JP2016074423A - ロータリーベーン式舵取機のシール構造 - Google Patents

ロータリーベーン式舵取機のシール構造 Download PDF

Info

Publication number
JP2016074423A
JP2016074423A JP2015246813A JP2015246813A JP2016074423A JP 2016074423 A JP2016074423 A JP 2016074423A JP 2015246813 A JP2015246813 A JP 2015246813A JP 2015246813 A JP2015246813 A JP 2015246813A JP 2016074423 A JP2016074423 A JP 2016074423A
Authority
JP
Japan
Prior art keywords
seal
steering
rotor
actuator
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015246813A
Other languages
English (en)
Other versions
JP6120938B2 (ja
Inventor
冨田 幸雄
Yukio Tomita
幸雄 冨田
健次郎 鍋島
Kenjiro Nabeshima
健次郎 鍋島
嘉昌 江口
Yoshimasa Eguchi
嘉昌 江口
山本 博敬
Hiroyoshi Yamamoto
博敬 山本
敏郎 生田目
Toshiro Namatame
敏郎 生田目
若林 喬之
Takayuki Wakabayashi
喬之 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Hamworthy and Co Ltd
Original Assignee
Japan Hamworthy and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Hamworthy and Co Ltd filed Critical Japan Hamworthy and Co Ltd
Priority to JP2015246813A priority Critical patent/JP6120938B2/ja
Publication of JP2016074423A publication Critical patent/JP2016074423A/ja
Application granted granted Critical
Publication of JP6120938B2 publication Critical patent/JP6120938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)
  • Actuator (AREA)

Abstract

【課題】作動油圧の高圧化に対処できるようにしたロータリーベーン式舵取機のシール構造を提供する。
【解決手段】ロータリーベーン式舵取機のアクチュエーター1において、ローターベーン12dの上部横シール12f、下部横シール12h、縦シール12j、およびハウジングセグメント11bの縦シール11dは、各シール面の両縁辺部がシーリング用リップ部をなすとともに、各シール面に各縁辺部から中央部に向かってアンダーカット部を有し、各シール面の中央部に相手面と平面的に接触する堤部を有し、堤部の長手方向中心線上に所定の間隔をもって穿孔されて各シールの背面と連通する微小孔を有し、各シール面に微小孔の各開口部を連通して長手方向に所定の長さに形成した油溝を有する。
【選択図】図13

Description

本発明は、船舶の舵取機の一形式であるロータリーベーン式舵取機に係り、その試験装置およびシール構造に関する。
従来のロータリーベーン式舵取機のアクチュエーター1は、例えば図12〜図14に示すようなものであり、ハウジング11と、ハウジング11の内部に収納されて回転するローター12とを有している。
ハウジング11は、据付台に取り付けるためのフランジ部llnを外周底部に備えている。
ローター12は、下部軸部12aがハウジング11の底部に設けたボス部11aでラジアル軸受14aを介して半径方向において支持されており、上部軸部12bがハウジング11の上部開口を塞ぐように配置した環状のトップカバー13でラジアル軸受14bを介して半径方向において支持されている。
また、ローター12は、ローター12の下端面がハウジング11の内底面でスラスト軸受14cを介して軸方向において支持されている。
ローター12は、舵軸17の軸頭17aを挿入して軸頭17aと緊密に嵌合する内部貫通孔12cを有し、外周面に一つのベーン12dを、あるいは外周面の周方向に沿った等間隔の位置にn数(ここではn=2の場合について説明する。以下同じ)のベーン12dを突設している。ハウジング11は、内周面の周方向に沿った等間隔の位置に、ベーン12dと同数のセグメントllbを突設している。
ローター12の各ベーン12dは、その上端面に形成した上部横スリット12e内に、トップカバー13の裏面に摺接する上部横シール12fを保持し、ベーン12dの下端面に形成した下部横スリット12g内に、ハウジング11の内底面に摺接する下部横シール12hを保持しており、半径方向の先端面に形成した縦スリット12i内に、ハウジング11の内周面に摺接する縦シール12jを保持している。
また、ハウジング11のセグメント11bは、半径方向の先端面に形成した縦スリット11c内に、ローター12の外周面に摺接する縦シール11dを保持している。
なお、上記ローターベーン12dの上部横シール12f、下部横シール12h、縦シール12j、および、セグメントllbの縦シール11dは、それぞれポリマー等の弾性材料によって形成されており、図15に示す断面形状を有する直線シールである。
上記ローターベーン12dの上部横シール12f、下部横シール12h、縦シール12j、および、セグメントllbの縦シール11dのシーリング作用は、各シール面12p、12q、12r、11oの長手側の両端縁12pe、12qe、12re、11oeとそれぞれの相手面との所定の面圧の下での接触によって発揮される。
また、ローターベーン12dの上部横シール12f、下部横シール12h、縦シール12j、および、セグメントllbの縦シール11dは、各シール面12p、12q、12r、11oに、アンダーカット部12pu、12qu、12ru、llouを設けており、ローター12の回転に伴う各シールの運動中に、このアンダーカット部12pu、12qu、12ru、11ouに作動油が浸入して、シール面12p、12q、12r、11oに潤滑を与えるものである。
ローター12は、ハウジング11内において、ベーン12dの上部横シール12fがトップカバー13の裏面に摺接し、下部横シール12hがハウジング11の内底面に摺接し、縦シール12jがハウジング11の内周面に摺接し、ローター12の外周面がハウジング11のセグメント11bの縦シール11dに摺接する状態で回転する。
これにより、ローター12の外側周囲に形成された油室用空間15が、ベーン12dとセグメント11bとによって、作動油室15a、15b、15cl15dに区画される。
トップカバー13は、ローター12の上部端面外周縁に対向する部位にトップカバー13の全周にわたって形成した上部リングスリット13a内に、環状の上部リングシール13bを保持している。また、ハウジング11は、ローター12の下部端面外周縁に対向する部位にハウジング11の全周にわたって形成した下部リングスリット11e内に、環状の下部リングシール11fを保持している。上部リングシール13bおよび下部リングシール11fは、それぞれポリマー等の弾性材料によって形成されており、図16に示す断面形状を有している。
図13に示すように、上部リングシール13bは、リングシール面13cがローター12の上部端面の半径方向端縁部と全周にわたって接触するとともに、リングシール面13cの外周縁部13dがベーン12dの上部横シール12fの内周側上端縁12kとセグメント11bの縦シール11dの内周側上端縁llhとにそれぞれ接触している。
また、上記下部リングシール11fは、上部リングシール13bと同様に、リングシール面11gがローター12の下部端面の半径方向端縁部と全周にわたって接触するとともに、リングシール面11gの外周縁部11iがベーン12dの下部横シール12hの内周側下端縁12mとセグメント11bの縦シール11dの内周側下端縁11jとにそれぞれ接触している。
これらにより、各作動油室15a、15b、15c、15dのうちで高圧側となる作動油室の圧油が、低圧側となる隣接する作動油室に漏洩すること、つまり高圧側となる作動油室の圧油がローター12の上部端面とトップカバー13の裏面との間の微小な間隙を通って、また、上部リングスリット13aおよび下部リングスリット11eのそれぞれの外周側面を通って、あるいは、ベーン12の上部横シール12fおよび下部横シール12hの上下の各内周端縁部12k、12m、およびセグメント11bの縦シール11dの上下の各内周端縁部11h、11jを通って高圧側の作動油室から低圧側の作動油室に漏洩することを防ぐとともに、大気に通ずるローター軸部12a、12bへ漏出することを防いでいる。
ローター12の回転軸心に対して対極の位置にある作動油室15a、15c同士、および作動油室15b、15d同士はそれぞれ互いに連通しており、例えば作動油室15aに油圧ポンプから圧油が供給されると、対極の位置にある作動油室15cにも同時に圧油が供給され、一方、同時に残りの作動油室15b、15dから油が排出されて、その油が油圧ポンプ側に戻される。これにより、圧油によるローター12の回転が成立する。
上記のローター12のベーン12dの上部横シール12f、下部横シール12h、縦シール12j、ハウジング11のセグメント11bの縦シール11d、ハウジング11の下部リングシール11fおよびトップカバー13の上部リングシール13bは、それぞれ接触摺動する相手面との間のシーリング効果を高めるために、各シール12f、12h、12j、11d、11f、13bのそれぞれの背面に、高圧側となる作動油室(15a・15cあるいは15b・15d)から圧油を導いて、この油圧によりそれぞれのシール面をそれぞれ相手面に押し付ける構造をなす。
高圧側となる作動油室(15a、15cあるいは15b、15d)から圧油を各シール12f、12h、12j、11d、11f、13bの背面に導く手段は、図13、図14に示すように、各ベーン12dを貫通する各油室連通孔12nにそれぞれ圧力バルブ16を装着してなるものであり、いずれか高圧側となった作動油室の圧油が、圧力バルブ16を通って各ベーン12dの各縦シール12j、および上部横シール12fおよび下部横シール12hの各背面に作用する。
また、各セグメント11bの縦シールlldの背面に圧油を導く手段は、ベーン12dと同様に、図13、図14に示すように、各セグメントllbを貫通する各油室連通孔11kにそれぞれ圧力バルブ16を装着してなるものであり、いずれか高圧側となった作動油室の圧油が圧力バルブ16を通って各セグメントllbの縦シール11dの背面に作用する。
また、上部リングシール13bおよび下部リングシール11fの背面に圧油を導く手段は、図13に示すように、セグメントllbの縦シール11dの背面の上端部から上部リングシール13bの背面に通じる油路13eをトップカバー13に穿孔し、上記セグメント縦シール11dの背面の下端部から下部リングシールl1fの背面に通じる油路llmがハウジング11の底部に穿孔してなるものであり、これによって、高圧側となる作動油室15a〜15dからの圧油が、セグメント11bの縦シール11dの背面を通して、上部および下部リングシール13b、11fの各背面に作用する。
なお、ローター12には、上部リングシール13bの位置よりも内側の上部端面と下部リングシール11fの位置よりも内側の下部端面とを連通するバランス孔12oが設けられており、上下部端面への漏洩油圧をバランス孔12oを介して上下で均圧化することにより、差圧による不均等な力がローター12の軸方向へ作用することを防いでいる。
また、図13に示すように、ローター12の上部軸部12bが貫通するトップカバー13の所定の部位には、上部グランドシール13fが設けられており、ローター12の下部軸部12aが貫通するハウジング11の底部の所定の部位には、下部グランドシール11pが設けられている。
上部グランドシール13fおよび下部グランドシールllpは、高圧作動油が外部に漏出するのを防ぐためのものである。すなわち、高圧側となった作動油室15a、15cあるいは15b、15dの作動油が、上部リングシール13bあるいは下部リングシール11fを越えて、ローター12の上部軸部12bがトップカバー13を貫通する部位に、あるいは、ローター12の下部軸部12aがハウジング11の底部を貫通する部位に侵入したとき、その高圧作動油が外部に漏出するのを防ぐためのものである。
この上部グランドシール13fおよび下部グランドシールllpには、いろいろな形式のものがあり、本実施の形態で用いているものは、図13に示すように、Oリングを二重に重ねて設けたものである。しかし、作動油の設計圧力が高くなると、Oリングの二重かさね構成ではシーリングが難しくなるため、リップ形のグランドシールを用いることが多い。すなわち、図17に示すように、グランドシール18は、弾性材料からなり、リング状の基部18aと、基部18aの内周側端部から軸方向に突出したリング状のグランドシーリングリップ部18bと、基部18aの外周側端部から軸方向に突出したリング状の溝シーリングリップ部18cとからなる。
グランドシール18を円環状のグランドシール溝19に収めた状態において、グランドシーリングリップ部18bの内側先端環部18btは、ローター12の上部軸部12b(あるいは下部軸部12a)の外周面と、弾性により、所定の面圧をもって接触し、そして、溝シーリングリップ部18cの外側先端環部18ctは、グランドシール溝19の外周側面19aと、弾性により、所定の面圧をもって接触する。
かくして、ローター12の上部軸部12bがトップカバー13を貫通する部位に、あるいは、下部軸部12aがハウジング11の底部を貫通する部位に、高圧側となった作動油室15a、15cあるいは15b、15dの作動油が侵入したとき、この作動油は、グランドシール18のグランドシーリングリップ部18bと溝シーリングリップ部18cの間に入り、その油圧によってグランドシーリングリップ部18bの内側先端環部18btをローター12の上部軸部12b(あるいは下部軸部12a)の外周面に押し付けて、作動油の漏出を防ぐ。また同時に、作動油は溝シーリングリップ部18cの外側先端環部18ctをグランドシール溝19の外周側面19aに押し付けて、作動油がグランドシール18とグランドシール溝19との間の隙間を通って漏出することを防ぐ。
このグランドシール18は、その材料として比較的に柔軟性の高い高弾性材料が用いられることで、ローター12の上部軸部12b(あるいは下部軸部12a)が僅かに偏心運動をする場合でも、それに追随できてシーリング機能を維持できる。
上記のロータリーベーン式舵取機のアクチュエーター1を作動させる油圧装置2の回路は、例えば図18に示すようなものである。油圧回路を構成する主要要素は、油圧ポンプ21、方向切換弁22およびそれを駆動する電磁弁23、取舵側および面舵側パイロット逆止弁24p、24s、取舵側および面舵側流量調整弁25p、25s、油タンク26、および、方向切換弁22の出口とアクチュエーター1とを結ぶ取舵側主油圧ライン27pおよび面舵側主油圧ライン27sである。
油圧ポンプ21は一方向一定吐出量型であり、油圧ポンプ21からの吐出油によりアクチュエーター1を取舵側に回転させる場合と面舵側に回転させる場合との流路の切換えを方向切換弁22によって行う。また、方向切換弁22はアクチュエーター1を作動させないとき、油圧ポンプ21からの吐出油を油タンク26に戻す作用も行う。
取舵側パイロット逆止弁24pおよび面舵側パイロット逆止弁24sは、アクチュエーター1を作動させるとき、すなわち、油圧ポンプ21からの吐出油に油圧が発生するときに、主油圧ライン27p、27sを開き、アクチュエーター1を作動させないときは、逆止作用を行って、作動油をアクチュエーター1の作動油室15a、15b、15c、15d内に閉じ込め、ローター12すなわち舵軸17を固定する。
而して、取舵側流量調整弁25pおよび面舵側流量調整弁25sは、作動油のアクチュエーター1からの流出側、すなわち、油タンク26への戻り側の主油圧ライン27pあるいは27sに抵抗を与えることによって、アクチュエーター1の運動を滑らかにするものである。
なお、アクチュエーター1において隣接する作動油室15a、15dおよび15b、15c間をそれぞれ防衝弁28p、28sが結んでおり、作動油室15a、15b、15c、15dがパイロット逆止弁24p、24sによってロックされているとき、舵に異常に大きい力が作用すると、防衝弁28pあるいは28sが作用して、高圧側となった作動油室15a、15cあるいは15b、15dの作動油を低圧側の作動油室15b、15dあるいは15a、15cに逃がす。
なお、方向切換弁22を作動させるための制御油圧は、油圧ポンプ21の吐出圧を利用する上記の場合と、図19に示すように、制御油圧を独立した制御油ポンプ29から作り出す場合とがある。
上記した構成のロータリーべーン式舵取機は、作動油圧がほぼ8MPa(80kg/cm2)であり、定格トルクがほぼ100〜3000kN・m(10〜300t・m)の範囲で使用されている。また、ローター12の回転速度はほぼ2.32°/secである。
特開2003−161371 特開2008−037187
上記した構成の従来のロータリーベーン式舵取機は、油圧技術として、極めて高いトルク、かつ低速の範疇に属するものである。従って、製造工場での試験において、舵取機に実際の舵トルクに匹敵するような大きな負荷をかける負荷運転を行うことは、実際問題として極めて困難であった。これは、ロータリーベーン式舵取機に限らず、他の形式の舵取機においても同様である。
そのため、製造を完了した舵取機は、工場において、無負荷で試験運転して納入せざるを得ないという問題があった。また、新しい舵取機を開発し、設計・製造を行っても、その実際の負荷運転に対する性能を工場で試験して確認することができないという問題があった。
さらに、上記負荷運転に対して要求される性能の一つとして、舵取機の作動におけるクリーピング現象に対する耐性がある。これは次のようなものである。すなわち、舵を或る舵角に転舵するように舵取機に命令が出されて、舵取機アクチュエーター1がその舵角位置に達すると、操舵方向切換弁22が中立の位置となり、アクチュエーター1の作動油室15a〜15dがパイロット逆止弁24p、24sの作用によって遮断され、アクチュエーター1は、その舵角位置において舵を保持しなければならない。
しかしながら、作動油室15a〜15dの油密性が完全でないと、舵からの力により発生した高圧側の作動油室15a、15c(あるいは作動油室15b、15d)の作動油が低圧側の作動油室15b、15d(あるいは作動油室15a、15c)に漏洩するので、その位置に保持されるべき舵が漏洩分だけ回転してしまう現象、いわゆる舵のクリーピング現象が生じる。
そして、このクリーピング現象が生じると、舵取機アクチュエーター1は、再び作動して命令された舵角に舵を復帰させ、再び舵をその位置に保持する。しかし、再び高圧側の作動満室15a、15c(あるいは作動油室15b、15d)から低圧側の作動油室15b、15d(あるいは作動油室15a、15c)への作動油の漏洩により、クリーピング現象が生じる。このクリーピング現象と舵取機アクチュエーター1の復帰の作動とが繰返すことにより、アクチュエーター1の不断の作動を招いてしまうことになる。
完成した舵取機が上述したクリーピング現象に対してどれだけの耐性を有するかということは、舵取機を実際に船に搭載して、上記の状態に遭遇してからでないと判明しないという問題があった。
また、上記した新しい舵取機の開発課題の一つとして、ロータリーベーン式舵取機の高圧化があり、これが斯界の命題とされている。そして、開発された高圧の舵取機は、その性能が試験装置で試験され、確認される必要がある。従って、試験装置は、高圧化した被試験機の試験にも対応できなければならない。
然るに、上記した従来のロータリーベーン式舵取機は、油圧技術としては極めて低い作動油圧(ほぼ80kg/cm2)でしか使用できず、作動油圧を高めることが困難であるという問題があった。
その一つの理由は、作動油圧を高めると、図15に示す直線シール11d、12f、12h、12jのシール面11o、12p、12q、12rにおいて、アンダーカット部11ou、12pu、12qu、12ruが、それぞれシール背面に導かれた作動油の圧力によって押し潰されることで、アンダーカット部11ou、12pu、12qu、12ruへの作動油の留保ができなくなって潤滑性が悪くなり、シール面11o、12p、12q、12rが焼損しやすくなることにある。
また、上述したように、作動油圧を高めるとアンダーカット部11ou、12pu、12qu、12ruが押し潰されると、これに伴ってシール面11o、12p、12q、12rの長手側の両端縁lloe、12pe、12qe、12reがはみ出す。すなわち、セグメントllbの縦シール11dにおいてはセグメント11bの半径方向端面とローター12の外周面との間の隙間に、またローターベーン12dの上部横シール12fにおいてはベーン12dの上端面とトップカバー13の裏面との間の隙間に、またローターベーン12dの下部横シール12hにおいてはベーン12dの下端面とハウジング11の内底面との間の隙間に、またローターベーン12dの縦シール12jにおいてはベーン12dの半径方向端面とハウジング11の内周面との間の隙間のそれぞれに、シール面11o、12p、12q、12rの端縁lloe、12pe、12qe、12reがはみ出して損傷し、シーリング機能を発揮できなくなるという問題があった。
さらに、図17において説明したように、ローター12の上部軸部12b(あるいは下部軸部12a)に対するグランドシール18は、ローター12の上部軸部12b(あるいは下部軸部12a)が僅かに偏心運動をする場合でも、その偏心運動に追随してシーリング機能を維持できるように、比較的に柔軟性の高い高弾性材料が用いられている。
このため、高圧の作動油がグランドシール18のグランドシーリングリップ部18bと溝シーリングリップ部18cの間に入り、その油圧によってグランドシーリングリップ部18bの内側先端環部18btがローター12の上部軸部12b(あるいは下部軸部12a)の外周面に押し付けられるに際して作動油の油圧が高くなると、グランドシーリングリップ部18bの内側先端環部18btの変形が大きくなり、ローター12の上部軸部12b(あるいは下部軸部12a)の外周面との接触面積が過大になり、その結果、摩擦抵抗が大きくなって摩耗が促進されるという問題があった。
本発明は、上記した課題を解決するものであり、ロータリーベーン式舵取機の作動油圧の高圧化の命題に対して、直線シールにおいては、その横断面を、シール背面に高圧化された作動油が導かれても潤滑に必要なアンダーカット部を確保できるようにするとともに、シール背面の作動油の微量を微小孔を通してシール面に導くことでシール面の潤滑性を高めるような形状にして作動油圧の高圧化に対処できるようにすることで、また、ローター軸部グランドシールにおいては、ローター軸部と接触するリップ部の柔軟性を確保しつつ、ローター軸部と接触する先端環部を、その変形を抑制するとともに摩擦抵抗を減らし得るようにすることで、作動油圧の高圧化に対処できるようにしたロータリーベーン式舵取機のシール構造を提供することを目的とする。
上記課題を解決するために、本発明のロータリーベーン式舵取機のシール構造は、舵軸に嵌合装着するローターと、ローターを収納してローターの周囲に油室用空間を形成するハウジングと、ハウジングの上部開口に配置する環状のトップカバーとを有し、ローターの外周面の周方向に沿った等間隔の位置に複数のベーンを配置し、ハウジングの内周面の周方向に沿った等間隔の位置に複数のセグメントを配置し、ベーンとセグメントによって前記油室用空間を複数の油室に区画し、ローターの各ベーンの半径方向先端面および上下端面にそれぞれ形成するスリットがトップカバーの裏面およびハウジングの内周面と内底面にそれぞれ対向し、トップカバーの裏面に対向する前記スリット内に弾性材料よりなる上部横シールを保持し、ハウジングの内底面に対向する前記スリット内に弾性材料よりなる下部横シールを保持し、ハウジングの内周面に対向する前記スリット内に弾性材料よりなる縦シールを保持し、縦シールの上端面と下端面がそれぞれ上部横シールと下部横シールの裏面に接触し、各シールのそれぞれの背面に高圧側となる作動油室から圧油を導き、この油圧によりそれぞれのシール面をそれぞれ相手面に押し付ける手段を備えるロータリーベーン式舵取機のアクチュエーターにおいて、ローターベーンの上部横シール、下部横シール、縦シール、およびハウジングセグメントの縦シールは、各シール面の両縁辺部がシーリング用リップ部をなすとともに、各シール面に各縁辺部から中央部に向かってアンダーカット部を有し、各シール面の中央部に相手面と平面的に接触する堤部を有し、堤部の長手方向中心線上に所定の間隔をもって穿孔されて各シールの背面と連通する微小孔を有し、各シール面に微小孔の各開口部を連通して長手方向に所定の長さに形成した油溝を有することを特徴とする。
本発明のロータリーベーン式舵取機のシール構造において、ローターベーンの上部横シール、下部横シール、縦シール、およびハウジングセグメントの縦シールは、シール面を含む冠部と、各シールの背面を含む基部とに分割し、冠部は硬度が高くて摩擦係数の小さい樹脂材で成型し、基部は弾性係数が大きいエラストマー材で成型し、冠部と基部とを接着剤にて接着するか、あるいは冠部と基部とを同時成型によって接合してなり、冠部は、シール面の両縁辺部がシーリング用リップ部をなすとともに、シール面に各縁辺部から中央部に向かってアンダーカット部を有し、シール面の中央部に相手面と平面的に接触する堤部を有し、堤部の長手方向中心線上に所定の間隔をもって穿孔された微小孔を有し、シール面に微小孔の各開口部を連通して長手方向に所定の長さに形成した油溝を有し、基部は、冠部の前記微小孔に接続するとともに、シールの背面と連通する微小孔を有することを特徴とする。
本発明のロータリーベーン式舵取機のシール構造は、舵軸に嵌合装着するローターと、ローターを収納してローターの周囲に油室用空間を形成するハウジングと、ハウジングの上部開口に配置する環状のトップカバーとを有し、ローターの外周面の周方向に沿った等間隔の位置に複数のベーンを配置し、ハウジングの内周面の周方向に沿った等間隔の位置に複数のセグメントを配置し、ベーンとセグメントによって前記油室用空間を複数の油室に区画し、トップカバー裏面においてローターの上部端面の外周縁に対向する部位に全周にわたって上部リングスリットを形成し、ハウジングの内底面においてローターの下部端面の外周縁に対向する部位に全周にわたって下部リングスリットを形成し、上部リングスリット内に弾性材料よりなる上部リングシールを保持し、下部リングスリット内に弾性材料よりなる下部リングシールを保持し、各シールのそれぞれの背面に高圧側となる作動油室から圧油を導き、この油圧によりそれぞれのシール面をそれぞれ相手面に押し付ける手段を備え、ローター上部軸部の外周面に摺接するトップカバーの内周面に上部グランドシールを有し、ローター下部軸部の外周面に摺接するハウジングの内周面に下部グランドシールを有するロータリーベーン式舵取機のアクチュエーターにおいて、上部グランドシールは、リング状の基部と、基部の外周側端部から軸方向に突出して、その外周先端環部がグランドシール溝の外周側面に弾性反発力による所定の力をもって接触する溝シーリングリップ部と、基部の内周側端部から軸方向に突出して、その内周先端環部がローター上部軸部の外周面に弾性反発力による所定の力をもって押し付けられるグランドシーリングリップ部と、グランドシーリングリップ部においてローター上部軸部の外周面と接触する部位に接着剤によって、あるいは同時成型によって接合したシーリングリングとを備え、下部グランドシールは、リング状の基部と、基部の外周側端部から軸方向に突出して、その外周先端環部がグランドシール溝の外周側面に弾性反発力による所定の力をもって接触する溝シーリングリップ部と、基部の内周側端部から軸方向に突出して、その内周先端環部がローター下部軸部の外周面に弾性反発力による所定の力をもって押し付けられるグランドシーリングリップ部と、グランドシーリングリップ部においてローター下部軸部の外周面と接触する部位に接着剤によって、あるいは同時成型によって接合したシーリングリングとを備え、上部グランドシールおよび下部グランドシールは、シーリングリングを硬度が高くて摩擦係数の小さい弾性材料である樹脂で成型し、その他の部位を弾性係数の大きい弾性体で生成したことを特徴とする。
以上のように本発明によれば、直線シールにおいては、シール背面に高圧化された作動油が導かれても潤滑に必要なアンダーカット部を確保でき、シール面の潤滑性を高めて作動油圧の高圧化に対処でき、ローター軸部グランドシールにおいては、ローター軸部と接触するリップ部の柔軟性を確保しつつ、ローター軸部との接触部位において変形と摩擦抵抗を少なくして作動油圧の高圧化に対処できる。
本発明の実施の形態におけるロータリーベーン式舵取機の試験装置を示す縦断面図 本発明の実施の形態において、被試験用舵取機のアクチュエーターに与えられるべき模擬舵トルクの特性曲線についての説明図 同、舵トルクの特性曲線に対応する被試験用舵取機のアクチュエーターの作動油室の作動についての説明図 同、被試験用舵取機のアクチュエーターと試験用舵取機のアクチュエーターとを連結した装置において、図3に説明した被試験用舵取機のアクチュエーターの作動を与えるために試験用舵取機のアクチュエーターに必要とされる作動についての説明図 同、図4に説明した試験用舵取機のアクチュエーターの作動を行わせるために必要な制御装置についての第一実施例を示す説明図 同、図4に説明した試験用舵取機のアクチュエーターの作動を行わせるために必要な制御装置についての第二実施例を示す説明図 同、第二実施例の作用についての説明図 同、第二実施例の作用についての説明図 同、被試験用舵取機のアクチュエーターの作動油圧の高圧化に対応したローターベーンの上部・下部横シールおよび縦シール、ハウジングセグメントの縦シールの構成を示す拡大図面であり、図9(a)は図9(b)におけるa−a断面図、図9(b)は上面図 同、被試験用舵取機のアクチュエーターの作動油圧の高圧化に対応したローターベーンの上部・下部横シールおよび縦シール、ハウジングセグメントの縦シールの他の実施例における構成を示す拡大図面であり、図10(a)は図10(b)におけるb−b断面図、図10(b)は上面図 同、被試験用舵取機のアクチュエーターの作動油圧の高圧化に対応したローター軸部グランドシールの構成を示す拡大図面 背景技術におけるロータリーベーン式舵取機のアクチュエーターを示す部分断面斜視図 同、ロータリーベーン式舵取機のアクチュエーターを示す正面図であり、図14におけるc−c矢視断面 同、ロータリーベーン式舵取機のアクチュエーターを示す横断面図 同、ロータリーベーン式舵取機のアクチュエーターのローターベーンの上部・下部横シールおよび縦シール、ハウジングセグメントの縦シールの構成を示す拡大横断面図 同、ロータリーベーン式舵取機のアクチュエーターの上部・下部リングシールを示す拡大断面図 同、ロータリーベーン式舵取機のアクチュエーターのローター上部軸部に対するグランドシールを示す拡大断面図 同、ロータリーベーン式舵取機の油圧系統図 同、ロータリーベーン式舵取機の油圧系統図
以下、本発明の実施の形態を図面に基づいて説明する。先に、図12〜図19において説明した背景技術と基本的に同様の作用を行う部材については、同一番号を付してその説明を省略する。
図1に示すように、架台5は上部架台51と下部架台52とからなり、下部架台52の内側空間に、試験装置として、ロータリーベーン式舵取機(以下、「試験用舵取機」と称する)のアクチュエーター6を配設している。アクチュエーター6は、その本来の姿勢と逆になるように、かつその軸心が上下方向になるように配設し、ハウジングフランジ部62を全周にわたってボルト62aで上部架台51の床板51aの裏面に懸吊してある。
また、被試験用舵取機であるロータリーベーン式舵取機のアクチュエーター1は、ハウジングフランジ部11nを全周にわたってボルト53aで舵取機台53の上面に固着して舵取機台53と一体の構成物とし、その構成物を試験用舵取機のアクチュエーター6と同心に配置し、上部架台51の上面に載置する。
試験用舵取機のアクチュエーター6のローター61と被試験用舵取機のアクチュエーター1のローター12は連結軸7により連結固定される。
すなわち、試験用舵取機のアクチュエーター6のローター61の内部貫通孔61aに連結軸7の底端部71を挿嵌し、油圧締付け手段により固定する。次に、被試験用舵取機のアクチュエーター1のローター12を吊り降ろし、その内部貫通孔12cに連結軸7の頂端部72を挿嵌して、油圧締付け手段により固定する。被試験用舵取機のアクチュエーター1の最終的な位置が決定したあと、舵取機台53のベースプレート53bを上部架台51の上面に固着する。
被試験用舵取機のアクチュエーター1とそれを駆動する油圧装置2の構成は背景技術の項で説明したものと同様である。また、試験用舵取機のアクチュエーター6の構成も背景技術の項で説明したものと同様である。
試験用舵取機のアクチュエーター6の駆動を制御する制御装置8は、実際の舵トルクを模擬した出力トルクを被試験用舵取機のアクチュエーター1に与えるように、試験用舵取機のアクチュエーター6を制御する。
以下に、試験用舵取機のアクチュエーター6の制御装置8の具備する機能と構成について説明する。
試験用舵取機のアクチュエーター6は、実際に舵から舵取機に与えられる負荷条件を模擬した条件を被試験用舵取機のアクチュエーター1に対して与える。以下、その内容を説明する。
実際の舵の創り出す舵トルク特性は、例えば面舵方向に転舵するときは、図2に示すごときである。取舵転舵のときは、縦座標軸に対してこれと対称である。ここで、舵トルクを(+)として示した範囲(遷移点T→面舵一杯の点A)では、舵を転舵するのに、舵取機アクチュエーター1に、舵トルクに対抗する力が必要であることを意味し、舵トルクを(−)として示した範囲(舵中立位置O→遷移点T)では、舵を転舵するのに、逆に、舵が舵取機アクチュエーター1を動かそうとする力が働き、従って、舵取機は、この力を支えながら舵を動かしてやる必要があることを意味する。つまり、遷移点Tを境として舵トルクは(+)と(−)に分かれる。
このような舵トルク特性に対応する、ロータリーベーン式舵取機のアクチュエーター1における作動油圧特性は、図3に示す通りである。舵を、中立位置から、例えば、面舵方向に転舵するときは、アクチュエーター1の作動油圧は実線で示すものになる。また、舵を、面舵方向に取ったあと、中立位置方向に戻すように転舵するときは、アクチュエーター1の作動油圧は点線で示すものになる。(なお、取舵方向への転舵、および、取舵転舵から舵中立位置方向に戻す転舵の場合は、縦座標軸に対してこれと対称になる。)面舵転舵と取舵転舵とは対称であるので、以下、面舵転舵の場合について説明する。
ここで、舵中立位置Oから遷移点Tまでの転舵を第一転舵モードM−1、遷移点Tから面舵一杯の点Aまでの転舵を第二転舵モードM−2、舵を面舵一杯の点Aに取ったあと、遷移点Tまで戻す転舵を第三転舵モードM−3、舵を遷移点Tから中立位置Oまで戻す転舵を第四転舵モードM−4とする。
舵を面舵方向に転舵するときは、舵取機アクチュエーター1の作動油室15a、15b、15c、15dは次の状態になる。すなわち、第一転舵モードM−1(舵中立位置Oから遷移点Tまでの転舵)においては、舵取機アクチュエーター1の作動油室15a、15b、15c、15dには、図3に示すような回転、トルク、作動油圧が作用する。
すなわち、舵取機アクチュエーター1のローター12の回転方向(面舵方向)と舵トルクの方向とが同じであるので、舵取機アクチュエーター1は、舵からの力で押されるのを支えながら回転することになり、舵取機アクチュエーター1の作動油室15a、15cには、舵の(−)トルクを支えるための作動油圧が発生する。図3においては、この支えるために発生する油圧を(−)で示している。そして、この(−)の作動油圧は、図18、図19に示す取舵側パイロット逆止弁24pで支えることになる。
第二転舵モードM−2(遷移点Tから面舵一杯の点Aまでの転舵)においては、舵取機アクチュエーター1の作動油室15a、15b、15c、15dには、図3に示すような回転、トルク、作動油圧が作用する。すなわち、舵取機アクチュエーター1のローター12の回転方向(面舵方向)に対して舵トルクの方向が反対であるので、舵取機アクチュエーター1の作動油室15b、15dには、舵の(+)トルクに対抗するための作動油圧が発生する。図3においては、この対抗するために発生する油圧を(+)で示している。そして、この(+)の作動油圧は、図18、図19に示す油圧ポンプ21が支えることになる。
舵を面舵方向に転舵したあと、舵中立位置方向に戻す転舵を行うときは、舵取機アクチュエーター1の作動油室15a、15b、15c、15dは次の状態になる。
すなわち、第三転舵モードM−3(面舵一杯の点Aから遷移点Tまでの転舵)においては、舵取機アクチュエーター1の作動油室15a、15b、15c、15dには、図3に示すような回転、トルク、作動油圧が作用する。すなわち、舵取機アクチュエーター1のローター12の回転方向(取舵方向)と舵トルクの方向とが同じであるので、舵取機アクチュエーター1は、舵からの力で押されるのを支えながら回転することになり、舵取機アクチュエーター1の作動油室15b、15dには、舵の(−)トルクを支えるための作動油圧が発生する。図3においては、この、支えるために発生する油圧を(−)で示している。
そして、この(−)の作動油圧は、図18、図19に示す面舵側パイロット逆止弁24sで支えることになる。
第四転舵モードM−4(遷移点Tから舵中立位置Oまでの転舵)においては、舵取機アクチュエーター1の作動油室15a、15b、15c、15dには、図3に示すような回転、トルク、作動油圧が作用する。すなわち、舵取機アクチュエーター1のローター12の回転方向(取舵方向)に対して舵トルクの方向が反対であるので、舵取機アクチュエーター1の作動油室15a、15cには、舵の(+)トルクに対抗するための作動油圧が発生する。図3においては、この対抗するために発生する油圧を(+)で示している。そして、この(+)の作動油圧は、図18、図19に示す油圧ポンプ21が支えることになる。
図1に示すように、試験装置としてのロータリーベーン式舵取機(試験用舵取機)のアクチュエーター6と被試験用舵取機としてのロータリーベーン式舵取機(被試験用舵取機)のアクチュエーター1とを連結軸7により直結した装置において、試験用舵取機のアクチュエーター6は、被試験用舵取機のアクチュエーター1に対して、上記したような実際の舵の負荷条件を模擬したトルクを与えられるようにする必要がある。その必要なトルクと作動油圧は、図4(a)〜(d)に示す通りである。
なお、取舵転舵およびそれから戻す転舵の場合は、図4(a)〜(d)における回転方向、トルクの方向、油圧の方向がそれぞれ反対になるだけである。
図4(a)〜(d)において、被試験用舵取機のアクチュエーター1は、転舵命令に従った回転方向となるように、油圧装置21から送油される。これにより、試験用舵取機のアクチュエーター6は、被試験用舵取機のアクチュエーター1と同じ方向に回される。そして、試験用舵取機の制御装置8は、この回転方向の下で、試験用舵取機のアクチュエーター6が実際の舵トルクを模擬したトルクを被試験用舵取機のアクチュエーター1に対して与えられるように、試験用舵取機のアクチュエーター6の作動油室63a、63b、63c、63dに対して作動油圧を作用せしめる。
而して、試験用舵取機のアクチュエーター6が出力する模擬トルクの大きさは、図2に示す実際の舵トルク特性に対応するものであり、従って、試験用舵取機の制御装置8は、試験用舵取機のアクチュエーター6に対して、その大きさの模擬出力舵トルクを創出できる高さの作動油圧を与えられるように制御する。
この機能を達成するための試験用舵取機アクチュエーター6の制御装置8の実施例について以下に説明する。
試験用舵取機アクチュエーター6の制御装置8の第一実施例を以下に説明する。
図5に示すように、制御装置81は、試験用舵取機アクチュエーター6から被試験用舵取機アクチュエーター1に、連結軸7を介して、実際の舵トルクの大きさと方向とを模擬したトルク、および、クリーピング現象を生ぜしめる模擬トルクを与えられるように制御することができる構成のものである。
81aは、(−)負荷用油圧ポンプであり、容量は、被試験用舵取機アクチュエーター1の回転角速度によって規定される試験用舵取機アクチュエーター6の回転角速度に対応する作動油室63a、63c(あるいは作動油室63b、63d)における作動油の作動油量よりも所定量大きいものである。
(−)負荷用油圧ポンプ81aの吐出油をアクチュエーター6の作動油室63a、63c(あるいは作動油室63b、63d)に作用させるための装置は、(−)負荷用油圧ポンプ81aからの吐出油を試験用舵取機アクチュエーター6の取舵側の作動油室63a、63cに送油する方向と面舵側の作動油室63b、63dに送油する方向とを切換える操舵方向切換弁81b、操舵方向切換弁81bを作動させる電磁弁81c、操舵方向切換弁81bの制御油圧を供給する制御油圧ポンプ81d、取舵側パイロット逆止弁81fpおよび面舵側パイロット逆止弁81fsからなり、取舵側パイロット逆止弁81fpおよび面舵側パイロット逆止弁81fsは、試験用舵取機アクチュエーター6の作動時において(−)負荷用油圧ポンプ81aからの吐出油に油圧が発生したときに、その油圧によって取舵側の主油圧ライン81epおよび面舵側の主油圧ラィシ81esをそれぞれ開き、また、試験用舵取機アクチュエーター6の非作動時においては作動油を作動油室63a〜63dに閉じ込めるためのものである。
なお、試験用舵取機アクチュエーター6の運動を滑らかにするために、アクチュエーター6のそれぞれの作動油流出口に取舵側流量調整弁81gpおよび面舵側流量調整弁81gsを設ける。また、(−)負荷用油圧ポンプ81aの吐出ラインには、作動油圧が過大になるのを防止する逃し弁81hを設け、アクチュエーター6の作動油室63a、63cおよび作動油室63b、63dには、それぞれ、過大油圧の発生を防止する逃し弁81ip、81isを設ける。
また、試験用舵取機アクチュエーター6の作動油室63a、63cあるいは作動油室63b、63dに、所定の大きさの模擬トルクに相当する大きさの作動油圧を発生せしめるために、比例電磁式リリーフ弁81jを設ける。これは、ここを通ってリリーフする作動油に絞り抵抗を与えることによって、比例電磁式リリーフ弁81jの流入側の作動油に所定の油圧を発生せしめるものであり、作動油に発生させるべき油圧の大きさは、絞りの量を制御することによって与えられる。
また、チャージ油圧ポンプ81kは、(−)負荷用油圧ポンプ81aおよびその油圧回路を作動させないとき(即ち、正トルクの模擬負荷を与えるとき)に、被試験用舵取機アクチュエーター1による試験用舵取機アクチュエーター6の回転によって作動油を吸引する条件となった試験用舵取機アクチュエーター6の作動油室63a、63cあるいは作動油室63b、63dに作動油をチャージするためのものである。
なお、作動油室63a、63cあるいは作動油室63b、63dへの油タンクからの作動油の吸引が自然に行えるような条件であるときは、このチャージ油圧ポンプ81kを設ける必要は無い。
以下、上記した構成における作用を説明する。
被試験用舵取機アクチュエーター1を正トルクの状態で試験する場合、すなわち、第二転舵モードM−2(図3における遷移点Tから面舵一杯の点Aまでの転舵)、および第四転舵モードM−4(図3における遷移点Tから舵中立位置Oまで戻す転舵)に対して試験を行う場合の作用は次の通りである。
第二転舵モードM−2の場合、被試験用舵取機アクチュエーター1に例えば面舵命令が発せられると、アクチュエーター1は油圧装置2によって面舵方向に回転させられる。この回転は、連結軸7を介して試験用舵取機アクチュエーター6を同一方向に同一角速度で回転させる。
このとき、(−)負荷用油圧ポンプ81aは運転されない。従って、アクチュエーター6の作動油室63a、63c内の作動油は、逆止弁を通って比例電磁式リリーフ弁81jに入り、ここで舵角の大きさに応じた舵トルク(図2参照)に相当する大きさの油圧が発生するように制御された絞り抵抗を受ける。これにより、比例電磁式リリーフ弁81jの流入側の作動油、すなわち、アクチュエーター6の作動油室63a、63cには、所定の油圧が発生する。この油圧の大きさは、実際の舵トルクを模擬したトルクを発生させるのに相当するものである。
他方、アクチュエーター6の作動油室63b、63d内は作動油の吸込み側となるが、これに対しては、チャージ油圧ポンプ81kから作動油が送入される(あるいは、油タンクから作動油が自然に吸引される)。
次に、第四転舵モードM−4の場合、被試験用舵取機アクチュエーター1には取舵方向に回転する命令が発せられ、アクチュエーター1は油圧装置2によって取舵方向に回転させられる。この回転は、連結軸7を介して試験用舵取機アクチュエーター6を同一方向に同一角速度で回転させる。
このとき、(−)負荷用油圧ポンプ81aは運転されない。従って、アクチュエーター6の作動油室63b、63d内の作動油は、逆止弁を通って比例電磁式リリーフ弁81jに入り、ここで、舵角の大きさに応じた舵トルク(図2参照)に相当する大きさの油圧が発生するように制御された絞り抵抗を受ける。これにより、比例電磁式リリーフ弁81jの流入側の作動油、すなわち、アクチュエーター6の作動油室63b、63dには、所定の油圧が発生する。この油圧の大きさは、実際の舵トルクを模擬したトルクを発生させるのに相当するものである。
他方、アクチュエーター6の作動油室63a、63c内は作動油の吸込み側となるが、これに対しては、チャージ油圧ポンプ81kから作動油が送入される(あるいは、油タンクから作動油が自然に吸引される)。
次に、被試験用舵取機アクチュエーター1を負トルクの状態で試験する場合、すなわち、第一転舵モードM−1(図3における舵中立位置から遷移点Tまでの転舵)、および第三転舵モードM−3(図3における面舵一杯の点Aから遷移点Tまで戻す転舵)に対して試験を行う場合の作用は次の通りである。
第一転舵モードM−1の場合、被試験用舵取機アクチュエーター1に例えば面舵命令が発せられると、アクチュエーター1は油圧装置2によって面舵方向に回転させられる。この回転は、連結軸7を介して試験用舵取機アクチュエーター6を同一方向に同一角速度で回転させる。
この状態において、同時に、(−)負荷用油圧ポンプ81aが作動させられ、操舵方向切換弁81bは、(−)負荷用油圧ポンプ81aからの吐出油をアクチュエーター6の作動油室63b、63dに送入せしめるとともに、作動満室63a、63cの作動油を油タンクに戻らせる(図5において矢印で示した作動油の流れを参照)。なお、このモードにおいては、チャージ油圧ポンプ81kは作動させない。
(−)負荷用油圧ポンプ81aの吐出量は、アクチュエーター6の回転により必要とされる作動油室63b、63dの作動油量を超えたものであるから、その超えた量は、比例電磁式リリーフ弁81jに入り、ここで、所定の絞り抵抗を受けて、油タンクに戻る。
これにより、比例電磁式リリーフ弁81jの流入側の作動油、すなわち、アクチュエーター6の作動油室63b、63dには、比例電磁式リリーフ弁81jによって規定される油圧が発生する。
この油圧は、アクチュエーター6をして、被試験用舵取機アクチュエーター1に対して、実際の舵トルクを模擬した負のトルク、すなわち、舵からの力によって舵取機が回されようとするトルクを与えせしめる。
而して、アクチュエーター6に、舵角の大きさに応じた舵トルク(図2参照)に相当する大きさの油圧を発生せしめるのは、比例電磁式リリーフ弁81jの絞り量を制御することによってなされる。
次に、第三転舵モードM−3の場合、被試験用舵取機アクチュエーター1に取舵方向へ戻す転舵命令が発せられると、アクチュエーター1は油圧装置2によって取舵方向に回転させられる。この回転は、連結軸7を介して試験用舵取機アクチュエーター6を同一方向に同一角速度で回転させる。
この状態において、同時に、(−)負荷用油圧ポンプ81aが作動させられ、操舵方向切換弁81bは、(−)負荷用油圧ポンプ81aからの吐出油をアクチュエーター6の作動油室63a、63cに送入せしめるとともに、作動油室63b、63dの作動油を油タンクに戻らせる。なお、このモードにおいては、チャージ油圧ポンプ81kは作動させない。
(−)負荷用油圧ポンプ81aの吐出量は、アクチュエーター6の回転により必要とされる作動油室63a、63cの作動油量を超えたものであるから、その超えた量は、比例電磁式リリーフ弁81jに入り、ここで、所定の絞り抵抗を受けて、油タンクに戻る。
これにより、比例電磁式リリーフ弁81jの流入側の作動油、すなわち、アクチュエーター6の作動油室63a、63cには、比例電磁式リリーフ弁81jによって規定される油圧が発生する。
この油圧は、アクチュエーター6をして、被試験用舵取機アクチュエーター1に対して、実際の舵トルクを模擬した負のトルク、すなわち、舵からの力によって舵取機が回されようとするトルクを与えせしめる。
而して、アクチュエーター6に、舵角の大きさに応じた舵トルク(図2参照)に相当する大きさの油圧を発生せしめるのは、比例電磁式リリーフ弁81jの絞り量を制御することによってなされる。
次に、発明が解決しようとする課題として述べた舵取機のクリーピングに対する耐性を試験する方法について説明する。
舵取機がクリーピング現象を生じる状態は、次の通りである。すなわち、アクチュエータ1が或る舵角に命令され、そして、その命令舵角位置に達して、作動油室15a、15b、15c、15dが、パイロット逆止弁24p、24sによって遮断された状態で、舵に外力が作用すると、その舵からの力で作動油室15a、15cあるいは作動油室15b、15dに油圧が発生する。
しかし、作動油室15a、15b、15c、15dの油密性が完全でないと、高圧側の作動油室15a、15c(または作動油室15b、15d)の作動油が低圧側の作動油室15b、15d(または作動油室15a、15c)に漏洩するので、その分、ローター12、すなわち、舵がクリーピングする現象が生じるというものである。
そのとき、油圧装置2は、アクチュエーター1を、クリーピングにより回転した分を元の命令舵角に戻すように作動せしめ、そして、アクチュエーター1がその位置に戻って、作動油室15a、15b、15c、15dが遮断されると、再びクリーピングを起こす。
かくて、アクチュエーター1の不断の作動を招いてしまうというものである。
本発明の舵取機試験装置においては、このクリーピング現象に対する耐性を次の通り試験することができる。被試験用舵取機アクチュエーター1の油圧装置2において、操舵方向切換弁22を中立位置にすると、アクチュエーター1の作動油室15a、15b、15c、15dは、パイロット逆止弁24p、24sによって密封された状態となる。この状態は、連結軸7を介して、試験用舵取機アクチュエーター6を固定した状態にならしめる。
試験用舵取機アクチュエーター6の制御装置81における(−)負荷用油圧ポンプ81aからの吐出作動油を、操舵方向切換弁81bによって、作動油室63a、63c(または作動油室63b、63d)に送油する。アクチュエーター6は固定した状態にあるので、(−)負荷用油圧ポンプ81aからの吐出作動油の全量が比例電磁式リリーフ弁81jを通って油タンクにリリーフする。
そして、作動油室63a、63c(または作動油室63b、63d)には、比例電磁式リリーフ弁81jの絞り抵抗に相当する油圧が発生する。この油圧は、トルクとして、連結軸7を介して被試験用舵取機アクチュエーター1に与えられる。
かくて、作動油室15a、15b、15c、15dが密閉された状態にある被試験用舵取機アクチュエーター1にトルクが与えられ、その結果、被試験用舵取機アクチュエーター1にクリーピングが生じれば、それは、連結軸7の微小回転として表れるから、その計量によって、クリーピング現象に対する耐性を試験することができる。
なお、被試験用舵取機アクチュエーター1に与えられるトルクの大きさは、比例電磁式リリーフ弁81jの絞り抵抗を調節することによって変えることができる。
次に、試験用舵取機アクチュエーター6の制御装置8の第二実施例について以下に説明する。
図6に示すように、試験用舵取機アクチュエーター6の制御装置8の第二の実施例として、制御装置82は、操舵方向切換弁82a、遷移点切換弁82b、ブースター油圧ポンプ82c、圧力制御弁82d、制御弁コントローラー82e、演算装置82f、逆止弁82gにより構成される。
操舵方向切換弁82aは、面舵方向への転舵と取舵方向への転舵とを切換えるもので、被試験用舵取機のアクチュエーター1の油圧装置2の操舵方向切換弁22と連動する。
遷移点切換弁82bは、舵のトルク特性曲線(図2)に従った、アクチュエーター1の作動油圧特性(図3)における遷移点Tの角度を基に、舵角がそれよりも大きい状態であるか、あるいは小さい状態であるかによって、油路を切換えるものである。
ブースター油圧ポンプ82cは、試験用舵取機のアクチュエーター6の作動油室63a、63b、63c、63dに対して、被試験用舵取機のアクチュエーター1に与えるべきトルクに相当する必要な作動油圧を発生せしめるものである。
ブースター油圧ポンプ82cの容量は、被試験用舵取機アクチュエーター1の回転角速度によって規定される試験用舵取機アクチュエーター6の回転角速度に対応する作動油室63a、63c(あるいは作動油室63b、63d)における作動油の作動油量よりも所定量大きいものである。
圧力制御弁82dは、被試験用舵取機のアクチュエーター1に対して舵のトルク特性曲線(図2)に従った大きさのトルクを与えるべく、それに対応する大きさの作動油圧を試験用舵取機のアクチュエーター6の作動油室63a、63b、63c、63dに発生せしめるように油圧を制御するものである。而して、その制御は、圧力制御弁82dの絞りの度合いを制御弁コントローラー82eによって制御することによって行われる。
制御弁コントローラー82eに対する制御信号は、演算装置82fにおいて、第一〜第四転舵モード(M−1からM−4)の情報、舵角情報、舵角に相当するアクチュエーター作動油圧情報を総合して演算することによって与えられる。
ブースター油圧ポンプ82cの吐出ラインに設けた逆止弁82gは、ブースター油圧ポンプ82cの停止時、アクチュエーター一6の作動油室63a、63b、63c、63dに発生した油圧によりブースター油圧ポンプ82cが回されないようにするためのものである。
以下、上記した構成における作用を説明する。
図7(a)は、第一転舵モードM−1(舵中立位置O→遷移点Tまでの転舵)における試験用舵取機のアクチュエーター6の作動を説明したものである。
被試験用舵取機のアクチュエーター1に対して、第一転舵モードM−1の作動命令が発せられると、被試験用舵取機のアクチュエーター1は、油圧装置2により、面舵方向に回転させられる。その回転は、連結軸7を介して、試験用舵取機のアクチュエーター6を、同一方向に、同一角速度で、回転せしめる。
第一転舵モードM−1においては、試験用舵取機のアクチュエーター6の制御装置82における操舵方向切換弁82a、遷移点切換弁82bの作動油通路は、図7(a)の位置にある。
アクチュエーター6の上記回転に対して、アクチュエーター6の作動油室63b、63dにはブースター油圧ポンプ82cからの吐出油が送入される。而して、ブースター油圧ポンプ82cからの吐出油量のうち、アクチュエーター6の作動油室63b、63dに送入される油量を超える油量は圧力制御弁82dに入り、そこで、演算装置82fおよび制御弁コントローラー82eによって与えられる所定の絞りを受ける。
それによって、アクチュエーター6の作動油室63b、63dには、舵のトルク特性曲線(図2)に対応したトルクを発生せしめるような作動油圧が発生する。
そして、この作動油圧によるトルクが、舵の模擬トルク((−)のトルク)として、連結軸7を介して、被試験用舵取機のアクチュエーター1に与えられる。而して、そのトルクの大きさは、図2に示す舵のトルク特性曲線に従った大きさである。
図7(b)は、第二転舵モードM−2(遷移点T→面舵一杯の点Aまでの輯舵)における試験用舵取機のアクチュエーター6の作動を説明したものである。
被試験用舵取機のアクチュエーター1に対して、第二転舵モードM−2の作動命令が発せられると、被試験用舵取機のアクチュエーター1は、油圧装置2により、面舵方向に回転させられる。その回転は、連結軸7を介して、試験用舵取機のアクチュエーター6を、同一方向に、同一角速度で、回転せしめる。
第二転舵モードM−2においては、試験用舵取機のアクチュエーター6の制御装置82における操舵方向切換弁82a、遷移点切換弁82bの作動油通路は、図7(b)の位置にある。ブースター油圧ポンプ82cは停止している。
アクチュエーター6の上記回転により、アクチュエーター6の作動油室63a、63cの作動油は、操舵方向切換弁82a、遷移点切換弁82bを経て圧力制御弁82dに入り、そこで、演算装置82fおよび制御弁コントローラー82eによって与えられる所定の絞りを受ける。
それによって、アクチュエーター6の作動油室63a、63cには、舵のトルク特性曲線(図2)に対応したトルクを発生せしめるような作動油圧が発生する。
そして、この作動油圧によるトルクが、舵の模擬トルク((+)のトルク)として、連結軸7を介して、被試験用舵取機のアクチュエーター1に与えられる。而して、そのトルクの大きさは、図2に示す舵のトルク特性曲線に従った大きさである。
図8(a)は、第三転舵モードM−3(面舵一杯の点A→遷移点Tまで戻す転舵)における試験用舵取機のアクチュエーター6の作動を説明したものである。
被試験用舵取機のアクチュエーター1に対して、第三転舵モードM−3の作動命令が発せられると、被試験用舵取機のアクチュエーター1は、油圧装置2により、取舵方向に回転させられる。その回転は、連結軸7を介して、試験用舵取機のアクチュエーター6を、同一方向に、同一角速度で、回転せしめる。
第三転舵モードM−3においては、試験用舵取機のアクチュエーター6の制御装置82における操舵方向切換弁82a、遷移点切換弁82bの作動油通路は、図8(a)の位置にある。
アクチュエーター6の上記回転に対して、アクチュエーター6の作動油室63a、63cにはブースター油圧ポンプ82cからの吐出油が送入される。而して、ブースター油圧ポンプ82cからの吐出油量のうち、アクチュエーター6の作動油室63a、63cに送入される油量を超える油量は圧力制御弁82dに入り、そこで、演算装置82fおよび制御弁コントローラー82eによって与えられる所定の絞りを受ける。
それによって、アクチュエーター6の作動油室63a、63cには、舵のトルク特性曲線(図2)に対応したトルクを発生せしめるような作動油圧が発生する。
そして、この作動油圧によるトルクが、舵の模擬トルク((−)のトルク)として、連結軸7を介して、被試験用舵取機のアクチュエーター1に与えられる。而して、そのトルクの大きさは、図2に示す舵のトルク特性曲線に従った大きさである。
図8(b)は、第四転舵モードM−4(遷移点T→舵中立位置Oまで戻す転舵)における試験用舵取機のアクチュエーター6の作動を説明したものである。
被試験用舵取機のアクチュエーター1に対して、第四転舵モードM−4の作動命令が発せられると、被試験用舵取機のアクチュエーター1は、油圧装置2により、取舵方向に回転させられる。そして、その回転は、連結軸7を介して、試験用舵取機のアクチュエーター6を、同一方向に、同一角速度で、回転せしめる。
第四転舵モードM−4においては、試験用舵取機のアクチュエーター6の制御装置82における操舵方向切換弁82a、遷移点切換弁82bの作動油通路は、図8(b)の位置にある。ブースター油圧ポンプ82cは停止している。
アクチュエーター6の上記回転により、アクチュエーター6の作動油室63b、63dの作動油は、操舵方向切換弁82a、遷移点切換弁82bを経て圧力制御弁82dに入り、そこで、演算装置82fおよび制御弁コントローラー82eによって与えられる所定の絞りを受ける。
それによって、アクチュエーター6の作動油室63b、63dには、舵のトルク特性曲線(図2)に対応したトルクを発生せしめるような作動油圧が発生する。
そして、この作動油注によるトルクが、舵の模擬トルク((+)のトルク)として、連結軸7を介して、被試験用舵取機のアクチュエーター1に与えられる。而して、そのトルクの大きさは、図2に示す舵のトルク特性曲線に従った大きさである。
かくして、被試験用舵取機のアクチュエーター1に対して、第一転舵モードM−1〜第四転舵モードM−4の作動命令が発せられると、被試験用舵取機のアクチュエーター1は、油圧装置2により、それぞれの方向に回転させられ、その被試験用舵融機のアクチュエーター1のそれぞれの回転に対して、実際の舵トルクを模擬した負荷トルクが、試験用舵取機のアクチュエーター6から、連結軸7を介して、被試験用舵取機のアクチュエーター1に与えられることになる。
次に、発明が解決しようとする課題として述べた舵取機のクリーピングに対する耐性を、試験用舵取機アクチュエーター6の制御装置8の第二の実施例としての制御装置82で試験する方法について説明する。
被試験用舵取機アクチュエーター1の油圧装置2において、操舵方向切換弁22を中立位置にすると、アクチュエーター1の作動油室15a、15b、15c、15dは、パイロット逆止弁24p、24sによって密封された状態となる。この状態は、連結軸7を介して、試験用舵取機アクチュエーター6を固定した状態にならしめる。
試験用舵取機アクチュエーター6の制御装置82の操舵方向切換弁82aと遷移点切換弁82bとを、図7(a)あるいは図7(b)に示す位置にし、ブースター油圧ポンプ82cを作動させる。
アクチュエーター6は固定した状態にあるので、ブースター油圧ポンプ82cからの吐出作動油の全量が圧力制御弁82dを通って油タンクにリリーフする。
そして、アクチュエーター6の作動油室63b、63dあるいは作動油室63a、63cには、圧力制御弁82dの絞り抵抗に相当する油圧が発生する。この油圧は、トルクとして、連結軸7を介して、被試験用舵取機アクチュエーター1に与えられる。その大きさは、圧力制御弁82dの絞り抵抗を調節することによって変えることができる。
かくて、作動油室15a、15b、15c、15dが密閉された状態にある被試験用舵取機アクチュエーター1にトルクが与えられ、そして、その結果、被試験用舵取機アクチュエーター1にクリーピングが生じれば、それは、連結軸7の微小回転として表れるから、その計量によって、クリーピング現象に対する耐性を試験することができる。
次に、ロータリーベーン式舵取機の作動油圧の高圧化の命題に対応するものとして、被試験用舵取機のアクチュエーター1の直線シール(従来のローター12のベーン12dの上部横シール12f、下部横シール12h、縦シール12j、および、ハウジング11のセグメントllbの縦シールlld)についての新しいシール構造の実施例について説明する。
なお、この実施例は、試験用舵取機のアクチュエーター6の上記各シールにも適用できるものである。
図9(a)、(b)に示すように、ローター12のベーン12dの上部横シール101、下部横シール102、縦シール103、および、ハウジング11のセグメント11bの縦シール104は、その各シール面101a、102a、103a、104aにおいて、シールの運動方向と直角である両縁辺部がシーリング用リップ部101b、102b、103b、104bを形成するように、縁辺から中央部に向かうアンダーカット部101c、102c、103c、104cを設ける。
また、シール面101a、102a、103a、104aの中央部は、それぞれの相手面101d、102d、103d、104dと平面的に接触する堤部101e、102e、103e、104eを形成する。
各シール101、102、103、104の堤部101e、102e、103e、104eの長手方向中心線上に、シール面101a、102a、103a、104aと背面l0lf、102f、103f、104fとを連通する微小孔101g、102g、103g、104gを所定の間隔をもって穿孔する。そして、微小孔101g、102g、103g、104gのシール面101a、102a、103a、104aへの各開口部を連通して、長手方向に所定の長さの油溝101h、102h、103h、104hを設ける。
なお、各シール101、102、103、104の各背面l0lf、102f、103f、104fに高圧側の作動油室から導かれた作動油が各シール・スリット12e、12g、12i、11cの各側面を通って低圧側の作動油室に漏洩しないように、各シール101、102、103、104の各背面l0lf、102f、103f、104fには、各シール・スリット12e、12g、12i、11cの各側面と弾性反発力をもって接触するリップ部l0li、102i、103i、104iを設ける。
以下、上記した構成における作用を説明する。
図9(a)、(b)に示すように、各シール101、102、103、104の各背面l0lf、102f、103f、104fに高圧側の作動油室からの作動油が作用するとき、その力は、各シール面101a、102a、103a、104aをそれぞれの相手面101d、102d、103d、104dに押し付ける。そして、それが面積の大きい各堤部101e、102e、103e、104eを介してなされるために、各シール背面l0lf、102f、103f、104fに作用する油圧が高いときでも、各シール面101a、102a、103a、104aにおける、シーリング作用を司るアンダーカット部101c、102c、103c、104c(すなわち、シーリング用リップ部101b、102b、103b、104b)が潰されることが少なく、シーリング作用を維持できる。
また、シーリング用リップ部101b、102b、103b、104bが潰されるのが少ないことに伴い、各シーリング用リップ部101b、102b、103b、104bが、ベーン上部横シール101においてはベーン12dの上端面とトップカバー13の裏面との間の隙間に、また、ベーン下部横シール102においてはベーン12dの下端面とハウジング11の内底面との間の隙間に、また、ベーン縦シール103においてはベーン12dの半径方向端面とハウジング11の内周面との間の隙間に、また、セグメント縦シール104においてはセグメント11bの半径方向端面とローター12の外周面との間の隙間に、それぞれ、はみ出すことがなく、従って、シーリング用リップ部101b、102b、103b、104bが損傷することなく、シーリング作用を維持できる。
また、各シール面101a、102a、103a、104aにおいて、各相手面101d、102d、103d、104dとの間で強い接触となる各堤部101e、102e、103e、104eには、各シール背面101f、102f、103f、104fから微量の作動油が微小孔101g、102g、103g、104gを通って各油溝101h、102h、103h、104hに供給されるため、各堤部101e、102e、103e、104eの潤滑が維持され、焼損が防止される。また、摩耗も最小限に抑えられる。
なお、上記した構成のローター12のベーン12dの上部横シール101、下部横シール102、縦シール103、およびハウジング11のセグメントllbの縦シール104において、各シール背面l0lf、102f、103f、104fに高圧の作動油が導かれるとき、各シール面101a、102a、103a、104aの部分は、この作動油の圧力によって押し潰されることができるだけ少ないこと、すなわち、各シーリング用リップ部101b、102b、103b、104bとそれぞれの相手面201g、202g、203g、204gとの接触面積が大きくなるのをできるだけ避けられることが望ましく、また、接触面積の増大に対しても摩擦抵抗が少ないことが望まれる。すなわち、材料は、硬度が高く、摩擦係数の低い弾性体であることが望ましい。
他方、各シール背面l0lf、102f、103f、104fに高圧の作動油が導かれるとき、この高圧の作動油が各シール101、102、103、104と各シール・スリット12e、12g、12i、11cとの間を通って低圧側にできるだけ漏洩しないようにするためには、各シール101、102、103、104の各背面l0lf、102f、103f、104fのリップ部l0li、102i、103i、104iの部分は、弾力係数の大きい弾性体であることが望ましい。すなわち、各シール面101a、102a、103a、104aに要求される性質と、各背面l0lf、102f、103f、104fのリップ部101i、102i、103i、104iに要求される性質とは、相反するものである。
従って、上記実施例においては、このような相反する要求に対して、互いの要求を多少犠牲にした、妥協的な材料を選択することになる。
以下に説明する、他の実施例は、上記した相反する要求を同時に満たすことができるように構成したものである。
図10(a)、(b)に示すように、ローター12のベーン12dの上部横シール201、下部横シール202、縦シール203、および、ハウジング11のセグメント11bの縦シール204は、それぞれ、シール面を含む冠部と背面側のリップ部を含む基部とにより構成する。すなわち、ローターベーン12dの上部横シール201は、冠部201aと基部201bとからなり、同下部横シール202は、冠部202aと基部202bとからなり、同縦シール203は、冠部203aと基部203bとからなり、ハウジング・セグメント11bの縦シール204は、冠部204aと基部204bとからなる。
冠部201a、202a、203a、204aは、材料が樹脂であり、その上面は、シール面201c、202c、203c、204cを形成し、下面は、基部201b、202b、203b、204bとの接合面201d、202d、203d、204dを形成する。
シール面201c、202c、203c、204cには、シールの運動方向と直角である両縁辺部がシーリング用リップ部201e、202e、203e、204eを形成するように、縁辺から中央部に向かうアンダーカット部201f、202f、203f、204fを設ける。
また、シール面201c、202c、203c、204cの中央部には、それぞれの相手面201g、202g、203g、204gと平面的に接触する堤部201h、202h、203h、204hを形成する。基部201b、202b、203b、204bは、材料が弾性係数の大きいエラストマーであり、その上面は、冠部201a、202a、203a、204aとの接合面201i、202i、203i、204iを形成する。また、スリット12e、12g、12i、11cの各側面と弾性反発力をもって接触するリップ部201k、202k、203k、204kを形成し、基部の各背面201j、202j、203j、204jに高圧側の作動油室から導かれた作動油が各シールのスリット12e、12g、12i、11cの各側面を通って低圧側の作動油室に漏洩しないようにする。
冠部201a、202a、203a、204aと基部201b、202b、203b、204bとの間の接合は、図10(a)に示すように、冠部201a、202a、203a、204aが基部201b、202b、203b、204bから離脱しないように、逆楔形状での接合である。冠部201a、202a、203a、204aと基部201b、202b、203b、204bとの間の接合は、接着剤による接着でもよく、あるいは、同時成型によることもできる。
また、各冠部201a、202a、203a、204aの各堤部201h、202h、203h、204hには、長手方向中心線上に、シール面201c、202c、203c、204cと基部201b、202b、203b、204bの背面201j、202j、203j、204jとを連通する微小孔201n、202n、203n、204nを、所定の間隔をもって穿孔する。そして、微小孔201n、202n、203n、204nのシール面201c、202c、203c、204cへの各開口部を連通して、長手方向に所定の長さの油溝201m、202m、203m、204mを設ける。
上記の構成においては、図10(a)、(b)に示すように、各シール201、202、203、204の基部201b、202b、203b、204bの背面201j、202j、203j、204jに高圧側の作動油室からの作動油が作用するとき、その力は、基部201b、202b、203b、204bの各リップ部201k、202k、203k、204kを各スリット12e、12g、12i、11cの各側面に押し付けるとともに、冠部201a、202a、203a、204aのシール面201c、202c、203c、204cをそれぞれ相手面201g、202g、203g、204gに押し付ける。このとき、リップ部201k、202k、203k、204kは弾力係数の大きい材料であるから、リップ部201k、202k、203k、204kとそれぞれのスリット12e、12g、12i、11cとの間の密着はより強くなり、この部分を通って高圧の作動油が漏洩することは防がれる。
また、冠部201a、202a、203a、204aは、硬度の大きい、摩擦係数の小さい材料であるから、基部の各背面201j、202j、203j、204jからの高い油圧によってシール面201c、202c、203c、204cが相手面201g、202g、203g、204gに押し付けられるにもかかわらず、変形が小さいために、アンダーカット部201f、202f、203f、204fを維持することができ、従って、シーリング機能を発揮できる。また、摩擦抵抗が小さいため、摩耗が少ない。
次に、ロータリーベーン式舵取機の作動油圧の高圧化の命題に対応するものとして、被試験用舵取機のアクチュエーター1のローター12の上部軸部12bおよび下部軸部12aに対するグランドシール(従来のグランドシール18)についての新しいシール構造の実施例について説明する。
先に、図17において説明した背景技術と基本的に同様の作用を行う部材については、同一番号を付して説明を省略する。なお、この実施例は、試験用舵取機のアクチュエーター6のグランドシールにも適用できるものである。
図11に示すように、ローター12の上部軸部12bがトップカバー13を貫通する部位、つまり上部軸部12bの外周面に摺接するトップカバー13の内周面、およびローター12の下部軸部12aがハウジング11の底部を貫通する部位に、つまり下部軸部12aの外周面に摺接するハウジング11の内周面に、それぞれグランドシール205を設ける。
グランドシール205は、リング状の基部205aと、基部205aの内周側端部から軸方向に突出したリング状のグランドシーリングリップ部205bと、基部205aの外周側端部から軸方向に突出したリング状の溝シーリングリップ部205cとからなる。
グランドシーリングリップ部205bの、ローター12の上部軸部12b(あるいは下部軸部12a)の外周面と接触する部位には、シーリングリング205dを接合する。
グランドシール205の構成部品の材料は、基部205a、グランドシーリングリップ部205b、溝シーリングリップ部205cが弾性体(エラストマー)であり、シーリングリング205dが、硬度が高く、摩擦係数の小さい弾性材料である樹脂である。グランドシーリングリップ部205bへのシーリングリング205dの接合は、接着剤による接着でもよく、あるいは、同時成型によることもできる。
上記の構成においては、グランドシール205を円環状のグランドシール溝19に収めた状態において、グランドシーリングリップ部205bの先端部に接合したシーリングリング205dの内側先端環部205dtは、ローター12の上部軸部12b(あるいは下部軸部12a)の外周面と接触し、そして、溝シーリングリップ部205cの外側先端環部205ctは、グランドシール溝19の外周側面19aと接触する。
而して、シーリングリング205dの内側先端環部205dtがローター上部軸部12b(あるいは下部軸部12a)の外周面へ接触する際に、および、溝シーリングリップ部205cの外側先端環部205ctがグランドシール溝19の外周側面19aに接触する際に、グランドシール205のグランドシーリングリップ部205bおよび溝シーリングリップ部205cの弾性反発力によって所定の接触面圧が与えられる。
グランドシール205のグランドシーリングリップ部205bおよび溝シーリングリップ部205cは弾性係数の大きい弾性体であるから、ローター12の僅かの偏心運動があっても、シーリングリング205dの内側先端環部205dtがローター上部軸部12b(あるいは下部軸部12a)の外周面と接触することが維持でき、シーリング機能を発揮できる。溝シーリングリップ部205cの外側先端環部205ctのグランドシール溝19の外周側面19aとの接触も維持できる。
ローター12の上部軸部12bがトップカバー13を貫通する部位に、あるいは、下部軸部12aがハウジング11の底部を貫通する部位に、高圧側となった作動油室15a、15cあるいは15b、15dの作動油が侵入したとき、この作動油は、グランドシール205のグランドシーリングリップ部205bと溝シーリングリップ部205cの間に入り、その油圧により、グランドシーリングリップ部205bの端部に接合したシーリングリング205dの内側先端環部205dtはローター12の上部軸部12b(あるいは下部軸部12a)の外周面に強く押し付けられる。
しかし、シーリングリング205dは、硬度の高い、かつ、摩擦係数の小さい物性をもつため、シーリングリング205dが高い油圧により押し潰されることが少なく、その内側先端環部205dtのローター上部軸部12b(あるいは下部軸部12a)との接触面積が大きくなるのが避けられる。従って、本来摩擦係数が小さいことと相俟って、摩擦抵抗が少なくしてシーリング機能を発揮できる。かつ、この場合、ローター12の偏心運動があっても、それはグランドシーリングリップ部205bの高い弾性により吸収されるから、シーリング機能に影響を及ぼすことが無い。
1 ロータリーベーン式舵取機アクチュエーター
11 ハウジング
11a ボス部
llb セグメント
llc 縦スリット
lld 縦シール
lle 下部リングスリット
llf 下部リングシール
11g リングシール面(下部リングシール11fの)
11h 内周側上端縁(セグメント縦シール11dの)
11i 外周縁部(リングシール面11gの)
11j 内周側下端縁(セグメント縦シールlldの)
11k 油室連通孔(セグメント11bの)
llm 油路
lln フランジ部(ハウジング11の)
11o シール面(縦シールlldの)
11ou アンダーカット部(縦シール11dのシール面11oの)
lloe 長手側端縁(縦シール11dのシール面11oの)
llp 下部グランドシール(ローター下部軸部12aの)
12 ローター
12a 下部軸部
12b 上部軸部
12c 内部貫通孔
12d ベーン
12e 上部横スリット
12f 上部横シール
12g 下部横スリット
12h 下部横シール
12i 縦スリット
12j 縦シール
12k 内周側上端縁(上部横シール12fの)
12m 内周側下端縁(下部横シール12hの)
12n 油室達通孔(ベーン12dの)
12o バランス孔
12p シール面(上部横シール12fの)
12pu アンダーカット部(上部横シール12fのシール面12pの)
12pe 長手側端縁(上部横シール12fのシール面12pの)
12q シール面(下部横シール12hの)
12qu アンダーカット部(下部横シール12hのシール面12qの)
12qe 長手側端縁(下部横シール12hのシール面12qの)
12r シール面(縦シール12jの)
12ru アンダーカット部(縦シール12jのシール面12rの)
12re 長手側端縁(縦シール12jのシール面12rの)
13 トップカバー
13a 上部リングスリット
13b 上部リングシール
13c リングシール面(上部リングシール13bの)
13d 外周縁部(リングシール面の)
13e 油路
13f 上部グランドシール(ローター上部軸部12bの)
14a、14b ラジアル軸受
14c スラスト軸受
15 油室用空間
15a、15b、15c、15d 作動油室
16 圧力バルブ
17 舵軸
17a 軸頭
18 グランドシール
18a 基部
18b グランドシーリングリップ部
18bt 内側先端環部
18c 溝シーリングリップ部
18ct 外側先端環部
19 グランドシール溝
19a 外側側面
2 油圧装置
21 油圧ポンプ
22 操舵方向切換弁
23 電磁弁
24p パイロット逆止弁(取舵側)
24s パイロット逆止弁(面舵側)
25p 流量調整弁(取舵側)
25s 流量調整弁(面舵側)
26 油タンク
27p 主油圧ライン(取舵側)
27s 主油圧ライン(面舵側)
28p 防衝弁
28s 防衝弁
29 制御油ポンプ
5 架台
51 上部架台
51a 床板
52 下部架台
53 舵取機台
53a ボルト
53b ベースプレート
6 試験用舵取機のアクチュエーター
61 ローター
61a 内部貫通孔
62 ハウジングフランジ部
62a ボルト
63a、63b、63c、63d 作動油室
7 連結軸
71 底端部
72 頂端部
8 試験用舵取機の制御装置
81 試験用舵取機の第一実施例の制御装置
81a (−)負荷用油圧ポンプ
81b 操舵方向切換弁
81c 電磁弁
81d 制御油圧ポンプ
81ep 主油圧ライン(取舵側)
81es 主油圧ライン(面舵側)
81fp パイロット逆止弁(取舵側)
81fs パイロット逆止弁(面舵側)
81gp 流量調整弁(取舵側)
81gs 流量調整弁(面舵側)
81h 逃し弁(ポンプ用)
8lip 逃し弁(作動油室用)
81is 逃し弁(作動油室用)
81j 比例電磁式リリーフ弁
81k チャージ油圧ポンプ
82 試験用舵取機の第二実施例の制御装置
82a 操舵方向切換弁
82b 遷移点切換弁
82c ブースター油圧ポンプ
82d 圧力制御弁
82e 制御弁コントローラー
82f 演算装置
82g 逆止弁
T 舵トルク遷移点
A 面舵一杯の点
O 舵中立位置
M−1 第一転舵モード
M−2 第二転舵モード
M−3 第三転舵モード
M−4 第四転舵モード
101 上部横シール(ローターベーン12dの)
101a シール面
101b シーリング用リップ部
101c アンダーカット部
101d 相手面
101e 堤部
l0lf 背面
101g 微小孔
101h 油溝
101i リップ部
102 下部横シール(ローターベーン12dの)
102a シール面
102b シーリング用リップ部
102c アンダーカット部
102d 相手面
102e 堤部
102f 背面
102g 微小孔
102h 油溝
102i リップ部
103 縦シール(ローターベーン12dの)
103a シール面
103b シーリング用リップ部
103c アンダーカット部
103d 相手面
103e 堤部
103f 背面
103g 微小孔
103h 油溝
103i リップ部
104 縦シール(ハウジングセグメント11bの)
104a シール面
104b シーリング用リップ部
104c アンダーカット部
104d 相手面
104e 堤部
104f 背面
104g 微小孔
104h 油溝
104iリップ部
201 上部横シール(ローターベーン12dの)
201a 冠部
201b 基部
201c シール面
201d 接合面(冠部201aの)
201e シーリング用リップ部
201f アンダーカット部
201g 相手面
201h 堤部
201i 接合面(基部201bの)
201j 背面(基部201bの)
201k リップ部
201m 油溝
201n 微小孔
202 下部横シール(ローターベーン12dの)
202a 冠部
202b 基部
202c シール面
202d 接合面(冠部202aの)
202e シーリング用リップ部
202f アンダーカット部
202g 相手面
202h 堤部
202i 接合面(基部202bの)
202j 背面(基部202bの)
202k リップ部
202m 油溝
202n 微小孔
203 縦シール(ローターベーン12dの)
203a 冠部
203b 基部
203c シール面
203d 接合面(冠部203aの)
203e シーリング用リップ部
203f アンダーカット部
203g 相手面
203h 堤部
203i 接合面(基部203bの)
203j 背面(基部203bの)
203k リップ部
203m 油溝
203n 微小孔
204 縦シール(ハウジングセグメント11dの)
204a 冠部
204b 基部
204c シール面
204d 接合面(冠部204aの)
204e シーリング用リップ部
204f アンダーカット部
204g 相手面
204h 堤部
204i 接合面(基部204bの)
204j 背面(基部204bの)
204k リップ部
204m 油溝
204n 微小孔
205 ローター軸部グランドシール
205a 基部
205b グランドシーリングリップ部
205c 溝シーリングリップ部
205ct 外側先端環部
205d シーリングリング
205dt 内側先端環部

Claims (3)

  1. 舵軸に嵌合装着するローターと、ローターを収納してローターの周囲に油室用空間を形成するハウジングと、ハウジングの上部開口に配置する環状のトップカバーとを有し、ローターの外周面の周方向に沿った等間隔の位置に複数のベーンを配置し、ハウジングの内周面の周方向に沿った等間隔の位置に複数のセグメントを配置し、ベーンとセグメントによって前記油室用空間を複数の油室に区画し、
    ローターの各ベーンの半径方向先端面および上下端面にそれぞれ形成するスリットがトップカバーの裏面およびハウジングの内周面と内底面にそれぞれ対向し、トップカバーの裏面に対向する前記スリット内に弾性材料よりなる上部横シールを保持し、ハウジングの内底面に対向する前記スリット内に弾性材料よりなる下部横シールを保持し、ハウジングの内周面に対向する前記スリット内に弾性材料よりなる縦シールを保持し、縦シールの上端面と下端面がそれぞれ上部横シールと下部横シールの裏面に接触し、各シールのそれぞれの背面に高圧側となる作動油室から圧油を導き、この油圧によりそれぞれのシール面をそれぞれ相手面に押し付ける手段を備えるロータリーベーン式舵取機のアクチュエーターにおいて、
    ローターベーンの上部横シール、下部横シール、縦シール、およびハウジングセグメントの縦シールは、各シール面の両縁辺部がシーリング用リップ部をなすとともに、各シール面に各縁辺部から中央部に向かってアンダーカット部を有し、各シール面の中央部に相手面と平面的に接触する堤部を有し、堤部の長手方向中心線上に所定の間隔をもって穿孔されて各シールの背面と連通する微小孔を有し、各シール面に微小孔の各開口部を連通して長手方向に所定の長さに形成した油溝を有することを特徴とするロータリーベーン式舵取機のシール構造。
  2. ローターベーンの上部横シール、下部横シール、縦シール、およびハウジングセグメントの縦シールは、シール面を含む冠部と、各シールの背面を含む基部とに分割し、冠部は硬度が高くて摩擦係数の小さい樹脂材で成型し、基部は弾性係数が大きいエラストマー材で成型し、冠部と基部とを接着剤にて接着するか、あるいは冠部と基部とを同時成型によって接合してなり、
    冠部は、シール面の両縁辺部がシーリング用リップ部をなすとともに、シール面に各縁辺部から中央部に向かってアンダーカット部を有し、シール面の中央部に相手面と平面的に接触する堤部を有し、堤部の長手方向中心線上に所定の間隔をもって穿孔された微小孔を有し、シール面に微小孔の各開口部を連通して長手方向に所定の長さに形成した油溝を有し、
    基部は、冠部の前記微小孔に接続するとともに、シールの背面と連通する微笑孔を有することを特徴とする請求項1に記載のロータリーベーン式舵取機のシール構造。
  3. 舵軸に嵌合装着するローターと、ローターを収納してローターの周囲に油室用空間を形成するハウジングと、ハウジングの上部開口に配置する環状のトップカバーとを有し、ローターの外周面の周方向に沿った等間隔の位置に複数のベーンを配置し、ハウジングの内周面の周方向に沿った等間隔の位置に複数のセグメントを配置し、ベーンとセグメントによって前記油室用空間を複数の油室に区画し、
    トップカバー裏面においてローターの上部端面の外周縁に対向する部位に全周にわたって上部リングスリットを形成し、ハウジングの内底面においてローターの下部端面の外周縁に対向する部位に全周にわたって下部リングスリットを形成し、上部リングスリット内に弾性材料よりなる上部リングシールを保持し、下部リングスリット内に弾性材料よりなる下部リングシールを保持し、各シールのそれぞれの背面に高圧側となる作動油室から圧油を導き、この油圧によりそれぞれのシール面をそれぞれ相手面に押し付ける手段を備え、ローター上部軸部の外周面に摺接するトップカバーの内周面に上部グランドシールを有し、ローター下部軸部の外周面に摺接するハウジングの内周面に下部グランドシールを有するロータリーベーン式舵取機のアクチュエーターにおいて、
    上部グランドシールは、リング状の基部と、基部の外周側端部から軸方向に突出して、その外周先端環部がグランドシール溝の外周側面に弾性反発力による所定の力をもって接触する溝シーリングリップ部と、基部の内周側端部から軸方向に突出して、その内周先端環部がローター上部軸部の外周面に弾性反発力による所定の力をもって押し付けられるグランドシーリングリップ部と、グランドシーリングリップ部においてローター上部軸部の外周面と接触する部位に接着剤によって、あるいは同時成型によって接合したシーリングリングとを備え、
    下部グランドシールは、リング状の基部と、基部の外周側端部から軸方向に突出して、その外周先端環部がグランドシール溝の外周側面に弾性反発力による所定の力をもって接触する溝シーリングリップ部と、基部の内周側端部から軸方向に突出して、その内周先端環部がローター下部軸部の外周面に弾性反発力による所定の力をもって押し付けられるグランドシーリングリップ部と、グランドシーリングリップ部においてローター下部軸部の外周面と接触する部位に接着剤によって、あるいは同時成型によって接合したシーリングリングとを備え、
    上部グランドシールおよび下部グランドシールは、シーリングリングを硬度が高くて摩擦係数の小さい弾性材料である樹脂で成型し、その他の部位を弾性係数の大きい弾性体で生成したことを特徴とするロータリーベーン式舵取機のシール構造。
JP2015246813A 2015-12-18 2015-12-18 ロータリーベーン式舵取機のシール構造 Active JP6120938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246813A JP6120938B2 (ja) 2015-12-18 2015-12-18 ロータリーベーン式舵取機のシール構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246813A JP6120938B2 (ja) 2015-12-18 2015-12-18 ロータリーベーン式舵取機のシール構造

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012007584A Division JP5916394B2 (ja) 2012-01-18 2012-01-18 舵取機の試験装置

Publications (2)

Publication Number Publication Date
JP2016074423A true JP2016074423A (ja) 2016-05-12
JP6120938B2 JP6120938B2 (ja) 2017-04-26

Family

ID=55949528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246813A Active JP6120938B2 (ja) 2015-12-18 2015-12-18 ロータリーベーン式舵取機のシール構造

Country Status (1)

Country Link
JP (1) JP6120938B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488135A (zh) * 2018-03-05 2018-09-04 北京航空航天大学 有限摆角旋转液压作动器
CN108506268A (zh) * 2018-03-02 2018-09-07 北京航空航天大学 具有一体化密封结构的有限摆角旋转液压作动器
CN109204766A (zh) * 2018-08-16 2019-01-15 东台友铭船舶配件有限公司 一种定位补偿式船用舵承舵杆连接结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171665A (en) * 1976-03-10 1979-10-23 Kurt Stoll Piston, especially for a pneumatic cylinder
JPS63185964U (ja) * 1987-05-25 1988-11-29
JP2003074707A (ja) * 2001-08-30 2003-03-12 Nok Corp 密封装置
JP2006214496A (ja) * 2005-02-03 2006-08-17 Japan Hamuwaaji Kk ロータリーベーン式舵取機におけるシール構造
JP2009162290A (ja) * 2008-01-07 2009-07-23 Japan Hamuwaaji Kk ロータリーベーン式舵取機のシール構造および下部リングシールの取り替え方法
JP2010265995A (ja) * 2009-05-15 2010-11-25 Nok Corp 密封装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171665A (en) * 1976-03-10 1979-10-23 Kurt Stoll Piston, especially for a pneumatic cylinder
JPS63185964U (ja) * 1987-05-25 1988-11-29
JP2003074707A (ja) * 2001-08-30 2003-03-12 Nok Corp 密封装置
JP2006214496A (ja) * 2005-02-03 2006-08-17 Japan Hamuwaaji Kk ロータリーベーン式舵取機におけるシール構造
JP2009162290A (ja) * 2008-01-07 2009-07-23 Japan Hamuwaaji Kk ロータリーベーン式舵取機のシール構造および下部リングシールの取り替え方法
JP2010265995A (ja) * 2009-05-15 2010-11-25 Nok Corp 密封装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506268A (zh) * 2018-03-02 2018-09-07 北京航空航天大学 具有一体化密封结构的有限摆角旋转液压作动器
CN108506268B (zh) * 2018-03-02 2019-06-04 北京航空航天大学 具有一体化密封结构的有限摆角旋转液压作动器
CN108488135A (zh) * 2018-03-05 2018-09-04 北京航空航天大学 有限摆角旋转液压作动器
CN109204766A (zh) * 2018-08-16 2019-01-15 东台友铭船舶配件有限公司 一种定位补偿式船用舵承舵杆连接结构

Also Published As

Publication number Publication date
JP6120938B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6120938B2 (ja) ロータリーベーン式舵取機のシール構造
US20170108141A1 (en) Rotary valve
EP0977933B1 (en) Fluid machine
JP2013096463A (ja) ロータリーアクチュエータ
CN102720669B (zh) 平面配油的随动旋阀
JP5738447B1 (ja) ロータリーベーン舵取機アクチュエーターの内部油圧室シーリングシステム
US9217431B2 (en) Vane pump
JP5916394B2 (ja) 舵取機の試験装置
CN210687175U (zh) 液压换向阀及液压换向装置
JP4929471B2 (ja) 可変容量ベーンポンプ
WO2017068901A1 (ja) ベーンポンプ
JP6267598B2 (ja) 液圧回転機
JPH11241674A (ja) 斜板式油圧モータ
KR101880514B1 (ko) 기본 실링력과 유압에 의한 가변 실링력이 작용되는 분리형 가변 실링부가 구비된 로터리 베인 모터
JP6246582B2 (ja) 液圧回転機械
KR20110113027A (ko) 비틀림 피로 시험기용 로터리 액추에이터
JP4146830B2 (ja) 可動翼ポンプ
CN116428330B (zh) 高压液压变速器的密封结构
CN111946865A (zh) 一种旋转式换向阀
KR101925793B1 (ko) 순환 유로가 형성된 로터리 베인 모터
US11215291B2 (en) Valve assembly
US20230193899A1 (en) Internal gear machine
JPH11107903A (ja) 流体静力学的駆動システムのための回転貫通ガイド
KR102054307B1 (ko) 기본 실링력과 유압에 의한 가변 실링력이 작용되는 통합형 가변 실링부가 구비된 로터리 베인 모터
JPH07332217A (ja) 油圧モータ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250