JP2016066534A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2016066534A
JP2016066534A JP2014195216A JP2014195216A JP2016066534A JP 2016066534 A JP2016066534 A JP 2016066534A JP 2014195216 A JP2014195216 A JP 2014195216A JP 2014195216 A JP2014195216 A JP 2014195216A JP 2016066534 A JP2016066534 A JP 2016066534A
Authority
JP
Japan
Prior art keywords
reforming
fuel cell
water
supply pipe
reforming water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195216A
Other languages
English (en)
Other versions
JP6446949B2 (ja
Inventor
裕記 大河原
Hiroki Ogawara
裕記 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2014195216A priority Critical patent/JP6446949B2/ja
Publication of JP2016066534A publication Critical patent/JP2016066534A/ja
Application granted granted Critical
Publication of JP6446949B2 publication Critical patent/JP6446949B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】温度センサを用いることで、燃料電池システムの起動運転開始前に、改質水供給の有無を安価でかつ高精度に判定できる燃料電池システムを提供する。【解決手段】燃料電池システムは、改質水供給管(11b)の改質水ポンプ(11b1)と蒸発部(32)との間に配置された温度センサ(27)と、燃料電池システムの起動運転開始前に、改質水ポンプ(11b1)の駆動によって改質水供給管(11b)に供給される改質水による温度センサ(27)の検出温度の変化に基づいて、温度センサ(27)が配置された改質水供給管(11b)の所定水位まで改質水が供給されたと判定する制御装置(15)とを有する。【選択図】図1

Description

本発明は、燃料電池システムに関するものである。
この種の燃料電池システムにおいては、改質水を高い精度で蒸発部に供給させて、水蒸気を的確に生成することが必要である。
このために、特許文献1には、改質水を気化して水蒸気を生成する気化器の温度を検出する温度検出手段を設け、温度検出手段の検知温度が所定温度以上になると、改質水の供給量を増加させるとともに、温度検出手段の検知温度の上昇が継続した場合には、水供給異常と判定する燃料電池システムが記載されている。
また、特許文献2には、例えば、燃料電池の発電運転開始前に、静電容量の変化等を検知する水センサを用いて、蒸発部への給水が正常であるか異常であるかを判定する給水異常判定処理を実行する燃料電池システムが記載されている。
特開2011−216208号公報 特開2013−191319号公報
特許文献1に記載のものによれば、燃料電池システムの運転中に、改質水の供給不足が起こった場合に、気化器温度に基づいて改質水供給異常を検出することが可能となる。しかしながら、特許文献1に記載のものでは、燃料電池システムの起動運転開始前に、改質水ポンプが故障している場合や、改質水を気化器に供給する供給流路等に異常があったとしても、それに気づかずに起動してしまい、改質水が目標通りに蒸発部に供給されないことで不具合が発生するおそれがある。
一方、特許文献2に記載のものによれば、燃料電池システムの起動運転開始前に、改質水の供給異常を判定することが可能となる。しかしながら、特許文献2に記載のものでは、給水通路上に、静電容量の変化等を検知する水センサを設け、改質水ポンプを正回転させることにより水タンクの改質水を給水通路に供給し、水センサが水を検知するまでに必要とされる改質水ポンプの出力に関する物理量を求め、この物理量が規定範囲であれば、蒸発部への給水が正常であると判定するものである。このため、静電容量式等の水センサを用いた改質水供給異常判定処理部により、燃料電池システムのコストが上昇するおそれがある。
本発明は、上記した水センサに代えて、温度センサを用いることで、燃料電池システムの起動運転開始前に、改質水供給の有無を安価でかつ高精度に判定できる燃料電池システムを提供することを目的とするものである。
本発明の燃料電池システムは、水素を含む燃料と酸化剤ガスとにより発電する燃料電池と、改質水から水蒸気を生成する蒸発部と、改質用原料と前記水蒸気とから前記燃料を生成して前記燃料電池に供給する改質部と、前記改質水を貯水する水タンクと、前記水タンクに貯水された前記改質水を改質水供給管を通じて前記蒸発部に供給する改質水ポンプとを備えた燃料電池システムであって、前記改質水供給管の前記改質水ポンプと前記蒸発部との間に配置された温度センサと、前記燃料電池システムの起動運転開始前に、前記改質水ポンプの駆動によって前記改質水供給管に供給される前記改質水による前記温度センサの検出温度の変化に基づいて、前記温度センサが配置された前記改質水供給管の所定水位まで前記改質水が供給されたと判定する制御装置とを有する。
本発明の燃料電池システムによれば、安価な温度センサを用いて、改質水が改質水供給管の所定の水位まで供給されたことを判定することができる。これにより、燃料電池システムの起動運転開始前に、改質水を蒸発部の入口近くまで供給されたことを的確に検出することが可能となる。
本発明による燃料電池システムの一実施形態の概要を示す概要図である。 燃料電池システムの制御装置で実行される燃料電池システム起動運転開始前の制御プログラムの一例を示すフローチャートである。 図2のフローチャートに対応したタイムチャートである。 燃料電池システムの制御装置で実行される燃料電池システム起動運転開始前の制御プログラムの変形例を示すフローチャートである。 図4のフローチャートに対応したタイムチャートである。 燃料電池システムの制御装置で実行される燃料電池システム起動運転後の制御プログラムを示すフローチャートである。
以下、本発明に係る燃料電池システムの実施の形態について、図面に基づいて説明する。図1に示すように、燃料電池システムは、発電ユニット10および貯湯槽21を備えている。発電ユニット10は、筐体10aと、筐体10a内に収容された燃料電池モジュール11、熱交換器12、インバータ装置13、水タンク14、および制御装置15を備えている。
燃料電池モジュール11は、後述する燃料電池34を少なくとも含んで構成されるものである。燃料電池モジュール11には、改質用原料、改質水およびカソードエアが供給されるようになっている。具体的には、燃料電池モジュール11には、一端が供給源Gsに接続されて改質用原料が供給される改質用原料供給管11a(燃料供給管)の他端が接続されている。改質用原料供給管11aには、原料ポンプ11a1が設けられている。
また、燃料電池モジュール11には、一端が水タンク14に接続されて改質水が供給される改質水供給管11bの他端が接続されている。改質水供給管11bには、改質水ポンプ11b1が設けられている。さらに、燃料電池モジュール11には、一端が酸化剤ガス供給装置としてのカソードエアブロワ11c1に接続されてカソードエアが供給されるカソードエア供給管11cの他端が接続されている。
燃料電池モジュール11は、ケーシング31、蒸発部32、改質部33および燃料電池34を備えている。ケーシング31は、断熱性材料で形成されている。蒸発部32は、後述する燃焼ガスにより加熱されて、供給された改質水を蒸発させて水蒸気を生成するとともに、供給された改質用原料を予熱するものである。蒸発部32は、このように生成された水蒸気と予熱された改質用原料を混合して改質部33に供給するものである。改質用原料としては天然ガス、LPガスなどの改質用気体燃料、灯油、ガソリン、メタノールなどの改質用液体燃料があり、本実施形態においては天然ガスにて説明する。
蒸発部32には、一端(下端)が水タンク14に接続された改質水供給管11bの他端が接続されている。また、蒸発部32には、一端が供給源Gsに接続された改質用原料供給管11aの他端が接続されている。供給源Gsは、例えば都市ガスのガス供給管、LPガスのガスボンベである。
改質部33は、上述した燃焼ガスにより加熱されて水蒸気改質反応に必要な熱が供給されることで、蒸発部32から供給された混合ガス(改質用原料、水蒸気)から改質ガスを生成して導出するものである。改質部33内には、触媒(例えば、RuまたはNi系の触媒)が充填されており、混合ガスが触媒によって反応し改質されて水素ガスと一酸化炭素などを含んだガスが生成されている(いわゆる水蒸気改質反応)。改質ガスは、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の天然ガス(メタンガス)、改質に使用されなかった改質水(水蒸気)を含んでいる。このように、改質部33は改質用原料と改質水とから改質ガス(燃料)を生成して燃料電池34に供給する。なお、水蒸気改質反応は吸熱反応である。
燃料電池34は、燃料極、空気極(酸化剤極)、および両極の間に介装された電解質からなる複数のセル34aが積層されて構成されている。本実施形態の燃料電池は、固体酸化物形燃料電池であり、電解質として固体酸化物の一種である酸化ジルコニウムを使用している。燃料電池34の燃料極には、燃料として水素、一酸化炭素、メタンガスなどが供給される。動作温度は400〜1000℃程度である。
セル34aの燃料極側には、燃料である改質ガスが流通する燃料流路34bが形成されている。セル34aの空気極側には、酸化剤ガスである空気(カソードエア)が流通する空気流路34cが形成されている。
燃料電池34は、マニホールド35上に設けられている。マニホールド35には、改質部33からの改質ガスが改質ガス供給管38を介して供給される。燃料流路34bは、その下端(一端)がマニホールド35の燃料導出口に接続されており、その燃料導出口から導出される改質ガスが下端から導入され、上端から導出されるようになっている。カソードエアブロワ11c1によって送出されたカソードエアはカソードエア供給管11cを介して供給され、空気流路34cの下端から導入され、上端から導出されるようになっている。
燃焼部36は、燃料電池34と蒸発部32および改質部33との間に設けられている。燃焼部36は、燃料電池34からのアノードオフガス(燃料オフガス)と燃料電池34からのカソードオフガス(酸化剤オフガス)とが燃焼されて改質部33を加熱する。
燃焼部36では、アノードオフガスが燃焼されて火炎37が発生している。燃焼部36では、アノードオフガスが燃焼されてその燃焼排ガスが発生している。燃焼部36には、アノードオフガスを着火させるための一対の着火装置36a1,36a2が設けられている。
熱交換器12は、燃料電池モジュール11から排気される燃焼排ガスが供給されるとともに貯湯槽21からの貯湯水が供給され、燃焼排ガスと貯湯水とが熱交換する熱交換器である。具体的には、貯湯槽21は、貯湯水を貯湯するものであり、貯湯水が循環する(図1の矢印の方向に循環する)貯湯水循環ライン22が接続されている。貯湯水循環ライン22上には、貯湯槽21の下端から上端に向かって順番に貯湯水循環ポンプ22aおよび熱交換器12が配設されている。熱交換器12は、燃料電池モジュール11からの排気管11dが接続(貫設)されている。熱交換器12は、水タンク14に接続されている凝縮水供給管12aが接続されている。
熱交換器12において、燃料電池モジュール11からの燃焼排ガスは、排気管11dを通って熱交換器12内に導入され、貯湯水との間で熱交換が行われ凝縮されるとともに冷却される。凝縮後の燃焼排ガスは排気管11dを通って外部に排出される。また、凝縮された凝縮水は、凝縮水供給管12aを通って水タンク14に供給される。水タンク14には、水タンク14内に貯留された改質水の温度を検出する改質水温度検出センサ29が設けられている。改質水温度検出センサ29の検出温度(検出出力)は、制御装置15に送信される。なお、水タンク14は、凝縮水をイオン交換樹脂によって純水化するようになっている。
上述した熱交換器12、貯湯槽21および貯湯水循環ライン22から、排熱回収システム20が構成されている。排熱回収システム20は、燃料電池モジュール11の排熱を貯湯水に回収して蓄える。
さらに、インバータ装置13は、燃料電池34から出力される直流電圧を入力し所定の交流電圧に変換して、交流の系統電源16aおよび外部電力負荷16c(例えば電化製品)に接続されている電源ライン16bに出力する。また、インバータ装置13は、系統電源16aからの交流電圧を電源ライン16bを介して入力し所定の直流電圧に変換して補機(各ポンプ、ブロワなど)や制御装置15に出力する。制御装置15は、補機を駆動して燃料電池システムの運転を制御する。
改質水供給管11bには、改質水ポンプ11b1と蒸発部32との間に、改質水供給管11bの温度を検出する温度センサ27が配置されている。温度センサ27は、例えば、改質水供給管11bの外表面の温度を検出するように設けられている。温度センサ27の検出温度(検出出力)は、制御装置15に送信される。温度センサ27は、燃料電池モジュール11の熱の影響を受けないように、燃料電池モジュール11のケーシング31の外側であって、かつ蒸発部32にできるだけ接近した蒸発部32の入口32a付近に配置するのがよい。
温度センサ27が配置された部位の改質水供給管11bには、改質水供給管11bを加熱するヒータ28が設けられている。ヒータ28は、例えば、電熱線を改質水供給管11bの周囲に螺旋状に巻き付けたもので構成できる。しかしながら、ヒータ28は、電熱ヒータに限らず、セラミックヒータ等、改質水供給管11bを加熱できるものであればどのような種類のヒータであってもよい。
ヒータ28は、低温環境時において、改質水供給管11bが凍結することを防止する凍結防止ヒータを兼ねてもよい。凍結防止ヒータとするためには、改質水供給管11bを加熱する部分の長さを長くする(分割型でもよい)ことが有効である。なお、ヒータ28を設けた場合には、改質水供給管11bの温度を検出する温度センサ27は、ヒータ28の過加熱や、短絡等による異常昇温を検知し、燃料電池システムを停止させる機能を兼ねてもよい。
本実施の形態においては、改質水ポンプ11b1は、モータ25によって正回転および逆回転可能である。すなわち、モータ25は、制御装置15により、正方向に回転して水タンク14内の水を改質水ポンプ11b1の吐出ポートから蒸発部32の入口32aに向かって供給する正回転モードと、逆方向に回転して改質水供給管11b内の水を水タンク14内に戻す逆回転モードとに切り替え可能となっている。
次に、燃料電池システムの動作について簡単に説明する。燃料電池システムが、停止/待機モードである場合には、原料ポンプ11a1およびカソードエアブロワ11c1は、それぞれ停止されている。
燃料電池システムの図略の起動スイッチがオンされると、燃料電池システムの起動運転が開始され、暖機モード(燃料電池システムが発電しないものの改質部33および燃料電池34を発電に必要な温度まで昇温させる)による運転を開始する。
暖機モードによる運転が開始されると、制御装置15は、補機を作動させる。具体的には、制御装置15は、原料ポンプ11a1,改質水ポンプ11b1を作動させ、蒸発部32に改質用原料および凝縮水(改質水)の供給を開始する。また、カソードエアブロワ11c1を作動させ、燃料電池34にカソードエアの供給を開始する。そして、燃焼部36において、燃料電池34から導出されたアノードオフガスが着火装置36a1,36a2によって着火される。改質部33や燃料電池34などの温度が所定温度以上となれば、暖気モードによる運転が終了し、発電モード運転を開始する。発電モード運転では、制御装置15は、燃料電池34の発電する電力が、外部電力負荷16cの消費電力となるように補機を制御して、改質ガスおよびカソードエアを燃料電池34に供給する。
燃料電池システムの図略の起動スイッチがオフされると、燃料電池システムは、発電モード運転から停止/待機モードに移行される。燃料電池システムが、停止/待機モードに移行されると、制御装置15は、原料ポンプ11a1およびカソードエアブロワ11c1を停止させ、改質用原料およびカソードエアの供給を停止させる。
燃料電池システムの起動運転開始前に、制御装置15は、図2のフローチャートに示す水張り制御プログラムを実行する。以下、水張り制御プログラムの一例を、図2のフローチャートおよび図3のタイムチャートに基づいて説明する。
制御装置15は、ステップS102において、温度センサ27によって検出された改質水供給管11bの温度T1、すなわち、改質水供給管11bの所定の部位に配置された温度センサ27によって検出された温度T1の読み込みを開始する。次いで、制御装置15は、ステップS104において、モータ25を逆回転制御し、改質水ポンプ11b1を逆回転駆動する。これにより、改質水供給管11b内に充満された改質水が水タンク14に回収される。このステップS104は、燃料電池システムの起動運転開始前に、改質水供給管11bに改質水が充満されている場合を想定して、改質水供給管11b内に充満された改質水を一旦水タンク14に戻すためのものである。
次いで、ステップS106において、ヒータ28に通電(ヒータON)し、改質水供給管11bの温度センサ27が配置された部位を加熱する(図3のtm1参照)。これにより、図3のタイムチャートに示すように、温度センサ27によって検出される改質水供給管11bの温度T1が上昇する。
続いて、制御装置15は、ステップS108において、温度センサ27によって検出された温度T1が、予め定められた所定温度(T1−b)より高いか否かを判断する。温度センサ27によって検出された温度T1が、所定温度(T1−b)より低いと判断された場合、すなわち、ステップS108の判断結果がN(NO)の場合には、制御装置15は、プログラムをステップS110に移行する。そして、制御装置15は、ステップS110において、ヒータ28への通電を開始してから所定時間(tm−b)経過したか否かを判断し、所定時間(tm−b)経過していない場合(ステップS110の判断結果がNの場合)には、ステップS106に戻り、ヒータ28への通電を継続する。
しかしながら、所定時間(tm−b)経過しても、改質水供給管11bの温度が所定温度(T1−b、例えば50℃)以上に変化しない場合には、制御装置15は、ヒータ28の故障等によって改質水供給管11bが加熱されていないと判断し、プログラムをステップS112に移行して、燃料電池システムが異常であると判定し、燃料電池システムを異常停止する。
上記ステップS108において、温度センサ27にて検出された検出温度T1が所定温度(T1−b)以上に上昇したと判断されると、制御装置15は、プログラムをステップS114に移行する。制御装置15は、ステップS114において、モータ25を正回転制御し、改質水ポンプ11b1を正回転駆動する(図3のtm2参照)。これにより、水タンク14に貯留された改質水が、改質水ポンプ11b1の吐出ポートより蒸発部32の入口32aに向かって所定の流量(Lcm/m)で改質水供給管11bに供給され、図3のタイムチャートに示すように、改質水供給管11b内の水位(H)が上昇する。例えば、モータ25の回転数は、改質水ポンプ11b1より、毎分数十cm吐出する程度に設定され、改質水供給管11bの径や管長さにもよるが、改質水が温度センサ27が配置された部位の水位H1まで到着するのに数分程度要する。
次いで、制御装置15は、ステップS116において、温度センサ27によって検出された温度T1の変化量(低下量)ΔT1が、予め定められた所定変化量(ΔT1−a)より大きいか否かが判断される。温度センサ27によって検出された温度T1の変化量ΔT1が、所定変化量(ΔT1−a)より小さいと判断された場合、すなわち、ステップS116の判断結果がN(NO)の場合には、制御装置15は、プログラムをステップS118に移行する。
ステップS118において、制御装置15により、改質水ポンプ11b1が改質水の供給を開始(ステップS114)してから、所定時間(tm−a)経過していないと判断された場合(ステップS118の判断結果がNの場合)には、制御装置15は、プログラムをステップS114に戻し、改質水ポンプ11b1の正回転を継続する。
改質水ポンプ11b1の改質水の供給作用により、図3のタイムチャートに示すように、改質水が改質水供給管11bの温度センサ27が配置された水位H1まで供給されると、ヒータ28によって加熱された改質水供給管11bが、供給された改質水によって冷却されるため、温度センサ27によって検出される温度T1が低下し始める(図3のtm3参照)。これによって、温度T1の変化量ΔT1が、予め定められた所定変化量(ΔT1−a)より大きくなるため、ステップS116の判断結果がY(YES)となり、制御装置15は、プログラムをステップS120に移行する。
そして、制御装置15は、ステップS120において、改質水が所定の水位(H1)まで供給されたと判断する。すなわち、燃料電池システムの起動運転開始前に、改質水が蒸発部32の入口32a付近まで供給されたと判断する。その結果、その後の燃料電池システムの起動運転の開始によって改質水ポンプ11b1が駆動された場合に、改質水が蒸発部32に遅滞なく供給されるようになる。
上記したステップS120において、改質水が所定水位(H1)まで供給されたと判断されると、次いで、制御装置15は、ステップS122において、ヒータ28への通電を停止(ヒータOFF)する(図3のtm4参照)。次いで、制御装置15は、ステップS124において、モータ25の回転を停止し、改質水ポンプ11b1からの改質水の供給を停止する。その後、制御装置15は、ステップS126において、燃料電池システムを起動運転へ移行する。
ところで、改質水ポンプ11b1等の故障等により、改質水が改質水供給管11bに供給されない場合には、改質水ポンプ11b1を正回転駆動してから、所定時間(tm−a)経過しても、改質水が改質水供給管11bの温度センサ27が配置された水位(H1)まで供給されることがないので、温度T1の変化量ΔT1が、予め定められた所定変化量(ΔT1−a)より大きくなることはない。従って、このような場合には、ステップS118の判断結果がYとなり、制御装置15は、プログラムをステップS130に移行して、異常と判定され、燃料電池システムが異常停止される。
なお、改質水温度検出センサ29で検出された水タンク14内の改質水の温度を制御装置15に取り込んで、改質水供給管11bの温度を検出する温度センサ27の検出温度と比較することにより、筐体10a内温度が高い等の影響によって、温度センサ27の検出温度が、改質水温度検出センサ29の検出温度よりも十分に高い場合には、改質水供給管11bの加熱作用を不要と判断し、ヒータ28への通電を停止することができる。
上記した実施の形態においては、ヒータ28によって、改質水供給管11bを加熱することにより、水タンク14より供給される改質水の温度と、温度センサ27が配置された改質水供給管11bの所定部位の温度との間に温度差を持たせる例について述べた。しかしながら、改質水供給管11bに供給される改質水の温度と、改質水供給管11bの温度とが元々温度差を有している場合には、ヒータ28を省略することができる。
元々温度差を有している場合とは、例えば、改質水の温度に対して、燃料電池モジュール11の影響を受けて改質水供給管11bの温度が高くなっている場合がある。このような場合には、温度センサ27が配置された改質水供給管11bの所定の部位まで改質水が供給されると、改質水によって改質水供給管11bの温度が変化(低下)することになるので、この温度変化を温度センサ27によって検出することにより、ヒータ28を設けなくても改質水供給の有無を判定することが可能となる。以下、ヒータを用いない水張り制御プログラムの一例について、図4のフローチャートおよび図5のタイムチャートに基づいて説明する。
制御装置15は、図2のフローチャートで述べたと同様に、ステップS202において、温度センサ27によって検出された温度(改質水供給管11bの温度)T1の読み込みを開始する。次いで、制御装置15は、ステップS204において、モータ25を逆回転制御し、改質水ポンプ11b1を逆回転駆動する。これにより、改質水供給管11b内に充満された改質水が一旦水タンク14に戻される。
次いで、制御装置15は、ステップS206において、モータ25を逆回転してから所定時間経過したか否かが判断され、所定時間経過していない場合には、ステップS204に戻って、改質水ポンプ11b1の逆回転を継続し、所定時間経過した場合には、ステップS208に移行する。
ステップS208において、制御装置15は、モータ25を正回転制御し、改質水ポンプ11b1を正回転駆動する(図5のtmm参照)。これにより、水タンク14に貯留された改質水が、改質水ポンプ11b1の吐出ポートより蒸発部32の入口32aに向かって改質水供給管11bに供給される。
次いで、制御装置15は、ステップS210において、温度センサ27によって検出された温度T1の変化量(低下量)ΔT1が、予め定められた所定変化量(ΔT1−a)より大きいか否かが判断される。温度センサ27によって検出された温度T1の変化量ΔT1が、予め定められた所定変化量(ΔT1−a)より小さいと判断された場合には、ステップS212に移行する。
ステップS212においては、制御装置15は、改質水ポンプ11b1が改質水の供給を開始(ステップS208)してから、所定時間(tm−a)経過したか否かを判断し、所定時間(tm−a)経過していない場合には、ステップS208に戻り、改質水ポンプ11b1の正回転を継続する。改質水ポンプ11b1の改質水の供給作用により、改質水が改質水供給管11bの温度センサ27が配置された水位(H1)まで供給されると、供給された改質水によって改質水供給管11bが冷却されるため、温度センサ27によって検出される温度T1が低下される。これによって、温度T1の変化量ΔT1が、予め定められた所定変化量(ΔT1−a)より大きくなると、ステップS210の判断結果がYとなり、制御装置15は、プログラムをステップS214に移行する。
なお、所定時間(tm−a)経過しても、温度センサ27によって検出された温度T1の変化量ΔT1が、所定変化量(ΔT1−a)より大きくならない場合には、何らかの異常があったものとして、ステップS220に移行し、燃料電池システムを異常停止する。ここで、何らかの異常とは、例えば、改質水ポンプ11b1を含む改質水供給系の異常等が想定される。
ステップS214において、制御装置15は、改質水が所定の水位(H1)まで供給されたと判断する。すなわち、燃料電池システムの起動運転開始前に、改質水が蒸発部32の入口32a付近まで供給されたと判断する。次いで、ステップS216において、制御装置15は、モータ25の正回転を停止し、改質水ポンプ11b1からの改質水の供給を停止する。その後、ステップS218において、制御装置15は、燃料電池システムを起動運転へ移行する。
なお、ヒータ28を省略できる別のケースとして、燃料電池システムが、例えば寒冷地の屋外に設置される場合、水タンク14内の改質水の温度に対して、改質水供給管11bの温度が低くなっている場合がある。このような場合には、改質水が温度センサ27が配置された改質水供給管11bの所定部位まで供給されると、改質水供給管11bによって改質水の温度が変化(低下)するため、この改質水の温度変化を温度センサ27によって検出することにより、ヒータ28を設けなくても改質水供給の有無を判定することが可能となる。
図6は、燃料電池システムの起動運転時の改質水供給異常の制御例を示すフローチャートである。同図のステップS302において、制御装置15は、温度センサ27によって検出された温度(改質水供給管11bの温度)T1の読み込みを開始する。次いで、制御装置15は、ステップS304において、ヒータ28に通電し、改質水供給管11bの温度センサ27が配置された部位を加熱する。次いで、制御装置15は、ステップS306において、温度センサ27によって検出された温度T1が、予め定められた所定温度(T1−c)より低いか否かを判断する。
ここで、燃料電池システムの起動運転時に、改質水ポンプ11b1によって改質水が改質水供給管11bに正常に供給されている場合には、ヒータ28で加熱された改質水供給管11bが、温度センサ27が配置された部位まで供給された改質水によって冷却され、温度センサ27によって検出された温度T1は、所定温度(T1−c)以上には上昇しない。
従って、温度センサ27によって検出された温度T1が、所定温度(T1−c)より低いと判断された場合(ステップS306の判断結果がYの場合)には、制御装置15は、プログラムをステップS308に移行して、改質水が正常に供給されていると判定するとともに、続くステップS310において、ヒータ28への通電を停止する。
これに対し、温度センサ27によって検出された温度T1が、所定温度(T1−c)より高いと判断された場合には、制御装置15は、プログラムをステップS312に移行して、ヒータ28が通電されてから所定時間経過したか否かが判断される。そして、所定時間が経過していない間は、ヒータ28の通電が継続されるが、所定時間が経過しても、温度センサ27によって検出された温度T1が、所定温度(T1−c)より低くならない場合には、制御装置15は、プログラムをステップS312に移行して、異常と判定され、故障部品の交換等を促す。
すなわち、改質水ポンプ11b1等の故障によって、温度センサ27が配置された部位に改質水が正常に供給されていないために、温度センサ27によって検出された温度T1が、所定温度(T1−c)より低くならないと判断し、ステップS312で異常と判定する。
なお、上記ステップS306においては、温度センサ27によって検出された温度T1が、所定温度(T1−c)より低いか否かを絶対値で判定するようにしたが、温度センサ27によって検出された温度T1の変化量(上昇量)ΔT1によって判断するようにしてもよい。
上記した実施の形態によれば、燃料電池システムは、水素を含む燃料と酸化剤ガスとにより発電する燃料電池34と、改質水から水蒸気を生成する蒸発部32と、改質用原料と水蒸気とから燃料を生成して燃料電池34に供給する改質部33と、改質水を貯水する水タンク14と、水タンク14に貯水された改質水を改質水供給管11bを通じて蒸発部32に供給する改質水ポンプ11b1とを備えるとともに、改質水供給管11bの改質水ポンプ11b1と蒸発部32との間に配置された温度センサ27と、燃料電池システムの起動運転開始前に、改質水ポンプ11b1の駆動によって改質水供給管11bに供給される改質水による温度センサ27の検出温度の変化に基づいて、温度センサ27が配置された改質水供給管の所定水位まで改質水が供給されたと判定する制御装置15とを有する。
これにより、安価な温度センサ27を用いて、改質水が改質水供給管11bの所定の水位まで供給されたことを判定することができ、燃料電池システムの起動運転開始前に、改質水を蒸発部32の入口32a近くまで供給されたことを的確に検出することが可能となる。
上記した実施の形態によれば、改質水供給管11bの温度センサ27を配置した部位に、改質水供給管11bを加熱するヒータ28を設けたので、ヒータ28によって、予め改質水供給管11bを加熱させることにより、水タンク14より供給される改質水の温度と、蒸発部32に近い位置の改質水供給管11bの温度との間に温度差を確実に持たせることができる。
上記した実施の形態によれば、温度センサ27を、燃料電池モジュール11の外部で、かつ蒸発部32の入口32aに近い位置に配置したので、燃料電池モジュール11の熱の影響を受けにくくすることができるとともに、燃料電池システムの起動運転による改質水ポンプ11b1の駆動によって、改質水を蒸発部32に遅滞なく供給することができる。
上記した実施の形態によれば、制御装置15は、改質水ポンプ11b1によって改質水供給管11bへの改質水の供給が開始されてから所定時間経過しても、改質水が所定水位まで供給されたと判定されない場合に、改質水供給異常と判定するので、改質水の供給系の異常を的確に検出することができる。
上記した実施の形態によれば、ヒータ28は、改質水供給管11bの凍結防止機能を兼ねるので、燃料電池システムを寒冷地に設置する場合であっても、改質水供給管11bの凍結防止用のヒータ28を別個に設ける必要がない。
上記した実施の形態によれば、水タンク14に貯留された改質水の温度を検出する改質水温度検出センサ29をさらに設けたので、改質水供給管11bに配置された温度センサ27の検出温度と、改質水温度検出センサ29の検出温度との比較によって、改質水供給管11bの加熱が不要時には、ヒータ28への通電を停止することができる。
上記した実施の形態においては、水張り制御プログラムを実行するに当たり、改質水供給管11bに改質水が充満している場合を想定して、ステップS104、S204にて、改質水ポンプ11b1を逆回転させ、改質水供給管11b内の改質水を、一旦水タンク14に戻す水抜き動作を実施する例について述べた。しかしながら、水抜き動作は、燃料電池システムの停止後に実施し、水張り制御プログラムの実行時には、水抜き動作を省略することもできる。また、燃料電池システムの停止後に、改質水供給管11b内の改質水が水タンク14内に自然落下するものにおいては、水抜き動作自体を省略することができる。
斯様に、上記した実施の形態で述べた具体的構成は、本発明の一例を示したものにすぎず、本発明はそのような具体的構成に限定されることなく、本発明の主旨を逸脱しない範囲で種々の態様を採り得るものである。
11…燃料電池モジュール、11a…改質用原料供給管、11b…改質水供給管、11b1…改質水ポンプ、11c…カソードエア供給管、14…水タンク、15…制御装置、27…温度センサ、28…ヒータ、29…改質水温度検出センサ、32…蒸発部、32a…入口、33…改質部、34…燃料電池。

Claims (6)

  1. 水素を含む燃料と酸化剤ガスとにより発電する燃料電池と、
    改質水から水蒸気を生成する蒸発部と、
    改質用原料と前記水蒸気とから前記燃料を生成して前記燃料電池に供給する改質部と、
    前記改質水を貯水する水タンクと、
    前記水タンクに貯水された前記改質水を改質水供給管を通じて前記蒸発部に供給する改質水ポンプと、
    を備えた燃料電池システムであって、
    前記改質水供給管の前記改質水ポンプと前記蒸発部との間に配置された温度センサと、
    前記燃料電池システムの起動運転開始前に、前記改質水ポンプの駆動によって前記改質水供給管に供給される前記改質水による前記温度センサの検出温度の変化に基づいて、前記温度センサが配置された前記改質水供給管の所定水位まで前記改質水が供給されたと判定する制御装置と、
    を有する燃料電池システム。
  2. 前記改質水供給管の前記温度センサを配置した部位に、前記改質水供給管を加熱するヒータを設けた請求項1に記載の燃料電池システム。
  3. 前記温度センサを、燃料電池モジュールの外部で、かつ前記蒸発部の入口に近い位置に配置した請求項1または請求項2に記載の燃料電池システム。
  4. 前記制御装置は、前記改質水ポンプによって前記改質水供給管への前記改質水の供給が開始されてから所定時間経過しても、前記改質水が前記所定水位まで供給されたと判定されない場合に、改質水供給異常と判定する請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記ヒータは、改質水供給管の凍結防止機能を兼ねる請求項2ないし請求項4のいずれか1項に記載の燃料電池システム。
  6. 前記水タンクに貯留された前記改質水の温度を検出する改質水温度検出センサをさらに設けた請求項1ないし請求項5のいずれか1項に記載の燃料電池システム。
JP2014195216A 2014-09-25 2014-09-25 燃料電池システム Active JP6446949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195216A JP6446949B2 (ja) 2014-09-25 2014-09-25 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195216A JP6446949B2 (ja) 2014-09-25 2014-09-25 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2016066534A true JP2016066534A (ja) 2016-04-28
JP6446949B2 JP6446949B2 (ja) 2019-01-09

Family

ID=55805663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195216A Active JP6446949B2 (ja) 2014-09-25 2014-09-25 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6446949B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309123A1 (en) 2016-10-13 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation system and fuel cell system
JP2018195402A (ja) * 2017-05-15 2018-12-06 アイシン精機株式会社 燃料電池システム
JP2019091658A (ja) * 2017-11-16 2019-06-13 アイシン精機株式会社 燃料電池システム
CN110581294A (zh) * 2019-09-25 2019-12-17 潍柴动力股份有限公司 一种重整水监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086214A (ja) * 2001-09-06 2003-03-20 Equos Research Co Ltd 燃料電池装置
US20030194587A1 (en) * 2002-04-15 2003-10-16 Fagley John C. Rapid response fuel cell system
JP2010275129A (ja) * 2009-05-27 2010-12-09 Panasonic Corp 水素発生装置
JP2011175852A (ja) * 2010-02-24 2011-09-08 Kyocera Corp 燃料電池装置
JP2011207716A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 水素製造装置、燃料電池システム及び水素製造装置の起動方法
JP2013089541A (ja) * 2011-10-21 2013-05-13 Noritz Corp 燃料電池発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086214A (ja) * 2001-09-06 2003-03-20 Equos Research Co Ltd 燃料電池装置
US20030194587A1 (en) * 2002-04-15 2003-10-16 Fagley John C. Rapid response fuel cell system
JP2010275129A (ja) * 2009-05-27 2010-12-09 Panasonic Corp 水素発生装置
JP2011175852A (ja) * 2010-02-24 2011-09-08 Kyocera Corp 燃料電池装置
JP2011207716A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 水素製造装置、燃料電池システム及び水素製造装置の起動方法
JP2013089541A (ja) * 2011-10-21 2013-05-13 Noritz Corp 燃料電池発電装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309123A1 (en) 2016-10-13 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation system and fuel cell system
JP2018062458A (ja) * 2016-10-13 2018-04-19 パナソニックIpマネジメント株式会社 水素生成システムおよび燃料電池システム
US10364149B2 (en) 2016-10-13 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation system and fuel cell system
JP2018195402A (ja) * 2017-05-15 2018-12-06 アイシン精機株式会社 燃料電池システム
JP2019091658A (ja) * 2017-11-16 2019-06-13 アイシン精機株式会社 燃料電池システム
CN110581294A (zh) * 2019-09-25 2019-12-17 潍柴动力股份有限公司 一种重整水监测方法及系统

Also Published As

Publication number Publication date
JP6446949B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6476566B2 (ja) 燃料電池システム
JP5786521B2 (ja) 燃料電池システム
JP6446949B2 (ja) 燃料電池システム
JP5847617B2 (ja) 燃料電池システム
JP5988701B2 (ja) 燃料電池システム
JP6179390B2 (ja) 燃料電池システム
JP5867280B2 (ja) 燃料電池システム
JP6447014B2 (ja) 燃料電池システム
EP3070774B1 (en) Fuel cell system
JP2019186109A (ja) 燃料電池システム
JP6728759B2 (ja) コジェネレーションシステム
JP6221781B2 (ja) 燃料電池システム
EP2978058B1 (en) Fuel cell system
EP3211702A1 (en) Fuel cell system
JP6887090B2 (ja) 水素生成システムおよび燃料電池システム
JP6409368B2 (ja) 燃料電池システム
JP6424494B2 (ja) 燃料電池システム
JP6972872B2 (ja) 燃料電池システム
JP2017142037A (ja) コジェネレーションシステム
JP6566053B2 (ja) 燃料電池システム
JP7003655B2 (ja) 燃料電池システム
JP6597104B2 (ja) コジェネレーションシステム
JP6330521B2 (ja) 燃料電池システム
JP6330522B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R151 Written notification of patent or utility model registration

Ref document number: 6446949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151