JP2016145701A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2016145701A
JP2016145701A JP2015161620A JP2015161620A JP2016145701A JP 2016145701 A JP2016145701 A JP 2016145701A JP 2015161620 A JP2015161620 A JP 2015161620A JP 2015161620 A JP2015161620 A JP 2015161620A JP 2016145701 A JP2016145701 A JP 2016145701A
Authority
JP
Japan
Prior art keywords
refrigerant
tube forming
heat exchanger
flow path
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015161620A
Other languages
English (en)
Other versions
JP6458680B2 (ja
Inventor
尾形 豪太
Toshihiro Ogata
豪太 尾形
雄一 城田
Yuichi Shirota
雄一 城田
浩也 長谷川
Hiroya Hasegawa
浩也 長谷川
達博 鈴木
Tatsuhiro Suzuki
達博 鈴木
池上 真
Makoto Ikegami
真 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US15/544,601 priority Critical patent/US10302341B2/en
Priority to DE112016000572.5T priority patent/DE112016000572T5/de
Priority to CN201680007492.4A priority patent/CN107208944B/zh
Priority to PCT/JP2016/000283 priority patent/WO2016125437A1/ja
Publication of JP2016145701A publication Critical patent/JP2016145701A/ja
Application granted granted Critical
Publication of JP6458680B2 publication Critical patent/JP6458680B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Abstract

【課題】バリエーションの多様化が容易なエジェクタ一体型の熱交換器を提供する。【解決手段】冷媒を減圧させるノズル部14aと、ノズル部14aから噴射された冷媒の流れによって冷媒を吸引する冷媒吸引口14bと、冷媒吸引口14bから吸引された冷媒とノズル部14aから噴射された冷媒とを混合させて昇圧させる昇圧部14dとを有するエジェクタ14と、昇圧部14dから流出した冷媒が熱交換しながら流れる流出側冷媒流路15と、冷媒吸引口14bに吸引される冷媒が熱交換しながら流れる吸引側冷媒流路18と、を形成するチューブ形成部材を多数個備え、多数個のチューブ形成部材に冷媒が互いに並列に流れる。【選択図】図5

Description

本発明は、エジェクタ式冷凍サイクルに適用される熱交換器に関する。
従来、特許文献1には、エジェクタ、流出側蒸発器および吸引側蒸発器を備え、流出側蒸発器および吸引側蒸発器の双方の蒸発器にて冷媒に吸熱作用を発揮させるエジェクタ式冷凍サイクルが記載されている。
エジェクタは冷媒減圧手段を構成している。流出側蒸発器は、エジェクタのディフューザ部から流出した冷媒を蒸発させる。吸引側蒸発器は、エジェクタの冷媒吸引口に吸引される冷媒を蒸発させる。
このエジェクタ式冷凍サイクルでは、ディフューザ部の冷媒昇圧作用によって、流出側蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を吸引側蒸発器における冷媒蒸発圧力よりも上昇させることができるので、それぞれの蒸発器において異なる温度帯で冷媒を蒸発させることができる。さらに、流出側蒸発器から流出した冷媒を圧縮機へ吸入させることで、圧縮機吸入冷媒圧力を上昇させて、圧縮機の消費動力を低減させることができる。
また、特許文献1には、エジェクタ、流出側蒸発器、吸引側蒸発器等を一体化した蒸発器ユニットが記載されている。
この蒸発器ユニットでは、エジェクタと他のサイクル構成機器との接続を簡素化できるので、エジェクタ式冷凍サイクルを冷房装置、冷凍装置等の製品へ搭載する際の搭載性を向上できる。
さらに、特許文献1の蒸発器ユニットでは、冷却対象流体である空気の流れに対して、流出側蒸発器および吸引側蒸発器を直列に配置して、双方の蒸発器にて同一の冷却対象空間に送風される空気を冷却できるようにしている。
特許第5381875号公報
しかしながら、上記従来技術によると、1組の流出側蒸発器および吸引側蒸発器に対して1つのエジェクタを備えるので、吸引側蒸発器および流出側蒸発器のサイズ(換言すれば熱交換能力)に応じてエジェクタの設計を変更する必要があり、ひいては蒸発器のバリエーションの多様化が困難である。
例えば、蒸発器のサイズが異なると冷媒の流量も異なるので、冷媒の流量に応じてエジェクタのノズル径を変更する必要がある。
また、吸引側蒸発器のチューブの本数が多くなると、エジェクタが全てのチューブから冷媒を均等に吸引することが困難になる。そうすると、吸引側蒸発器に温度分布が生じて蒸発器性能の低下を招き、ひいては冷凍サイクルの成績係数(COP)の低下を招いてしまう。その対策として、吸引側蒸発器のチューブの本数に応じてエジェクタの冷媒吸引能力を変更する必要がある。
本発明は上記点に鑑みて、バリエーションの多様化が容易なエジェクタ一体型の熱交換器を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、
冷媒を減圧させるノズル部(14a)と、ノズル部(14a)から噴射された冷媒の流れによって冷媒を吸引する冷媒吸引口(14b)と、冷媒吸引口(14b)から吸引された冷媒とノズル部(14a)から噴射された冷媒とを混合させて昇圧させる昇圧部(14d)とを有するエジェクタ(14)と、
昇圧部(14d)から流出した冷媒が熱交換しながら流れる流出側冷媒流路(15)と、
冷媒吸引口(14b)に吸引される冷媒が熱交換しながら流れる吸引側冷媒流路(18)と、
を形成するチューブ形成部材(21)を多数個備え、
多数個のチューブ形成部材(21)に冷媒が互いに並列に流れることを特徴とする。
これによると、各チューブ形成部材(21)にエジェクタ(14)が形成されているので、熱交換器のバリエーションによってチューブ形成部材(21)の個数が増減するとエジェクタ(14)の個数も増減する。
換言すれば、流出側冷媒流路(15)および吸引側冷媒流路(18)の本数が増減すると、エジェクタ(14)のノズルのサイズや冷媒吸引能力も全体として増減する。
したがって、熱交換器のバリエーションに対してエジェクタ(14)の設計を共通化しても性能の低下やサイクル成績係数(COP)の低下を抑制できるので、熱交換器のバリエーションを容易に多様化できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態におけるエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態における蒸発器の斜視図である。 図2のIII矢視部分拡大図である。 第1実施形態におけるチューブ形成部材の正面図である。 図4のV−V断面図である。 図4のVI矢視図である。 第2実施形態におけるチューブ形成部材の断面図である。 図7のVIII矢視図である。 第3実施形態におけるチューブ形成部材の断面図である。 第4実施形態におけるチューブ形成部材の断面図である。 第5実施形態の第1実施例におけるチューブ形成部材の断面図である。 第5実施形態の第2実施例におけるチューブ形成部材の断面図である。 第5実施形態の第3実施例におけるチューブ形成部材の断面図である。 第6実施形態における蒸発器の正面図である。 第7実施形態における蒸発器の正面図である。
以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1は第1実施形態によるエジェクタ式冷凍サイクル10を車両用冷凍サイクル装置に適用した例を示す。エジェクタ式冷凍サイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ11a、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ11aの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば電動モータの回転数調整により冷媒吐出能力を調整できる。
この圧縮機11の冷媒吐出側には放熱器12が配置されている。放熱器12は圧縮機11から吐出された高圧冷媒と冷却ファン(図示せず)により送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
本実施形態では、冷媒としてフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いているので、エジェクタ式冷凍サイクル10は蒸気圧縮式の亜臨界サイクルを構成している。したがって、放熱器12は冷媒を凝縮する凝縮器として機能する。
放熱器12の出口側には温度式膨張弁13が配置されている。この温度式膨張弁13は放熱器12からの液冷媒を減圧する減圧手段であって、圧縮機11の吸入側通路に配置された感温部13aを有している。
温度式膨張弁13は、圧縮機11の吸入側冷媒(蒸発器出口側冷媒)の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整するものである。
温度式膨張弁13の出口側にエジェクタ14が配置されている。このエジェクタ14は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う流体輸送を冷媒循環手段(運動量輸送式ポンプ)でもある。
図1では、図示の都合上、エジェクタ14が1つのみ図示されているが、実際には、エジェクタ14は、冷媒流れに対して並列に多数個設けられている。
エジェクタ14は、ノズル部14aと冷媒吸引口14bとを備えている。ノズル部14aは、温度式膨張弁13通過後の冷媒(中間圧冷媒)の通路面積を小さく絞って冷媒をさらに減圧膨張させる。冷媒吸引口14bは、ノズル部14aの冷媒噴出口と同一空間に配置され、吸引側冷媒流路18からの気相冷媒を吸引する。
エジェクタ14のうちノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ディフューザ部14dが配置されている。ディフューザ部14dは、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bの吸引冷媒とを混合して昇暑させる昇圧部である。
ディフューザ部14dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。
エジェクタ14の出口部(ディフューザ部14dの先端部)側には流出側冷媒流路15が接続されている。流出側冷媒流路15は、ディフューザ部14dから流出した冷媒が熱交換しながら流れる冷媒流路である。
流出側冷媒流路15の出口側は圧縮機11の吸入側に接続されている。図1では、図示の都合上、流出側冷媒流路15が1つのみ図示されているが、実際には、流出側冷媒流路15は、冷媒流れに対して並列に多数個設けられている。
温度式膨張弁13の出口側には、エジェクタ14のノズル部14aに流入する冷媒流量Gnと、エジェクタ14の冷媒吸引口14bに流入する冷媒流量Geとを調整する流量分配器16が配置されている。
流量分配器16は、温度式膨張弁13通過後の冷媒を、エジェクタ14のノズル部14aの入口側と、エジェクタ14の冷媒吸引口14bの入口側とに分配する。流量分配器16は、冷媒の気液分離機能を有しており、温度式膨張弁13通過後の冷媒を、エジェクタ14のノズル部14aに向かう気液2相冷媒流と、絞り機構17に向かう液相冷媒流とに分離する。
流量分配器16とエジェクタ14の冷媒吸引口14bとの間には絞り機構17と吸引側冷媒流路18とが配置されている。絞り機構17は吸引側冷媒流路18への冷媒流量の調節作用をなす減圧手段であり、吸引側冷媒流路18の入口側に配置されている。絞り機構17はノズル形状を有している。
吸引側冷媒流路18は、エジェクタ14の冷媒吸引口14bに吸引される冷媒が熱交換しながら流れる冷媒流路である。
図1では、図示の都合上、吸引側冷媒流路18が1つのみ図示されているが、実際には、吸引側冷媒流路18は、冷媒流れに対して並列に多数個設けられている。
多数個のエジェクタ14、多数個の流出側冷媒流路15、絞り機構17および多数個の吸引側冷媒流路18は、一体的に組み付けられて1つの蒸発器20(熱交換器)を構成している。
蒸発器20および電動送風機19は、図示しないケース内に収納されている。このケース内には空気通路が形成されている。この空気通路において、電動送風機19によって空気(被冷却空気)が矢印F1のごとく送風されて蒸発器20で冷却されるようになっている。
蒸発器20で冷却された冷風は、共通の冷却対象空間(図示せず)に送り込まれる。これにより蒸発器20にて共通の冷却対象空間が冷却されるようになっている。
流出側冷媒流路15および吸引側冷媒流路18は、冷却対象空間に送風される空気流れに対して、互いに直列に配置されている。具体的には、エジェクタ14下流側の主流路に接続される流出側冷媒流路15は空気流れF1の上流側(風上側)に配置され、エジェクタ14の冷媒吸引口14bに接続される吸引側冷媒流路18は空気流れF1の下流側(風下側)に配置されている。
蒸発器20には、冷媒入口をなすエジェクタ側冷媒入口20aおよび絞り機構側冷媒入口20bと、冷媒出口20cとが形成されている。エジェクタ側冷媒入口20aは、エジェクタ14のノズル部14aと連通している。絞り機構側冷媒入口20bは、絞り機構17と連通している。冷媒出口20cは、流出側冷媒流路15と連通している。
蒸発器20の具体例を図2〜図6により説明する。図中、上下の矢印は、車両搭載状態における車両上下方向(重力方向)を示している。
蒸発器20は、互いに積層された多数個のチューブ形成部材21を有している。各チューブ形成部材21の内部には、エジェクタ14、流出側冷媒流路15、絞り機構17および吸引側冷媒流路18が形成されている。チューブ形成部材21は、断面形状が空気流れ方向F1に沿って扁平になっている。
蒸発器20のエジェクタ側冷媒入口20a、絞り機構側冷媒入口20bおよび蒸発器20の冷媒出口20cは、多数個のチューブ形成部材21のうち、その積層方向の一端に位置するチューブ形成部材21に形成されている。
チューブ形成部材21は、1つの有孔部材211および2つの閉塞部材212、213を有している。1つの有孔部材211は、エジェクタ14、流出側冷媒流路15、絞り機構17および吸引側冷媒流路18に対応する孔が打ち抜かれた平板状の部材である。2つの閉塞部材212、213は、有孔部材211の孔を有孔部材211の表裏両側から塞ぐ平板状の部材である。
有孔部材211および閉塞部材212、213は、空気流れ方向F1と直交する方向(図4、図5の上下方向)を長手方向とする矩形平板状に形成されている。
有孔部材211および閉塞部材212、213が互いに重ね合わされて接合されることによって、チューブ形成部材21が形成されている。
有孔部材211のうち、その長手方向一端部(図5の上端部)には、エジェクタ側入口タンク孔211a、絞り機構側入口タンク孔211bおよび出口タンク孔211cが形成されている。
エジェクタ側入口タンク孔211aは、エジェクタ14のノズル部14aに繋がっている。絞り機構側入口タンク孔211bは、絞り機構17に繋がっている。出口タンク孔211cは、流出側冷媒流路15に繋がっている。
エジェクタ14は、ノズル部14a側が有孔部材211の長手方向一端側(図5の上方側)を向き、ディフューザ部14d側が有孔部材211の長手方向他端側(図5の下方側)を向いている。
エジェクタ14のディフューザ部14dは、有孔部材211の長手方向他端側にて流出側冷媒流路15に繋がっている。流出側冷媒流路15は、有孔部材211の長手方向他端側から長手方向一端側に延びて出口タンク孔211cに繋がっている。
吸引側冷媒流路18は、絞り機構17から有孔部材211の長手方向他端側に延び、有孔部材211の長手方向一端側に向かってUターンしてエジェクタ14の冷媒吸引口14bに繋がっている。
エジェクタ14は、流出側冷媒流路15と吸引側冷媒流路18との間に配置されている。
流出側冷媒流路15および吸引側冷媒流路18は、冷媒流れ下流側に向かうにつれて流路幅(流路断面積)が徐々に拡大している。
図3、図4、図6に示すように、閉塞部材212、213には、管状に突出するエジェクタ側管状部212a、213a、絞り機構側管状部212b、213b、および出口側管状部212c、213cが形成されている。
これらの管状部212a、213a、212b、213b、212c、213cは、バーリング加工によって閉塞部材212、213と一体に成形されている。
一方の閉塞部材212の管状部212a、212b、212cは、先端が拡管されている。管状部212a、212b、212cの拡管された先端に、隣接するチューブ形成部材21の他方の閉塞部材213の管状部213a、213b、213cが挿入されて接合されている。したがって、管状部212a、213a、212b、213b、212c、213cは、互いに隣接するチューブ形成部材21同士を接合する接合部の役割を果たす。
エジェクタ側管状部212a、213aは、有孔部材211のエジェクタ側入口タンク孔211aと重合している。したがって、エジェクタ側管状部212a、213aは、互いに隣接するチューブ形成部材21のエジェクタ側入口タンク孔211a同士を連通する連通部の役割を果たす。
エジェクタ側管状部212a、213aおよびエジェクタ側入口タンク孔211aは、各チューブ形成部材21のエジェクタ14のノズル部に冷媒を分配する分配タンクを構成している。
絞り機構側管状部212b、213bは、有孔部材211の絞り機構側入口タンク孔211bと重合している。したがって、絞り機構側管状部212b、213bは、互いに隣接するチューブ形成部材21の絞り機構側入口タンク孔211b同士を連通する連通部の役割を果たす。
絞り機構側管状部212b、213bおよび絞り機構側入口タンク孔211bは、各チューブ形成部材21の絞り機構17および吸引側冷媒流路18に冷媒を分配する分配タンクを構成している。
出口側管状部212c、213cは、有孔部材211の出口タンク孔211cと重合している。したがって、出口側管状部212c、213cは、互いに隣接するチューブ形成部材21の出口タンク孔211c同士を連通する連通部の役割を果たす。
出口側管状部212c、213cおよび出口タンク孔211cは、各チューブ形成部材21の流出側冷媒流路15からの冷媒を集合させる集合タンクを構成している。
多数個のチューブ形成部材21相互間には、チューブ形成部材21と接合されるフィン20eが配置されている。チューブ形成部材21とフィン20eの積層構造の空隙部を電動送風機19の送風空気が通過するようになっている。
フィン20eは、冷媒と空気との熱交換を促進させる熱交換促進部材である。フィン20eは、薄板材を波状に曲げ成形したコルゲートフィンであり、チューブ形成部材21の平坦な外面側に接合され空気側伝熱面積を拡大している。蒸発器20は、フィン20eを備えないフィンレスタイプの熱交換器であってもよい。
多数個のチューブ形成部材21とフィン20eとの積層構造によって、冷媒と空気とを熱交換させる上流側熱交換コア部および下流側熱交換コア部が形成されている。
上流側熱交換コア部は、流出側冷媒流路15を有し、蒸発器20のうち空気流れF1の上流側領域に配置されている。下流側熱交換コア部は、吸引側冷媒流路18を有し、蒸発器20のうち空気流れF1の下流側領域を構成している。
有孔部材211、閉塞部材212、213およびフィン20eの具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形することにより、蒸発器20の全体構成を一体ろう付けにて組み付けることができる。
以上の構成において蒸発器20全体の冷媒流路を図2、図5により具体的に説明する。
エジェクタ側冷媒入口20aからエジェクタ側入口タンク孔211aに流入した気液2相冷媒は、エジェクタ14のノズル部14aに向かい、エジェクタ14(ノズル部14a→混合部14c→ディフューザ部14d)を通過して減圧され、この減圧後の低圧冷媒は矢印a1のように流出側冷媒流路15に流入する。この流出側冷媒流路15の冷媒は矢印a2のように出口タンク孔211cへと流れて冷媒出口20cから流出する。
絞り機構側冷媒入口20bから絞り機構側入口タンク孔211bに流入した液相冷媒は、絞り機構17に向かい、絞り機構17を通過して減圧され、この減圧後の低圧冷媒(気液2相冷媒)は吸引側冷媒流路18に流入する。
吸引側冷媒流路18の冷媒は、矢印a3のようにUターンして流れて冷媒吸引口14bからエジェクタ14内に吸引される。
次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は温度式膨張弁13を通過する。
この温度式膨張弁13では、流出側冷媒流路15の出口冷媒(圧縮機吸入冷媒)の過熱度が所定値となるように弁開度(冷媒流量)が調整され、高圧冷媒が減圧される。この温度式膨張弁13通過後の冷媒(中間圧冷媒)は、流量分配器16において、蒸発器20のエジェクタ側冷媒入口20aに流入する主流と、絞り機構側冷媒入口20bに流入する分岐流とに分流する。
エジェクタ側冷媒入口20aに流入した冷媒はノズル部14aで減圧され膨張する。したがって、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は高速度となって噴出する。この高速度の噴射冷媒の流れによる冷媒圧力低下により、冷媒吸引口14bから吸引側冷媒流路18通過後の分岐流れ冷媒(気相冷媒)を吸引する。
ノズル部14aから噴射された冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。このディフューザ部14dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そしてエジェクタ14のディフューザ部14dから流出した冷媒は流出側冷媒流路15を流れる。この間に、流出側冷媒流路15では低温の低圧冷媒が矢印F1方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は1つの冷媒出口20cから圧縮機11に吸入され、再び圧縮される。
一方、絞り機構側冷媒入口20bに流入した分岐冷媒は絞り機構17で減圧されて低圧冷媒(気液2相冷媒)となり、この低圧冷媒が吸引側冷媒流路18を流れる。この間に吸引側冷媒流路18では、低温の低圧冷媒が、流出側冷媒流路15通過後の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。
以上のごとく、エジェクタ14のディフューザ部14dの下流側冷媒を流出側冷媒流路15に供給するととともに、分岐流れ冷媒を絞り機構17を通して吸引側冷媒流路18にも供給できるので流出側冷媒流路15および吸引側冷媒流路18で同時に冷却作用を発揮できる。 そのため、流出側冷媒流路15および吸引側冷媒流路18の両方で冷却された冷風を冷却対象空間に吹き出して冷却対象空間を冷房(冷却)できる。
その際に、流出側冷媒流路15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力であり、一方、吸引側冷媒流路18の出口側はエジェクタ14の冷媒吸引口14bに接続されているから、ノズル部14aでの減圧直後の最も低い圧力を吸引側冷媒流路18に作用させることができる。
これにより、流出側冷媒流路15の冷媒蒸発圧力(冷媒蒸発温度)よりも吸引側冷媒流路18の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。そして、冷媒蒸発温度が高い流出側冷媒流路15を空気流れ方向F1の上流側に配置し、冷媒蒸発温度が低い吸引側冷媒流路18を空気流れ方向F1の下流側に配置しているから、流出側冷媒流路15における冷媒蒸発温度と送風空気との温度差および吸引側冷媒流路18における冷媒蒸発温度と送風空気との温度差を両方とも確保できる。
このため、第1、第2蒸発流路15、18の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間に対する冷却性能を第1、第2蒸発流路15、18の組み合わせにて効果的に向上できる。また、ディフューザ部14dでの昇圧作用により圧縮機11の吸入圧を上昇して、圧縮機11の駆動動力を低減できる。
本実施形態によると、エジェクタ14から流出した冷媒を流出側冷媒流路15(流出側蒸発器)へ導くための冷媒流路を、冷媒配管を用いることなく、蒸発器20内に形成しているので、蒸発器20を小型化できるとともに、ディフューザ部14dにて昇圧した冷媒の圧力損失を抑制できる。その結果、エジェクタ14によるサイクル効率(COP)向上効果、すなわち圧縮機の消費動力を低減させることによるCOP向上効果を充分に得ることができる。
本実施形態では、冷媒が互いに並列に流れる多数個のチューブ形成部材21のそれぞれに、流出側冷媒流路15、吸引側冷媒流路18およびエジェクタ14が形成されている。
これによると、蒸発器20のバリエーションによってチューブ形成部材21の個数が増減するとエジェクタ14の個数も増減する。換言すれば、流出側冷媒流路15および吸引側冷媒流路18の本数が増減すると、エジェクタ14のノズルのサイズや冷媒吸引能力も蒸発器20全体として増減する。
したがって、蒸発器20のバリエーションに対してエジェクタ14の設計を共通化しても性能の低下やサイクル成績係数COPの低下を抑制できるので、蒸発器20のバリエーションを容易に多様化できる。
すなわち、1つのチューブ形成部材21当たりでエジェクタ14を最適化すればよいので、蒸発器20のバリエーションを容易に多様化できる。
例えば、蒸発器20の能力が少なくてもいい仕様においては蒸発器20自身が小型になるが、大能力が必要な仕様においては蒸発器20自身が大きくなる。本実施形態では、蒸発器20が大きくなる分チューブ形成部材21の個数が増えれば、エジェクタ14の個数も増えてノズルのサイズや冷媒吸引能力も全体として増えるので、蒸発器20のサイズ毎にエジェクタ14を最適化する必要がない。
また、1つの蒸発器20当たりに使われるエジェクタ14の個数が多いため、エジェクタ14の生産量を増加でき、ひいてはエジェクタ14のコストダウンを図ることができる。
また、エジェクタ14が蒸発器20に内蔵されるので、エジェクタ式冷凍サイクル10の製品への搭載性を向上できる。
本実施形態では、流出側冷媒流路15および吸引側冷媒流路18は、冷媒の下流側に向かうにつれて流路断面積が増加している。
これによると、流出側冷媒流路15および吸引側冷媒流路18において冷媒が蒸発して体積が増加するにつれて流出側冷媒流路15および吸引側冷媒流路18の流路断面積も増加するので、冷媒の蒸発に伴う圧力損失の増加を抑制できる。
本実施形態では、互いに隣接するチューブ形成部材21のうち一方のチューブ形成部材21に形成された管状部212a、212b、212cは拡管状の先端部を有している。その拡管状の先端部には、他方のチューブ形成部材21の管状部213a、213b、213cが挿入されている。これにより、多数個のチューブ形成部材21を容易に繋ぐことができる。
本実施形態では、チューブ形成部材21は絞り部17を形成している。絞り部17は、吸引側冷媒流路18に流入する冷媒の流れを絞るノズル形状を有している。
これによると、絞り部17をチューブ形成部材21に一体化できるので、部品点数を削減でき、ひいては冷凍サイクル全体の構成を簡素化できる。また、蒸発器20全体として絞り部17が多数個あるため、どれか1つの絞り部17が詰まっても冷凍サイクルが破綻することを回避できる。
さらに、絞り部17はノズル形状を有しているので、エジェクタ14のノズル部14aと同様のノズル特性を絞り部17に持たせることができる。そのため、絞り部17とノズル部14aとの冷媒流量割合を容易に設定できる。
本実施形態では、チューブ形成部材21は、エジェクタ14を、流出側冷媒流路15と吸引側冷媒流路18との間に形成している。これにより、チューブ形成部材21の体格を極力大型化させることなくチューブ形成部材21にエジェクタ14を形成することができる。
本実施形態では、チューブ形成部材21は、エジェクタ14、第1冷媒流路15および第2冷媒流路18に対応する孔が打ち抜かれた板状の有孔部材211と、有孔部材211の孔を有孔部材211の表裏両側から塞ぐ板状の閉塞部材212、213とが接合されることによって形成されている。
これによると、エジェクタ14が平面状に形成されるので、エジェクタ14の製造精度を容易に高めることができる。例えば、エジェクタ14のうち同軸度等の高精度を必要とする部分の製造が容易になる。また、チューブ形成部材21を、打ち抜きなどの加工で大量に安価に製造できる。
(第2実施形態)
本実施形態では、図7に示すように、流量分配器16を蒸発器20に一体化している。
有孔部材211のうち、その長手方向一端部(図7の上端部)には、入口タンク孔211dおよび出口タンク孔211cが形成されている。入口タンク孔211dは、冷媒が流入する入口空間である。出口タンク孔211cは、冷媒が流出する出口空間である。
有孔部材211には、入口タンク孔211dとエジェクタ14のノズル部14aとを繋ぐノズル側連通流路211eと、入口タンク孔211dと絞り機構17とを繋ぐ吸引側連通流路211fとが形成されている。これにより、入口タンク孔211dは、エジェクタ14のノズル部14aおよび絞り機構17に繋がっており、出口タンク孔211cは、流出側冷媒流路15に繋がっている。
入口タンク孔211d、ノズル側連通流路211eおよび吸引側連通流路211fによって流量分配器16が構成されている。
ノズル側連通流路211eおよび吸引側連通流路211fは、入口タンク孔211dから斜め下向きに延びている。
図8に示すように、閉塞部材212、213には、管状に突出する入口側管状部212d、213dおよび出口側管状部212c、213cが形成されている。
これらの管状部212d、213d、212c、213cは、バーリング加工によって閉塞部材212、213と一体に成形されている。
一方の閉塞部材212の管状部212d、212cは、先端が拡管されている。管状部212d、212cの拡管された先端に、隣接するチューブ形成部材21の他方の閉塞部材213の管状部213d、213cが挿入されて接合されている。したがって、管状部212d、213d、212c、213cは、互いに隣接するチューブ形成部材21同士を接合する接合部の役割を果たす。
入口側管状部212d、213dは、有孔部材211の入口タンク孔211dと重合している。したがって、入口側管状部212dは、互いに隣接するチューブ形成部材21の入口タンク孔211d同士を連通する連通部の役割を果たす。
入口側管状部212dおよび入口タンク孔211dは、各チューブ形成部材21のエジェクタ14のノズル部および絞り機構17に冷媒を分配する分配タンクを構成している。
本実施形態によると、蒸発器20全体として冷媒入口および冷媒出口を1つずつ設けるだけでよい。
本実施形態では、チューブ形成部材21は、冷媒が流入する入口空間211dと、入口空間211dとノズル部14aとを連通するノズル側連通流路211eと、入口空間211dと吸引側冷媒流路18とを連通する吸引側連通流路211fとを形成している。
これによると、冷媒をノズル部14a側と吸引側冷媒流路18側とに分配する分配部16をチューブ形成部材21に一体化できるので、部品点数を削減でき、ひいては冷凍サイクル全体の構成を簡素化できる。
(第3実施形態)
上記第2実施形態では、ノズル側連通流路211eおよび吸引側連通流路211fは、入口タンク孔211dから斜め下向きに延びているが、本実施形態では、図9に示すように、ノズル側連通流路211eは、入口タンク孔211dから水平方向に延びており、吸引側連通流路211fは、入口タンク孔211dから鉛直下向きに延びている。
すなわち、ノズル側連通流路211eは、吸引側連通流路211fよりも重力方向上方側に配置されている。
これにより、入口タンク孔211dに流入した冷媒(温度式膨張弁13通過後の冷媒)を、エジェクタ14のノズル部14aに向かう気液2相冷媒流と、絞り機構17に向かう液相冷媒流とに重力を利用して分離できる。
本実施形態では、ノズル側連通流路211eは、吸引側連通流路211fよりも重力方向上方側に配置されている。これにより、ノズル部14a側に向かう気液2相冷媒流と、吸引側冷媒流路18側に向かう液相冷媒流とに重力を利用して分離できる。
(第4実施形態)
上記実施形態では、絞り機構17はノズル形状を有しているが、図10に示すように、絞り機構17はオリフィス形状を有していてもよい。絞り機構17はキャピラリ形状を有していてもよい。
(第5実施形態)
上記実施形態では、有孔部材211および閉塞部材212、213が互いに重ね合わされて接合されることによって、チューブ形成部材21が形成されているが、図11、図12、図13に示すようにチューブ形成部材21が形成されていてもよい。
図11の例では、チューブ形成部材21は、エジェクタ14、流出側冷媒流路15、絞り機構17および吸引側冷媒流路18等に対応する形状がプレス成形された2つの成形部材214、215が互いに重ね合わされて接合されていることによって形成されている。
図12の例では、チューブ形成部材21は、エジェクタ14、流出側冷媒流路15、絞り機構17および吸引側冷媒流路18等に対応する形状がプレス成形された1つの成形部材216と、1つの板状の重合部材217とが重ね合わされて接合されていることによって形成されている。
図13の例では、流出側冷媒流路15および吸引側冷媒流路18にインナーフィン218が配置されている。インナーフィン218は、冷媒と空気との熱交換を促進させる熱交換促進部材である。インナーフィン218は、薄板材に形成されており、チューブ形成部材21の平坦な内面側に接合され空気側伝熱面積を拡大している。
(第6実施形態)
本実施形態では、図14に示すように、多数個のチューブ形成部材21相互間に、蓄冷パック22が積層配置されている。蓄冷パック22は、チューブ形成部材21とは異なる非チューブ形成部材である。蓄冷パック22は、フィン20eを介してチューブ形成部材21と接合されている。蓄冷パック22は、蒸発器20を流れる冷媒が持つ冷熱を蓄える蓄冷部材である。
蓄冷パック22は、蓄冷材と蓄冷材収容部材とを有している。蓄冷材は、冷熱を蓄える蓄冷物質である。例えば、蓄冷材はパラフィンである。蓄冷材は、酢酸ナトリウム水和物などでもよい。蓄冷材収容部材は、蓄冷材を収容する部材である。蓄冷材収容部材は、チューブ形成部材21と同様の外形を有している。蓄冷材収容部材の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適である。アルミニウム材にて蓄冷材収容部材を成形することにより、蒸発器20の全体構成を一体ろう付けにて組み付けることができる。
蓄冷パック22の蓄冷材収容部材は、両隣に位置するチューブ形成部材21同士の間で冷媒を流通させる冷媒流通孔を有している。
チューブ形成部材21の内部を流れる冷媒が持つ冷熱は、チューブ形成部材21、フィン20eおよび蓄冷パック22の蓄冷材収容部材を介して蓄冷パック22の蓄冷材に熱伝導される。これにより、蓄冷材は、蒸発器20を流れる冷媒が持つ冷熱を蓄える。
本実施形態では、多数個のチューブ形成部材21および蓄冷部材22は、互いに積層配置されている。これにより、冷媒が持つ冷熱を蓄冷部材22で蓄えることができるので、蒸発器20に蓄冷機能を持たせることができる。
本実施形態では、蓄冷部材22は、フィン20eを介してチューブ形成部材21と接合されている。これにより、冷媒が持つ冷熱を蓄冷部材22で効果的に蓄えることができるので、蒸発器20の蓄冷機能を高めることができる。
(第7実施形態)
本実施形態では、図15に示すように、多数個のチューブ形成部材21相互間に、補強部材23が積層配置されている。補強部材23は、チューブ形成部材21とは異なる非チューブ形成部材である。補強部材23は、フィン20eを介してチューブ形成部材21と接合されている。補強部材23は、蒸発器20の強度を増加させるための部材である。
補強部材23は、チューブ形成部材21よりも高い剛性を有する剛性部材である。補強部材23はフィン20eを介してチューブ形成部材21と接合されている。
補強部材23は、チューブ形成部材21と同様の外形を有している。補強部材23の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適である。アルミニウム材にて補強部材23を成形することにより、蒸発器20の全体構成を一体ろう付けにて組み付けることができる。補強部材23は、部分的に中空な形状を有していてもよい。
補強部材23は、両隣に位置するチューブ形成部材21同士の間で冷媒を流通させる冷媒流通孔を有している。
本実施形態では、多数個のチューブ形成部材21および補強部材23は、互いに積層配置されている。これにより、蒸発器20の強度を増加させることができるので、静粛性を向上できる。
本実施形態では、補強部材23は、フィン20eを介してチューブ形成部材21と接合されている。これにより、蒸発器20の強度を確実に増加させることができるので、静粛性を確実に向上できる。
(他の実施形態)
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(1)上述の実施形態において、蒸発器20はエジェクタ14、第1、第2蒸発流路15、18を一体化して構成されているが、蒸発器20に他のエジェクタ式冷凍サイクル構成部品を一体化してもよい。例えば、蒸発器20に温度式膨張弁13と感温部13aとを一体的に組みつけてもよい。
(2)上述の実施形態では、蒸発器20の各部材を一体に組み付けるに際して各部材を一体ろう付けしているが、これらの部材の一体組み付けは、ろう付け以外に、ねじ止め、かしめ、溶接、接着等の種々な固定手段を用いて行うことができる。
(3)上述の実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系、炭化水素系等の冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素のように高圧圧力が臨界圧力を超える冷媒を採用してもよい。
(4)上記の実施形態では、蒸発器20を室内側熱交換器として構成し、放熱器12を大気側へ放熱する室外熱交換器として構成しているが、逆に、蒸発器20を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。
(5)上述の各実施形態では、車両用の冷凍サイクルについて説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても本発明を同様に適用できることはもちろんである。
14 エジェクタ
14a ノズル部
14b 冷媒吸引口
14d ディフューザ部(昇圧部)
15 流出側冷媒流路
18 吸引側冷媒流路
21 チューブ形成部材
211d 入口タンク孔(入口空間)
211e ノズル側連通流路
211f 吸引側連通流路

Claims (16)

  1. 冷媒を減圧させるノズル部(14a)と、前記ノズル部(14a)から噴射された前記冷媒の流れによって前記冷媒を吸引する冷媒吸引口(14b)と、前記冷媒吸引口(14b)から吸引された冷媒と前記ノズル部(14a)から噴射された前記冷媒とを混合させて昇圧させる昇圧部(14d)とを有するエジェクタ(14)と、
    前記昇圧部(14d)から流出した前記冷媒が熱交換しながら流れる流出側冷媒流路(15)と、
    前記冷媒吸引口(14b)に吸引される前記冷媒が熱交換しながら流れる吸引側冷媒流路(18)と、
    を形成するチューブ形成部材(21)を多数個備え、
    前記多数個のチューブ形成部材(21)に前記冷媒が互いに並列に流れることを特徴とする熱交換器。
  2. 前記チューブ形成部材(21)は、
    前記冷媒が流入する入口空間(211d)と、
    前記入口空間(211d)と前記ノズル部(14a)とを連通するノズル側連通流路(211e)と、
    前記入口空間(211d)と前記吸引側冷媒流路(18)とを連通する吸引側連通流路(211f)とを形成していることを特徴とする請求項1に記載の熱交換器。
  3. 前記ノズル側連通流路(211e)は、前記吸引側連通流路(211f)よりも重力方向上方側に配置されていることを特徴とする請求項2に記載の熱交換器。
  4. 前記流出側冷媒流路(15)および前記吸引側冷媒流路(18)のうち少なくとも一方の冷媒流路は、前記冷媒の下流側に向かうにつれて流路断面積が増加していることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。
  5. 互いに隣接する前記チューブ形成部材(21)のそれぞれに形成され、互いに隣接する前記チューブ形成部材(21)同士の間の冷媒流路を形成する管状部(212a、212b、212c、212d、213a、213b、213c、213d)を備え、
    互いに隣接する前記チューブ形成部材(21)のうち一方の前記チューブ形成部材(21)に形成された前記管状部(212a、212b、212c、212d)は拡管状の先端部を有しており、
    前記拡管状の先端部には、他方の前記チューブ形成部材(21)の前記管状部(213a、213b、213c、213d)が挿入されていることを特徴とする請求項1ないし4のいずれか1つに記載の熱交換器。
  6. 前記チューブ形成部材(21)は、前記吸引側冷媒流路(18)に流入する前記冷媒の流れを絞る絞り部(17)を形成しており、
    前記絞り部(17)はノズル形状を有していることを特徴とする請求項1ないし5のいずれか1つに記載の熱交換器。
  7. 前記チューブ形成部材(21)は、前記エジェクタ(14)を、前記流出側冷媒流路(15)と前記吸引側冷媒流路(18)との間に形成していることを特徴とする請求項1ないし6のいずれか1つに記載の熱交換器。
  8. 前記チューブ形成部材(21)は、
    前記エジェクタ(14)、前記第1冷媒流路(15)および前記第2冷媒流路(18)に対応する孔が打ち抜かれた板状の有孔部材(211)と、
    前記有孔部材(211)の孔を前記有孔部材(211)の表裏両側から塞ぐ板状の閉塞部材(212、213)とが接合されることによって形成されていることを特徴とする請求項1ないし7のいずれか1つに記載の熱交換器。
  9. 前記チューブ形成部材(21)は、前記第1冷媒流路(15)および前記第2冷媒流路(18)に対応する形状がプレス成形された2つの成形部材(214、215)が互いに重ね合わされて接合されていることによって形成されていることを特徴とする請求項1ないし7のいずれか1つに記載の熱交換器。
  10. 前記チューブ形成部材(21)は、前記第1冷媒流路(15)および前記第2冷媒流路(18)に対応する形状がプレス成形された1つの成形部材(216)と、前記成形部材(214、215)と重なり合う1つの板状の重合部材(217)とが接合されることによって形成されていることを特徴とする請求項1ないし7のいずれか1つに記載の熱交換器。
  11. 前記チューブ形成部材(21)は、前記流出側冷媒流路(15)および前記吸引側冷媒流路(18)に配置されて前記冷媒の熱交換を促進するインナーフィン(218)を有していることを特徴とする請求項1ないし10のいずれか1つに記載の熱交換器。
  12. 前記チューブ形成部材(21)とは異なる非チューブ形成部材(22、23)を備え、
    前記チューブ形成部材(21)および前記非チューブ形成部材(22、23)は、互いに積層配置されていることを特徴とする請求項1ないし11のいずれか1つに記載の熱交換器。
  13. 前記非チューブ形成部材は、冷熱を蓄える蓄冷部材(22)であることを特徴とする請求項12に記載の熱交換器。
  14. 前記蓄冷部材(22)は、前記冷媒の熱交換を促進させる熱交換促進部材(20e)を介して前記チューブ形成部材(21)と接合されていることを特徴とする請求項13に記載の熱交換器。
  15. 前記非チューブ形成部材は、前記チューブ形成部材(21)よりも高い剛性を有する補強部材(23)であることを特徴とする請求項12に記載の熱交換器。
  16. 前記補強部材(23)は、前記冷媒の熱交換を促進させる熱交換促進部材(20e)を介して前記チューブ形成部材(21)と接合されていることを特徴とする請求項15に記載の熱交換器。
JP2015161620A 2015-02-02 2015-08-19 熱交換器 Active JP6458680B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/544,601 US10302341B2 (en) 2015-02-02 2016-01-21 Ejector-integrated heat exchanger
DE112016000572.5T DE112016000572T5 (de) 2015-02-02 2016-01-21 Ejektor-integrierter Wärmetauscher
CN201680007492.4A CN107208944B (zh) 2015-02-02 2016-01-21 喷射器一体型热交换器
PCT/JP2016/000283 WO2016125437A1 (ja) 2015-02-02 2016-01-21 エジェクタ一体型熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018413 2015-02-02
JP2015018413 2015-02-02

Publications (2)

Publication Number Publication Date
JP2016145701A true JP2016145701A (ja) 2016-08-12
JP6458680B2 JP6458680B2 (ja) 2019-01-30

Family

ID=56685518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161620A Active JP6458680B2 (ja) 2015-02-02 2015-08-19 熱交換器

Country Status (4)

Country Link
US (1) US10302341B2 (ja)
JP (1) JP6458680B2 (ja)
CN (1) CN107208944B (ja)
DE (1) DE112016000572T5 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085418A (ja) * 2018-11-30 2020-06-04 昭和電工パッケージング株式会社 熱交換器
JP2021009015A (ja) * 2019-06-28 2021-01-28 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108277A1 (en) * 2014-05-28 2017-04-20 Rbc Green Energy Ii, Llc Air-Cooled Heat Exchange System
US10508864B2 (en) * 2017-08-14 2019-12-17 Hamilton Sundstrand Corporation Evaporative cooling in additive manufactured heat exchangers
KR102440596B1 (ko) * 2017-11-28 2022-09-05 현대자동차 주식회사 차량용 열교환기
US10473370B2 (en) * 2017-12-12 2019-11-12 GM Global Technology Operations LLC Ejector-receiver refrigeration circuit with valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045775A (ja) * 2006-08-11 2008-02-28 Denso Corp エジェクタ式冷凍サイクルユニット
JP2010014353A (ja) * 2008-07-04 2010-01-21 Denso Corp エジェクタ式冷凍サイクル用蒸発器ユニット
JP2011047615A (ja) * 2009-08-28 2011-03-10 Denso Corp エジェクタ式冷凍サイクル用ユニット

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE572855A (ja) * 1957-11-12 1900-01-01
US4595344A (en) * 1982-09-30 1986-06-17 Briley Patrick B Ejector and method of controlling same
US5117648A (en) * 1990-10-16 1992-06-02 Northeastern University Refrigeration system with ejector and working fluid storage
JP3866797B2 (ja) * 1995-10-20 2007-01-10 株式会社デンソー 冷媒蒸発器
BR9800780A (pt) * 1997-02-28 1999-10-13 Denso Corp Evaporador de refrigerante
JP3637314B2 (ja) * 2002-01-10 2005-04-13 三菱重工業株式会社 積層型蒸発器
JP3610518B2 (ja) * 2002-01-29 2005-01-12 株式会社ゼクセルヴァレオクライメートコントロール レシーバタンク一体型コンデンサ
JP2007040612A (ja) * 2005-08-03 2007-02-15 Denso Corp 蒸気圧縮式サイクル
JP2007192502A (ja) * 2006-01-20 2007-08-02 Denso Corp 熱交換器
WO2007094422A1 (ja) * 2006-02-15 2007-08-23 Gac Corporation 熱交換器
JP4265677B2 (ja) * 2007-06-20 2009-05-20 株式会社デンソー エジェクタ式冷凍サイクル用ユニット
DE102008052331A1 (de) * 2007-10-24 2009-06-10 Denso Corp., Kariya-shi Verdampfereinheit
DE102008005077B4 (de) * 2008-01-18 2021-11-04 Valeo Klimasysteme Gmbh Plattenverdampfer, insbesondere für einen Kältemittelkreis
JP5493769B2 (ja) * 2009-01-12 2014-05-14 株式会社デンソー 蒸発器ユニット
JP2014055765A (ja) * 2009-01-12 2014-03-27 Denso Corp 蒸発器ユニット
JP5381875B2 (ja) * 2010-04-05 2014-01-08 株式会社デンソー 蒸発器ユニット
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
KR101261904B1 (ko) * 2010-12-23 2013-05-08 한라비스테온공조 주식회사 판형 열교환기
JP2013256262A (ja) * 2012-06-14 2013-12-26 Denso Corp 蓄冷熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045775A (ja) * 2006-08-11 2008-02-28 Denso Corp エジェクタ式冷凍サイクルユニット
JP2010014353A (ja) * 2008-07-04 2010-01-21 Denso Corp エジェクタ式冷凍サイクル用蒸発器ユニット
JP2011047615A (ja) * 2009-08-28 2011-03-10 Denso Corp エジェクタ式冷凍サイクル用ユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085418A (ja) * 2018-11-30 2020-06-04 昭和電工パッケージング株式会社 熱交換器
JP7166153B2 (ja) 2018-11-30 2022-11-07 昭和電工パッケージング株式会社 熱交換器
JP2021009015A (ja) * 2019-06-28 2021-01-28 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US11549733B2 (en) 2019-06-28 2023-01-10 Daikin Industries, Ltd. Heat exchanger and heat pump device

Also Published As

Publication number Publication date
CN107208944A (zh) 2017-09-26
DE112016000572T5 (de) 2017-11-02
US20180087848A1 (en) 2018-03-29
CN107208944B (zh) 2019-08-13
JP6458680B2 (ja) 2019-01-30
US10302341B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6458680B2 (ja) 熱交換器
KR100879748B1 (ko) 이젝터 타입 냉동사이클용 유닛
US8434324B2 (en) Evaporator unit
JP5050563B2 (ja) エジェクタ及びエジェクタ式冷凍サイクル用ユニット
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
US7726150B2 (en) Ejector cycle device
JP2007192503A (ja) エジェクタ式冷凍サイクル用ユニット
JP2007192465A (ja) 蒸発器ユニットおよびエジェクタ式冷凍サイクル
JP4978686B2 (ja) 蒸発器ユニット
JP5316465B2 (ja) 蒸発器ユニット
JP5381875B2 (ja) 蒸発器ユニット
JP5062066B2 (ja) エジェクタ式冷凍サイクル用蒸発器ユニット
JP4770891B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP2008138895A (ja) 蒸発器ユニット
JP5609845B2 (ja) 冷媒用の遠心式分配器および冷凍サイクル
JP4548266B2 (ja) 蒸気圧縮式冷凍サイクル装置
WO2016125437A1 (ja) エジェクタ一体型熱交換器
JP4577291B2 (ja) 冷媒蒸発器
JP4784418B2 (ja) エジェクタ式冷凍サイクルおよび蒸発器ユニット
JP2009058179A (ja) エジェクタ式冷凍サイクル用ユニット
JP4998445B2 (ja) 蒸発器および冷凍サイクル装置
JP5017925B2 (ja) エジェクタ、蒸発器ユニットおよびエジェクタ式冷凍サイクル
JP2008075904A (ja) 蒸発器ユニットおよびエジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R151 Written notification of patent or utility model registration

Ref document number: 6458680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250