置、および撮像素子の製造方法
PCT/JP2016/001057 WO2016136274A1 (ja) 2015-02-26 2016-02-26 撮像素子、撮像装置、および撮像素子の製造方法
EP16755024.3A EP3264466B1 (en) 2015-02-26 2016-02-26 Image pickup element, image pickup device, and method for manufacturing image pickup element
US15/551,229 US10741597B2 (en) 2015-02-26 2016-02-26 Image sensor, imaging apparatus, and method of manufacturing image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037425A JP6518457B2 (ja) 2015-02-26 2015-02-26 撮像素子、撮像装置、および撮像素子の製造方法

Publications (2)

Publication Number Publication Date
JP2016162779A true JP2016162779A (ja) 2016-09-05
JP6518457B2 JP6518457B2 (ja) 2019-05-22

Family

ID=56847101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037425A Active JP6518457B2 (ja) 2015-02-26 2015-02-26 撮像素子、撮像装置、および撮像素子の製造方法

Country Status (1)

Country Link
JP (1) JP6518457B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180930A (ja) * 1986-01-31 1987-08-08 Hamamatsu Photonics Kk 光電陰極を冷却する装置
JP2001177023A (ja) * 1999-12-21 2001-06-29 Casio Comput Co Ltd チップ素子の取付構造
JP2002299487A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2002299488A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2004146633A (ja) * 2002-10-25 2004-05-20 Sony Corp 固体撮像装置及びその製造方法
JP2004221248A (ja) * 2003-01-14 2004-08-05 Citizen Electronics Co Ltd 半導体装置
JP2007165527A (ja) * 2005-12-13 2007-06-28 Renesas Technology Corp 半導体集積回路の制御方法
JP2012114370A (ja) * 2010-11-26 2012-06-14 Fujikura Ltd 半導体パッケージ
WO2014083750A1 (ja) * 2012-11-30 2014-06-05 パナソニック株式会社 光学装置及びその製造方法
WO2014192199A1 (ja) * 2013-05-27 2014-12-04 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP2015015631A (ja) * 2013-07-05 2015-01-22 株式会社ニコン 撮像チップ、撮像ユニット及び撮像装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180930A (ja) * 1986-01-31 1987-08-08 Hamamatsu Photonics Kk 光電陰極を冷却する装置
JP2001177023A (ja) * 1999-12-21 2001-06-29 Casio Comput Co Ltd チップ素子の取付構造
JP2002299487A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2002299488A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2004146633A (ja) * 2002-10-25 2004-05-20 Sony Corp 固体撮像装置及びその製造方法
JP2004221248A (ja) * 2003-01-14 2004-08-05 Citizen Electronics Co Ltd 半導体装置
JP2007165527A (ja) * 2005-12-13 2007-06-28 Renesas Technology Corp 半導体集積回路の制御方法
JP2012114370A (ja) * 2010-11-26 2012-06-14 Fujikura Ltd 半導体パッケージ
WO2014083750A1 (ja) * 2012-11-30 2014-06-05 パナソニック株式会社 光学装置及びその製造方法
WO2014192199A1 (ja) * 2013-05-27 2014-12-04 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP2015015631A (ja) * 2013-07-05 2015-01-22 株式会社ニコン 撮像チップ、撮像ユニット及び撮像装置

Also Published As

Publication number Publication date
JP6518457B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
JP5104306B2 (ja) 固体撮像素子
US11765476B2 (en) Imaging element and method for manufacturing imaging element
JP6343246B2 (ja) 非平面光インタフェースを備えた裏面照明式イメージセンサ
KR20080049186A (ko) 이미지 센서 및 그 제조방법
JP2007042879A (ja) 半導体撮像装置およびその製造方法
CN110634895B (zh) 使用热塑性衬底材料的弯曲图像传感器
JP7384213B2 (ja) 撮像素子及び撮像装置
JP2012049400A (ja) 光センサの製造方法、光センサ及びカメラ
JP2008135551A (ja) 固体撮像装置
JP2012175078A (ja) 固体撮像装置、および、その製造方法、電子機器、半導体装置
WO2016136274A1 (ja) 撮像素子、撮像装置、および撮像素子の製造方法
TW201444069A (zh) 固體攝像裝置及其製造方法、以及電子機器
JP6518457B2 (ja) 撮像素子、撮像装置、および撮像素子の製造方法
JP2011009389A (ja) 固体撮像装置およびその製造方法
JP4645158B2 (ja) 固体撮像装置及びその製造方法
JP2005064060A (ja) 固体撮像素子、固体撮像素子の製造方法及び固体撮像装置
JP7246136B2 (ja) 半導体装置、カメラおよび半導体装置の製造方法
JP6921486B2 (ja) 固体撮像素子
JP2004079578A (ja) 半導体装置
JP6720503B2 (ja) 固体撮像素子およびその製造方法
JP4644696B2 (ja) 裏面照射型撮像素子及びその製造方法
JP2016162782A (ja) 撮像素子、撮像装置、および撮像素子の製造方法
JP2016162781A (ja) 撮像素子、撮像装置、および撮像素子の製造方法
TWI782057B (zh) 彩色濾光片成形
JP2005203526A (ja) 固体撮像装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6518457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150