JP2016154535A - 血清アミロイドp成分に特異的な抗原結合タンパク質 - Google Patents
血清アミロイドp成分に特異的な抗原結合タンパク質 Download PDFInfo
- Publication number
- JP2016154535A JP2016154535A JP2016020718A JP2016020718A JP2016154535A JP 2016154535 A JP2016154535 A JP 2016154535A JP 2016020718 A JP2016020718 A JP 2016020718A JP 2016020718 A JP2016020718 A JP 2016020718A JP 2016154535 A JP2016154535 A JP 2016154535A
- Authority
- JP
- Japan
- Prior art keywords
- sap
- seq
- binding protein
- antigen binding
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/54—F(ab')2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Toxicology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
【解決手段】全身性アミロイドーシス、局所性アミロイドーシス、アルツハイマー病および2型糖尿病を含むアミロイド沈着を伴う疾患の治療または予防における特定のアミノ酸配列を有する血清アミロイドP成分(SAP)特異的結合抗体の使用に関する。
【選択図】なし
Description
R1は、水素またはハロゲンであり、
Xは、−(CH2)n−、−CH(R2)(CH2)n−、−CH2O(CH2)n−、−CH2NH−、−C(R2)=CH−、−CH2CH(OH)−、またはチアゾール−2,5−ジイル、−O−であり、
Yは、−S−S−、−(CH2)n−、−O−、−NH−、−N(R2)−、−CH=CH−、−NHC(O)NH−、−N(R2)C(O)N(R2)−、−N[CH2C6H3(OCH3)2]−、−N(CH2C6H5)−、−N(CH2C6H5)C(O)N(CH2C6H5)−、−N(アルコキシアルキル)−、N(シクロアルキル−メチル)−、2,6−ピリジル、2,5−フラニル、2,5−チエニル、1,2−シクロヘキシル、1,3−シクロヘキシル、1,4−シクロヘキシル、1,2−ナフチル、1,4−ナフチル、1,5−ナフチル、1,6−ナフチル、または1,2−フェニレン、1,3−フェニレンおよび1,4−フェニレンであり、ここで、そのフェニレン基は、ハロゲン、低級アルキル、低級アルコキシ、ヒドロキシル、カルボキシ、−COO−低級アルキル、ニトリロ、5−テトラゾール、(2−カルボン酸ピロリジン−1−イル)−2−オキソ−エトキシ、N−ヒドロキシカルバミミオジル、5−オキソ[1,2,4オキサジアゾリル、2−オキソ[1,2,3,5]オキサチアジアゾリル、5−チオキソ[1,2,4]オキサジアゾリルおよび5−tert−ブチルスルファニル−[1,2,4]オキサジアゾリルから選択される1〜4個の置換基で必要に応じて置換されてもよく、
X’は、−(CH2)n−、−(CH2)nCH(R2)−、−(CH2)nOCH2−、−NHCH2−、−CH=C(R2)−、CH(OH)CH2、またはチアゾール−2,5−ジイル、−O−であり、
R2は、低級アルキル、低級アルコキシまたはベンジルであり、
nは、0〜3であり、ここで、
アルキルまたは低級アルキルは、C1−6アルキルであり、アルコキシまたは低級アルコキシは、C1−6アルコキシであり、シクロアルキルは、C3−6シクロアルキル(cyclocalkyl)であり、ハロゲンは、F、ClまたはBrであり、式中の点線で表されている位置は、単結合または二重結合である)、
あるいはその薬学上許容される塩またはモノエステルもしくはジエステルが企図される。
nn≦xn−(xn・y)
によって算出される(式中、nnは、ヌクレオチドの変更の数であり、xnは、本明細書中に記載されるような参照ポリヌクレオチド配列(例えば、配列番号8、10、18、20、45〜48、51〜61、63、65〜73を参照のこと)内のヌクレオチドの総数であり、yは、50%の場合0.50、60%の場合0.60、70%の場合0.70、75%の場合0.75、80%の場合0.80、85%の場合0.85、90%の場合0.90、95%の場合0.95、98%の場合0.98、99%の場合0.99または100%の場合1.00であり、・は、乗算演算子のシンボルであり、ここで、xnおよびyの任意の非整数の積は、それをxnから減算する前に、最も近い整数に端数が切り捨てられる)。
na≦xa−(xa・y)
によって算出される(式中、naは、アミノ酸の変更の数であり、xaは、本明細書中に記載されるような参照ポリペプチド配列(例えば、配列番号1〜7、9、11〜17、19、21〜24、27〜31、34〜42、62、64、74を参照のこと)内のアミノ酸の総数であり、yは、50%の場合0.50、60%の場合0.60、70%の場合0.70、75%の場合0.75、80%の場合0.80、85%の場合0.85、90%の場合0.90、95%の場合0.95、98%の場合0.98、99%の場合0.99または100%の場合1.00であり、・は、乗算演算子のシンボルであり、ここで、xaおよびyの任意の非整数の積は、それをxaから減算する前に、最も近い整数に端数が切り捨てられる)。
重鎖:2位にVal、IleまたはGly、4位にLeuもしくはVal、20位にLeu、Ile、MetもしくはVal、22位にCys、24位にThr、Ala、Val、GlyもしくはSer、26位にGly、29位にIle、Phe、LeuもしくはSer、36位にTrp、47位にTrpもしくはTyr、48位にIle、Met、ValもしくはLeu、69位にIle、Leu、Phe、MetもしくはVal、71位にVal、AlaもしくはLeu、78位にAla、Leu、Val、TyrもしくはPhe、80位にLeuもしくはMet、90位にTyrもしくはPhe、92位にCys、および/または94位にArg、Lys、Gly、Ser、HisもしくはAsn
軽鎖:2位にIle、LeuもしくはVal、3位にVal、Gln、LeuもしくはGlu、4位にMetもしくはLeu、23位にCys、35位にTrp、36位にTyr、LeuもしくはPhe、46位にLeu、ArgもしくはVal、49位にTyr、His、PheもしくはLys、71位にTyrもしくはPhe、88位にCys、および/または98位にPhe
を含み得る。
インタクトな抗体
ほとんどの脊椎動物種由来の抗体の軽鎖は、定常領域のアミノ酸配列に基づいて、カッパーおよびラムダと呼ばれる2つのタイプのうちの1つに割り当てることができる。ヒト抗体は、重鎖の定常領域のアミノ酸配列に応じて、5つの異なるクラスIgA、IgD、IgE、IgGおよびIgMに割り当てることができる。IgGおよびIgAは、さらに、サブクラスIgG1、IgG2、IgG3およびIgG4、ならびにIgA1およびIgA2に細分することができる。少なくともIgG2a、IgG2bを有するマウスおよびラットにおいて種変異体が存在する。
ヒト抗体は、当業者に公知のいくつかの方法によって生成され得る。ヒト抗体は、ヒトミエローマ細胞株またはマウス−ヒトヘテロミエローマ細胞株を用いたハイブリドーマ法によって生成することができる(Kozbor(1984)J.Immunol 133,3001およびBrodeur,Monoclonal Antibody Production Techniques and Applications,51−63(Marcel Dekker Inc,1987)を参照のこと)。代替方法としては、ファージライブラリーまたはトランスジェニックマウス(その両方ともがヒト可変領域レパートリーを使用する)の使用が挙げられる(Winter(1994)Annu.Rev.Immunol 12:433−455;Green(1999)J.Immunol.Methods 231:11−23を参照のこと)。
キメラ抗体は、通常、組換えDNA法を用いて作製される。その抗体をコードするDNA(例えば、cDNA)を、従来の手順を用いて(例えば、抗体のH鎖およびL鎖をコードする遺伝子に特異的に結合することができるオリゴヌクレオチドプローブを使用することによって)単離し、配列決定する。ハイブリドーマ細胞は、そのようなDNAの典型的な起源として役立つ。そのDNAは、いったん単離されると、発現ベクターに配置され、次いでその発現ベクターを、別途、免疫グロブリンタンパク質を産生しない宿主細胞(例えば、E.coli、COS細胞、CHO細胞またはミエローマ細胞)にトランスフェクトすることにより、抗体の合成がもたらされる。そのDNAは、ヒトのL鎖およびH鎖に対するコード配列で、対応する非ヒト(例えば、マウス)H定常領域およびL定常領域を置換することによって、改変され得る(例えば、Morrison(1984)PNAS 81:6851を参照のこと)。
二重特異性抗原結合タンパク質は、少なくとも2つの異なるエピトープに対して結合特異性を有する抗原結合タンパク質である。そのような抗原結合タンパク質を作製する方法は、当該分野で公知である。従来、二重特異性抗原結合タンパク質の組換え作製は、2つの免疫グロブリンH鎖−L鎖対の同時発現に基づき、ここで、その2つのH鎖は、異なる結合特異性を有する(Millstein et al.(1983)Nature 305:537−539;国際公開第93/08829号;およびTraunecker et al.(1991)EMBO 10:3655−3659を参照のこと)。H鎖とL鎖とのランダムな組み合わせを理由に、潜在的に10個の異なる抗体構造の混合物(そのうちの1つだけが、所望の結合特異性を有する)が生成される。代替アプローチは、所望の結合特異性を有する可変ドメインを、ヒンジ領域、CH2およびCH3領域の少なくとも一部を含む重鎖定常領域と融合することを含む。軽鎖結合に必要な部位を含むCH1領域は、その融合物の少なくとも1つに存在し得る。これらの融合物および所望であればL鎖をコードするDNAが、別個の発現ベクターに挿入され、次いで、好適な宿主生物に同時トランスフェクトされる。にもかかわらず、2つまたは3つすべての鎖に対するコード配列を1つの発現ベクターに挿入することも可能である。1つのアプローチにおいて、二重特異性抗体は、一方の腕における第1の結合特異性を有するH鎖、および他方の腕における第2の結合特異性を提供するH−L鎖対から構成される(国際公開第94/04690号を参照のこと)。Suresh et al.(1986)Methods in Enzymology 121:210もまた参照のこと。
定常領域を欠くフラグメントは、古典経路によって補体を活性化する能力または抗体依存性細胞傷害を媒介する能力を欠く。従来、そのようなフラグメントは、例えば、パパイン消化による、インタクトな抗体のタンパク分解性の消化によって生成されるが(例えば、国際公開第94/29348号を参照のこと)、組換え的に形質転換された宿主細胞から直接産生されてもよい。ScFvの生成については、Bird et al.(1988)Science 242:423−426を参照のこと。さらに、抗原結合フラグメントは、下に記載されるような種々の操作手法を用いて生成されてもよい。
ヘテロ結合体抗体は、任意の好都合な架橋方法を用いて形成される、2つの共有結合的に結合された抗体から構成される。例えば、US4,676,980を参照のこと。
本発明の抗原結合タンパク質は、そのエフェクター機能を増強または変更する他の改変を含み得る。抗体のFc領域と様々なFc受容体(FcγR)との相互作用は、抗体依存性細胞傷害(ADCC)、補体の固定、ファゴサイトーシスおよび抗体の半減期/クリアランスを含む、抗体のエフェクター機能を媒介すると考えられている。抗体のFc領域に対する様々な改変は、所望の特性に応じて行われ得る。例えば、別途溶解性の抗体を非溶解性にするFc領域における特定の変異は、EP0629240およびEP0307434に詳述されているものであるか、またはサルベージ受容体に結合するエピトープを抗体に組み込むことにより、血清半減期を延長し得る(US5,739,277を参照のこと)。ヒトFcγ受容体としては、FcγR(I)、FcγRIIa、FcγRIIb、FcγRIIIaおよび胎児型FcRnが挙げられる。Shields et al.(2001)J.Biol.Chem 276:6591−6604では、IgG1残基の共通のセットが、すべてのFcγRへの結合に関わるが、FcγRIIおよびFcγRIIIは、この共通セットの外側の異なる部位を利用することが立証された。1つの群のIgG1残基は、アラニンに変更されたとき、すべてのFcγRへの結合性を低下させた:Pro−238、Asp−265、Asp−270、Asn−297およびPro−239。そのすべてが、IgG CH2ドメインに存在し、CH1およびCH2を結合するヒンジ付近に密集している。FcγRIは、結合のためにIgG1残基の共通セットだけを利用するが、FcγRIIおよびFcγRIIIは、その共通セットに加えて異なる残基と相互作用する。いくつかの残基の変更によって、FcγRII(例えば、Arg−292)またはFcγRIII(例えば、Glu−293)に対する結合だけが低下した。いくつかの変異体は、FcγRIIまたはFcγRIIIに対して改善された結合性を示したが、他方の受容体への結合性に影響しなかった(例えば、Ser−267Alaは、FcγRIIへの結合性を改善したが、FcγRIIIへの結合性は影響されなかった)。他の変異体は、FcγRIIまたはFcγRIIIに対する改善された結合性を示し、他方の受容体への結合性を低下させた(例えば、Ser−298Alaは、FcγRIIIへの結合性を改善し、FcγRIIへの結合性を低下させた)。FcγRIIIaについては、最もよく結合するIgG1変異体は、Ser−298、Glu−333およびLys−334においてアラニン置換を組み合わせていた。胎児型FcRn受容体は、抗体のクリアランスと組織を越えたトランスサイトーシスの両方にかかわると考えられている(Junghans(1997)Immunol.Res 16:29−57;およびGhetie et al.(2000)Annu.Rev.Immunol.18:739−766を参照のこと)。ヒトFcRnと直接相互作用すると判定されたヒトIgG1残基としては、Ile253、Ser254、Lys288、Thr307、Gln311、Asn434およびHis435が挙げられる。この項に記載される位置のいずれにおける置換も、血清半減期の延長および/または抗体のエフェクター特性の変更を可能にし得る。
抗原結合タンパク質は、トランスジェニック生物(例えば、ヤギ(Pollock et al.(1999)J.Immunol.Methods 231:147−157を参照のこと)、ニワトリ(Morrow(2000)Genet.Eng.News 20:1−55を参照のこと、マウス(Pollock et al.を参照のこと)または植物(Doran(2000)Curr.Opinion Biotechnol.11:199−204;Ma(1998)Nat.Med.4:601−606;Baez et al.(2000)BioPharm 13:50−54;Stoger et al.(2000)Plant Mol.Biol.42:583−590を参照のこと))において産生され得る。
抗原結合タンパク質は、成熟タンパク質のN末端に特異的な切断部位を有する異種のシグナル配列との融合タンパク質として生成されてもよい。そのシグナル配列は、宿主細胞によって認識され、プロセシングされるべきである。原核生物の宿主細胞の場合、シグナル配列は、例えば、アルカリホスファターゼ、ペニシリナーゼまたは熱安定性エンテロトキシンIIリーダーであり得る。酵母による分泌の場合、シグナル配列は、例えば、酵母インベルターゼリーダー、α因子リーダーまたは酸ホスファターゼリーダーであり得る(例えば、国際公開第90/13646号を参照のこと)。哺乳動物細胞系では、単純ヘルペスgDシグナルなどのウイルスの分泌リーダー、および天然の免疫グロブリンシグナル配列が好適であり得る。通常、シグナル配列は、抗原結合タンパク質をコードするDNAに読み枠でライゲートされる。配列番号79に示されるシグナル配列などのマウスシグナル配列が使用され得る。
複製起点は、当該分野で周知である(ほとんどのグラム陰性菌に適するpBR322、ほとんどの酵母に適する2μプラスミド、およびほとんどの哺乳動物細胞に適する様々なウイルス起点(例えば、SV40、ポリオーマ、アデノウイルス、VSVまたはBPV))。一般に、複製起点の構成要素は、哺乳動物の発現ベクターにとって必要とされないが、SV40は、初期プロモーターを含むので、使用されることがある。
典型的な選択遺伝子は、(a)抗生物質または他のトキシン、例えば、アンピシリン、ネオマイシン、メトトレキサートもしくはテトラサイクリンに対する耐性を付与するタンパク質、または(b)栄養要求性の(auxiotrophic)欠損を補完するか、もしくは複合培地において利用可能でない栄養分を供給するタンパク質、あるいは(c)それらの両方の組み合わせをコードする。選択スキームは、宿主細胞の成長の停止を含み得る。抗原結合タンパク質をコードする遺伝子で首尾よく形質転換された細胞は、例えば、同時に送達された選択マーカーによって付与された薬物耐性に起因して、生存する。一例は、DHFR選択マーカーであり、ここで、形質転換体は、メトトレキサートの存在下において培養される。目的の外来性遺伝子のコピー数を増幅させるために、メトトレキサートの存在下において、そのメトトレキサートの量を増加させながら細胞を培養することができる。CHO細胞は、DHFR選択にとって特に有用な細胞株である。さらなる例は、グルタメート合成酵素発現系(Lonza Biologics)である。酵母において使用するための選択遺伝子の例は、trp1遺伝子である(Stinchcomb et al.(1979)Nature 282:38を参照のこと)。
抗原結合タンパク質の発現に適したプロモーターは、その抗原結合タンパク質をコードするDNA/ポリヌクレオチドに作動可能に連結される。原核生物宿主用のプロモーターとしては、phoAプロモーター、ベータ−ラクタマーゼおよびラクトースプロモーター系、アルカリホスファターゼ、トリプトファン、ならびにTacなどのハイブリッドプロモーターが挙げられる。酵母細胞における発現に適したプロモーターとしては、3−ホスホグリセリン酸キナーゼまたは他の糖分解酵素、例えば、エノラーゼ、グリセルアルデヒド(glyceralderhyde)3リン酸脱水素酵素、ヘキソキナーゼ、ピルビン酸デカルボキシラーゼ、ホスホフルクトキナーゼ、グルコース6リン酸イソメラーゼ、3−ホスホグリセリン酸ムターゼおよびグルコキナーゼが挙げられる。誘導性酵母プロモーターとしては、アルコールデヒドロゲナーゼ2、イソシトクロムC、酸ホスファターゼ、メタロチオネイン、および窒素代謝またはマルトース/ガラクトース利用に関与する酵素が挙げられる。
必要に応じて、例えば、高等真核生物における発現のために、ベクター内のプロモーターエレメントに作動可能に連結されたエンハンサーエレメントを使用してもよい。哺乳動物のエンハンサー配列としては、グロビン、エラスターゼ、アルブミン、フェトプロテインおよびインスリン由来のエンハンサーエレメントが挙げられる。あるいは、真核(eukaroytic)細胞ウイルス由来のエンハンサーエレメント(例えば、SV40エンハンサー(bp100〜270におけるもの)、サイトメガロウイルス初期プロモーターエンハンサー、ポリオーマ(polyma)エンハンサー、バキュロウイルスエンハンサー)またはマウスIgG2a遺伝子座(国際公開第04/009823号を参照のこと)を使用してもよい。エンハンサーは、ベクター上のプロモーターに対して上流の部位に配置され得る。あるいは、エンハンサーは、他の位置、例えば、非翻訳領域内またはポリアデニル化シグナルの下流に配置され得る。エンハンサーの選択および位置決めは、発現に使用される宿主細胞との好適な適合性に基づき得る。
真核生物系において、ポリアデニル化シグナルは、本抗原結合タンパク質をコードするDNA/ポリヌクレオチドに作動可能に連結される。そのようなシグナルは、通常、オープンリーディングフレームの3’に配置される。哺乳動物系において、非限定的な例としては、成長ホルモン、伸長因子−1アルファおよびウイルス(例えば、SV40)遺伝子に由来するシグナル、またはレトロウイルスの末端反復配列が挙げられる。酵母系において、ポリアデニル化(polydenylation)/終結シグナルの非限定的な例としては、ホスホグリセリン酸キナーゼ(PGK)およびアルコールデヒドロゲナーゼ1(ADH)遺伝子に由来するものが挙げられる。原核生物系において、ポリアデニル化シグナルは、通常必要とされず、その代わりにより短くかつより明確なターミネーター配列を使用することが通例である。ポリアデニル化/終結配列の選択は、発現に使用される宿主細胞との好適な適合性に基づき得る。
上記に加えて、収量を増加させるために使用することができる他の特徴としては、クロマチンリモデリングエレメント、イントロンおよび宿主細胞特異的なコドンの改変が挙げられる。
抗原結合タンパク質をコードするクローニングベクターまたは発現ベクターに適した宿主細胞は、原核(prokaroytic)細胞、酵母細胞または高等真核細胞である。好適な原核細胞としては、真正細菌、例えば、腸内細菌科(例えば、Escherichia(例えば、E.coli(例えば、ATCC31,446;31,537;27,325))、Enterobacter、Erwinia、Klebsiella Proteus、Salmonella(例えば、Salmonella typhimurium)、Serratia、例えば、Serratia marcescansおよびShigella、ならびにBacilli(例えば、B.subtilisおよびB.licheniformis(DD266710を参照のこと))、Pseudomonas(例えば、P.aeruginosa)およびStreptomycesが挙げられる。酵母宿主細胞のうち、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces(例えば、ATCC16,045;12,424;24178;56,500)、yarrowia(EP402、226)、Pichia pastoris(EP183070、Peng et al.(2004)J.Biotechnol.108:185−192もまた参照のこと)、Candida、Trichoderma reesia(EP244234)、Penicillin、TolypocladiumおよびAspergillus宿主(例えば、A.nidulansおよびA.niger)もまた企図される。
抗原結合タンパク質をコードするベクターで形質転換された宿主細胞は、当業者に公知の任意の方法によって培養され得る。宿主細胞は、スピナーフラスコ、ローラーボトルまたは中空糸システムにおいて培養され得るが、大規模生成の場合、特に懸濁培養のために撹拌槽反応器が使用される。その撹拌タンカー(stirred tankers)は、例えば、スパージャー、バッフルまたは低剪断インペラーを用いた通気に適合され得る。バッフルカラムおよびエアリフト反応器の場合、空気または酸素バブルによる直接的な通気が使用され得る。宿主細胞が、無血清培養液中で培養される場合、その培地には、通気プロセスの結果としての細胞損傷の防止を助ける細胞保護剤(例えば、プルロニックF−68)が補充される。宿主細胞の特徴に応じて、足場依存性細胞株に対する増殖基質としてマイクロ担体を使用してもよいし、細胞を懸濁培養(これが典型的である)に適合してもよい。宿主細胞の培養、特に、無脊椎動物宿主細胞の培養では、種々の操作上の様式(例えば、流加培養法、反復バッチ処理(repeated batch processing)(Drapeau et al.(1994)Cytotechnology 15:103−109を参照のこと)、拡張バッチ(extended batch)プロセスまたは灌流培養)を利用してよい。組換え的に形質転換された哺乳動物宿主細胞は、ウシ胎仔血清(FCS)などの血清含有培地中で培養され得るが、そのような宿主細胞は、必要に応じてエネルギー源(例えば、グルコース、および組換えインスリンなどの合成成長因子)が補充された、合成無血清培地(例えば、Keen et al.(1995)Cytotechnology 17:153−163に開示されているもの)または商業的に入手可能な培地(例えば、ProCHO−CDMまたはUltraCHOTM(Cambrex NJ,USA))中で培養され得る。宿主細胞の無血清培養は、それらの細胞が無血清条件において生育するように適合されていることが求められる場合がある。1つの適合アプローチは、そのような宿主細胞を血清含有培地中で培養し、その宿主細胞が無血清条件に適合できるようになるように、その培養液の80%を無血清培地と繰り返し交換することである(例えば、Scharfenberg et al.(1995)Animal Cell Technology:Developments towards the 21st century(Beuvery et al.eds,619−623,Kluwer Academic publishersを参照のこと)。
本明細書中に記載されるような抗原結合タンパク質の精製された調製物は、本明細書中に記載されるヒトの疾患、障害および状態の治療において使用するために医薬組成物に組み込まれ得る。疾患、障害および状態という用語は、交換可能に使用される。上記医薬組成物は、アミロイド沈着物が組織に存在し、臨床上の疾病に至る構造的および機能的な損傷に関与する、任意の疾患の治療において使用することができる。SAPは、インビボにおいてアミロイド沈着物のすべてに常に存在し、治療有効量の本明細書中に記載される抗原結合タンパク質を含む医薬組成物は、その組織からのアミロイド沈着物のクリアランスに応答する疾患の治療において使用することができる。
本明細書中に記載される抗原結合タンパク質は、診断目的で、生物学的サンプル中のSAPをインビトロまたはインビボにおいて検出するために使用され得る。例えば、抗SAP抗原結合タンパク質は、血清中のSAP、またはアミロイド(例えば、アミロイド斑)と会合したSAPを検出するために使用することができる。そのアミロイドは、まず、ヒトまたは動物の身体から取り出され得る(例えば、生検)。ELISA、ウエスタンブロット、免疫組織化学または免疫沈降を含む従来のイムノアッセイが使用され得る。
SAP−EおよびSAP−Kは、抗SAPモノクローナルの2つの群に由来し、その各群が、インビトロにおいてヒトSAPへの結合について別個に試験された。SAP−EおよびSAP−Kは、それらの群のうちSAPへの最も強い結合性を示し、種々のアッセイにおいて互いに比較された。
HTDLSGKVFVFPRESVTDHVNLITPLEKPLQNFTLCFRAYSDLSRAYSLFSYNTQGRDNELLVYKERVGEYSLYIGRHKVTSKVIEKFPAPVHICVSWESSSGIAEFWINGTPLVKKGLRQGYFVEAQPKIVLGQEQDSYGGKFDRSQSFVGEIGDLYMWDSVLPPENILSAYQGTPLPANILDWQALNYEIRGYVIIKPLVWV
比較する目的で、ヒトSAPと69.4%の同一性を有するマウスSAP配列を下記に示す。
QTDLKRKVFVFPRESETDHVKLIPHLEKPLQNFTLCFRTYSDLSRSQSLFSYSVKGRDNELLIYKEKVGEYSLYIGQSKVTVRGMEEYLSPVHLCTTWESSSGIVEFWVNGKPWVKKSLQREYTVKAPPSIVLGQEQDNYGGGFQRSQSFVGEFSDLYMWDYVLTPQDILFVYRDSPVNPNILNWQALNYEINGYVVIRPRVW
全RNAを、Qiagen製のRNeasyキット(#74106)を用いておよそ106個の細胞のハイブリドーマ細胞ペレットから抽出した。AccessQuick RT−PCR System(A1702)を使用し、マウス免疫グロブリン遺伝子リーダー配列およびマウスIgG2a/K定常領域に特異的な縮重プライマーを用いて可変重鎖領域および可変軽鎖領域のcDNAを生成した。精製されたRT−PCRフラグメントを、Invitrogen製のTAクローニングキット(K2000−01)を用いてクローニングした。配列アラインメント、およびKABAT(Sequences of Proteins of Immunological Interest,4th Ed.,U.S.Department of Health and Human Services,National Institutes of Health(1987))に列挙されている公知の免疫グロブリン可変配列とのアラインメントによって各ハイブリドーマに対するコンセンサス配列を得た。SAP−EおよびSAP−Kに対するコンセンサス配列を下記に示す。
SAP−E CDRH1(配列番号1)
TYNMH
SAP−E CDRH2(配列番号2)
YIYPGDGNANYNQQFKG
SAP−E CDRH3(配列番号3)
GDFDYDGGYYFDS
SAP−E CDRL1(配列番号4)
RASENIYSYLA
SAP−E CDRL2(配列番号5)
NAKTLAE
SAP−E CDRL3(配列番号6)
QHHYGAPLT
CDRに下線を引いたSAP−E V H アミノ酸配列(配列番号7)
QASLQQSGTELVRSGASVKMSCKASGFTFATYNMHWIKQTPGQGLEWIGYIYPGDGNANYNQQFKGKATLTADTSSNTAYMQISSLTSEDSAVYFCARGDFDYDGGYYFDSWGQGTTLTVSS
SAP−E V H DNA配列(配列番号8)
CAGGCTTCTCTACAGCAGTCTGGGACTGAGCTGGTGAGGTCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTTCACATTTGCCACTTACAATATGCACTGGATTAAGCAGACACCCGGACAGGGCCTGGAATGGATTGGGTATATTTATCCTGGAGATGGTAATGCTAACTACAATCAGCAGTTCAAGGGCAAGGCCACATTGACTGCAGACACATCCTCCAACACAGCCTACATGCAGATCAGCAGCCTGACATCTGAAGACTCTGCGGTCTATTTCTGTGCAAGAGGGGACTTTGATTACGACGGAGGGTACTACTTTGACTCCTGGGGCCAGGGCACCACTCTCACAGTCTCCTCA
CDRに下線を引いたSAP−E V L アミノ酸配列(配列番号9)
DIQMTQSPASLSASVGETVTITCRASENIYSYLAWYQQKQGRSPQLLVHNAKTLAEGVPSRVSGSGSGTHFSLKINGLQPEDFGNYYCQHHYGAPLTFGAGTKLELK
SAP−E V L DNA配列(配列番号10)
GACATCCAGATGACTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATGTCGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACAGGGAAGATCCCCTCAGCTCCTGGTCCATAATGCAAAAACCTTAGCAGAAGGTGTGCCATCAAGGGTCAGTGGCAGTGGATCAGGCACACACTTTTCTCTGAAGATCAACGGCCTGCAGCCTGAAGATTTTGGGAATTATTACTGTCAACATCATTATGGTGCTCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAACTGAAA
SAP−K配列
SAP−K CDRH1(配列番号11)
SYWMH
SAP−K CDRH2(配列番号12)
MIHPNSVNTNYNEKFKS
SAP−K CDRH3(配列番号13)
RNDYYWYFDV
SAP−K CDRL1(配列番号14)
KASQNVNSNVA
SAP−K CDRL2(配列番号15)
SASYRYS
SAP−K CDRL3(配列番号16)
QQCNNYPFT
CDRに下線を引いたSAP−K V H アミノ酸配列(配列番号17)
QVQLQQPGAELIKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGMIHPNSVNTNYNEKFKSKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARRNDYYWYFDVWGTGTTVTVSS
SAP−K V H DNA配列(配列番号18)
CAGGTCCAACTGCAGCAGCCTGGGGCTGAGCTGATAAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACTTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAATGATTCATCCTAATAGTGTTAATACTAACTACAATGAGAAGTTCAAGAGTAAGGCCACACTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCAACTCAACAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGACGGAATGATTACTACTGGTACTTCGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCTCA
CDRに下線を引いたSAP−K V L アミノ酸配列(配列番号19)
DIVMTQSQKFMSTSVGDRVSVTCKASQNVNSNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQCNNYPFTFGSGTKLEIK
SAP−K V L DNA配列(配列番号20)
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGAATTCTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCTTCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCACCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATGTAACAACTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAA。
SAP−EおよびSAP−Kについて、ヒトIgG1/κ野生型定常領域に移植された親マウス可変ドメインを含むキメラ抗体をPCRクローニングによって構築した。コンセンサス配列に基づいて、哺乳動物発現ベクターへのクローニングを容易にするために必要な制限酵素認識部位を組み込んで、マウス可変ドメインを増幅するプライマーを設計した。FR4(フレームワーク領域4(CDR3の後ろかつ第1定常ドメインの前のV−領域配列))に制限酵素認識部位を導入することによって、SAP−EにおけるVHアミノ酸配列を、配列番号7に示されるようなTTLTVSSからTLVTVSSに変更し、SAP−KにおけるVHアミノ酸配列を、配列番号17に示されるようなTTVTVSSからTLVTVSSに変更した。SAP−K可変軽鎖では、CDRL1に内部のEcoRI部位が存在するので、1塩基対を変更することによって(これによりアミノ酸配列は変化しなかった)、この望まれない内部のEcoRI部位を除去する突然変異誘発プライマーを設計した。
CAGGCTTCTCTACAGCAGTCTGGGACTGAGCTGGTGAGGTCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTTCACATTTGCCACTTACAATATGCACTGGATTAAGCAGACACCCGGACAGGGCCTGGAATGGATTGGGTATATTTATCCTGGAGATGGTAATGCTAACTACAATCAGCAGTTCAAGGGCAAGGCCACATTGACTGCAGACACATCCTCCAACACAGCCTACATGCAGATCAGCAGCCTGACATCTGAAGACTCTGCGGTCTATTTCTGTGCAAGAGGGGACTTTGATTACGACGGAGGGTACTACTTTGACTCCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGCGCCAGCACCAAGGGCCCCAGCGTGTTCCCCCTGGCCCCCAGCAGCAAGAGCACCAGCGGCGGCACAGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAACCGGTGACCGTGTCCTGGAACAGCGGAGCCCTGACCAGCGGCGTGCACACCTTCCCCGCCGTGCTGCAGAGCAGCGGCCTGTACAGCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATCTGTAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAGCCCAAGAGCTGTGACAAGACCCACACCTGCCCCCCCTGCCCTGCCCCCGAGCTGCTGGGAGGCCCCAGCGTGTTCCTGTTCCCCCCCAAGCCTAAGGACACCCTGATGATCAGCAGAACCCCCGAGGTGACCTGTGTGGTGGTGGATGTGAGCCACGAGGACCCTGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAATGCCAAGACCAAGCCCAGGGAGGAGCAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAGGAGTACAAGTGTAAGGTGTCCAACAAGGCCCTGCCTGCCCCTATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCAGAGAGCCCCAGGTGTACACCCTGCCCCCTAGCAGAGATGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGATGGCAGCTTCTTCCTGTACAGCAAGCTGACCGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAGAGCCTGAGCCTGTCCCCTGGCAAG
SAP−E VHキメラアミノ酸配列(配列番号21)
QASLQQSGTELVRSGASVKMSCKASGFTFATYNMHWIKQTPGQGLEWIGYIYPGDGNANYNQQFKGKATLTADTSSNTAYMQISSLTSEDSAVYFCARGDFDYDGGYYFDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SAP−E VLキメラヌクレオチド配列(配列番号46)
GACATCCAGATGACTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATGTCGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACAGGGAAGATCCCCTCAGCTCCTGGTCCATAATGCAAAAACCTTAGCAGAAGGTGTGCCATCAAGGGTCAGTGGCAGTGGATCAGGCACACACTTTTCTCTGAAGATCAACGGCCTGCAGCCTGAAGATTTTGGGAATTATTACTGTCAACATCATTATGGTGCTCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAACTGAAACGTACGGTGGCCGCCCCCAGCGTGTTCATCTTCCCCCCCAGCGATGAGCAGCTGAAGAGCGGCACCGCCAGCGTGGTGTGTCTGCTGAACAACTTCTACCCCCGGGAGGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGTGAGGTGACCCACCAGGGCCTGTCCAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGC
SAP−E VLキメラアミノ酸配列(配列番号22)
DIQMTQSPASLSASVGETVTITCRASENIYSYLAWYQQKQGRSPQLLVHNAKTLAEGVPSRVSGSGSGTHFSLKINGLQPEDFGNYYCQHHYGAPLTFGAGTKLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
SAP−K VHキメラヌクレオチド配列(配列番号47)
CAGGTCCAACTGCAGCAGCCTGGGGCTGAGCTGATAAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACTTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAATGATTCATCCTAATAGTGTTAATACTAACTACAATGAGAAGTTCAAGAGTAAGGCCACACTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCAACTCAACAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGACGGAATGATTACTACTGGTACTTCGATGTCTGGGGCACAGGGACACTAGTGACCGTGTCCAGCGCCAGCACCAAGGGCCCCAGCGTGTTCCCCCTGGCCCCCAGCAGCAAGAGCACCAGCGGCGGCACAGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAACCGGTGACCGTGTCCTGGAACAGCGGAGCCCTGACCAGCGGCGTGCACACCTTCCCCGCCGTGCTGCAGAGCAGCGGCCTGTACAGCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATCTGTAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAGCCCAAGAGCTGTGACAAGACCCACACCTGCCCCCCCTGCCCTGCCCCCGAGCTGCTGGGAGGCCCCAGCGTGTTCCTGTTCCCCCCCAAGCCTAAGGACACCCTGATGATCAGCAGAACCCCCGAGGTGACCTGTGTGGTGGTGGATGTGAGCCACGAGGACCCTGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAATGCCAAGACCAAGCCCAGGGAGGAGCAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAGGAGTACAAGTGTAAGGTGTCCAACAAGGCCCTGCCTGCCCCTATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCAGAGAGCCCCAGGTGTACACCCTGCCCCCTAGCAGAGATGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGATGGCAGCTTCTTCCTGTACAGCAAGCTGACCGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAGAGCCTGAGCCTGTCCCCTGGCAAG
SAP−K VHキメラアミノ酸配列(配列番号23)
QVQLQQPGAELIKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGMIHPNSVNTNYNEKFKSKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARRNDYYWYFDVWGTGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SAP−K VLキメラヌクレオチド配列(配列番号48)
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGAACTCTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCTTCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCACCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATGTAACAACTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAACGTACGGTGGCCGCCCCCAGCGTGTTCATCTTCCCCCCCAGCGATGAGCAGCTGAAGAGCGGCACCGCCAGCGTGGTGTGTCTGCTGAACAACTTCTACCCCCGGGAGGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGTGAGGTGACCCACCAGGGCCTGTCCAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGC
SAP−K VLキメラアミノ酸配列(配列番号24)
DIVMTQSQKFMSTSVGDRVSVTCKASQNVNSNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQCNNYPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC。
マウス抗体由来のCDRH1、CDRH2、CDRH3、CDRL1、CDRL2およびCDRL3を好適なヒトフレームワーク配列に移植するプロセスによって、ヒト化抗体を作製した。
SAP−E重鎖のヒト化
SAP−Eマウス可変重鎖配列に対しては、JH1ミニ遺伝子(Kabat:AEYFQHWGQGTLVTVSS(配列番号26))とともに、マウスSAP−E可変重鎖配列(配列番号7)と60%の同一性(CDRを含む)を有するヒト生殖系列アクセプターフレームワークを選択した(IGHV1−69,配列番号25)。JH1ミニ遺伝子残基の最初の6残基は、CDR3領域の範囲に含まれ、ドナー抗体由来の新しく入ったCDRで置き換えられた。
SAP−Eマウス可変軽鎖配列に対しては、配列類似性に基づいて、J−領域カッパー2ミニ遺伝子(Kabat:YTFGQGTKLEIK,配列番号33))とともに、マウスSAP−E可変軽鎖配列(配列番号9)と68%の同一性(CDRを含む)を有するヒト生殖系列アクセプターフレームワークを選択した(IGKV1−39,配列番号32)。JK−2ミニ遺伝子残基の最初の2残基は、CDR3領域の範囲に含まれ、ドナー抗体由来の新しく入ったCDRで置き換えられた。
SAP−K重鎖のヒト化
SAP−Kマウス可変重鎖配列に対しては、JH1ミニ遺伝子(Kabat:AEYFQHWGQGTLVTVSS(配列番号26))とともに、マウスSAP−K可変重鎖配列(配列番号17)と65%の同一性(CDRを含む)を有するヒト生殖系列アクセプターフレームワークを選択した(IGHV1−69,配列番号25)。JH1ミニ遺伝子残基の最初の6残基は、CDR3領域の範囲に含まれ、ドナー抗体由来の新しく入ったCDRで置き換えられた。
SAP−K軽鎖のヒト化
SAP−Kマウス可変軽鎖配列に対しては、配列類似性に基づいて、J−領域カッパー2ミニ遺伝子(Kabat:YTFGQGTKLEIK,配列番号33)とともに、マウスSAP−K可変軽鎖配列(配列番号19)と63%の同一性(CDRを含む)を有するヒト生殖系列アクセプターフレームワークを選択した(IGKV1−39,配列番号32)。JK−2ミニ遺伝子残基の最初の2残基は、CDR3領域の範囲内に含まれ、ドナー抗体由来の新しく入ったCDRで置き換えられた。
ヒト化可変領域DNA配列の配列最適化を行った。ヒト化された可変重鎖領域および可変軽鎖領域をコードするDNAフラグメントを、PCRベースのストラテジーおよび重複するオリゴヌクレオチドを用いて新規に構築した。そのPCR産物を、それぞれヒトガンマ1定常領域およびヒトカッパー定常領域を含む哺乳動物発現ベクターにクローニングした。これは、野生型Fc領域である。
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGATCATCCCTATCTTTGGTACAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGA
(IGHV1−69ヒト可変重鎖生殖系列アクセプターアミノ酸配列(配列番号25))
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAR
IGKV1−39ヒト可変重鎖生殖系列アクセプターヌクレオチド配列(配列番号50)
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCT
IGKV1−39ヒト可変重鎖生殖系列アクセプターアミノ酸配列(配列番号32)
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTP
JH1ミニ遺伝子(配列番号26)
AEYFQHWGQGTLVTVSS
Jκ2ミニ遺伝子(配列番号33)
YTFGQGTKLEIK
コドン最適化されていないSAP−Eヒト化重鎖V領域変異体H0ヌクレオチド配列(配列番号51)
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCACTTACAATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATATATTTATCCTGGAGATGGTAATGCTAACTACAATCAGCAGTTCAAGGGCAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGACTTTGATTACGACGGAGGGTACTACTTTGACTCCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
コドン最適化されていないSAP−Eヒト化軽鎖V領域変異体L0ヌクレオチド配列(配列番号52)
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAATGCAAAAACCTTAGCAGAAGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACATCATTATGGTGCTCCGCTCACGTTTGGCCAGGGGACCAAGCTGGAGATCAAA
SAP−Eヒト化重鎖V領域変異体H0ヌクレオチド配列(コドン最適化された配列)(配列番号53)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGGGCACCTTCTCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGC
SAP−Eヒト化重鎖V領域変異体H0アミノ酸配列(配列番号27)
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYNMHWVRQAPGQGLEWMGYIYPGDGNANYNQQFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGDFDYDGGYYFDSWGQGTLVTVSS
SAP−Eヒト化重鎖V領域変異体H1ヌクレオチド配列(コドン最適化された配列)(配列番号54)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGTTCACCTTCGCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGC
SAP−Eヒト化重鎖V領域変異体H1アミノ酸配列(配列番号28)
QVQLVQSGAEVKKPGSSVKVSCKASGFTFATYNMHWVRQAPGQGLEWMGYIYPGDGNANYNQQFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGDFDYDGGYYFDSWGQGTLVTVSS
SAP−Eヒト化重鎖V領域変異体H2ヌクレオチド配列(コドン最適化された配列)(配列番号55)
CAGGCGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGTTCACCTTCGCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGC
SAP−Eヒト化重鎖V領域変異体H2アミノ酸配列 配列番号29
QAQLVQSGAEVKKPGSSVKVSCKASGFTFATYNMHWVRQAPGQGLEWMGYIYPGDGNANYNQQFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGDFDYDGGYYFDSWGQGTLVTVSS
SAP−Eヒト化重鎖V領域変異体H3ヌクレオチド配列(コドン最適化された配列)(配列番号56)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGTTCACCTTCGCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATCGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGCCACCATCACCGCCGACAAGAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGC
SAP−Eヒト化重鎖V領域変異体H3アミノ酸配列(配列番号30)
QVQLVQSGAEVKKPGSSVKVSCKASGFTFATYNMHWVRQAPGQGLEWIGYIYPGDGNANYNQQFKGRATITADKSTSTAYMELSSLRSEDTAVYYCARGDFDYDGGYYFDSWGQGTLVTVSS
SAP−Eヒト化重鎖V領域変異体H4ヌクレオチド配列(コドン最適化された配列)(配列番号57)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGTTCACCTTCGCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATCGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGCCACCCTGACCGCCGACACCAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTTCTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGC
SAP−Eヒト化重鎖V領域変異体H4アミノ酸配列(配列番号31)
QVQLVQSGAEVKKPGSSVKVSCKASGFTFATYNMHWVRQAPGQGLEWIGYIYPGDGNANYNQQFKGRATLTADTSTSTAYMELSSLRSEDTAVYFCARGDFDYDGGYYFDSWGQGTLVTVSS
SAP−Eヒト化軽鎖V領域変異体L0ヌクレオチド配列(コドン最適化された配列)(配列番号58)
GACATCCAGATGACCCAGAGCCCCAGCTCACTGAGCGCCAGCGTGGGCGACAGGGTGACCATTACCTGCAGGGCCTCCGAGAACATCTACAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACAACGCCAAGACCCTCGCCGAGGGCGTCCCTAGCAGGTTCTCTGGAAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTATTACTGCCAGCACCACTACGGCGCCCCCCTGACCTTTGGCCAGGGCACCAAACTGGAGATCAAG
SAP−Eヒト化軽鎖V領域変異体L0アミノ酸配列 配列番号34
DIQMTQSPSSLSASVGDRVTITCRASENIYSYLAWYQQKPGKAPKLLIYNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGAPLTFGQGTKLEIK
SAP−Eヒト化軽鎖V領域変異体L1ヌクレオチド配列(コドン最適化された配列)(配列番号59)
GACATCCAGATGACCCAGAGCCCCAGCTCACTGAGCGCCAGCGTGGGCGACAGGGTGACCATTACCTGCAGGGCCTCCGAGAACATCTACAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCCACAACGCCAAGACCCTCGCCGAGGGCGTCCCTAGCAGGTTCTCTGGAAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTATTACTGCCAGCACCACTACGGCGCCCCCCTGACCTTTGGCCAGGGCACCAAACTGGAGATCAAG
SAP−Eヒト化軽鎖V領域変異体L1アミノ酸配列(配列番号35)
DIQMTQSPSSLSASVGDRVTITCRASENIYSYLAWYQQKPGKAPKLLIHNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGAPLTFGQGTKLEIK
SAP−Eヒト化軽鎖V領域変異体L2ヌクレオチド配列(コドン最適化された配列)(配列番号60)
GACATCCAGATGACCCAGAGCCCCAGCTCACTGAGCGCCAGCGTGGGCGACAGGGTGACCATTACCTGCAGGGCCTCCGAGAACATCTACAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGGTGCACAACGCCAAGACCCTCGCCGAGGGCGTCCCTAGCAGGTTCTCTGGAAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTATTACTGCCAGCACCACTACGGCGCCCCCCTGACCTTTGGCCAGGGCACCAAACTGGAGATCAAG
SAP−Eヒト化軽鎖V領域変異体L2アミノ酸配列(配列番号36)
DIQMTQSPSSLSASVGDRVTITCRASENIYSYLAWYQQKPGKAPKLLVHNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGAPLTFGQGTKLEIK
SAP−Eヒト化重鎖H1の完全な成熟ヌクレオチド配列(コドン最適化された配列)(配列番号61)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAACCCGGCAGCAGCGTGAAGGTGAGCTGCAAGGCTAGCGGGTTCACCTTCGCCACCTACAACATGCACTGGGTCAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCTATATCTACCCCGGCGACGGCAACGCCAACTACAACCAGCAGTTCAAGGGCAGGGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTACATGGAACTGAGCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGGGCGACTTCGACTACGACGGCGGCTACTACTTCGACAGCTGGGGACAGGGCACACTAGTGACCGTGTCCAGCGCCAGCACCAAGGGCCCCAGCGTGTTCCCCCTGGCCCCCAGCAGCAAGAGCACCAGCGGCGGCACAGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAACCGGTGACCGTGTCCTGGAACAGCGGAGCCCTGACCAGCGGCGTGCACACCTTCCCCGCCGTGCTGCAGAGCAGCGGCCTGTACAGCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATCTGTAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAGCCCAAGAGCTGTGACAAGACCCACACCTGCCCCCCCTGCCCTGCCCCCGAGCTGCTGGGAGGCCCCAGCGTGTTCCTGTTCCCCCCCAAGCCTAAGGACACCCTGATGATCAGCAGAACCCCCGAGGTGACCTGTGTGGTGGTGGATGTGAGCCACGAGGACCCTGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAATGCCAAGACCAAGCCCAGGGAGGAGCAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAGGAGTACAAGTGTAAGGTGTCCAACAAGGCCCTGCCTGCCCCTATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCAGAGAGCCCCAGGTGTACACCCTGCCCCCTAGCAGAGATGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGATGGCAGCTTCTTCCTGTACAGCAAGCTGACCGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAGAGCCTGAGCCTGTCCCCTGGCAAG
SAP−Eヒト化重鎖H1の完全な成熟アミノ酸配列(配列番号62)
QVQLVQSGAEVKKPGSSVKVSCKASGFTFATYNMHWVRQAPGQGLEWMGYIYPGDGNANYNQQFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGDFDYDGGYYFDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SAP−Eヒト化軽鎖L1の完全な成熟ヌクレオチド配列(コドン最適化された配列)(配列番号63)
GACATCCAGATGACCCAGAGCCCCAGCTCACTGAGCGCCAGCGTGGGCGACAGGGTGACCATTACCTGCAGGGCCTCCGAGAACATCTACAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCCACAACGCCAAGACCCTCGCCGAGGGCGTCCCTAGCAGGTTCTCTGGAAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTATTACTGCCAGCACCACTACGGCGCCCCCCTGACCTTTGGCCAGGGCACCAAACTGGAGATCAAGCGTACGGTGGCCGCCCCCAGCGTGTTCATCTTCCCCCCCAGCGATGAGCAGCTGAAGAGCGGCACCGCCAGCGTGGTGTGTCTGCTGAACAACTTCTACCCCCGGGAGGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGTGAGGTGACCCACCAGGGCCTGTCCAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGC
SAP−Eヒト化軽鎖L1の完全な成熟アミノ酸配列(配列番号64)
DIQMTQSPSSLSASVGDRVTITCRASENIYSYLAWYQQKPGKAPKLLIHNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGAPLTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
コドン最適化されていないSAP−Kヒト化重鎖V領域変異体H0ヌクレオチド配列(配列番号65)
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTACTGGATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATGATTCATCCTAATAGTGTTAATACTAACTACAATGAGAAGTTCAAGAGTAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGACGGAATGATTACTACTGGTACTTCGATGTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
コドン最適化されていないSAP−Kヒト化軽鎖V領域変異体L0ヌクレオチド配列(配列番号66)
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCAAGGCCAGTCAGAATGTGAACTCTAATGTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATTCGGCTTCCTACCGGTACAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAGCAATGTAACAACTATCCATTCACGTTTGGCCAGGGGACCAAGCTGGAGATCAAA
SAP−Kヒト化重鎖V領域変異体H0ヌクレオチド配列(コドン最適化された配列)(配列番号67)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAAGTGAAGAAGCCCGGCAGCAGCGTGAAAGTGAGCTGCAAGGCCAGCGGCGGAACCTTCAGCAGCTACTGGATGCACTGGGTGAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCATGATCCACCCCAACAGCGTGAACACCAACTACAACGAGAAGTTCAAGAGCAGAGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTATATGGAGCTGAGCTCTCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGAGGAACGACTACTACTGGTACTTCGACGTCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGC
SAP−Kヒト化重鎖V領域変異体H0アミノ酸配列(配列番号37)
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYWMHWVRQAPGQGLEWMGMIHPNSVNTNYNEKFKSRVTITADKSTSTAYMELSSLRSEDTAVYYCARRNDYYWYFDVWGQGTLVTVSS
SAP−Kヒト化重鎖V領域変異体H1ヌクレオチド配列(コドン最適化された配列)(配列番号68)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAAGTGAAGAAGCCCGGCAGCAGCGTGAAAGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATGGGCATGATCCACCCCAACAGCGTGAACACCAACTACAACGAGAAGTTCAAGAGCAGAGTGACCATCACCGCCGACAAGAGCACCAGCACCGCCTATATGGAGCTGAGCTCTCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGAGGAACGACTACTACTGGTACTTCGACGTCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGC
SAP−Kヒト化重鎖V領域変異体H1アミノ酸配列(配列番号38)
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYWMHWVRQAPGQGLEWMGMIHPNSVNTNYNEKFKSRVTITADKSTSTAYMELSSLRSEDTAVYYCARRNDYYWYFDVWGQGTLVTVSS
SAP−Kヒト化重鎖V領域変異体H2ヌクレオチド配列(コドン最適化された配列)(配列番号69)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAAGTGAAGAAGCCCGGCAGCAGCGTGAAAGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATCGGCATGATCCACCCCAACAGCGTGAACACCAACTACAACGAGAAGTTCAAGAGCAGAGCCACCATCACCGCCGACAAGAGCACCAGCACCGCCTATATGGAGCTGAGCTCTCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGAGGAACGACTACTACTGGTACTTCGACGTCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGC
SAP−Kヒト化重鎖V領域変異体H2アミノ酸配列(配列番号39)
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYWMHWVRQAPGQGLEWIGMIHPNSVNTNYNEKFKSRATITADKSTSTAYMELSSLRSEDTAVYYCARRNDYYWYFDVWGQGTLVTVSS
SAP−Kヒト化重鎖V領域変異体H3ヌクレオチド配列(コドン最適化された配列)(配列番号70)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAAGTGAAGAAGCCCGGCAGCAGCGTGAAAGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATCGGCATGATCCACCCCAACAGCGTGAACACCAACTACAACGAGAAGTTCAAGAGCAGAGCCACCCTGACCGTGGACAAGAGCACCAGCACCGCCTATATGGAGCTGAGCTCTCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGAGGAACGACTACTACTGGTACTTCGACGTCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGC
SAP−Kヒト化重鎖V領域変異体H3アミノ酸配列(配列番号40)
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYWMHWVRQAPGQGLEWIGMIHPNSVNTNYNEKFKSRATLTVDKSTSTAYMELSSLRSEDTAVYYCARRNDYYWYFDVWGQGTLVTVSS
SAP−Kヒト化軽鎖V領域変異体L0ヌクレオチド配列(コドン最適化された配列)配列番号71)
GACATCCAGATGACCCAGAGCCCCTCTTCACTGAGCGCTAGCGTGGGCGACAGGGTGACCATCACCTGCAAGGCCAGCCAGAACGTGAACAGCAACGTGGCCTGGTACCAGCAGAAGCCCGGCAAAGCCCCCAAGCTCCTGATCTACAGCGCCAGCTACAGATATAGCGGCGTGCCTAGCAGGTTTAGCGGCAGCGGAAGCGGGACCGATTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACTTACTACTGCCAGCAGTGCAACAACTACCCCTTCACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG
SAP−Kヒト化軽鎖V領域変異体L0アミノ酸配列(配列番号41)
DIQMTQSPSSLSASVGDRVTITCKASQNVNSNVAWYQQKPGKAPKLLIYSASYRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQCNNYPFTFGQGTKLEIK
SAP−Kヒト化軽鎖V領域変異体L1ヌクレオチド配列(コドン最適化された配列)(配列番号72)
GACATCCAGATGACCCAGAGCCCCTCTTCACTGAGCGCTAGCGTGGGCGACAGGGTGACCATCACCTGCAAGGCCAGCCAGAACGTGAACAGCAACGTGGCCTGGTACCAGCAGAAGCCCGGCAAAGCCCCCAAGGCCCTGATCTACAGCGCCAGCTACAGATATAGCGGCGTGCCTAGCAGGTTTAGCGGCAGCGGAAGCGGGACCGATTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACTTACTACTGCCAGCAGTGCAACAACTACCCCTTCACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG
SAP−Kヒト化軽鎖V領域変異体L1アミノ酸配列(配列番号42)
DIQMTQSPSSLSASVGDRVTITCKASQNVNSNVAWYQQKPGKAPKALIYSASYRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQCNNYPFTFGQGTKLEIK
SAP−Kヒト化H3重鎖ヌクレオチド配列(コドン最適化された配列)(配列番号75)
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAAGTGAAGAAGCCCGGCAGCAGCGTGAAAGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAGGCAGGCACCCGGCCAGGGCCTGGAGTGGATCGGCATGATCCACCCCAACAGCGTGAACACCAACTACAACGAGAAGTTCAAGAGCAGAGCCACCCTGACCGTGGACAAGAGCACCAGCACCGCCTATATGGAGCTGAGCTCTCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCAGGAGGAACGACTACTACTGGTACTTCGACGTCTGGGGCCAGGGCACACTAGTGACCGTGTCCAGCGCCAGCACCAAGGGCCCCAGCGTGTTCCCCCTGGCCCCCAGCAGCAAGAGCACCAGCGGCGGCACAGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAACCGGTGACCGTGTCCTGGAACAGCGGAGCCCTGACCAGCGGCGTGCACACCTTCCCCGCCGTGCTGCAGAGCAGCGGCCTGTACAGCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATCTGTAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAGCCCAAGAGCTGTGACAAGACCCACACCTGCCCCCCCTGCCCTGCCCCCGAGCTGCTGGGAGGCCCCAGCGTGTTCCTGTTCCCCCCCAAGCCTAAGGACACCCTGATGATCAGCAGAACCCCCGAGGTGACCTGTGTGGTGGTGGATGTGAGCCACGAGGACCCTGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAATGCCAAGACCAAGCCCAGGGAGGAGCAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAGGAGTACAAGTGTAAGGTGTCCAACAAGGCCCTGCCTGCCCCTATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCAGAGAGCCCCAGGTGTACACCCTGCCCCCTAGCAGAGATGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGATGGCAGCTTCTTCCTGTACAGCAAGCTGACCGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAGAGCCTGAGCCTGTCCCCTGGCAAG
SAP−Kヒト化H3重鎖アミノ酸配列(配列番号76)
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYWMHWVRQAPGQGLEWIGMIHPNSVNTNYNEKFKSRATLTVDKSTSTAYMELSSLRSEDTAVYYCARRNDYYWYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SAP−Kヒト化L0軽鎖ヌクレオチド配列(コドン最適化された配列)(配列番号77)
GACATCCAGATGACCCAGAGCCCCTCTTCACTGAGCGCTAGCGTGGGCGACAGGGTGACCATCACCTGCAAGGCCAGCCAGAACGTGAACAGCAACGTGGCCTGGTACCAGCAGAAGCCCGGCAAAGCCCCCAAGCTCCTGATCTACAGCGCCAGCTACAGATATAGCGGCGTGCCTAGCAGGTTTAGCGGCAGCGGAAGCGGGACCGATTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACTTACTACTGCCAGCAGTGCAACAACTACCCCTTCACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGCGTACGGTGGCCGCCCCCAGCGTGTTCATCTTCCCCCCCAGCGATGAGCAGCTGAAGAGCGGCACCGCCAGCGTGGTGTGTCTGCTGAACAACTTCTACCCCCGGGAGGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGTGAGGTGACCCACCAGGGCCTGTCCAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGC
SAP−Kヒト化L0軽鎖アミノ酸配列(配列番号78)
DIQMTQSPSSLSASVGDRVTITCKASQNVNSNVAWYQQKPGKAPKLLIYSASYRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQCNNYPFTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
免疫グロブリン鎖に対するリーダー配列(配列番号79)
MGWSCIILFLVATATGVHS。
組換え抗体の発現
キメラ抗体またはヒト化抗体の重鎖および軽鎖をそれぞれコードする発現プラスミドを、Fectin293を使用した脂質トランスフェクションによってHEK2936E細胞に一過性に同時トランスフェクトした。細胞を、10%プルロニックF68および50mg/mlジェネテシンを含むFreestyle発現培地293中で37度C、5%CO2で72〜120時間生育し、上清を遠心分離によって回収した。いくつかの場合では、上清材料を結合アッセイにおける被験物質として使用した。他の場合では、上清材料を無菌濾過し、Protein A MAbSelect SuREカラムを用いたアフィニティークロマトグラフィーに続くPBSへの透析によって抗体を回収した。
ハイブリドーマ細胞を、4mM glutamaxおよび10%低IgG FCSが補充されたEx620培地の入った振盪フラスコ内で生育した。その細胞を継代し、無血清培地中で十分生育するまで血清を除去した。次いで、その細胞を10Lのwavebag用の種として使用した。その細胞を、生存率が30%に低下するまで、そのwavebag内で22回の振盪/分、37度C、5%CO2@0.1L/分で生育した。培養上清を無菌濾過によって回収した。組換えProtein Aを使用したアフィニティークロマトグラフィーに続くPBSへの透析によって、抗体を回収した。
実施例5:ヒトSAP結合ELISAにおけるSAP−KハイブリドーマとSAP−Eハイブリドーマとの比較
1μg/mLまたは5μg/mLのヒトSAPを、ELISAプレート上に直接固定化し、1%BSA/TBS+0.05%TWEEN20でブロッキングした。精製された材料からの抗SAP抗体を、そのプレートの端から端へ漸増させた。ウマ−ラディッシュペルオキシダーゼ(HRP)結合体化ウサギ抗マウスIgG抗体(Dako,P0260)で処理することによって、結合した抗体を検出した。O−フェニレンジアミン二塩酸塩(OPD)ペルオキシダーゼ基質(Sigma,P9187)を用いて、ELISAを発色させた。
1μg/mLのヒトSAPを、ELISAプレート上に直接固定化し、1%BSA/TBS+0.05%TWEEN20でブロッキングした。試験上清または精製された材料からの抗SAP抗体を、そのプレートの端から端へ漸増させた。ヤギ抗ヒトカッパー軽鎖ペルオキシダーゼ結合体(Sigma,A7164)で処理することによって、結合した抗体を検出した。O−フェニレンジアミン二塩酸塩(OPD)ペルオキシダーゼ基質(Sigma,P9187)を用いて、ELISAを発色させた。
ELISAプレートを、1μg/mL(SAP−Kキメラとの競合の場合)または5μg/mL(SAP−Eキメラとの競合の場合)のヒトSAPでコーティングし、1%BSA/PBSでブロッキングした。一定濃度のキメラ抗SAPmAbを、段階希釈された(1:1)量のマウス抗SAPmAbと混合した。プレートを洗浄し、固定化されたヒトSAPに結合したキメラ抗体の量を、ヤギ抗ヒトカッパー軽鎖ペルオキシダーゼ結合体(Sigma,A7164)を用いて検出した。O−フェニレンジアミン二塩酸塩(OPD)ペルオキシダーゼ基質(Sigma,P9187)を用いて、ELISAを発色させた。
ヒト化抗SAP抗体変異体と精製ヒトSAPおよび精製カニクイザル(cynomologus monkey)SAPとの結合のBiacore解析
製造者の指示書に従って、ヒトおよびカニクイザルのSAPを第一級アミンカップリングによってBiacore C1チップ上に固定化した。培養上清中に含まれるヒト化抗SAP抗体および512nMの精製キメラ抗体を、ヒトSAP表面とカニクイザルSAP表面の両方の上を通過させ、結合センサーグラム(binding sensograms)を得た。すべてのランを、ヒト表面上およびカニクイザルSAP表面上への、精製サンプルに対しては緩衝液の注入、または上清サンプルに対しては培地で2回較正(double referenced)した。HBS−EP緩衝液を用いて25℃で解析を行った。3M MgCl2の存在下で表面の再生を行ったが、その再生は、抗体がその後のサイクルにおいてヒトSAPに再結合する能力に影響しなかった。BiacoreT100評価ソフトウェア内の1対1解離モデルを用いて、データを解析した。
製造者の指示書に従って、ヒトSAPを第一級アミンカップリングによってBiacoreCM3チップ上に固定化した。抗SAP抗体を、512、128、32、8、2、0.5nMでこの表面の上に通過させ、結合センサーグラムを得た。すべてのランを、ヒトSAP表面上への、緩衝液の注入によって2回較正した。HBS−EP緩衝液を用いて25℃で解析を行った。数分間にわたってその表面上に緩衝液を流すことによって表面の再生を行ったが、その再生は、ヒトSAPがその後のサイクルにおいて抗体に再結合する能力に影響しなかった。BiacoreT100評価ソフトウェアに固有の二価のアナライトモデルを用い、128〜0.5nMのランのデータを解析した。
製造者の指示書に従って、O−ホスホエタノールアミンを第一級アミンカップリングによってBiacore CM5チップ上に固定化した。次いで、インビボにおいてアミロイド原線維に結合したSAP分子の正確な配向をインビトロのBiacore系において再現するために、ヒトSAPを塩化カルシウムの存在下でその表面上に捕捉した。次いで、抗SAP抗体を256、64、16、4、1nMでこの表面の上に通過させ、結合センサーグラムを得た。ランニング緩衝液として4%BSA、10mM Tris、140mM NaCl、2mM CaCl2、0.05%界面活性物質P20、0.02%NaN3,pH8.0を用いて25℃で解析を行った。結合したヒトSAPを除去するが、その後の固定化されたホスホエタノールアミンへのSAPの結合に有意に影響しない、Tris−EDTA(10mM Tris、140mM NaCl、10mM EDTA,pH8.0)の2回のパルスを用いて、再生を行った。生成されたデータを、ヒトSAP表面上への緩衝液の注入によって2回較正し、BiacoreT100評価ソフトウェアにおける二価のアナライトモデルを用いて解析した。
部位特異的飽和突然変異誘発を用い、91位においてNNKをコードする突然変異誘発プライマーを使用することによって(ここで、Nは、アデノシンまたはシチジンまたはグアノシンまたはチミジンをコードし、Kは、グアノシン(guanisine)またはチミジンをコードする)、単一の反応において91位のシステイン残基(Kabatナンバリング)が潜在的に他の19種のアミノ酸のすべてで置換された変異体のパネルを作製した。作製された変異体の抗体上清に対して行われたBiacore解離速度のランク付けから、HEK2936E細胞におけるスケールアップおよび精製のために4つを選択した。実施例7に詳述されたようなO−ホスホエタノールアミン法を用いたBiacore動態解析は、91位にアラニンを有する変異体(配列番号43)が、野生型と比べて改善された親和性を有することを示した;それぞれ0.436nMおよび36.8nMというKD値が測定された。注意:すべての変異体が、表7に示される結果をもたらすために使用された同じ実験において試験された。
GACATCCAGATGACCCAGAGCCCCTCTTCACTGAGCGCTAGCGTGGGCGACAGGGTGACCATCACCTGCAAGGCCAGCCAGAACGTGAACAGCAACGTGGCCTGGTACCAGCAGAAGCCCGGCAAAGCCCCCAAGCTCCTGATCTACAGCGCCAGCTACAGATATAGCGGCGTGCCTAGCAGGTTTAGCGGCAGCGGAAGCGGGACCGATTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACTTACTACTGCCAGCAGGCGAACAACTACCCCTTCACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG
SAP−Kヒト化軽鎖V領域変異体L0 91Aアミノ酸配列(配列番号74)
DIQMTQSPSSLSASVGDRVTITCKASQNVNSNVAWYQQKPGKAPKLLIYSASYRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANNYPFTFGQGTKLEIK
実施例10:抗SAP抗体によるアミロイドクリアランスの補体依存性
補体欠損のマウスと補体が十分な正常動物とにおける治療の効率を比較することによって、抗SAP抗体によるアミロイドクリアランスにおける補体の役割を調べた。C1qに対する遺伝子の標的化欠失は、C1qと抗体抗原複合体との結合によって惹起される補体古典経路の活性化を阻止するが、走化性およびオプソニン化に関与する中心的な機能工程であり、補体の主要な生物学的機能であるC3の活性化はなおも、副経路およびレクチン経路を介して、ならびに非補体セリンプロテイナーゼによる直接的なC3の切断によって、進むことができる。C3に対する遺伝子の標的化欠失は、これらの機能を完全に無くす。
補体欠損マウスの2つの群:C3ノックアウト(n=14)およびC1qノックアウト(n=12)ならびに15匹の野生型マウスにおいて、AAアミロイドーシスを誘導し、確認した。すべてのマウスが、純系のC57BL/6だった。アミロイド原線維を含むアミロイド性組織の抽出物である単一用量のアミロイド増強因子(Baltz et al,(1986)Plenum Press,New York,pp.115−121)を静脈内注射によって各マウスに投与し、その4日後に、0.1M NaHCO3中の溶液としての10%w/vカゼインを12日間にわたる連日の10回の皮下注射によって投与した(Botto et al,(1997)Nature Med.,3:855−859)。カゼインは、持続的な急性炎症、および血清アミロイドAタンパク質(SAA)産生の持続性の増加を誘発し、それにより、すべての動物においてAAアミロイド沈着をもたらす。最後のカゼイン注射の7日後に、すべてのマウスの飲料水にKIを導入し、3日後に、標準的な用量の125I標識ヒトSAP(Hawkins et al,(1990)J.Clin.Invest.,86:1862−1 869およびHawkins et al,(1988)J.Exp.Med.,167:903−913)を各マウスに静脈内注射した。すべてのマウスにおいて、トレーサー注射の24時間後および48時間後に全身放射能計測を行うことにより、全身のアミロイド負荷の正確な指標である放射能の保有を測定した。125I−SAPトレーサー注射の10日後に、マウス1匹あたり10mgの単離された純粋なヒトSAPの単回の腹腔内注射によって、すべてのマウスにヒトSAPを「負荷」した。アミロイドを有するマウスに注射されたヒトSAPは、アミロイド沈着物に局在し、その位置において約3〜4日の半減期で存続するのに対し、アミロイドに結合していない任意のヒトSAPは、約3〜4時間の半減期で循環から除去される(Hawkins et al,(1988)J.Exp.Med,,167:903−913およびPepys et al,(2002)Nature,41 7:254−259)。
ヒトSAPがもはや循環中で検出可能でなくなるヒトSAP注射の3日後に、各補体ノックアウト群における2匹を除くすべてのマウスに、リン酸緩衝食塩水(PBS)中の溶液として50mg/mlの単一特異的なヒツジ抗ヒトSAP抗血清の1mlの全IgG画分(batch no.2866)(7mg/mlの実際の抗SAP抗体を含む)の単回の腹腔内注射を行った。その抗血清は、The Binding Site Ltd,Birmingham,UKによって、ヒトSAP(厳密には、University College London Centre for Amyloidosis and Acute Phase Proteinsにおいて100%まで精製されたもの)および専売の免疫化手順を用いて製造されたものだった。次いで、アルカリ性かつアルコール性のコンゴーレッド染色(Puchtler,H.,Sweat,F.and Levine,M.(1962)On the binding of Congo red by amyloid.J.Histochem.Cytochem.,10:355−364)によるアミロイド負荷の組織学的評価のために、すべての動物を抗SAP投与の15日後に殺傷した。すべての動物の脾臓および肝臓のコンゴーレッド切片が、各マウスが受けた治療について知らされていない1人以上の専門の観察者によって独立して検査され、以前に報告されたように(Botto et al,(1997)Nature Med.,3:855−859)、存在するアミロイドの量についてスコア付けされた。1〜5のスコアは、1(特定の器官のいくつかの切片における1または2個の小さいアミロイドの斑に対応する)から、5(グレード1(Botto et al,(1997)Nature Med.,3:855−859)よりも約10,000倍多いアミロイドを含む大量の広範な沈着物に対応する)までの、底が10の対数のおよそのランキングスケールである。数人の観察者は、整数の中間の.5のスコアも使用したが、異なる観察者のスコアは、常に高度に一致していた。各動物の各器官に対するすべての観察者のスコアの算術平均を統計解析に使用した。
補体が十分な野生型マウスにおけるアミロイド沈着物の効果的なクリアランスと大いに異なって、補体欠損動物の両群には、なおも大量のアミロイドが存在したが、各タイプの2匹のコントロール補体欠損マウスよりも断片化された外観を呈する傾向があった。脾臓アミロイドスコアの中央値、範囲は、以下だった:野生型、1.17、0.0〜1.5、n=15;C3ノックアウト、1.92、1.17〜4.33、n=12;C1qノックアウト、1.25、1.17〜3.5、n=10(クラスカル・ワリスノンパラメトリックANOVA,P<0.001)。野生型コントロールと両方の補体欠損群との差は、有意だった(C3ノックアウトについてはP<0.001およびC1qノックアウトについてはP=0.036(多重比較のためのボンフェローニの補正後))が、C3ノックアウトとC1qノックアウトとの差は、有意でなかった(P=0.314(Mann−Whitney U検定))。
C1qまたはC3を欠くマウスでは、抗SAP治療は、補体が十分な野生型マウスにおけるものと同程度には効率的にアミロイド沈着物を除去しなかった。したがって、抗SAPの治療効果は、極めて実質的に補体依存的であり、理論的にはFc(γ)受容体を介して食細胞が関わり得るIgG抗体結合だけによって媒介されるものではない。それにもかかわらず、補体欠損マウスにおいて持続性のアミロイド沈着物がより断片化された外観を呈したことは、抗体単独の少なくともいくらかの影響を示唆した。また、C3欠損動物よりもC1q欠損におけるクリアランスのほうが大きいという傾向は、C3活性化が重要であること、およびいくらかの補体の活性化がC1qの非存在下において生じている可能性があることを示唆した。
IgG抗体による補体の活性化には、Fc領域を含むそのインタクトな分子全体が必要であり、その活性化は、C1qの結合によって惹起される古典経路を介して進む。しかしながら、いくつかの抗体抗原系では、F(ab)2フラグメントによって、副経路を介した補体の活性化が媒介され得る。抗SAP抗体によるアミロイド除去の補体依存性を確認するため、およびその抗体のFc領域に対する潜在的な必要性を調べるために、F(ab)2抗SAP抗体(ヒツジポリクローナル抗ヒトSAP抗血清(batch2866)のIgG画分のpH4.0におけるペプシン切断によって生成され、標準的な方法によって精製されたもの)の作用を試験した。
上記の実施例10に詳述されたように野生型C57BL/6マウスにおいてAAアミロイドーシスを誘導し、確認した。実施例10に詳述されたようにアミロイド沈着物にヒトSAPを負荷した後、マウスの群を、ヒツジポリクローナル抗ヒトSAP抗血清の全IgG画分、緩衝液ビヒクル単独またはIgG画分のF(ab)2フラグメントで治療した。注射された抗SAP抗体活性の用量は、F(ab)2を投与されたマウス1匹あたり7.28mg、および全IgGを投与されたマウス1匹あたり7mg(通常50mgの全IgG)だった。コンゴーレッド染色によるアミロイド負荷の評価のために、14日後にすべてのマウスを殺傷した。
アミロイド沈着物のクリアランスは、ビヒクル単独を投与されたコントロールマウスにおける大量のアミロイド沈着物と比べて、IgG抗SAP抗体を投与されたマウスではほぼ完全だった。F(ab)2を投与されたマウスは、無処置コントロールよりも少ないアミロイドを有したが、全IgG抗SAP抗体で処置されたマウスよりもなおも実質的に多かった(表9)。
マン・ホイットニー検定**:1対2、脾臓と肝臓の両方,P<0.001;1対3、脾臓と肝臓の両方,P=0.001;2対3,脾臓,P=0.284;肝臓,P=0.019
*群2における単一の域外値は、IgG抗SAP処置にもかかわらず脾臓アミロイドが多かった。この動物を除くと、IgG処置の有効性とF(ab)2抗SAP抗体処置の有効性との間に高度な有意差がもたらされる。**多重比較に起因して、0.01以下のP値が有意性のために必要とされる。
本研究において使用されたF(ab)2抗SAP抗体のモル用量は、全IgGよりもF(ab)2フラグメントの分子量が小さいことに起因して、IgG抗体のモル用量よりも約3分の1多かった。アミロイドクリアランスに対する最適な作用のために、Fcが必要とされる。補体が十分なマウスにおけるF(ab)2よりも補体欠損マウスにおける全IgGが有効でなかったので、これは、Fc(γ)受容体による細胞認識の直接的な関与が理由ではない。投与された高用量のF(ab)2が、副経路を介していくらかの補体を活性化することができた可能性がある。
US2009/0191196に記載されている組織学的研究および組織化学的研究は、抗SAP抗体で処置されたマウスにおいてアミロイド沈着物を浸潤し、包囲し、貪食する細胞がマクロファージであることを示している。実際にマクロファージがアミロイドのクリアランスに関与していることを確認するために、ヒツジポリクローナル抗ヒトSAP抗血清(batch2866)の全IgG画分による処置の効果を、リポソームのクロドロネートの投与によってすべてのマクロファージ活性が阻害されたマウスにおいて試験した。試薬、実験プロトコル、およびリポソームのクロドロネートのマクロファージ機能に対する作用は、十分に確立されており、広く実証されている(Van Rooijen et al,(2002)J.Liposome Research.Vol.12.Pp,81−94)。
上記の実施例10に詳述されたプロトコルを用いて野生型マウスにおいてAAアミロイドーシスを誘導し、確認した後、すべての動物に、10mgという単一の腹腔内用量の単離された純粋なヒトSAPを投与することにより、その沈着物にヒトSAPを負荷した。次いで、直ちにならびにその2、7および14日後に、0.3mlのリポソームのクロドロネートを試験群の腹腔内に投与した。ヒトSAP注射の3日後に、1つのコントロール群および試験群に、50mgという単一の腹腔内用量のヒツジ抗ヒトSAP抗血清のIgG画分を投与した。第2のコントロール群には、抗SAP処置および他の追加の処置を行わなかった。試験群および抗体コントロール群に抗SAPを投与した14日後に、コンゴーレッド染色によるアミロイド負荷の評価のために、すべてのマウスを殺傷した。
抗SAPによる処置は、抗体を投与されなかった群と比べて、アミロイド沈着物のほぼ完全なクリアランスをもたらした。対照的に、マクロファージ機能を完全に無くすと知られるレジメンでリポソームのクロドロネートを投与されたマウスでは、アミロイド沈着物のクリアランスが見られなかった(表10)。
ボンフェローニの補正を伴うマン・ホイットニー検定:1対2:脾臓と肝臓の両方,P<0.003;1対3:脾臓,P=0.078;肝臓,P=0.411;2対3,脾臓と肝臓の両方,P<0.003.
考察
この特定の実験における結果から、マクロファージの機能が、抗ヒトSAP抗体によるアミロイド沈着物のクリアランスに必要であることが確認された。
様々なモノクローナル抗体がヒトSAPを含むマウスのAAアミロイド沈着物のクリアランスを媒介する能力を、ポジティブコントロールとしての標準的なヒツジポリクローナル抗ヒトSAP抗体との比較において詳しく調べた。
マウスSAP遺伝子が欠失した純系のC57BL/6動物(Botto et al,(1997)Nature Med.,3:855−859)を、ヒトSAPトランスジーンを有するC57BL/6マウス(Yamamura et al,(1993)Mol.Reprod.Dev.,36:248−250およびGillmore et al,(2004)Immunology,112:255−264)と交雑することによって、ヒトSAPをトランスジェニックしたSAPノックアウトC57BL/6マウスを作出した。したがって、これらのマウスは、マウスSAPを欠くが、ヒトで見られる濃度よりも有意に高い濃度でヒトSAPを発現する。ヒトSAPトランスジェニックマウスSAPノックアウトマウスにおいて、実施例10に記載されたように全身性AAアミロイドーシスを誘導し、それらのマウスへの最後のカゼイン注射の9日後に、トレーサー用量の125I−標識ヒトSAPの注射後のアミロイドの全身放射能計測によって通常通り、アミロイド沈着の存在および程度を確認した。すべてのマウスが実質的かつ比較可能な量のアミロイドを有し、種々の処置を行うために、それらのマウスを密接にマッチした群に割り当てた。トレーサー注射の1週間後に、5mgという単一用量のCPHPCを腹腔内注射によって各マウスに投与することにより、循環ヒトSAPを枯渇させ、続いて、5時間後に同じ経路を介して、標準的なヒツジポリクローナル抗ヒトSAP IgG画分(batch2866,7mg/mlの抗ヒトSAP抗体を含む50mg/mlの総タンパク質における1ml)または5mgの9つの異なる単離された純粋なモノクローナル抗ヒトSAP抗体のうちの1つを投与した(表11)。抗体注射の21日後にすべてのマウスを殺傷し、その脾臓のコンゴーレッド組織学的検査によってアミロイド負荷を測定した。
これらの結果から、十分に強く補体を活性化するIgG2aマウスモノクローナル抗ヒトSAP抗体が、インビボにおいてヒツジポリクローナル抗ヒトSAP抗体と同程度に効率的にアミロイドクリアランスを媒介することが実証される。
SAP−Kは、精製ヒトSAPでの免疫、および通例の方法によってクローン化されるハイブリドーマを生成する従来の融合から標準的な手法によって得られた、異なる6つの最も強く結合するマウスIgG2aモノクローナルから選択された。これらのIgG2a抗体のうち、SAP−Kは、固定化されたヒトSAPに対して最も強い結合を示した。これは、ヒトSAPが、プラスチック表面上に、非特異的付着もしくは共有結合によって直接固定化されるか、または固定化されたリガンド(それがアミロイド原線維であるか小分子リガンドのホスホエタノールアミンであるかを問わない)へのSAPの特異的なカルシウム依存性結合によって直接固定化されるかに関係ない例である。また、SAP−Kは、カルシウムの存在下または非存在下において、およびSAPがCPHPCと予め複合体化されて十量体のSAP−CPHPC複合体において共有結合的に「固定」されている場合に、直接固定化されたSAPに十分結合した(Pepys,M.B.et al(2002)Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis.Nature,417:254−259;Kolstoe,S.E.et al(2009)Molecular dissection of Alzheimer’s disease neuropathology by depletion of serum amyloid P component.Proc.Natl.Acad.Sci.USA,106:7619−7623)。SAP−Eもまた、これらの異なる配置のすべてにおいてヒトSAPに十分に結合した。しかしながら、これら2つの抗体は、ヒトSAPが低密度にしか利用可能でないとき、例えば、コーティングのためにプレートがほんの1μg/mlのヒトSAPにしか曝露されていないとき、SAP−Eよりもかなり多くのSAP−Kが結合するようになるのに対し、より大量の固定化されたSAPが存在するとき、例えば、コーティング溶液が100μg/mlのSAPを含むとき、SAP−KよりもSAP−Eが多く結合したという点において大きく異なる。この差異は、2以上のSAP分子が別のSAP分子と接近して会合した状態であるとき、SAP−Eが最適に結合する一方で、SAP−Kは、孤立した単一のSAP分子に強く結合することを示唆する。この機構は、ポリクローナルヒツジ抗ヒトSAP(batch2866)でコーティングされたプレート上への捕捉によってヒトSAPが固定化されて、それによって、各ヒツジIgG抗体分子の2本の腕において共に接近して保持されるSAP分子の対がもたらされたとき、SAP−Eが、ヒトSAP投入の全レベルにおいてSAP−Kよりも良好に結合したという知見によって裏づけられる(図7)。
SAP−Kの効力を、マウスにおける確立された全身性AAアミロイド沈着物の除去における標準的なヒツジポリクローナル抗体の作用と比較した。
上記の実施例10に詳述されたように野生型C57BL/6マウスにおいてAAアミロイドーシスを誘導し、確認した。実施例10に詳述されたようにアミロイド沈着物にヒトSAPを負荷した後、ヒツジポリクローナル抗ヒトSAP抗血清の全IgG画分(batch2866)としてマウス1匹あたり50mgの全IgG(7mgという用量の実際の抗SAP抗体をもたらす)、マウス1匹あたり5mgという用量の単離精製SAP−K、マウス1匹あたり1mgという用量の単離精製SAP−K、およびネガティブコントロールとして、無関係なヒト抗原に特異的かつヒトSAPまたは任意のマウス抗原に非反応性の単離、精製されたモノクローナルマウスIgG2a抗体でマウスの群を処置した。コンゴーレッド染色によるアミロイド負荷の評価のために、17日後にすべてのマウスを殺傷した。
5mgのSAP−Kで処置されたマウスは、7mgの用量のヒツジポリクローナル抗体を用いたときに見られるものと同じ顕著な脾臓および肝臓のアミロイド沈着物のクリアランスを示した。無関係なコントロールマウスIgG2a抗体を投与されたすべての動物における広範な脾臓および肝臓のアミロイド沈着物とははっきり異なって、処置されたマウスの脾臓には微量のアミロイドの斑だけしか残らず、肝臓の多くでは何も検出されなかった(表13)。マウス1匹あたり1mg、0.5mgおよび0.1mg(0.5mgおよび0.1mgについてはデータ示さず)という低用量のSAP−Kでは、有意な効果がなかった。
マン・ホイットニー検定*:1対2,脾臓,P=0.002;肝臓,P=0.002;1対3,脾臓,P=0.173;肝臓,P=0.083;1対4,脾臓,P<0.001;肝臓,P<0.001;2対3,脾臓,P=0.0.001;肝臓,P=0.019;2対4,脾臓,P=0.513;肝臓,P=0.768;3対4,脾臓,P<0.001;肝臓,P=0.004。*多重比較に起因して、0.01以下のP値が有意性のために必要とされる。
これらの結果から、立体構造エピトープを特異的に認識する、補体を活性化するマウスIgG2aアイソタイプのモノクローナル抗ヒトSAP抗体のインビボでのアミロイド沈着物の除去における有効性が立証される。したがって、本発明に係る使用のためのモノクローナル抗ヒトSAP抗体は、主に配列エピトープ(例えば、抗体SAP−E)、または全体的に立体構造エピトープ(例えば、SAP−K)に対して抗体産生され得る。
AAアミロイドーシスの誘導および処置
上記の実施例10に詳述されたように野生型C57BL/6マウスにおいてAAアミロイドーシスを誘導し、確認した。実施例10に詳述されたようにアミロイド沈着物にヒトSAPを負荷した後、マウス1匹あたり3mgおよび1mgの2つの異なる抗体で、マウスの群を処置した。アミロイドを誘導されたコントロール群には、抗体の代わりに単なるPBSを投与し、さらなる2つの群には、5mg/マウスという公知の有効量の各抗体を投与した。抗体を投与した1、5および15日後に、循環抗SAP抗体のアッセイのためにすべてのマウスから採血し、コンゴーレッド染色によるアミロイド負荷の評価のために、21日目にすべてを殺傷した。既知濃度で正常マウス血清に加えられたそれぞれ精製SAP−Eおよび精製SAP−Kで標準化された頑強なイムノラジオメトリックアッセイを用いて、すべての血清を抗SAP活性についてアッセイした。
調べられた各組織の情報について全員が知らされていない4人の独立した専門の観察者によって、アミロイド負荷がスコア付けされた。すべての観察者のスコアは、通常のとおり高度に一致しており、統計解析のために、各マウスの脾臓と肝臓の両方に対するすべての観察者の総スコアを合計した。両方の抗体が、先に証明されたように有効であり、明らかな用量依存性の作用が存在したが、より低用量ではSAP−Eが、SAP−Kよりも明らかに強力だった。
マン・ホイットニー検定*:K5対E5,P=0.095;K3対E3,P=0.684;K1対E1,P=0.001;K5対K3,P=0.594;K5対K1,P=0.001;K3対K1,P<0.001;E5対E3,P=0.008;E5対E1,P=0.001;E3対E1,P=0.004;K5対C,P=0.001;E5対C,P=0.001;K3対C,P<0.001;E3対C,P<0.001;K1対C,P=0.043;E1対C,P<0.001。*多重比較に起因して、0.01以下のP値が有意性のために必要とされる。
一対一での直接的な比較において、SAP−Eが、わずかであるがSAP−Kよりも有意に強力であるという一貫した証拠が存在する。マウス1匹あたり1mgを投与した後、循環抗SAP抗体の活性は、1日後には検出可能でなかったことから、明らかにすべてが、アミロイド沈着物内のヒトSAPに局在化した。3mgを投与した後、大量の抗SAPが、1日後には循環中に存在し、5日後にも存在した。マウス1匹あたり5mgを投与した後は、15日後であっても血液中にかなり濃度の抗SAPが存在した。これらの観察結果から、アミロイドクリアランスを誘発するのに、低用量の抗SAP抗体の反復投与で十分であり得ることが示唆される。
AAアミロイドーシスの誘導および処置
上記の実施例10に詳述されたように野生型C57BL/6マウスにおいてAAアミロイドーシスを誘導し、確認した。実施例10に詳述されたようにアミロイド沈着物にヒトSAPを負荷した後、マウス1匹あたり0.5mgおよび1mgという単一用量の2つの異なる抗体、または3もしくは4日間隔で投与される0.15mgという6回の反復用量で、マウスの群(各々n=10)を処置した。アミロイドを誘導されたコントロール群(n=9)には、抗体の代わりに単なるPBSを投与し、さらなる2つの群(各々n=3)には、5mg/マウスという公知の有効量の各抗体を投与した。コンゴーレッド染色によるアミロイド負荷の評価のために、29日目にすべてを殺傷した。
マン・ホイットニー検定*:E1対C:脾臓,P<0.001;肝臓P<0.001;E0.5対C:脾臓,P=0.604;肝臓P=0.004;Erep対C:脾臓、P0.002;肝臓,P<0.001;K1対C:脾臓,P=0.065;肝臓,P=0.001;K0.5対C:脾臓,P=0.022;肝臓,P=0.001;Krep対C:脾臓,P=0.079;肝臓,P<0.001;E1対E0.5:脾臓,P=0.005;肝臓P=0.143;E1対Erep:脾臓,P=0.043;肝臓,P=0.280;E0.5対Erep:脾臓,P=0.019;肝臓,P=0.043;K1対K0.5:有意差なし;K1対Krep:有意差なし;K0.5対Krep:有意差なし;E1対K1:脾臓,P=0.015;肝臓,P=0.353;E0.5対K0.5:有意差なし;Erep対Krep:有意差なし。*多重比較に起因して、0.01以下のP値が有意性のために必要とされる。
SAP−Kよりも有意に高いSAP−Eの効力は、再現性があるとみられる。繰り返し投与されるときの非常に低い用量の効果、および脾臓よりも肝臓アミロイド沈着物に対するより大きな作用に関する示唆は、興味深く、潜在的に臨床的に有意である。
補体の活性化は、本発明に係る抗ヒトSAP抗体によるアミロイド除去の有効性にとって不可欠である。30mg/lのSAP濃度を含むヒト全血清、または単離された純粋なヒトSAPをこの同じ濃度まで加えたマウス全血清に種々の量の単離された純粋な抗体を加えることによって、ヒト化モノクローナル抗体であるSAP−E H1L1およびSAP−K H3L0がヒト血清中およびマウス血清中でC3を活性化する能力をインビトロにおいて比較した。両方の場合において、血清は、新鮮でありかつ補体が十分に存在し、実験条件は、希釈剤として補体結合試験緩衝液(CFT)を用いた補体の活性化について最適だった。
両方のヒト化抗体がヒト補体を効率的に活性化し(C3の主な用量依存性の切断によって証明される)、それによって、未変性C3の免疫沈降ピークのより遅い移動度のサイズが減少し、より速い切断されたC3cピークのサイズが増加した(図10)。
Claims (37)
- SAPに特異的に結合し、かつ配列番号7の重鎖可変領域配列および配列番号9の軽鎖可変領域配列を含んでなる参照抗体とSAPへの結合について競合する、非マウス抗原結合タンパク質。
- SAPに結合し、かつ配列番号3に示されるCDRH3またはCDRH3の機能的変異体を含んでなる、非マウス抗原結合タンパク質。
- CDRH1(配列番号1)、CDRH2(配列番号12、CDRL1(配列番号4)、CDRL2(配列番号5)およびCDRL3(配列番号6)、またはCDRH1、CDRH2、CDRL1、CDRL2もしくはCDRL3の機能的変異体から選択される1つ以上またはすべてのCDRをさらに含んでなる、請求項2に記載の抗原結合タンパク質。
- 前記CDRH3機能的変異体が、配列番号3の変異体であり、ここで、Ser102は、Tyr、His、Val、Ile、AspまたはGlyに対して置換されている、請求項2または3に記載の抗原結合タンパク質。
- (a)前記CDRH1機能的変異体が、配列番号1の変異体であり、ここで、Tyr32は、Ile、His、Phe、Thr、Asn、Cys、GluまたはAspに対して置換されており、Asn33は、Tyr、Ala、Trp、Gly、Thr、LeuまたはValに対して置換されており、Met34は、Ile、ValまたはTrpに対して置換されており、および/またはHis35は、Glu、Asn、Gln、Ser、TyrまたはThrに対して置換されており、
(b)前記CDRH2機能的変異体が、配列番号2の変異体であり、ここで、Tyr50は、Arg、Glu、Trp、Gly、Gln、Val、Leu、Asn、LysまたはAlaに対して置換されており、Ile51は、Leu、Val、Thr、SerまたはAsnに対して置換されており、Tyr52は、Asp、Leu、AsnまたはSerに対して置換されており、Gly53は、Ala、Tyr、Ser、Lys、ThrまたはAsnに対して置換されており、Asp54は、Asn、Ser、Thr、LysまたはGlyに対して置換されており、Asn56は、Tyr、Arg、Glu、Asp、Gly、Val、SerまたはAlaに対して置換されており、および/またはAsn58は、Lys、Thr、Ser、Asp、Arg、Gly、PheまたはTyrに対して置換されており、
(c)前記CDRL1機能的変異体は、配列番号4の変異体であり、ここで、Asn28は、Ser、Asp、ThrまたはGluに対して置換されており、Ile29は、Valに対して置換されており、Tyr30は、Asp、Leu、Val、Ile、Ser、Asn、Phe、His、GlyまたはThrに対して置換されており、Ser31は、Asn、Thr、LysまたはGlyに対して置換されており、Tyr32は、Phe、Asn、Ala、His、SerまたはArgに対して置換されており、Leu33は、Met、Val、IleまたはPheに対して置換されており、および/またはAla34は、Gly、Asn、Ser、His、ValまたはPheに対して置換されており、
(d)前記CDRL2機能的変異体は、配列番号5の変異体であり、ここで、Ala51は、Thr、GlyまたはValに対して置換されており、および/または
(e)前記CDRL3機能的変異体は、配列番号6の変異体であり、ここで、Gln89は、Ser、Gly、PheまたはLeuに対して置換されており、His90は、GlnまたはAsnに対して置換されており、His91は、Asn、Phe、Gly、Ser、Arg、Asp、Thr、TyrまたはValに対して置換されており、Tyr92は、Asn、Trp、Thr、Ser、Arg、Gln、His、AlaまたはAspに対して置換されており、Gly93は、Glu、Asn、His、Thr、Ser、ArgまたはAlaに対して置換されており、Ala94は、Asp、Tyr、Thr、Val、Leu、His、Asn、Ile、Trp、ProまたはSerに対して置換されており、および/またはLeu96は、Pro、Tyr、Arg、Ile、TrpまたはPheに対して置換されている、
請求項3または4に記載の抗原結合タンパク質。 - SAPに特異的に結合する抗原結合タンパク質であって、ここで、該抗原結合タンパク質は、配列番号7の可変ドメイン配列の対応するCDRH3またはCDRH3の機能的変異体を含んでなる、キメラ抗体またはヒト化抗体である、抗原結合タンパク質。
- 配列番号7の可変ドメイン配列のCDRH1もしくはCDRH2、または配列番号9の可変ドメイン配列のCDRL1、CDRL2、CDRL3、またはCDRH1、CDRH2、CDRL1、CDRL2もしくはCDRL3の機能的変異体から選択される対応するCDRの1つ以上またはすべてをさらに含んでなる、請求項6に記載の抗原結合タンパク質。
- SAPに特異的に結合し、かつ配列番号7のKabat残基95〜101を含んでなる結合単位H3または結合単位H3の機能的変異体を含んでなる、抗原結合タンパク質。
- 配列番号7のKabat残基31〜32を含んでなるH1、配列番号7のKabat残基52〜56を含んでなるH2、配列番号9のKabat残基30〜34を含んでなるL1、配列番号9のKabat残基50〜55を含んでなるL2、および配列番号9のKabat残基89〜96を含んでなるL3、または結合単位H1、H2、L1、L2もしくはL3の機能的変異体から選択される1つ以上またはすべての結合単位をさらに含んでなる、請求項8に記載の抗原結合タンパク質。
- 前記抗原結合タンパク質が、重鎖および/または軽鎖を含んでなり、ここで:
(a)重鎖フレームワークが、以下の残基:2位にVal、IleもしくはGly、4位にLeuもしくはVal、20位にLeu、Ile、MetもしくはVal、22位にCys、24位にThr、Ala、Val、GlyもしくはSer、26位にGly、29位にIle、Phe、LeuもしくはSer、36位にTrp、47位にTrpもしくはTyr、48位にIle、Met、ValもしくはLeu、69位にIle、Leu、Phe、MetもしくはVal、71位にVal、AlaもしくはLeu、78位にAla、Leu、Val、TyrもしくはPhe、80位にLeuもしくはMet、90位にTyrもしくはPhe、92位にCys、および/または94位にArg、Lys、Gly、Ser、HisもしくはAsnを含んでなり、ならびに/あるいは
(b)軽鎖フレームワークが、以下の残基:2位にIle、LeuもしくはVal、3位にVal、Gln、LeuもしくはGlu、4位にMetもしくはLeu、23位にCys、35位にTrp、36位にTyr、LeuもしくはPhe、46位にLeu、ArgもしくはVal、49位にTyr、His、PheもしくはLys、71位にTyrもしくはPhe、88位にCys、および/または98位にPheを含んでなる、
請求項1〜9のいずれか一項に記載の抗原結合タンパク質。 - 前記重鎖フレームワークが、以下の残基:2位にVal、4位にLeu、20位にVal、22位にCys、24位にAla、26位にGly、29位にPhe、36位にTrp、47位にTrp、48位にMet、69位にIle、71位にAla、78位にAla、80位にMet、90位にTyr、92位にCysおよび94位にArgを含んでなり、および/または前記軽鎖フレームワークが、以下の残基:2位にIle、3位にGln、4位にMet、23位にCys、35位にTrp、36位にTyr、46位にLeu、49位にHis、71位にPhe、88位にCysおよび98位にPheを含んでなる、請求項1〜10のいずれか一項に記載の抗原結合タンパク質。
- 配列番号25に示されるようなフレームワーク領域に対して75%以上の配列同一性を有する重鎖可変ドメイン抗体フレームワーク、および/または配列番号32に示されるようなフレームワーク領域に対して75%以上の配列同一性を有する軽鎖可変ドメイン抗体フレームワークをさらに含んでなる、請求項1〜11のいずれか一項に記載の抗原結合タンパク質。
- SAPに特異的に結合し、かつ配列番号27〜31から選択される重鎖可変領域、および/もしくは配列番号34〜36から選択される軽鎖可変領域、または75%以上の配列同一性を有する変異体重鎖可変領域もしくは軽鎖可変領域を含んでなる、抗原結合タンパク質。
- SAPに特異的に結合し、かつ配列番号62の重鎖、および/もしくは配列番号64の軽鎖、または75%以上の配列同一性を有する変異体重鎖もしくは軽鎖を含んでなる、抗原結合タンパク質。
- 前記SAPが、インビボにおいてアミロイド原線維に結合されているヒトSAPである、請求項1〜14のいずれか一項に記載の抗原結合タンパク質。
- 前記抗原結合タンパク質が、ヒトSAPのA面に結合する、請求項1〜15のいずれか一項に記載の抗原結合タンパク質。
- 前記抗原結合タンパク質が、ヒト補体系を活性化する、請求項1〜16のいずれか一項に記載の抗原結合タンパク質。
- キメラ、ヒト化またはヒトにおけるものである、請求項1〜5、8、9または15〜17のいずれか一項に記載の抗原結合タンパク質。
- 前記抗原結合タンパク質が、ヒトIgG1またはIgG3ヒト定常ドメインを含んでなる、請求項1〜18のいずれか一項に記載の抗原結合タンパク質。
- 請求項1〜19のいずれか一項に記載の抗原結合タンパク質をコードする核酸分子。
- 前記核酸配列が、配列番号54および/または配列番号59を含んでなる、請求項20に記載の核酸分子。
- 前記核酸配列が、配列番号61および/または配列番号63を含んでなる、請求項21に記載の核酸分子。
- 請求項20〜22のいずれか一項に記載の核酸分子を含んでなる、発現ベクター。
- 請求項23に記載の発現ベクターを含んでなる、組換え宿主細胞。
- 請求項1〜19のいずれか一項に記載の抗原結合タンパク質を生成するための方法であって、請求項24に記載の宿主細胞を培養する工程および前記抗原結合タンパク質を回収する工程を含んでなる、方法。
- 請求項1〜19のいずれか一項に記載の抗原結合タンパク質と、薬学上許容される担体とを含んでなる、医薬組成物。
- アミロイド沈着を伴う疾患に罹患している被験体を治療する方法であって、治療有効量の請求項1〜19のいずれか一項に記載の抗原結合タンパク質または請求項26に記載の組成物を前記被験体に投与する工程を含んでなる、方法。
- 被験体におけるアミロイド沈着を伴う疾患を予防する方法であって、予防的に有効な量の請求項1〜19のいずれか一項に記載の抗原結合タンパク質または請求項26に記載の組成物を前記被験体に投与する工程を含んでなる、方法。
- 前記抗原結合タンパク質が、SAP枯渇化合物とともに投与される、請求項27または28に記載の方法。
- アミロイド沈着を伴う疾患を治療または予防する際に使用するための、請求項1〜19のいずれか一項に記載の抗原結合タンパク質であって、ここで、前記抗原結合タンパク質は、SAP枯渇化合物とともに投与される、抗原結合タンパク質。
- アミロイド沈着を伴う疾患を治療または予防する際に使用するためのSAP枯渇化合物であって、ここで、前記SAP枯渇化合物は、請求項1〜19のいずれか一項に記載の抗原結合タンパク質とともに投与される、SAP枯渇化合物。
- 前記抗原結合タンパク質およびSAP枯渇化合物の投与が連続的である、請求項27、28もしくは29に記載の方法、請求項29に記載の抗原結合タンパク質、または請求項31に記載のSAP枯渇化合物。
- 前記SAP枯渇化合物が最初に投与される、請求項32に記載の方法、抗原結合タンパク質またはSAP枯渇化合物。
- 前記抗原結合タンパク質が、被験体内を循環しているSAPの実質的にすべてが除去されたときに投与される、請求項33に記載の方法、抗原結合タンパク質またはSAP枯渇化合物。
- 前記疾患が、全身性アミロイドーシス、局所性アミロイドーシス、アルツハイマー病、2型糖尿病、透析関連アミロイドーシス、モノクローナル免疫グロブリン鎖(AL)アミロイドーシスおよび脳アミロイドアンギオパチーからなる群から選択される、請求項27、28、29、31、33もしくは34に記載の方法、請求項30、32、33もしくは34に記載の抗原結合タンパク質、または請求項31、32、33もしくは34に記載のSAPアンタゴニスト化合物。
- 前記SAP枯渇化合物が、D−プロリン誘導体またはグリセロール環状ピルビン酸塩誘導体である、請求項27、28、29、32、33、34もしくは35に記載の方法、請求項30、32、33、34もしくは35に記載の抗原結合タンパク質、または請求項31、32、33、34もしくは35に記載のSAP枯渇化合物。
- 前記D−プロリン誘導体が、CPHPCである、請求項36に記載の方法、抗原結合タンパク質またはSAP枯渇化合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30995710P | 2010-03-03 | 2010-03-03 | |
US61/309,957 | 2010-03-03 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012555403A Division JP5922592B2 (ja) | 2010-03-03 | 2011-03-01 | 血清アミロイドp成分に特異的な抗原結合タンパク質 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016154535A true JP2016154535A (ja) | 2016-09-01 |
JP6236478B2 JP6236478B2 (ja) | 2017-11-22 |
Family
ID=43881068
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012555403A Expired - Fee Related JP5922592B2 (ja) | 2010-03-03 | 2011-03-01 | 血清アミロイドp成分に特異的な抗原結合タンパク質 |
JP2016020718A Expired - Fee Related JP6236478B2 (ja) | 2010-03-03 | 2016-02-05 | 血清アミロイドp成分に特異的な抗原結合タンパク質 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012555403A Expired - Fee Related JP5922592B2 (ja) | 2010-03-03 | 2011-03-01 | 血清アミロイドp成分に特異的な抗原結合タンパク質 |
Country Status (39)
Country | Link |
---|---|
EP (2) | EP3025729B1 (ja) |
JP (2) | JP5922592B2 (ja) |
KR (1) | KR101817265B1 (ja) |
CN (1) | CN102858371B (ja) |
AR (1) | AR080432A1 (ja) |
AU (1) | AU2011223048C1 (ja) |
BR (1) | BR112012021926A2 (ja) |
CA (1) | CA2789557A1 (ja) |
CL (1) | CL2012002418A1 (ja) |
CO (1) | CO6602134A2 (ja) |
CR (1) | CR20120491A (ja) |
CY (2) | CY1118046T1 (ja) |
DK (2) | DK2542261T3 (ja) |
DO (1) | DOP2012000232A (ja) |
EA (1) | EA026375B1 (ja) |
ES (2) | ES2593454T3 (ja) |
HK (2) | HK1173959A1 (ja) |
HR (2) | HRP20161096T1 (ja) |
HU (1) | HUE028960T2 (ja) |
IL (2) | IL221418A (ja) |
JO (1) | JO3188B1 (ja) |
LT (2) | LT2542261T (ja) |
MA (1) | MA34135B1 (ja) |
ME (1) | ME02491B (ja) |
MX (1) | MX340350B (ja) |
MY (1) | MY159255A (ja) |
NZ (1) | NZ601763A (ja) |
PE (1) | PE20130040A1 (ja) |
PL (2) | PL2542261T3 (ja) |
PT (2) | PT2542261T (ja) |
RS (2) | RS57708B1 (ja) |
SG (2) | SG10201500382SA (ja) |
SI (2) | SI2542261T1 (ja) |
SM (1) | SMT201600337B (ja) |
TW (1) | TWI558409B (ja) |
UA (1) | UA108227C2 (ja) |
UY (1) | UY33258A (ja) |
WO (1) | WO2011107480A1 (ja) |
ZA (1) | ZA201206529B (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2782333C (en) | 2009-12-02 | 2019-06-04 | Imaginab, Inc. | J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use |
CA2893977C (en) * | 2012-12-21 | 2024-02-13 | Seattle Genetics, Inc. | Anti-ntb-a antibodies and related compositions and methods |
CN103239713A (zh) * | 2013-05-28 | 2013-08-14 | 东南大学 | 一种糖尿病肾病微炎症小鼠模型的建立方法 |
US9737505B2 (en) * | 2014-04-29 | 2017-08-22 | Glaxosmithkline Intellectual Property Development Limited | Prodrug of 1,1′-(1,6-dioxo-1,6-hexanediyl)bis-D-proline |
GB201407506D0 (en) | 2014-04-29 | 2014-06-11 | Glaxosmithkline Ip Dev Ltd | Novel compound |
SG10201913625XA (en) | 2015-08-07 | 2020-03-30 | Imaginab Inc | Antigen binding constructs to target molecules |
US11266745B2 (en) | 2017-02-08 | 2022-03-08 | Imaginab, Inc. | Extension sequences for diabodies |
WO2019185502A1 (en) | 2018-03-26 | 2019-10-03 | Glaxosmithkline Intellectual Property Development Limited | Antibodies comprising methionine sulfoxide at the ch2-ch3 interface |
CN116925216B (zh) * | 2022-04-11 | 2024-09-24 | 东莞市朋志生物科技有限公司 | 抗血清淀粉样蛋白a抗体、检测血清淀粉样蛋白a的试剂和试剂盒 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995005394A1 (en) * | 1993-08-17 | 1995-02-23 | Royal Postgraduate Medical School | Therapeutic and diagnostic agents for amyloidosis |
WO2009000926A1 (en) * | 2007-06-27 | 2008-12-31 | Pentraxin Therapeutics Limited | Combinations of sap depleting agents and anti-sap antibodies |
WO2009155962A1 (en) * | 2008-06-27 | 2009-12-30 | Pentraxin Therapeutics Limited | Use |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57106673A (en) | 1980-12-24 | 1982-07-02 | Chugai Pharmaceut Co Ltd | Dibenzo(b,f)(1,4)oxazepin derivative |
DD266710A3 (de) | 1983-06-06 | 1989-04-12 | Ve Forschungszentrum Biotechnologie | Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US4879231A (en) | 1984-10-30 | 1989-11-07 | Phillips Petroleum Company | Transformation of yeasts of the genus pichia |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
GB8610600D0 (en) | 1986-04-30 | 1986-06-04 | Novo Industri As | Transformation of trichoderma |
WO1988007089A1 (en) | 1987-03-18 | 1988-09-22 | Medical Research Council | Altered antibodies |
DE68913658T3 (de) | 1988-11-11 | 2005-07-21 | Stratagene, La Jolla | Klonierung von Immunglobulin Sequenzen aus den variablen Domänen |
FR2646437B1 (fr) | 1989-04-28 | 1991-08-30 | Transgene Sa | Nouvelles sequences d'adn, leur application en tant que sequence codant pour un peptide signal pour la secretion de proteines matures par des levures recombinantes, cassettes d'expression, levures transformees et procede de preparation de proteines correspondant |
US6291158B1 (en) | 1989-05-16 | 2001-09-18 | Scripps Research Institute | Method for tapping the immunological repertoire |
EP0402226A1 (en) | 1989-06-06 | 1990-12-12 | Institut National De La Recherche Agronomique | Transformation vectors for yeast yarrowia |
US6172197B1 (en) | 1991-07-10 | 2001-01-09 | Medical Research Council | Methods for producing members of specific binding pairs |
WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
GB9122820D0 (en) | 1991-10-28 | 1991-12-11 | Wellcome Found | Stabilised antibodies |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
GB9203459D0 (en) | 1992-02-19 | 1992-04-08 | Scotgen Ltd | Antibodies with germ-line variable regions |
WO1994004690A1 (en) | 1992-08-17 | 1994-03-03 | Genentech, Inc. | Bispecific immunoadhesins |
ES2108460T3 (es) | 1993-06-03 | 1997-12-16 | Therapeutic Antibodies Inc | Fragmentos de anticuerpos en terapeutica. |
US5429746A (en) | 1994-02-22 | 1995-07-04 | Smith Kline Beecham Corporation | Antibody purification |
US5795737A (en) | 1994-09-19 | 1998-08-18 | The General Hospital Corporation | High level expression of proteins |
US5739277A (en) | 1995-04-14 | 1998-04-14 | Genentech Inc. | Altered polypeptides with increased half-life |
IL131131A0 (en) | 1997-02-07 | 2001-01-28 | Merck & Co Inc | Synthetic hiv gag genes |
EP0915088B1 (en) | 1997-10-31 | 2002-09-18 | F. Hoffmann-La Roche Ag | D-Proline derivatives |
GB9806530D0 (en) | 1998-03-26 | 1998-05-27 | Glaxo Group Ltd | Inflammatory mediator |
IL127127A0 (en) | 1998-11-18 | 1999-09-22 | Peptor Ltd | Small functional units of antibody heavy chain variable regions |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
US7504256B1 (en) | 1999-10-19 | 2009-03-17 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
JP2005538706A (ja) | 2001-07-12 | 2005-12-22 | ジェファーソン フーテ, | スーパーヒト化抗体 |
NZ592087A (en) | 2001-08-03 | 2012-11-30 | Roche Glycart Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
US6903129B2 (en) | 2001-12-14 | 2005-06-07 | Hoffman-La Roche Inc. | D-proline prodrugs |
GB0216648D0 (en) | 2002-07-18 | 2002-08-28 | Lonza Biologics Plc | Method of expressing recombinant protein in CHO cells |
EP3502133A1 (en) | 2002-09-27 | 2019-06-26 | Xencor, Inc. | Optimized fc variants and methods for their generation |
WO2004059318A2 (en) | 2002-12-23 | 2004-07-15 | William Marsh Rice University | Methods of detecting the inhibition of fibrocyte formation and methods and compositions for enhancing fibrocyte formation |
EP2368578A1 (en) | 2003-01-09 | 2011-09-28 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
US7553819B2 (en) | 2003-05-12 | 2009-06-30 | Theracarb Inc. | Multivalent inhibitors of serum amyloid P component |
AU2005269759A1 (en) | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform |
-
2011
- 2011-01-03 UA UAA201210015A patent/UA108227C2/uk unknown
- 2011-03-01 PT PT117056176T patent/PT2542261T/pt unknown
- 2011-03-01 SG SG10201500382SA patent/SG10201500382SA/en unknown
- 2011-03-01 MY MYPI2012003903A patent/MY159255A/en unknown
- 2011-03-01 JO JOP/2011/0075A patent/JO3188B1/ar active
- 2011-03-01 MA MA35252A patent/MA34135B1/fr unknown
- 2011-03-01 NZ NZ601763A patent/NZ601763A/en not_active IP Right Cessation
- 2011-03-01 PL PL11705617.6T patent/PL2542261T3/pl unknown
- 2011-03-01 WO PCT/EP2011/053038 patent/WO2011107480A1/en active Application Filing
- 2011-03-01 PT PT15178026T patent/PT3025729T/pt unknown
- 2011-03-01 LT LTEP11705617.6T patent/LT2542261T/lt unknown
- 2011-03-01 CN CN201180017717.1A patent/CN102858371B/zh not_active Expired - Fee Related
- 2011-03-01 RS RS20181162A patent/RS57708B1/sr unknown
- 2011-03-01 ES ES11705617.6T patent/ES2593454T3/es active Active
- 2011-03-01 AR ARP110100618A patent/AR080432A1/es not_active Application Discontinuation
- 2011-03-01 BR BR112012021926-0A patent/BR112012021926A2/pt not_active IP Right Cessation
- 2011-03-01 EP EP15178026.9A patent/EP3025729B1/en active Active
- 2011-03-01 LT LTEP15178026.9T patent/LT3025729T/lt unknown
- 2011-03-01 SG SG2012060216A patent/SG183316A1/en unknown
- 2011-03-01 SI SI201130964A patent/SI2542261T1/sl unknown
- 2011-03-01 ME MEP-2016-161A patent/ME02491B/me unknown
- 2011-03-01 CA CA2789557A patent/CA2789557A1/en not_active Abandoned
- 2011-03-01 KR KR1020127025884A patent/KR101817265B1/ko active IP Right Grant
- 2011-03-01 EA EA201290671A patent/EA026375B1/ru not_active IP Right Cessation
- 2011-03-01 JP JP2012555403A patent/JP5922592B2/ja not_active Expired - Fee Related
- 2011-03-01 HU HUE11705617A patent/HUE028960T2/en unknown
- 2011-03-01 PE PE2012001385A patent/PE20130040A1/es not_active Application Discontinuation
- 2011-03-01 ES ES15178026T patent/ES2699078T3/es active Active
- 2011-03-01 TW TW100106740A patent/TWI558409B/zh not_active IP Right Cessation
- 2011-03-01 DK DK11705617.6T patent/DK2542261T3/en active
- 2011-03-01 EP EP11705617.6A patent/EP2542261B1/en active Active
- 2011-03-01 RS RS20160741A patent/RS55133B1/sr unknown
- 2011-03-01 DK DK15178026.9T patent/DK3025729T3/en active
- 2011-03-01 AU AU2011223048A patent/AU2011223048C1/en not_active Ceased
- 2011-03-01 PL PL15178026T patent/PL3025729T3/pl unknown
- 2011-03-01 SI SI201131594T patent/SI3025729T1/sl unknown
- 2011-03-01 MX MX2012010129A patent/MX340350B/es active IP Right Grant
- 2011-03-03 UY UY0001033258A patent/UY33258A/es not_active Application Discontinuation
-
2012
- 2012-08-12 IL IL221418A patent/IL221418A/en not_active IP Right Cessation
- 2012-08-22 DO DO2012000232A patent/DOP2012000232A/es unknown
- 2012-08-30 ZA ZA2012/06529A patent/ZA201206529B/en unknown
- 2012-08-31 CL CL2012002418A patent/CL2012002418A1/es unknown
- 2012-08-31 CO CO12149377A patent/CO6602134A2/es unknown
- 2012-09-27 CR CR20120491A patent/CR20120491A/es unknown
-
2013
- 2013-01-24 HK HK13101057.3A patent/HK1173959A1/zh not_active IP Right Cessation
-
2016
- 2016-02-05 JP JP2016020718A patent/JP6236478B2/ja not_active Expired - Fee Related
- 2016-08-26 HR HRP20161096TT patent/HRP20161096T1/hr unknown
- 2016-09-23 CY CY20161100950T patent/CY1118046T1/el unknown
- 2016-09-26 SM SM201600337T patent/SMT201600337B/it unknown
- 2016-10-06 HK HK16111615.4A patent/HK1223292A1/zh not_active IP Right Cessation
-
2017
- 2017-03-08 IL IL251031A patent/IL251031A/en not_active IP Right Cessation
-
2018
- 2018-10-12 HR HRP20181666TT patent/HRP20181666T1/hr unknown
- 2018-10-31 CY CY181101126T patent/CY1120803T1/el unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995005394A1 (en) * | 1993-08-17 | 1995-02-23 | Royal Postgraduate Medical School | Therapeutic and diagnostic agents for amyloidosis |
WO2009000926A1 (en) * | 2007-06-27 | 2008-12-31 | Pentraxin Therapeutics Limited | Combinations of sap depleting agents and anti-sap antibodies |
WO2009155962A1 (en) * | 2008-06-27 | 2009-12-30 | Pentraxin Therapeutics Limited | Use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6236478B2 (ja) | 血清アミロイドp成分に特異的な抗原結合タンパク質 | |
US7956173B2 (en) | Nucleic acids coding for humanized antibodies for binding sphingosine-1-phosphate | |
TWI476003B (zh) | 能夠特異性結合tfpi之k2域的單株抗體、表現其的真核細胞、包含其的醫藥組成物、及其醫藥用途 | |
US9150653B2 (en) | CD127 binding proteins | |
JP5015949B2 (ja) | Nogoを標的とする免疫グロブリン | |
US20110105724A1 (en) | Novel compounds | |
KR20120093400A (ko) | 아밀로이드?베타 펩티드에 대한 항체 | |
US20110064740A1 (en) | Antigen binding proteins | |
US20080213274A1 (en) | Compositions and methods for the treatment and prevention of fibrotic, inflammatory, and neovascularization conditions of the eye | |
JP2018519832A (ja) | 多重特異的結合タンパク質 | |
US10221234B2 (en) | Antigen binding proteins | |
KR20240038716A (ko) | 신규 항-masp-2 항체 | |
TW202216780A (zh) | 抗notch2抗體及其使用方法 | |
WO2011080050A2 (en) | Binding molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161018 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20161124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171030 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6236478 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |