JP2016085240A - 光学塗膜、光学塗膜の製造方法、及び反射防止膜 - Google Patents

光学塗膜、光学塗膜の製造方法、及び反射防止膜 Download PDF

Info

Publication number
JP2016085240A
JP2016085240A JP2014215813A JP2014215813A JP2016085240A JP 2016085240 A JP2016085240 A JP 2016085240A JP 2014215813 A JP2014215813 A JP 2014215813A JP 2014215813 A JP2014215813 A JP 2014215813A JP 2016085240 A JP2016085240 A JP 2016085240A
Authority
JP
Japan
Prior art keywords
coating film
optical coating
group
polymer emulsion
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014215813A
Other languages
English (en)
Other versions
JP6573445B2 (ja
Inventor
廣瀬 淳一
Junichi Hirose
淳一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014215813A priority Critical patent/JP6573445B2/ja
Publication of JP2016085240A publication Critical patent/JP2016085240A/ja
Application granted granted Critical
Publication of JP6573445B2 publication Critical patent/JP6573445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】多湿環境下においても優れた反射防止特性を維持可能で斜めから入射する光に対する反射防止性に優れる光学塗膜を得る。
【解決手段】基材上に形成される塗膜よりなる光学塗膜であって、前記塗膜中の空隙(X)の長径(L)と短径(D)とが1<L/D<3であり、20°光沢値が10以下である光学塗膜。
【選択図】なし

Description

本発明は、光学塗膜、光学塗膜の製造方法、及び反射防止膜に関する。
従来、光学塗膜である反射防止膜の多くは、塗膜を形成する第1の工程と、当該塗膜中に空隙を形成させる第2の工程とによって製造されている。このように、塗膜を形成した後、塗膜中に空隙を形成することにより、反射防止膜は、その塗膜屈折率を低下させ、反射率を低下させている。
例えば、特許文献1〜4においては、多孔起因剤を用いて塗膜中に空隙を導入した多孔体が開示されている。
また特許文献5〜7においては、多孔起因材を塗膜から抽出することが不要な低屈折率の多孔体を成膜する方法として、鎖状の金属酸化物を含有する塗布液を用いて多孔体を成膜する方法が開示されている。
さらに、特許文献8及び10においては、鎖状のシリカゾル及び球状微粒子を含有する塗布液を用いて得られた、耐擦傷性に優れた反射防止膜が開示されている。
さらにまた、特許文献9においては、機械的強度、透明性、耐候性、耐薬品性、光学特性、防汚性、防曇性、及び帯電防止性等に優れた水性高分子分散体を用いた塗膜が開示さ
れている。
またさらに、特許文献11においては、防汚性能に優れたコーティング組成物が記載されている。
特開平01−312501号公報 特開平07−140303号公報 特開平03−199043号公報 特開平11−035313号公報 特開2001−188104号公報 特開平11−061043号公報 特開平11−292568号公報 特開2005−10470号公報 国際公開第2007/069596号パンフレット 特表2011−530401号公報 国際公開第2010/104146号パンフレット
しかしながら、特許文献1〜4に開示されている技術においては、空隙の形成に用いた多孔起因剤を抽出工程で除去する際に、膜が膨潤してしまい、空隙の外観不良や膜剥離を起こすという問題や、成膜工程が煩雑であるという問題を有している。
また、特許文献5〜7に開示されている方法で得られた多孔体は、機械的強度に乏しいという問題を有している。さらに、特許文献8及び10に開示されている反射防止膜は、耐候性に改善の余地があるという問題を有している。さらにまた、特許文献9、特許文献11に開示されている塗膜は、斜めから入射する光に対する反射防止特性に改善の余地があるという問題を有している。
そこで本発明においては、上述した従来技術の問題点に鑑み、多湿環境下においても優れた反射防止特性を維持可能で斜めから入射する光に対する反射防止性に優れる光学塗膜を提供することを目的とする。
本発明者らは上記課題を解決すべく鋭意検討した結果、内部に空隙を有する光学塗膜において、空隙(X)の長径(L)とそれと直交する短径の最大値(D)との比率(L/D)と20°光沢値を特定することにより、多湿環境下で反射防止特性を長期間維持可能で斜めからの入射光に対する反射防止性能に優れる光学塗膜が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
〔1〕
基材上に形成される塗膜よりなる光学塗膜であって、
前記塗膜中の空隙(X)の長径(L)と短径(D)とが1<L/D<3であり、20°光沢値が10以下である光学塗膜。
〔2〕
前記光学塗膜が、金属酸化物(A)及び重合体エマルジョン粒子(B)を含むコーティング組成物を塗布し、乾燥して形成される光学塗膜の前駆体を、500℃以上の温度で焼結することにより形成されたものである、前記〔1〕に記載の光学塗膜。
〔3〕
金属酸化物(A)と重合体エマルジョン粒子(B)とを含むコーティング組成物を塗布
し、25℃で10分以内に乾燥して、光学塗膜の前駆体を形成する工程と、前記前駆体を500℃以上の温度で焼結し、光学塗膜を形成する工程とを有する、光学塗膜の製造方法。
〔4〕
前記光学塗膜が反射防止膜である、前記〔1〕乃至〔3〕のいずれか一に記載の光学塗
膜。
〔5〕
前記〔4〕に記載の反射防止膜を含む太陽電池用ガラス。
〔6〕
前記〔4〕に記載の反射防止膜を含む太陽電池モジュール。
〔7〕
前記〔4〕に記載の反射防止膜を含む太陽電池用集光レンズ。
〔8〕
前記〔4〕に記載の反射防止膜を含む太陽熱発電用鏡。
〔9〕
前記〔4〕に記載の反射防止膜を含む太陽熱発電用集光ガラスチューブ。
本発明によれば、多湿環境下で反射防止特性を長期間維持可能で且つ斜めから入射する光に対する反射防止性に優れる光学塗膜が得られる。
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
〔光学塗膜〕
本実施形態の光学塗膜は、所定の基材上に形成される塗膜よりなり、当該塗膜中には、少なくとも、長径(L)とそれと直交する短径の最大値(D)の平均値(以下、「空隙サイズ」と記載する場合がある。):((L+D)/2)が、20nm以上の空隙(X)を有する。
また、前記空隙(X)の長径(L)と短径(D)とが、1<L/D<3である。
前記空隙(X)が前記基材との界面において、当該基材と非接触である。
(基材)
本実施形態の光学塗膜は、所定の基材上に形成されている塗膜よりなる。
基材は、本実施形態の光学塗膜の用途に応じて、種々選択可能である。
基材としては、以下に限定されるものではないが、金属、それらの組み合わせがいずれも適用でき、具体的には、太陽電池用の部材(ガラス、及びモジュール等)、太陽電池用集光レンズ、光電池、液晶ディスプレイ、メガネ、窓ガラス、テレビ等、光透過性の向上及び/又は映り込みの防止を必要としている各種の部材が挙げられる。
その他、太陽光発電用保護材、集光型太陽光発電用ミラー、太陽熱発電用ミラー、太陽チューブ、建築物、鋼構造物、建材、プラスチック、自動車等も基材として挙げられる。
(塗膜)
本実施形態の光学塗膜は、当該塗膜中に所定の空隙(X)を有している。
当該空隙(X)は、長径(L)とそれと直交する短径の最大値(D)(以下、単に「短径(D)」と記載する場合がある。)との平均値(空隙サイズ):((L+D)/2)が、20nm以上である。
前記空隙(X)の空隙サイズが20nm以上であることにより、高い反射防止の効果が得られる。前記空隙(X)の空隙サイズは、30nm以上であることが好ましく、40nm以上であることがより好ましい。
ここで、「短径の最大値」とは、空隙の長径(X)に直交する径が複数ある場合、それらの中で最大のものを言う。
なお、前記空隙サイズは、窒素吸着法から求めた細孔分布の平均値、細孔容積、平均細孔径から求めた空隙サイズ、電子顕微鏡で直接観察された空隙の最大径、あるいは球状粒子が細密充填した場合の最大空隙径の計算値等から求めることができる。具体的には、後述する実施例に記載する方法により求めることができる。
前記空隙(X)の空隙サイズを、20nm以上に制御するための方法としては、空隙形成材として用いる後述する重合体エマルジョン粒子(B)の組成を制御する方法、重合体エマルジョン粒子(B)のサイズを制御する行う方法、及び塗膜形成時の乾燥温度、乾燥時間、焼結温度や昇温速度を制御する方法等が挙げられる。
なお、本実施形態の光学塗膜は、上記空隙サイズが20nm以上の空隙(X)以外の空隙を有していてもよい。
本実施形態の光学塗膜において、前記空隙(X)の長径(L)と、前記短径(D)とは、1<L/D<3の関係を有している。これにより、優れた反射防止効果が得られる。
前記L/Dは1.2<L/D<2.5であることが好ましく、1.4<L/D<2であることがより好ましい。
前記空隙(X)の長径(L)と、短径(D)との比率を1<L/D<3に制御する方法としては、後述する重合体エマルジョン粒子(B)の架橋度を制御する方法や、乾燥温度、乾燥時間、焼結時の昇温速度を制御する方法が挙げられる。
本実施形態の光学塗膜は、前記空隙サイズが20nm未満の空隙(Y)をさらに有していることが好ましい。これにより、塗膜強度を向上させる効果が得られる。
また、前記空隙(Y)は、前記空隙(X)の周囲に有することが好ましい。ここで「周囲」とは、空隙(X)の表面に直接接触しているか、あるいは化学的に相互作用ができる程度の距離に存在することを意味し、これにより、塗膜強度の向上効果が得られる。
空隙(Y)の空隙サイズは、10nm以下であることが好ましく、5nm未満であることがより好ましい。
空隙(Y)を空隙(X)の周囲に形成し、かつ空隙(Y)の空隙サイズを20nm未満に制御する方法としては、後述する金属酸化物(A)の粒子径や、後述する加水分解性珪素化合物(C)の添加量を制御する方法が挙げられる。
本実施形態の光学塗膜は、金属酸化物(A)及び重合体エマルジョン粒子(B)を含むコーティング組成物を塗布し、乾燥して形成される前駆体を、500℃以上の温度で焼結することにより形成されたものである。
本実施形態の光学塗膜は、前記コーティング組成物中に、金属酸化物(A)及び重合体エマルジョン粒子(B)を含むことにより、金属酸化物(A)と重合体エマルジョン粒子(B)とのヘテロ凝集、又は金属酸化物(A)同士の凝集を形成させることができる。
焼結により(B)成分が除去される結果、空隙(X)、場合に応じて空隙(Y)が形成され、少なくとも空隙(X)は(A)成分の粒子間の空隙として形成される。
前記コーティング組成物において、加水分解性珪素化合物(C)をさらに含むことが好ましい。
コーティング組成物中に加水分解性珪素化合物(C)を含むことにより、前記空隙サイズが20nm未満の空隙(Y)に、前記加水分解性珪素化合物(C)を浸透させることができ、当該空隙(Y)の空隙サイズを制御することができる。
前記コーティング組成物においては、加水分解性珪素化合物(C)を含む場合、加水分解性珪素化合物(C)のシラノール基と前記金属酸化物(A)の表面に存在する水酸基との間の縮合反応により結合が形成したり、あるいは、加水分解性珪素化合物(C)と金属酸化物(A)との間に水素結合が形成したりする。これにより、前記コーティング組成物から得られる本実施形態の光学塗膜は、機械的強度がより増加する。なお、加水分解性珪素化合物(C)については後述する。
本実施形態の光学塗膜は、前記金属酸化物(A)や、前記加水分解性珪素化合物(C)に起因して、表面親水性が付与される場合、親水性の汚れに対して防汚効果を有する。すなわち、本実施形態の光学塗膜は、汚れが付着した場合でも雨水によって汚れを洗い流すことができる。
<金属酸化物(A)>
前記コーティング組成物に含まれる金属酸化物(A)は、球状の金属酸化物(a1)及び/又はアスペクト比(長径/短径)が3〜25の非球状の金属酸化物(a2)を含むことが好ましい。
ここで、前記球状の金属酸化物(a1)とは、アスペクト比(長径/短径)が3未満の粒子状態で存在している金属酸化物をいう。なお、アスペクト比は、一次粒子そのもので存在しているものについては、一次粒子のアスペクト比を、また、凝集粒子として存在しているものについては、凝集粒子のアスペクト比を指す。
前記球状の金属酸化物(a1)の存在形態は、一次粒子であっても、凝集粒子であってもよく、凝集粒子である場合、その形状は、完全な球である必要はなく、例えば、角部を有していてもよい。
ここで、球状の金属酸化物(a1)及び非球状の金属酸化物(a2)のアスペクト比は、透過型顕微鏡(TEM)で撮影された金属酸化物粒子の短径と長径とを測定し、当該測定値から長径/短径を算出することにより求められる。
なお、短径及び長径とは、各々順に、金属酸化物粒子に外接する面積が最小となる外接長方形の短辺及び長辺である。
前記球状の金属酸化物(a1)としては、以下に限定されるものではないが、例えば、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン等の酸化物が挙げられる。
前記球状の金属酸化物(a1)の平均粒子径は、本実施形態の光学塗膜の透明性、機械的強度の発現の観点から、1〜100nmであることが好ましく、より好ましくは1〜50nm、さらに好ましくは1〜10nmである。
ここで、球状の金属酸化物(a1)の平均粒子径とは、当該粒子が一次粒子の形で存在している場合には一次粒子径を、凝集粒子の形で存在している場合は凝集粒子径(二次粒子径)の平均粒子径であるものとし、当該平均粒子径は、以下の方法により求めることができる。
すなわち、球状の金属酸化物(a1)の粒子が100個〜200個写るように調整して撮影した透過型顕微鏡(TEM)写真の中に存在している該当の粒子の粒子径(二軸平均径、すなわち、短径と長径との平均値)を測定し、当該測定された各粒子径の平均値を算出することにより求めることができる。
前記球状の金属酸化物(a1)を形成する材料としては、以下に限定されるものではないが、例えば、日産化学工業株式会社製「スノーテックス−O(登録商標)」、同社製「スノーテックス−OS(登録商標)」、同社製「スノーテックス−OXS(登録商標)」、「ライトスター(登録商標)」、NalcoCompany製水分散コロイダルシリカ 商品名「NALCO1115」、同社製「ナノユースZR−40BL(登録商標)」、同社製「ナノユースZR−30BS(登録商標)」同社製「ナノユースZR−30BFN(登録商標)」同社製「ナノユースZR−30AL(登録商標)」同社製「ナノユースZR−20AS(登録商標)」同社製「ナノユースZR−30AH(登録商標)」同社製「セルナックスCX−Z330H(登録商標)」同社製「セルナックスCX−Z610M(登録商標)」同社製「セルナックスCX−Z410K(登録商標)」等が挙げられる。
前記非球状の金属酸化物(a2)とは、アスペクト比(長径/短径)が3以上の金属酸化物であり、例えば、金属酸化物(微)粒子の一次粒子が数珠状に連結した複合粒子、繊維状粒子、針状粒子、板状粒子、及びそれらの中空粒子等が挙げられる。
前記非球状の金属酸化物(a2)としては、以下に限定されるものではないが、例えば、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン等の酸化物が挙げられる。
前記非球状の金属酸化物(a2)は、上述したようにアスペクト比(長径/短径)が3〜25であり、3〜15であることが好ましく、3〜10であることがより好ましい。
また、前記非球状の金属酸化物(a2)の平均長径は、20〜250nmであることが好ましく、30〜150nmであることがより好ましく、40〜100nmであることがさらに好ましい。
本実施形態の光学塗膜は、空隙率、屈折率の観点から、前記非球状の金属酸化物(a2)は、アスペクト比(長径/短径)が3以上であることが好ましく、また平均長径が20nm以上であることが好ましい。また、光学塗膜の透明性、反射防止性能の観点から、前記非球状の金属酸化物(a2)のアスペクト比(長径/短径)は25以下であることが好ましく、平均長径は250nm以下であることが好ましい。
なお、前記非球状の金属酸化物(a2)の平均長径は、非球状の金属酸化物(a2)の粒子が100個〜200個写るように調整して撮影した透過型顕微鏡(TEM)写真の中に存在している該当の粒子の長径を測定し、当該測定された各長径の平均値を算出することにより求めることができる。
非球状の金属酸化物(a2)を形成する原料としては、以下に限定されるものではないが、例えば、日産化学工業株式会社製の「スノーテックス−OUP(登録商標)」、同社製「スノーテックス−UP(登録商標)」同社製「スノーテックス−PSSO(登録商標)」、同社製「スノーテックス−PSS(登録商標)」、アルミナゾル、擬ベーマイト系アルミナ、旭硝子株式会社製の鱗片状シリカ「サンラブリー」等が挙げられる。この非球状の金属酸化物(a2)は、三次元的に湾曲した形状を有していてもよい。
本実施形態の光学塗膜の機械的強度と反射防止効果を向上させる観点から、前記球状の金属酸化物(a1)と前記非球状の金属酸化物(a2)との混合比率(質量比)は1:1〜1:40が好ましく、より好ましくは1:3〜1:20、さらに好ましくは1:3〜1:10である。
本実施形態の光学塗膜を形成するコーティング組成物には、前記球状の金属酸化物(a1)及び非球状の金属酸化物(a2)の他に、例えば、ホウ素、リン、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン等などからなるその他の金属酸化物が含まれていてもよい。
<重合体エマルジョン粒子(B)>
本実施形態の光学塗膜を形成する前記コーティング組成物に含まれる重合体エマルジョン粒子(B)は、所定の重合体により構成されている。
当該重合体としては、以下に限定されるものではないが、例えば、ポリウレタン系、ポリエステル系、ポリ(メタ)アクリレート系、ポリ(メタ)アクリレート−シリコーン系共重合体、ポリビニルアセテート系、ポリブタジエン系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、ポリスチレン−(メタ)アクリレート系共重合体、ロジン系誘導体、スチレン−無水マレイン酸共重合体のアルコール付加物等から構成される重合体等が挙げられる。
前記重合体エマルジョン粒子(B)は、塗膜強度の観点から、ビニル単量体(b2)を重合単量体して含むことが好ましい。
ビニル単量体(b2)には、後述する2級及び/又は3級アミド基を有するビニル単量体(b2−2)や、アミノ基を有するビニル単量体、これらと共重合可能なその他のビニル単量体(b3)が含まれ得る。
また、当該ビニル単量体(b2)の質量比率は、焼結残分のムラが少なく、外観の良好な塗膜を形成する観点から、重合体エマルジョン粒子(B)中において20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。
前記重合体エマルジョン粒子(B)は、塗膜強度の観点から、加水分解性珪素化合物(b1)を含むことが好ましく、さらに好ましくは、前記ビニル単量体(b2)として特に2級及び/又は3級アミド基を有するビニル単量体(b2−2)を、重合単量体として含むことが好ましい。具体的には、水及び乳化剤の存在下で、加水分解性珪素化合物(b1)と、2級及び/又は3級アミド基を有するビニル単量体(b2−2)とを重合して得られる、重合体エマルジョン粒子であることがより好ましい。
重合体エマルジョン粒子(B)は、前記(b1)と(b2−2)とが重合したもの、(b1)、(b2−2)がそれぞれ重合したものの混合物、複合物のいずれであってもよく、これらの併用であってもよい。
前記重合体エマルジョン粒子(B)は、空隙形成の観点から、前記ビニル単量体(b2)としてアミノ基を有するビニル単量体(b2−3)を、重合単量体として含むことが好ましい。
前記金属酸化物(A)と重合体エマルジョン粒子(B)との相互作用としては、特に限定されないが、例えば、水素結合や化学結合、イオン結合等が挙げられる。具体的には、金属酸化物(A)が有する水酸基由来のアニオン性官能基と、重合体エマルジョン粒子(B)が有するアミノ基由来のカチオン性官能基とのイオン結合や、重合体エマルジョン粒子(B)が有するアミド基、エーテル基との水素結合や、金属酸化物(A)が有する水酸基と、重合体エマルジョン粒子(B)を構成する加水分解性金属化合物の重合生成物との縮合(化学結合)等が挙げられる。
前記のように、水及び乳化剤の存在下で、加水分解性珪素化合物(b1)と、2級及び/又は3級アミド基を有するビニル単量体(b2−2)とを重合して重合体エマルジョン粒子(B)を製造する場合に用いる加水分解性珪素化合物(b1)としては、以下に限定されるものではないが、例えば、下記式(1)で表される化合物やその縮合生成物、シランカップリング剤等が挙げられる。
SiWxRy ・・・(1)
(式(1)中、Wは炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、エノキシ基、アミノキシ基、アミド基からなる群より選ばれる少なくとも1種の基を表す。Rは、直鎖状又は分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、及び置換されていないか又は炭素数1〜20のアルキル基若しくは炭素数1〜20のアルコキシ基若しくはハロゲン原子で置換されている炭素数6〜20のアリール基からなる群より選ばれる少なくとも1種の炭化水素基を表す。xは1以上4以下の整数であり、yは0以上3以下の整数である。また、x+y=4である。)
前記加水分解性珪素化合物(b1)の一例である前記シランカップリング剤とは、ビニル重合性基、エポキシ基、アミノ基、メタクリル基、メルカプト基、イソシアネート基等の有機物と反応性を有する官能基が分子内に存在する、加水分解性珪素化合物である。
前記加水分解性珪素化合物(b1)としては、以下に限定されるものではないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン等のテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等のジアルコキシシラン類;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン類等が挙げられる。
また、これらの加水分解性珪素化合物(b1)は、1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。
加水分解性珪素化合物(b1)は、縮合生成物として使用してもよく、かかる場合、縮合生成物のGPC(ゲルパーミエーションクロマトグラフィー)測定によるポリスチレン換算重量平均分子量は、好ましくは200〜5000、より好ましくは300〜1000である。
上述の加水分解性珪素化合物(b1)の中で、フェニル基を有する珪素アルコキシド、例えばフェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等は、水及び乳化剤の存在下における重合安定性に優れるため好ましい。
また、上述の加水分解性珪素化合物(b1)の中で、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、2−トリメトキシシリルエチルビニルエーテル等のビニル重合性基を有するシランカップリング剤や、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン等のチオール基を有するシランカップリング剤は、上述した2級及び/又は3級アミド基を有するビニル単量体(b2−2)と共重合又は連鎖移動反応して化学結合を生成することが可能である。
加水分解性珪素化合物(b1)の使用量は、得られる重合体エマルジョン粒子(B)に対する質量比(b1)/(B)として0.005以上0.5以下の範囲となることが好ましい。
なお、重合体エマルジョン粒子(B)の質量は、上述した2級及び/又は3級アミド基を有するビニル単量体(b2−2)や、アミノ基を有するビニル重合体(b2−3)、これらと共重合可能なその他のビニル単量体(b3)、さらには加水分解性珪素化合物(b1)が全て重合した場合に得られる重合生成物の質量であるものとする。
前記加水分解性珪素化合物(b1)としては、ビニル重合性基を有するシランカップリング剤を用いることが、本実施形態の光学塗膜の耐候性の観点からより好ましい。
前記加水分解性珪素化合物(b1)の含有量は、重合安定性の観点から、重合体エマルジョン粒子(B)100質量%に対して、0.01質量%以上50質量%以下であることが好ましく、0.1質量%以上30質量%以下がより好ましい。
重合体エマルジョン粒子(B)を製造するために用いる、前記2級及び/又は3級アミド基を有するビニル単量体(b2−2)としては、以下に限定されるものではないが、例えば、N−メチルアクリルアミド、N−メチルメタアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタアクリルアミド、N,N−ジエチルアクリルアミド、N−エチルメタアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−エチルメタアクリルアミド、N−イソプロピルアクリルアミド、N−n−プロピルアクリルアミド、N−イソプロピルメタアクリルアミド、N−n−プロピルメタアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピロリジン、N−メタクリロイルピロリジン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルヘキサヒドロアゼピン、N−アクリロイルモルホリン、N−メタクリロイルモルホリン、N−ビニルピロリドン、N−ビニルカプロラクタム、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、N−ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタアクリルアミド等が挙げられる。
重合体エマルジョン粒子(B)を製造するために用い得る、ビニル単量体(b2−2)のアミド基は、2級及び/又は3級アミド基であるが、3級アミド基を有するビニル単量体を用いると、得られる重合体エマルジョン粒子(B)の、金属酸化物(A)との間の水素結合性が強まり好ましい。その中でも、特に、N,N−ジエチルアクリルアミドは、水及び乳化剤の存在下における重合安定性に非常に優れるとともに、上述した加水分解性珪素化合物(b1)の重合生成物の水酸基や金属酸化物(A)の水酸基と強固な水素結合を形成することが可能であるため、さらに好ましい。
重合体エマルジョン粒子(B)を製造するために用いる、前記アミノ基を有するビニル単量体(b2−3)としては、以下に限定されるものではないが、例えば、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート 四級化物などが挙げられる。
なお、上述した加水分解性珪素化合物(b1)としては、上述した各種化合物の他、ビニル重合性基やチオール基を有するシランカップリング剤を、単独で又は上述した珪素アルコキシド、その他のシランカップリング剤、及びそれらの縮合生成物と混合若しくは複合化させたものも用いることができる。
また、重合体エマルジョン粒子(B)が、加水分解性珪素化合物(b1)の重合生成物と2級及び/又は3級アミド基を有するビニル単量体(b2−2)の重合生成物とにより構成される場合、これらは、水素結合や化学結合により複合化していてもよい。
なお、前記(b1)や(b2−2)等は、水素結合や化学結合等の各種結合によって複合化されていることが好ましいが、その結合の形態や状態等について何らかの限定を行うものではない。さらに、重合体エマルジョン粒子(B)中の一部分のみにおいて上記したような複合化が行われていてもよい。
重合体エマルジョン粒子(B)として、ビニル重合性基やチオール基を有するシランカップリング剤である加水分解性珪素化合物(b1)と、2級及び/又は3級アミド基を有するビニル単量体(b2−2)とを重合して得られたものを用いると、耐候性、耐薬品性、光学特性、強度等がさらに優れる塗膜を形成できるため、より好ましい。
ビニル重合性基やチオール基を有するシランカップリング剤である加水分解性珪素化合物(b1)の配合量は、2級及び/又は3級アミド基を有するビニル単量体(b2−2)100質量部に対して0.1質量部以上100質量部以下であることが重合安定性の観点から好ましく、0.5質量部以上50質量部以下がより好ましく、さらには0.5質量部以上5質量部以下が好ましい。
本実施形態の光学塗膜において、重合体エマルジョン粒子(B)を得るために用い得る2級及び/又は3級アミド基を有するビニル単量体(b2−2)は、これと共重合可能なその他のビニル単量体(b3)と共重合することができる。これにより、生成する重合生成物の特性(ガラス転移温度、分子量、水素結合力、極性、分散安定性、耐候性、加水分解性珪素化合物(b1)の重合生成物との相溶性等)をより効果的に制御することが可能となり好ましい。
前記2級及び/又は3級アミド基を有するビニル単量体(b2−2)と共重合可能なその他のビニル単量体(b3)としては、以下に限定されるものではないが、例えば、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体のような官能基を含有する単量体等が挙げられる。
前記(メタ)アクリル酸エステルとしては、以下に限定されるものではないが、例えば、アルキル部の炭素数が1〜50の(メタ)アクリル酸アルキルエステル、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
アルキル部の炭素数が1〜50の(メタ)アクリル酸アルキルエステルとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル等が挙げられる。
前記エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
なお、本明細書中で、(メタ)アクリルとはメタアクリル又はアクリルを簡便に表記したものである。
前記ビニル単量体(b3)としての(メタ)アクリル酸エステルの使用量(複数の(メタ)アクリル酸エステルを使用する場合には、その合計量)は、重合体エマルジョン粒子(B)を構成する全ビニル単量体中において好ましくは0〜99.9質量%、より好ましくは5〜80質量%、さらに好ましくは20〜50質量%である。
前記ビニル単量体(b3)としての芳香族ビニル化合物としては、特に限定されるものではなく、例えば、スチレン、ビニルトルエン等が挙げられる。
当該芳香族ビニル化合物は、重合体エマルジョン粒子(B)を構成する全ビニル単量体中において好ましくは0〜99.9質量%、より好ましくは5〜80質量%である。
前記ビニル単量体(b3)としてのシアン化ビニル化合物としては、特に限定されるものではなく、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
当該シアン化ビニル化合物は、重合体エマルジョン粒子(B)を構成する全ビニル単量体中において好ましくは0〜99.9質量%、より好ましくは5〜80質量%である。
前記ビニル単量体(b3)としてのカルボキシル基含有ビニル単量体としては、特に限定されるものではないが、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、又はイタコン酸、マレイン酸などの2塩基酸のハーフエステル等が挙げられる。これらのカルボキシル酸基含有のビニル単量体を用いることによって、重合体エマルジョン粒子(B)にカルボキシル基を導入することができ、当該重合体エマルジョン粒子間に静電的反発力をもたせることができ、エマルジョンとしての安定性を向上させ、例えば攪拌時の凝集といった、外部からの分散破壊作用に対して抵抗力を持たせることが可能となる。この際、導入したカルボキシル基は、静電的反発力をさらに向上させるために、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミン等のアミン類やNaOH、KOH等の塩基で中和してもよい。
前記カルボキシル基含有ビニル単量体の使用量(複数のカルボキシル基含有ビニル単量体を使用する場合には、その合計量)は、重合体エマルジョン粒子(B)を構成する全ビニル単量体((b2)+(b3))中において0〜50質量%であることが耐水性の観点から好ましい。より好ましくは0.1〜10質量%、さらに好ましくは0.1〜5質量%である。
前記ビニル単量体(b3)としての水酸基含有ビニル単量体としては、特に限定されるものではないが、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピ(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸のヒドロキシアルキルエステル;ジ−2−ヒドロキシエチルフマレート、モノ−2−ヒドロキシエチルモノブチルフマレート等のフマル酸のヒドロキシアルキルエステル;アリルアルコールやエチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンモノ(メタ)アクリレート;プロピレンオキシド基の数が1〜100個の(ポリ)オキシプロピレンモノ(メタ)アクリレート;さらには、「プラクセルFM、FAモノマー」(ダイセル化学(株)製の、カプロラクトン付加モノマーの商品名)や、その他のα,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類等が挙げられる。
前記ビニル単量体(b3)として、水酸基含有ビニル単量体を用いると、金属酸化物(A)と2級及び/又は3級アミド基を有するビニル単量体(b2−2)との水素結合力を制御することが容易となるとともに、重合体エマルジョン粒子(B)の水分散安定性を向上させることが可能となる。
前記水酸基含有ビニル単量体の使用量は、重合体エマルジョン粒子(B)を構成する全ビニル単量体中において、好ましくは0〜80質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.1〜10質量%である。
前記ビニル単量体(b3)としてのエポキシ基含有ビニル単量体としては、以下に限定されるものではないが、例えば、グリシジル基含有ビニル単量体等が挙げられる。当該グリシジル基含有ビニル単量体としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、アリルジメチルグリシジルエーテル等を挙げることができる。
前記ビニル単量体(b3)としてのカルボニル含有ビニル単量体としては、以下に限定されるものではないが、例えば、ダイアセトンアクリルアミド等が挙げられる。
前記ビニル単量体(b3)として、前記グリシジル基含有ビニル単量体や、前記カルボニル基含有ビニル単量体を使用すると、重合体エマルジョン粒子(B)が反応性を有するものとなり、ヒドラジン誘導体、カルボン酸誘導体及びイソシアネート誘導体等により架橋させることによって耐溶剤性等の優れた塗膜の形成が可能となる。グリシジル基含有ビニル単量体やカルボニル基含有ビニル単量体の使用量は、重合体エマルジョン粒子(B)を構成する全ビニル単量体中において好ましくは0〜50質量%である。
重合体エマルジョン粒子(B)の合成の際には、乳化剤を使用してもよい。
乳化剤としては、以下に限定されるものではないが、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸等のアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレート等の四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテル等のノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤等が挙げられる。
これらの乳化剤の中で、ラジカル重合性の二重結合を有する反応性乳化剤を選択すると、重合体エマルジョン粒子(B)の水分散安定性がより一層良好になるとともに、耐水性、耐薬品性、光学特性、強度等に優れた塗膜を形成することができるため、さらに好ましい。
前記ラジカル重合性の二重結合を有する反応性乳化剤としては、以下に限定されるのではないが、例えば、スルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体、それらのアルカリ金属塩又はアンモニウム塩;ポリオキシエチレン等のノニオン基を有するビニル単量体;4級アンモニウム塩を有するビニル単量体等が挙げられる。
前記反応性乳化剤としてのスルホン酸基又はスルホネート基を有するビニル単量体の塩は、以下に限定されるものではないが、例えば、ラジカル重合性の二重結合を有し、かつスルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基、炭素数6又は10のアリール基及びコハク酸基からなる群から選ばれる置換基を有する化合物;スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物等が挙げられる。
前記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換されたコハク酸基を有する化合物としては、以下に限定されるものではないが、例えば、アリルスルホコハク酸塩等が挙げられる。これらは市販品を用いることもでき、特に限定されず、例えば、エレミノールJS−2(商品名)(三洋化成(株)製)、ラテムルS−120、S−180A又はS−180(商品名)(花王(株)製)等が挙げられる。
スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキルエーテル基を有する化合物としては、以下に限定されるものではないが、例えば、アクアロンHS−10又はKH−1025(商品名)(第一工業製薬(株)製)、アデカリアソープSE−1025N又はSR−1025(商品名)(旭電化工業(株)製)等が挙げられる。
前記反応性乳化剤としてのノニオン基を有するビニル単量体としては、以下に限定されるものではないが、例えば、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(商品名:アデカリアソープNE−20、NE−30、NE−40等、旭電化工業(株)製)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(商品名:アクアロンRN−10、RN−20、RN−30、RN−50等、第一製薬工業(株)製)等が挙げられる。
重合体エマルジョン粒子(B)の合成の際の乳化剤の使用量としては、得られる重合体エマルジョン粒子(B)100質量部に対して、10質量部以下となる範囲内が好ましく、0.001〜5質量部となる範囲内がより好ましい。
重合体エマルジョン粒子(B)の合成の際、加水分解性珪素化合物(b1)及び2級及び/又は3級アミド基を有するビニル単量体(b2−2)や必要に応じてその他のビニル単量体(b3)の重合は、重合触媒存在下で実施することが好ましい。
加水分解性珪素化合物(b1)の重合触媒としては、重合に用いる単量体の成分等に応じて適宜選択でき、以下に限定されるものではないが、例えば、塩酸、フッ酸等のハロゲン化水素類、酢酸、トリクロル酢酸、トリフルオロ酢酸、乳酸等のカルボン酸類;硫酸、p−トルエンスルホン酸等のスルホン酸類;アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤類;酸性又は弱酸性の無機塩、フタル酸、リン酸、硝酸のような酸性化合物類;水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、酢酸ナトリウム、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムヒドロキシド、トリブチルアミン、ジアザビシクロウンデセン、エチレンジアミン、ジエチレントリアミン、エタノールアミン類、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)−アミノプロピルトリメトキシシランのような塩基性化合物類;ジブチル錫オクチレート、ジブチル錫ジラウレートのような錫化合物等が挙げられる。
これらの中で、重合触媒のみならず乳化剤としての作用を有する観点から、酸性乳化剤類が好ましく、炭素数が5〜30のアルキルベンゼンスルホン酸がより好ましい。
2級及び/又は3級アミド基を有するビニル単量体(b2−2)の重合触媒としては、熱又は還元性物質等によってラジカル分解してビニル単量体の付加重合を起こさせるラジカル重合触媒が好ましく、以下に限定されるものではないが、例えば、水溶性又は油溶性の過硫酸塩、過酸化物、アゾビス化合物等が挙げられ、当該重合触媒の具体例としては、以下に限定されるものではないが、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t−ブチルヒドロパーオキシド、t−ブチルパーオキシベンゾエート、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2−ジアミノプロパン)ヒドロクロリド、2,2−アゾビス(2,4−ジメチルバレロニトリル)等が挙げられる。
前記2級及び/又は3級アミド基を有するビニル単量体の重合触媒の配合量としては、重合体エマルジョン粒子(B)を構成する全ビニル単量体100質量部に対して、0.001〜5質量部が好ましい。なお、重合速度の促進、及び70℃以下での低温の重合をより望むときには、例えば、重亜硫酸ナトリウム、塩化第一鉄、アスコルビン酸塩、ロンガリット等の還元剤をラジカル重合触媒と組み合わせて用いることが好ましい。
上述したように、重合体エマルジョン粒子(B)は、水及び乳化剤の存在下で、加水分解性珪素化合物(b1)と、2級及び/又は3級アミド基を有するビニル単量体(b2)、さらには、必要に応じて前記ビニル単量体(b2−2)と共重合可能な他のビニル単量体(b3)を用いて、好ましくは重合触媒存在下で、重合することにより得ることができる。
加水分解性珪素化合物(b1)と、2級及び/又は3級アミド基を有するビニル単量体(b2−2)との重合は、別々に実施することも可能であるが、同時に実施することにより、両者の間で水素結合等によるミクロな有機・無機複合化が達成できるので好ましい。
重合体エマルジョン粒子(B)の数平均粒子径(一次粒子径;重合体エマルジョン粒子(B)の一次粒子の数平均粒子径)は、3〜800nmであることが好ましい。重合体エマルジョン粒子(B)の数平均粒子径を上記範囲に調整することにより、耐候性、耐薬品性、光学特性、防汚性、防曇性、帯電防止性等がより一層優れた塗膜を形成することができる。また、得られる塗膜の透明性が向上する観点から、重合体エマルジョン粒子(B)の数平均粒子径は5〜100nmであることがより好ましい。さらに好ましくは20〜90nmである。
なお、重合体エマルジョン粒子(B)の数平均粒子径は、後述の実施例に記載する方法により測定することができる。
このような数平均粒子径の重合体エマルジョン粒子(B)を得る方法としては、特に限定されないが、乳化剤がミセルを形成するのに十分な量の水の存在下で、加水分解性珪素化合物(b1)及び2級及び/又は3級アミド基を有するビニル単量体(b2−2)、必要に応じてその他のビニル重合体(b3)を重合する、いわゆる乳化重合によって、重合体エマルジョン粒子(B)を合成する方法が挙げられる。
前記重合体エマルジョン粒子(B)の乳化重合方法としては、特に限定されないが、例えば、加水分解性珪素化合物(b1)及び2級及び/又は3級アミド基を有するビニル単量体(b2−2)、必要に応じて当該2級及び/又は3級アミド基を有するビニル単量体(b2−2)と共重合可能な他のビニル単量体(b3)を、そのまま、又は乳化した状態で、一括、分割、又は連続的に反応容器中に滴下し、前記重合触媒の存在下、好ましくは大気圧から必要により10MPaの圧力下で、約30〜150℃の反応温度で重合させる方法が挙げられる。必要に応じて、圧力や反応温度を変更してもよい。加水分解性珪素化合物(b1)及び全ビニル単量体量の総量と、水との比率については、特に限定されないが、最終固形分量(添加する単量体が全て重合した場合に得られる重合体(ビニル(共)重合体及び加水分解性珪素化合物(b1)の重合生成物)の質量の合計(計算値)を元に計算される値)が、0.1〜70質量%、好ましくは1〜55質量%の範囲になるように設定することが好ましい。
前記重合体エマルジョン粒子(B)の乳化重合を行うにあたり、重合体エマルジョン粒子(B)の粒子径を成長又は制御するために、予め水相中にエマルジョン粒子を存在させて重合させるシード重合法を行ってもよい。これにより粒子径がより均一な重合体エマルジョン粒子を得ることができる。
前記シード(核)となる物質は、特に限定されず、公知のものを用いることもでき、反応条件等に応じて適宜選択することができる。
重合反応は、系中のpHが好ましくは1.0〜10.0、より好ましくは1.0〜6.0の範囲で進行させればよい。pHは、燐酸二ナトリウムやボラックス、又は、炭酸水素ナトリウム、アンモニア等のpH緩衝剤を用いて調節することが可能である。
重合体エマルジョン粒子(B)を得る方法としては、重合に必要な水、乳化剤、及び必要に応じて溶剤の存在下で、加水分解性珪素化合物(b1)及び2級及び/又は3級アミド基を有するビニル単量体(b2−2)を重合した後、重合生成物がエマルジョンとなるまで水を添加する方法も採用してもよい。
重合体エマルジョン粒子(B)は、コア/シェル層構造を有していることが好ましい。
さらには、重合体エマルジョン粒子(B)は、コア層とシェル層とにおいて、柔軟性が異なるものであることが好ましく、空隙形成の観点からシェル層がコア層よりも硬度が高いことがより好ましい。つまりコア層がシェル層よりも柔軟であることが好ましい。
硬度は、シェル層に加水分解性珪素化合物(b1)を含有させることにより制御できる。
硬度は、前記加水分解性珪素化合物(b1)として、加水分解性官能基を3個以上含む加水分解性珪素化合物(b1−3)を用い、当該加水分解性官能基を3個以上含む加水分解性珪素化合物(b1−3)の、前記2級及び/又は3級アミド基を有するビニル単量体(b2−2)と全加水分解性珪素化合物(b1)の合計量に対する質量比率を規定することにより制御することができる。
さらに、シェル層中における、加水分解性官能基を3個以上含む加水分解性珪素化合物(b1−3)成分の割合が、全加水分解性珪素化合物(b1)と、前記2級及び/又は3級アミド基を有するビニル単量体(b2−2)との合計量に対する質量比率で、0.01<(b1−3)/((b1)+(b2−2))<0.20が好ましく、0.1<(b1−3)/((b1)+(b2−2))<0.3がより好ましい。これにより塗膜強度の向上効果が得られる。
さらにまた、塗膜強度を向上する目的で、コア層中における、加水分解性官能基を3個以上含む加水分解性珪素化合物(b1−3)成分の割合が、全加水分解性珪素化合物(b1)と、前記2級及び/又は3級アミド基を有するビニル単量体(b2−2)との合計量に対する質量比率で、(b1−3)/((b1)+(b2−2))≧0.20とすることが好ましく、より好ましくは0.35以上である。
なお、塗膜強度及び光学性能の観点から、前記重合体エマルジョン粒子(B)に含まれる、ビニル単量体(b2)の質量比率は、20質量%以上であることが好ましく、より好ましくは40%質量%以上、さらに好ましくは50質量%以上である。
コア層中のビニル単量体(b2)に限れば70質量%以上が好ましく、より好ましくは80質量%以上、さらには好ましくは90質量%以上である。
上述したように、本実施形態の光学塗膜においては、重合体エマルジョン粒子(B)のコア層がシェル層よりも柔軟であることが好ましい。これにより、所望の光学塗膜を効率よく形成することができる。
詳細には、本実施形態の光学塗膜を形成する工程においては、前記金属酸化物(A)及び重合体エマルジョン粒子(B)を含むコーティング層を塗布し、乾燥し、前駆体を形成し、その後、500℃以上の温度で焼結を行う。すなわち、コーティング組成物から溶媒を除去する乾燥工程で前駆体を形成した後、焼結によって空隙(X)を形成する工程を実施する。当該空隙(X)を形成する工程においては、重合体エマルジョン粒子(B)の全て、あるいは一部を除去される。その際に形成された空隙(X)の長径(L)と短径(D)とが1<L/D<3の関係にあることにより、垂直方向からの入射光に対する反射防止性能が優れるだけでなく斜めからの入射光に対しても反射防止性能が優れることを見出した。さらには、焼結前の乾燥時間がL/Dに顕著に影響する事を見出し、25℃での乾燥時間が0.1分〜60分にすることが好ましい。より好ましくは1分〜45分、さらに好ましくは3分〜20分である。0.1分より短いと次の工程までの搬送が困難となり、60分より長いと所望のL/Dを得ることが難しくなる。
ここで空隙(X)は、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)で観察することができる。
空隙(X)は、その全部又は一部が、空気層が充填されており、屈折率が1に極めて近い。
空隙(X)の空隙サイズは、長径(L)とそれと直交する短径の最大値(D)との平均値から求めることができる。
空隙(X)の空隙サイズは、20nm≦((L+D)/2)であり、(L+D)/2>20nmであることが好ましく、塗膜の膜厚(d)との関係においては、d>(L+D)/2であることが好ましい。
塗膜の20°光沢値としては10以下が好ましい。より好ましくは9以下、さらに好ましくは8以下である。光沢値が10を超えると斜めからの入射光に対する反射防止性が十分ではない。
前記加水分解性官能基を3個以上含む加水分解性珪素化合物(b1−3)としては、以下に限定されるものではないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン等のテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類が挙げられる。
重合体エマルジョン粒子(B)には、その用途及び使用方法等に応じて、通常、塗料や成型用樹脂に添加配合される成分、例えば、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調整剤等を配合することができる。
<加水分解性珪素化合物(C)>
本実施形態の光学塗膜は、上述した金属酸化物(A)、重合体エマルジョン粒子(B)に加え、加水分解性珪素化合物(C)を、さらに含有してもよい。
当該加水分解性珪素化合物(C)は、下記式(2)、(3)、及び(4)で表される化合物からなる群より選ばれる1種類以上の加水分解性珪素化合物であることが好ましい。
なお、上述した(b1)加水分解性珪素化合物は、重合体エマルジョン粒子(B)を構成する成分であり、当該(B)成分中に一体として組み込まれており、前記加水分解性珪素化合物(C)は、(A)成分及び(B)成分とは別個独立して添加されるものであり、上述した(b1)加水分解性珪素化合物とは明確に区別される。
1 nSiX4-n ・・・(2)
(式(2)中、R1は水素原子、ハロゲン基、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、及びエポキシ基からなる群より選ばれるいずれかを有してもよい、炭素数1〜10のアルキル基、アルケニル基、アルキニル基又はアリール基を表す。Xは、加水分解性基を表し、nは0〜3の整数である。)
3Si−R2 n−SiX3 ・・・(3)
(式(3)中、X3は加水分解性基を表し、R2は炭素数1〜6のアルキレン基又はフェニレン基を表す。nは0又は1である。)
3−(O−Si(OR32n−OR3 ・・・(4)
(式(4)中、R3は炭素数1〜6のアルキル基を表す。nは2〜8の整数である。)
<各成分の含有比率>
本実施形態の光学塗膜を形成するコーティング組成物は、金属酸化物(A)と重合体エマルジョン粒子(B)との質量比率((A):(B))が、1:0.05〜1:10であることが好ましく、1:0.1〜1:5であることがより好ましく、1:0.5〜1:3であることがさらに好ましい。
金属酸化物(A)と加水分解性珪素化合物(C)との質量比率((A):(C))は、強度の観点から、1:0.05〜1:10であることが好ましく、1:0.1〜1:5であることがより好ましく、1:0.5〜1:2であることがさらに好ましい。
金属酸化物(A)と重合体エマルジョン粒子(B)との質量比率((A):(B))は、塗膜としたときの耐候性の観点から、(A):(B)=1:0.05以上であることが好ましい。透明性の観点から、1:10以下が好ましい。
金属酸化物(A)と加水分解性珪素化合物(C)との質量比率((A):(C))は、機械的強度、耐候性の観点から、1:0.05以上であることが好ましい。また、金属酸化物(A)と加水分解性珪素化合物(C)との質量比率((A):(C))は、空隙率を高め、塗膜を低屈折率とする観点から、1:10以下が好ましい。なお加水分解性珪素化合物(C)の質量とは、加水分解性珪素化合物(C)が加水分解、縮合した後のSiO2換算での質量であるものとする。
本実施形態の光学塗膜は、上述した加水分解性珪素化合物(C)の加水分解縮合物(C’)を含むことが好ましく、加水分解性珪素化合物(C)の加水分解縮合物(C’)が、重合体エマルジョン粒子の重合体粒子(B’)の表面に結合している前駆体から空隙(X)を形成される構造体を有していることが好ましい。あるいは、さらにその表面に非球状の金属酸化物(a2)及び/又は球状の金属酸化物(a1)が結合している前駆体から空隙(X)を形成される構造体を有していることが好ましい。
または、加水分解性珪素化合物(C)の加水分解縮合物(C’)が、重合体エマルジョン粒子の重合体粒子(B’)の表面に球状の金属酸化物(a1)を介して非球状の金属酸化物(a2)が結合している前駆体から空隙(X)を形成される構造体を有していることが好ましい。
あるいは、球状の金属酸化物(a1)及び/又は非球状の金属酸化物(a2)が重合体エマルジョン粒子の重合体粒子(B’)の表面に直接、又は球状の金属酸化物(a1)を介して非球状の金属酸化物(a2)が結合している構造体が前記加水分解性珪素化合物(C)の加水分解縮合物(C’)に被覆され、前記重合体エマルジョン粒子の重合体粒子(B’)に固定化された前駆体を介して空隙(X)が形成されていることが好ましい。このような構造を有する光学塗膜は、反射防止膜として、優れた機械的強度及び耐候性を発揮する。
〔光学塗膜の製造方法〕
本実施形態の光学塗膜は、金属酸化物(A)と、重合体エマルジョン粒子(B)と、必要に応じて加水分解性珪素化合物(C)を含むコーティング組成物を調製し、当該コーティング組成物を塗布して乾燥し、前駆体を形成する工程と、当該前駆体を500℃以上の温度で焼結する工程とにより製造することができる。
<コーティング組成物の調製>
コーティング組成物は、金属酸化物(A)、好ましくは球状の金属酸化物(a1)及び/又はアスペクト比(長径/短径)が3〜25の非球状の金属酸化物(a2)とを含む金属酸化物(A)と、重合体エマルジョン粒子(B)とを配合して混合物を得る第1の工程と、当該混合物に酸を添加する第2の工程により、調製することが好ましい。
前記「酸」として、加水分解触媒、縮合触媒としての酸を添加する場合、配合安定性の観点から、先に金属酸化物(A)及び重合体エマルジョン粒子(B)を配合した後に、当該酸を添加することが好ましい。あるいは、金属酸化物(A)の等電点まで酸を添加することで凝集させた後、塩基で中和して安定化させてから重合体エマルジョン粒子(B)を加えてもよい。あるいは重合体エマルジョン粒子(B)と加水分解性ケイ素化合物(C)とを配合して重合体エマルジョン粒子(B)の周囲に加水分解して縮合した(C)でコーティングしてもよい。
前記酸は、以下に限定されるものではないが、例えば、塩酸、フッ酸等のハロゲン化水素類;酢酸、トリクロル酢酸、トリフルオロ酢酸、乳酸等のカルボン酸類;硫酸、メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸類;アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤類;酸性又は弱酸性の無機塩、フタル酸、リン酸、硝酸のような酸性化合物類等が挙げられる。
前記コーティング組成物の固形分としては、0.1質量%〜15質量%が好ましく、より好ましくは0.2質量%〜5質量%、さらに好ましくは0.5質量%〜3質量%が好ましい。
固形分が15質量%以下であると、乾燥後の膜厚を所望の膜厚に制御することが容易となり好ましい。また、固形分が0.1質量%以上であると、所望の乾燥膜厚を得るためにコーティング組成物を厚く塗装する必要がなく、膜厚の制御が容易になり好ましい。
上述のコーティング組成物の粘度としては、好ましくは20℃において0.1〜2000mPa・sであり、好ましくは1〜100mPa・s、さらに好ましくは2〜10mPa・sである。
本実施形態の光学塗膜は、上述のコーティング組成物を基材に塗布し、乾燥させた後、重合体エマルジョン粒子(B)の一部又は全部を除去して空隙(X)を形成させることにより得られる。この空隙(X)を形成する工程については、後述する。
<コーティング組成物を塗布する工程>
上述のようにして調製したコーティング組成物を、目的とする所定の材料(基材と記載する。)上に塗布する。
上述のコーティング組成物を基材に塗布する方法としては、特に限定されないが、例えば、スプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法等が挙げられる。生産性の観点からロールコート、スクリーン印刷、グラビア印刷が好ましい。さらには大判の基材上へ塗装する目的ではロールコート法が好ましい。
上述のコーティング組成物を基材に塗布する膜厚としては、100μm以下が好ましく、より好ましくは50μm以下、さらに好ましくは15μm以下が好ましい。
100μmを超えると均一な塗膜が得られず部分的に厚い膜が形成され外観上好ましいとは言えない。
<乾燥させる工程>
上記のようにコーティング組成物を基材上に塗布した後、乾燥させ、光学塗膜の前駆体を形成する。
前記乾燥方法としては、特に限定されないが、例えば、自然乾燥、冷風乾燥、熱風乾燥、赤外線乾燥等、これらの組み合わせが挙げられる。
前記乾燥温度としては、5〜500℃が好ましく、10〜300℃がより好ましく、20〜200℃がさらに好ましく、25℃〜150℃がさらにより好ましい。
乾燥時間は25℃で0.1分〜60分が好ましい。より好ましくは1分〜45分、さらに好ましくは3分〜20分である。
<焼結工程>
さらに、前記光学塗膜の前駆体を、空隙形成工程として500℃以上の温度で焼結する。
好ましくは、500℃〜900℃、より好ましくは600℃〜800℃、さらに好ましくは、650℃〜750℃で焼結し、塗膜中に空隙を形成することが可能である。熱処理の他に高圧水銀灯等の紫外線照射等で焼結を行うこともできる。
本実施形態の光学塗膜は、透明性、反射防止特性の面から、厚みが0.05〜10μm
であることが好ましい。
本実施形態の光学塗膜は、耐候性の観点から、基材上に形成される塗膜であって、金属酸化物(A)及び/又は加水分解性珪素化合物(C)の加水分解縮合物(C’)が、直接基材に結合していることが好ましい。
本実施形態の光学塗膜は、表面水接触角が、防汚性の観点から150°以下であることが好ましく、より好ましくは80°以下、さらに好ましくは40°以下である。
該反射防止膜の表面水接触角は、例えば40°以下であると親水性の汚れを防ぐ効果があり、40°以上であると親油性の汚れがふき取りやすくなる効果がある。
なお、本実施の形態において、表面水接触角は後述の実施例に記載の方法により測定することができる。
(用途)
本実施形態の光学塗膜は、透明性、反射防止特性に優れているので、各種用途の反射防止膜として用いることができる。
具体的には、太陽電池用の部材(ガラス、及びモジュール等)、太陽電池用集光レンズ、太陽熱発電用鏡、太陽熱発電用集光ガラスチューブ、光電池、液晶ディスプレイ、メガネ、窓ガラス、テレビ等において、光透過性の向上及び/又は映り込みの防止を必要としている部材の反射防止膜として用いることができる。
以下、本発明について、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
後述する合成例、実施例及び比較例における、各種の物性は下記の方法で測定した。
((1)平均粒子径(nm)の測定)
金属酸化物(A)について、50,000〜100,000倍に拡大し、球状の金属酸化物(A)の粒子が100個〜200個写るように調整して透過型顕微鏡写真を撮影した。
次いで、撮影された各金属酸化物(A)の粒子径(長径と短径)を測定し、それらの平均値((長径+短径)/2)を求め、平均粒子径とした。
((2)全光線透過率(%)の測定)
後述する実施例及び比較例で製造した試験板について、日本国日本電色工業株式会社製濁度計NDH2000を用いて、JIS K7361−1に規定される方法により、全光線透過率を測定した。
((3)鉛筆硬度の測定)
後述する実施例及び比較例で製造した光学塗膜から、JIS S6006が規定する試験用鉛筆を製造し、当該試験用鉛筆を用いて、JIS K5400に規定される鉛筆硬度の評価方法に従い、1kg荷重における鉛筆硬度を評価した。
((4)表面水接触角(°)の測定)
後述する実施例及び比較例で製造した光学塗膜の表面に脱イオン水の滴(1.0μL)を乗せ、25℃で10秒間放置した。その後、日本国協和界面科学製CA−X150型接触角計を用いて初期接触角を測定した。光学塗膜に対する水の接触角が小さいほど、光学塗膜表面の親水性が高いと評価した。
((5)耐候性試験)
後述する実施例及び比較例で製造した試験板について、加速環境試験器(エスペック(株)製、EHS−411)を用い、温度135℃、湿度85%の環境下、4時間放置する耐候性試験を行った。なお、耐候性試験後の試験板の全光線透過率を上記(2)に記載した方法に従い測定した。
((6)空隙(X)の空隙サイズ、及び空隙の長径(L)、短径(D)、L/Dの測定)
「カンタクロム社製オートソーブ−1」を用い、窒素吸着法によって空隙の容積を測定し、空隙サイズを求めた。
塗膜断面の透過型顕微鏡写真を撮影し、撮影された空隙の長径、短径を3点測定し、これらの平均値をそれぞれ長径(L)、短径(D)として求め、かつ当該平均値のL/Dを求めた。
((7)重合体エマルジョン粒子の数平均粒子径)
後述する合成例により製造した重合体エマルジョン粒子(B)の数平均粒子径は、動的光散乱式粒度分布測定装置(日機装社製、商品名マイクロトラックUPA)により測定した。
((8)AR値、AR変化率)
後述する実施例及び比較例により製造した試験板の、耐候性試験前後の全光線透過率、基材の全光線透過率を用いて、下記式(6)、(7)により、AR値(%)、AR変化率(%)を算出した。
Figure 2016085240
Figure 2016085240
上記ARが2%以上であることにより、反射防止特性が良好であると評価できる。前記AR変化率の絶対値が50%以下であることにより、耐候性が良好であると評価できる。
((10)光沢値)
光沢計(BYK−Gardner社製 マイクロトリーグロスμ)を用いて基材の下に白紙を敷いて20°光沢値を測定した。
〔合成例〕
以下、後述する実施例及び比較例において用いた重合体エマルジョン粒子(B)の合成例を記載する。
(合成例2)
<重合体エマルジョン粒子(B−2)水分散体の合成>
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水1600g、及びドデシルベンゼンスルホン酸12gを投入した後、撹拌しながら80℃に加温して混合液(1)を得た。
得られた混合液(1)に、コア層としてジメチルジメトキシシラン185g及びフェニルトリメトキシシラン(b1−3)151gの混合液(2)を、反応容器中の温度を80℃に保った状態で約2時間かけて滴下して混合液(3)を得た。
その後、反応容器中の温度が80℃の状態で混合液(3)を約1時間撹拌した。
次に、得られた混合液(3)に、シェル層としてアクリル酸ブチル150g、テトラエトキシシラン(b1−3)30g、フェニルトリメトキシシラン(b1−3)145g、及び3−メタクリロキシプロピルトリメトキシシラン(b1−3)1.3gの混合液(4)と、ジエチルアクリルアミド165g、アクリル酸3g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25質量%水溶液)13g、過硫酸アンモニウムの2質量%水溶液40g、及びイオン交換水1900gの混合液(5)とを、反応容器中の温度を80℃に保った状態で約2時間かけて同時に滴下して混合物(6)を得た。
さらに熱養生として、反応容器中の温度が80℃の状態で混合物(6)を約2時間撹拌した。
その後、混合物(6)を室温まで冷却し、100メッシュの金網で濾過し、製水で濃度を調整して数平均粒子径40nmの重合体エマルジョン粒子(B−2)の水分散体(固形分10質量%、pH3.2)を得た。
(合成例3)
<重合体エマルジョン粒子(B−3)水分散体の合成>
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水2600g、及びドデシルベンゼンスルホン酸13g、ポリオキシエチレンノニルフェニルエーテルの25%水溶液(エマルゲン950、花王(株)製)20部を投入した後、撹拌しながら80℃に加温して混合液(1)を得た。
得られた混合液(1)に、コア層としてメタクリル酸18g、メタクリル酸メチル216g、アクリル酸ブチル216g、及び3−メタクリロキシプロピルトリメトキシシラン(b1−3)6.9g、メチルトリメトキシシラン101g、過硫酸アンモニウムの2質量%水溶液40g、の混合液(2)を反応容器中の温度を80℃に保った状態で約2時間かけて滴下して混合液(3)を得た。
その後、反応容器中の温度が80℃の状態で混合液(3)を約1時間撹拌した。
次に、得られた混合液(3)に、シェル層としてアクリル酸ブチル245g、メタクリル酸メチル245g、アクリル酸10g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25質量%水溶液)13g、過硫酸アンモニウムの2質量%水溶液40g、及びイオン交換水1900gの混合液(4)とを、反応容器中の温度を80℃に保った状態で約2時間かけて同時に滴下して混合物(5)を得た。
さらに熱養生として、反応容器中の温度が80℃の状態で混合物(5)を約2時間撹拌した。
その後、混合物(5)を室温まで冷却し、100メッシュの金網で濾過し、精製水で濃度を調整して数平均粒子径130nmの重合体エマルジョン粒子(B−3)の水分散体(固形分10質量%、pH3.2)を得た。
[実施例1]
光学塗膜形成用の樹脂粒子(B)として、光学塗膜形成用の樹脂粒子(B−1)(アクリルエマルジョン、固形分32%、pH7.7、粘度150mPa・s、酸価39、ガラス転移温度74℃、最低成膜温度−10℃、粒子径100nm)を用いた。
球状の金属酸化物(A)の原料として平均粒子径5nmの水分散コロイダルシリカ(商品名「スノーテックスOXS」(ST−OXS)、日産化学工業(株)製、固形分10質量%)を用いた。
加水分解性珪素化合物(C)としてテトラメトキシシランオリゴマーMS56(三菱化
学(株)製)を用いた。
これらを、下記表1に記載の固形分質量比(A:B:C質量比率)で混合した。
その後、0.01N塩酸水溶液でpHを2.5に調整し、さらに固形分が2%となるように20%エタノール水で調整してコーティング組成物を得た。
基材(5cm×5cmのエンボスガラス)に、上記コーティング組成物を、スピンコーターを用いて膜厚が150nmとなるよう塗布した後、25℃で3分間乾燥し、光学塗膜形成用前駆体を得た。
さらに電気炉中で600℃、3分間焼結した後に急冷してから塗膜を有する試験板を得た。
このとき、前記塗膜中の組成比(コーティング組成物の固形分換算で計算した各成分の質量比率と同様)は、(A)/(B’)/(C’)=200/100/45となった。
なお、(B’)は、前記焼結後に得られる光学塗膜形成用の樹脂粒子(B)に由来する重合体粒子であり、(C’)は、前記焼結後に得られる加水分解性珪素化合物(C)の加水分解縮合物とする。評価結果を表1に示す。
[実施例2]
光学塗膜形成用の樹脂粒子(B)として、光学塗膜形成用の樹脂粒子(B−2)(アクリルエマルジョン、固形分32%、pH7.7、粘度150mPa・s、酸価39、ガラス転移温度74℃、最低成膜温度−10℃)と加水分解性珪素化合物(C)としてテトラメトキシシランオリゴマーMS56(三菱化学(株)製)を配合し、その後、0.01N塩酸水溶液でpHを2.5に調整し、樹脂粒子(B)の表面をコーティングした。さらに固形分が2%となるように20%エタノール水で調整してコーティング組成物を得た。
基材(5cm×5cmのエンボスガラス)に、上記コーティング組成物を、スピンコーターを用いて膜厚が150nmとなるよう塗布した後、25℃で3分間乾燥し、光学塗膜形成用前駆体を得た。
さらに電気炉中で600℃、3分間焼結した後に急冷してから塗膜を有する試験板を得た。
このとき、前記塗膜中の組成比(コーティング組成物の固形分換算で計算した各成分の質量比率と同様)は、(A)/(B’)/(C’)=0/100/45となった。
なお、(B’)は、前記焼結後に得られる光学塗膜形成用の樹脂粒子(B)に由来する重合体粒子であり、(C’)は、前記焼結後に得られる加水分解性珪素化合物(C)の加水分解縮合物とする。評価結果を表1に示す。
[実施例3]
重合体エマルジョン粒子(B)として(合成例1)で合成した重合体エマルジョン粒子(B−2)の水分散体を用いた。球状の金属酸化物(A)の原料として平均粒子径5nmの水分散コロイダルシリカ(商品名「スノーテックスOXS(表1中、「ST−OXS」と記載する)」、日産化学工業(株)製、固形分10質量%)を用いた。
加水分解性珪素化合物(C)としてテトラエトキシシラン(信越化学工業(株)製)を用いた。
これらを、表1に記載の固形分質量比で混合し、固形分2%となるように20%エタノール水で調整した後、攪拌し、コーティング組成物を得た。
基材(5cm×5cmのエンボスガラス)に上記コーティング組成物を、スピンコーターを用いて膜厚が100nmとなるよう塗布した後、25℃で3分間乾燥し、さらに電気炉中で600℃、3分間焼結した後に急冷してから塗膜を有する試験板を得た。
このとき塗膜中の組成比(コーティング組成物の固形分換算で計算した各成分の質量比率と同様)は、(A)/(B’)/(C’)=200/100/45となった。
なお、(B’)は、前記焼結後に得られる重合体エマルジョン粒子(B)に由来する重合体粒子であり、(C’)は、前記焼結後に得られる加水分解性珪素化合物(C)の加水分解縮合物とする。評価結果を表1に示す。
[比較例1]
重合体エマルジョン粒子(B)を加えなかったこと以外は実施例1と同様にして試験板を得た。得られた試験板の評価結果を表1に示す。
[比較例2]
重合体エマルジョン粒子(B)として(合成例2)で合成した重合体エマルジョン粒子(B−3)の水分散体を用いた。その他の条件は、実施例1と同様にして試験板を得た。得られた試験板の評価結果を表1に示す。
[比較例3]
重合体エマルジョン粒子(B)として(合成例1)で合成した重合体エマルジョン粒子(B−2)の水分散体を用いた。球状の金属酸化物(A)の原料として平均粒子径5nmの水分散コロイダルシリカ(商品名「スノーテックスOXS(表1中、「ST−OXS」と記載する)」、日産化学工業(株)製、固形分10質量%)を用いた。
加水分解性珪素化合物(C)としてテトラエトキシシラン(信越化学工業(株)製)を用いた。
これらを、表1に記載の固形分質量比で混合し、固形分2%となるように20%エタノール水で調整した後、攪拌し、コーティング組成物を得た。
基材(5cm×5cmのエンボスガラス)に上記コーティング組成物を、スピンコーターを用いて膜厚が100nmとなるよう塗布した後、25℃で65分間乾燥し、さらに電気炉中で600℃、3分間焼結した後に急冷してから塗膜を有する試験板を得た。
このとき塗膜中の組成比(コーティング組成物の固形分換算で計算した各成分の質量比率と同様)は、(A)/(B’)/(C’)=200/100/45となった。
なお、(B’)は、前記焼結後に得られる重合体エマルジョン粒子(B)に由来する重合体粒子であり、(C’)は、前記焼結後に得られる加水分解性珪素化合物(C)の加水分解縮合物とする。
上述した実施例1〜3及び比較例1〜3の評価結果を下記表1に示す。
Figure 2016085240
表1に示すように、実施例1〜3においては、耐候性試験後においても、全光線透過率が高く、斜めからの入射光に対する優れた反射防止効果を有し、また、実用上十分な機械的強度を有していることが分かった。
一方、比較例1〜2においては、斜めからの入射光に対する反射防止特性が低下したことが確認された。
本発明の光学塗膜は、太陽電池、光電池、液晶ディスプレイ、メガネ、窓ガラス、テレビ等の、光透過性の向上及び/又は映り込みの防止を必要としている部材の反射防止膜や、これらの部材の防汚コートとして産業上の利用可能性を有している。

Claims (9)

  1. 基材上に形成される塗膜よりなる光学塗膜であって、
    前記塗膜中の空隙(X)の長径(L)と短径(D)とが1<L/D<3であり、20°光沢値が10以下である光学塗膜。
  2. 前記光学塗膜が、金属酸化物(A)及び重合体エマルジョン粒子(B)を含むコーティング組成物を塗布し、乾燥して形成される光学塗膜の前駆体を、500℃以上の温度で焼結することにより形成されたものである、請求項1に記載の光学塗膜。
  3. 金属酸化物(A)と重合体エマルジョン粒子(B)とを含むコーティング組成物を塗布
    し、25℃で10分以内に乾燥して、光学塗膜の前駆体を形成する工程と、前記前駆体を500℃以上の温度で焼結し、光学塗膜を形成する工程とを有する、光学塗膜の製造方法。
  4. 前記光学塗膜が反射防止膜である、請求項1乃至請求項3のいずれか一に記載の光学塗
    膜。
  5. 請求項4に記載の反射防止膜を含む太陽電池用ガラス。
  6. 請求項4に記載の反射防止膜を含む太陽電池モジュール。
  7. 請求項4に記載の反射防止膜を含む太陽電池用集光レンズ。
  8. 請求項4に記載の反射防止膜を含む太陽熱発電用鏡。
  9. 請求項4に記載の反射防止膜を含む太陽熱発電用集光ガラスチューブ。
JP2014215813A 2014-10-22 2014-10-22 光学塗膜、光学塗膜の製造方法、及び反射防止膜 Active JP6573445B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215813A JP6573445B2 (ja) 2014-10-22 2014-10-22 光学塗膜、光学塗膜の製造方法、及び反射防止膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215813A JP6573445B2 (ja) 2014-10-22 2014-10-22 光学塗膜、光学塗膜の製造方法、及び反射防止膜

Publications (2)

Publication Number Publication Date
JP2016085240A true JP2016085240A (ja) 2016-05-19
JP6573445B2 JP6573445B2 (ja) 2019-09-11

Family

ID=55972583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215813A Active JP6573445B2 (ja) 2014-10-22 2014-10-22 光学塗膜、光学塗膜の製造方法、及び反射防止膜

Country Status (1)

Country Link
JP (1) JP6573445B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084374A (ja) * 2014-10-22 2016-05-19 旭化成株式会社 光学塗膜及び反射防止膜
WO2019167944A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 積層体、太陽電池用保護シート、及び太陽電池モジュール
JPWO2018180261A1 (ja) * 2017-03-31 2019-11-07 富士フイルム株式会社 積層体及びその製造方法、並びに、太陽電池モジュール
WO2022163655A1 (ja) * 2021-01-27 2022-08-04 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072347A (ja) * 2004-08-06 2006-03-16 Toray Ind Inc 光反射フィルムおよびそれを用いた面光源
JP2009058640A (ja) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd アンチグレア層を有する物品およびその製造方法
JP2012219209A (ja) * 2011-04-11 2012-11-12 Asahi Kasei E-Materials Corp 複合組成物、当該複合組成物を用いた塗膜の製造方法、当該製造方法により得られる塗膜、及び当該塗膜を具備する部材
JP2013120677A (ja) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd 光学モジュールおよび表示装置
JP2013120266A (ja) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd 光学モジュールおよび表示装置
WO2013111783A1 (ja) * 2012-01-23 2013-08-01 旭化成イーマテリアルズ株式会社 コーティング組成物及び反射防止膜
WO2014061605A1 (ja) * 2012-10-15 2014-04-24 旭硝子株式会社 シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072347A (ja) * 2004-08-06 2006-03-16 Toray Ind Inc 光反射フィルムおよびそれを用いた面光源
JP2009058640A (ja) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd アンチグレア層を有する物品およびその製造方法
JP2012219209A (ja) * 2011-04-11 2012-11-12 Asahi Kasei E-Materials Corp 複合組成物、当該複合組成物を用いた塗膜の製造方法、当該製造方法により得られる塗膜、及び当該塗膜を具備する部材
JP2013120677A (ja) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd 光学モジュールおよび表示装置
JP2013120266A (ja) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd 光学モジュールおよび表示装置
WO2013111783A1 (ja) * 2012-01-23 2013-08-01 旭化成イーマテリアルズ株式会社 コーティング組成物及び反射防止膜
WO2014061605A1 (ja) * 2012-10-15 2014-04-24 旭硝子株式会社 シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084374A (ja) * 2014-10-22 2016-05-19 旭化成株式会社 光学塗膜及び反射防止膜
JPWO2018180261A1 (ja) * 2017-03-31 2019-11-07 富士フイルム株式会社 積層体及びその製造方法、並びに、太陽電池モジュール
WO2019167944A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 積層体、太陽電池用保護シート、及び太陽電池モジュール
JPWO2019167944A1 (ja) * 2018-02-28 2020-12-03 富士フイルム株式会社 積層体、太陽電池用保護シート、及び太陽電池モジュール
WO2022163655A1 (ja) * 2021-01-27 2022-08-04 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置

Also Published As

Publication number Publication date
JP6573445B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6326199B2 (ja) 光学塗膜、光学塗膜の製造方法、及び反射防止膜
JP6081929B2 (ja) コーティング組成物及び反射防止膜
JP7087059B2 (ja) 高耐久防曇塗膜およびコーティング組成物
CN108699392B (zh) 高耐久防雾涂膜和涂布组合物
JP6328885B2 (ja) コーティング組成物及び積層体
JP6573445B2 (ja) 光学塗膜、光学塗膜の製造方法、及び反射防止膜
JP6270444B2 (ja) コーティング組成物及び反射防止膜
JP7051233B2 (ja) コーティング組成物
JP6437243B2 (ja) 光学塗膜、光学塗膜の製造方法、及び反射防止膜
JP6706059B2 (ja) ハードコート塗膜
JP2015018230A (ja) 光学塗膜形成用前躯体、光学塗膜、及び光学塗膜の製造方法
JP2016115927A (ja) 太陽電池用コーティング膜
JP6426975B2 (ja) コーティング組成物および光学塗膜の製造方法
JP7026446B2 (ja) 防曇塗膜およびコーティング組成物
JP6425964B2 (ja) 光学塗膜及び反射防止膜
JP2016184023A (ja) 太陽電池カバーガラス用コーティング膜及びその製造方法
JP2016219545A (ja) 太陽電池用コーティング膜
JP6794151B2 (ja) コーティング膜、コーティング膜の製造方法、及びコーティング組成物
JP6457866B2 (ja) 太陽電池用のコーティング膜及びその製造方法
JP2017114950A (ja) 塗膜及び塗膜の製造方法
JP2017036424A (ja) 塗膜及びその製造方法
JP2015227031A (ja) 難燃積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150