JP2016050213A - 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂 - Google Patents

熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂 Download PDF

Info

Publication number
JP2016050213A
JP2016050213A JP2014174252A JP2014174252A JP2016050213A JP 2016050213 A JP2016050213 A JP 2016050213A JP 2014174252 A JP2014174252 A JP 2014174252A JP 2014174252 A JP2014174252 A JP 2014174252A JP 2016050213 A JP2016050213 A JP 2016050213A
Authority
JP
Japan
Prior art keywords
thermally conductive
carbon material
fiber
conductive filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014174252A
Other languages
English (en)
Inventor
紺田 哲史
Tetsushi Konta
哲史 紺田
山木 健之
Takeyuki Yamaki
健之 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014174252A priority Critical patent/JP2016050213A/ja
Publication of JP2016050213A publication Critical patent/JP2016050213A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】、高い熱伝導性を有する熱伝導性フィラーを提供する。【解決手段】熱伝導性フィラーは、結晶性を有する炭素材料21と、炭素材料21の周囲を被覆する金属酸化物層23と、炭素材料21と金属酸化物層23との間に位置し、酸素及び炭素を含む絶縁層22とを備える。【選択図】図1

Description

本願は、熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂に関する。
近年、高輝度のLEDが開発され、照明機器に利用されるようになってきている。照明機器におけるLEDの輝度を高めたり、LEDの信頼性を向上させたりするためには、LEDで発生する熱を効率よく外部へ発散させることが重要である。また、SiC、GaN等、耐熱性に優れた、半導体デバイスも開発されている。このような半導体デバイスを用いた制御機器等においても、半導体デバイスで発生した熱を外部へ発散させることは重要な課題である。
熱伝導性の良い材料として、金属、窒化アルミニウム等のセラミックが挙げられる。しかし、これらの材料は、加工性および成形性の点で扱いにくい。このため、熱伝導性の高いフィラーが添加された樹脂が電子部品の放熱材として用いられる。
特許文献1は、窒化ホウ素の粒子と窒化アルミニウムの粒子とを含む熱伝導性フィラーを開示している。
特開2011−184507号公報
従来の樹脂に添加される熱伝導性フィラーでは、より高い熱伝導性が求められていた。本願の限定的ではないある例示的な一実施形態は、高い熱伝導性を有する熱伝導性フィラー熱伝導性繊維および熱伝導性樹脂を提供する。
本願に開示された一実施形態に係る熱伝導性フィラーは、結晶性を有する炭素材料と、前記炭素材料の周囲を被覆する金属酸化物層 と、前記炭素材料と前記金属酸化物層との間に位置し、酸素及び炭素を含む絶縁層とを備える。
本開示の実施形態によれば、高い熱伝導性を備えた熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂を実現し得る。
熱伝導性フィラーの一実施形態を示す模式的な断面図である。 (a)から(c)は、図1に示す熱伝導性フィラーの製造工程を示す模式図である。 (a)および(b)は、図1に示す熱伝導性フィラーの別な製造工程を示す模式図であり、(c)は熱伝導性フィラーの他の形態を示す模式的な断面図であり、(d)は熱伝導性フィラーの他の形態の製造工程を示す模式図ある。 熱伝導性繊維の一実施形態を示す模式的な断面図である。 (a)から(c)は、図4に示す熱伝導性繊維の製造工程を示す模式図である。 熱伝導性樹脂の一実施形態を示す模式的な断面図である。 熱伝導性樹脂の他の形態を示す模式的な断面図である。
本願発明者は、熱伝導性に優れ、フィラーとして用い得る種々の材料を検討した。その結果、グラファイト等結晶性の炭素材料を熱伝導性フィラーの材料として用いることを想到した。本願に開示された熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂の一態様の概要は以下の通りである。
[項目1]
熱伝導性フィラーは、結晶性を有する炭素材料と、炭素材料の周囲を被覆する金属酸化物層と、炭素材料と金属酸化物層との間に位置し、酸素及び炭素を含む絶縁層とを備える。この構成によれば、炭素材料を中心に含んでいるため、優れた熱伝導性を有する。また、炭素材料の表面に、炭素材料を酸化することよって形成した絶縁層を備える。この絶縁層は、炭素材料の表面の電子構造を変化させることによって、形成されるため、薄くても、高い電気的絶縁性を備える。よって、熱伝導性フィラーは高い電気絶縁性も備えている。
[項目2]
炭素材料は、板形状、繊維形状または球形状を有し、0.5μm以上の大きさを有していてもよい。
[項目3]
炭素材料は、グラファイト、マルチウォールカーボンナノチューブおよびフラーレンから選ばれる少なくとも1つを含んでいてもよい。
[項目4]
金属酸化物は、酸化アルミニウム、酸化ジルコニウムおよび酸化チタンからなる群から選ばれる少なくとも1つを含んでいてもよい。
[項目5]
熱伝導性繊維は、絶縁性の繊維と、繊維の表面に配置された項目1から3のいずれかに記載の熱伝導性フィラーとを備える。
[項目6]
繊維は、ガラスであってもよい。
[項目7]
熱伝導性フィラーは繊維の表面に自己組織化により配列していてもよい。
[項目8]
熱伝導性樹脂は、樹脂と、樹脂中に分散した項目1から4のいずれかの熱伝導性フィラーとを含む。
[項目9]
熱伝導性樹脂は、樹脂と、樹脂中に分散した項目5から7のいずれかの熱伝導性繊維とを含む。
[項目10]
熱伝導性フィラーの製造方法は、結晶性を有する炭素材料の表面を酸化し、炭素材料の表面に酸素及び炭素を含む絶縁層を形成する工程(A)と、絶縁性層を被覆する金属酸化物層を形成する工程(B)とを包含する。
[項目11]
工程(A)は、酸化剤を含む溶液に炭素材料を浸漬する工程を含んでいてもよい。
[項目12]
酸化剤は、硝酸、硫酸および過酸化水素からなる群から得らばれる少なくとも1つを含んでいてもよい。
[項目13]
工程(A)は、炭素材料を酸素プラズマに曝す工程を含んでいてもよい。
[項目14]
工程(B)を、ゾルゲル法、CVD法、スパッタ法および無電解めっき法から選ばれる1つによって行ってもよい。
[項目15]
工程(A)の後、絶縁層の表面を、第1官能基を有するシランカップリング剤で処理することにより、第1シランカップリング剤で修飾された絶縁層を得る工程(C)を更に包含し、工程(B)は、第2官能基を有する第2シランカップリング剤で修飾された金属酸化物の粒子と、第1シランカップリング剤で修飾された絶縁層とを反応させることにより、絶縁層の表面に前記粒子が配列された金属酸化物層を形成してもよい。
[項目16]
熱伝導性繊維の製造方法は、項目10から15のいずれかの製造方法によって製造された熱伝導性フィラーの金属酸化物層の表面を第1官能基を有するシランカップリング剤で処理することにより、第1シランカップリング剤で修飾された金属酸化物層を得る工程と、第2官能基を有する第2シランカップリング剤で表面が修飾された絶縁性の繊維を用意する工程と、第1シランカップリング剤で修飾された金属酸化物層と第2シランカップリング剤で表面が修飾された繊維とを反応させることにより、表面に熱伝導性フィラーが配列された繊維を形成する工程とを包含する。
(第1の実施形態)
本開示の熱伝導性フィラーの実施形態を説明する。
[構造]
図1は、本開示の熱伝導性フィラーの断面構造を模式的に示している。熱伝導性フィラー11は、炭素材料21と、炭素材料21の周囲を被覆する金属酸化物層23と、炭素材料21と金属酸化物層23との間に位置する絶縁層22とを備える。
炭素材料21は結晶性を備える。炭素材料21は、結晶性が高いほうが電子伝導性に優れ、電子伝導性が高いほど、熱伝導性にも優れるからである。好ましくは、炭素材料21は、グラファイト、マルチウォールカーボンナノチューブおよびフラーレンから選ばれる少なくとも1つを含む。これらの炭素材料21は、金属と同程度以上の熱伝導率を有するものがある。例えば、銀の熱伝導率は、400w/m・k程度であるのに対し、グラファイトの熱伝導率は500w/m・k〜1,500w/m・k程度である。
炭素材料21は、板形状、繊維形状または球形状を有する。炭素材料21のサイズに特に制限はないが、たとえば、外接円の直径が0.5μm以上の大きさを有する。炭素材料の外形の最大値は、炭素材料21の形状や、熱伝導性フィラー11の用途に依存する。炭素材料21が板形状を有する場合、外接円の直径は、例えば、100μm以下であることが好ましい。また、繊維形状を有する場合、外接円の直径、つまり、繊維形状の長さは、500μm以下であることが好ましい。
絶縁層22は炭素および酸素を含んでおり、炭素材料21の表面を覆っている。絶縁層22は、以下において説明するように、炭素材料21の表面を酸化することによって得られる。より具体的には、絶縁層22は、炭素材料21のsp2混成軌道が酸化によって部分的に切断され、エポキシ基、カルボキシル基、カルボニル基、水酸基等が結合している。これらの酸素を含む官能基が結合することにより、絶縁層22は、炭素材料21に比べて電子伝導性が低下しており、絶縁性を示す。
絶縁層22は、エポキシ基、カルボキシル基、カルボニル基または水酸基の一部反応するとこによって、これらの官能基に導入された有機置換基をさらに含んでいてもよい。有機置換基が導入されることにより、さらに外側を被覆する金属酸化物層23と絶縁層22との密着性を向上させることが可能である。
絶縁層22の厚さは、たとえば、炭素原子が二次元的に結合した1層分程度であってもよく、数層分程度であってもよい。ただし、絶縁層22の厚さが大きくなると、電子伝導性および熱伝導性に優れる炭素材料21の厚さが小さくなる。絶縁層22の存在は、たとえば、熱伝導性フィラー11から金属酸化物層23を除去した状態でXPS等の表面分析手段を用いて炭素の酸化状態を測定することにより、確認することができる。
上述したように、絶縁層22は、炭素材料21の表面を酸化することによって形成されるため、薄くても炭素材料21の表面を効率的に絶縁することができる。このため、炭素材料21の熱伝導性特性を大きく低下させることなく、炭素材料21に電気的絶縁性を付与することができる。
金属酸化物層23は絶縁層22の外側を被覆している。金属酸化物層23は、例えば、酸化アルミニウム、酸化ジルコニウムおよび酸化チタンからなる群から選ばれる少なくとも1つを含んでいる。炭素材料21および絶縁層22の外側を被覆することによって、フィラー粒子の絶縁性を高める。また、金属酸化物を用いることによって、ある程度の熱伝導性も確保することができ、熱伝導性フィラー11全体の熱伝導性を維持しつつ、高い絶縁性も確保することができる。金属酸化物層23の厚さは例えば、10nm以上10μm以下である。
金属酸化物層23は以下において説明するように、物理的堆積方法または化学反応を利用した結合によって絶縁層22の表面に形成することができる。
本実施形態の熱伝導性フィラーによれば、炭素材料を中心に含んでいるため、優れた熱伝導性を有する。また、炭素材料の表面に、炭素材料を酸化することよって形成した絶縁層を備える。この絶縁層は、炭素材料の表面の電子構造を変化させることによって、形成されるため、薄くても、高い電気的絶縁性を備える。よって、本実施形態の熱伝導性フィラーは高い電気絶縁性も備えている。
化学反応を利用した結合によって金属酸化物層23を形成する場合、金属酸化物層23は、金属酸化物の粒子によって構成される。詳細については以下において説明する。
[製造方法]
熱伝導性フィラーの製造方法の一例を説明する。
まず図2(a)に示すように、上述したサイズおよび形状を有する炭素材料を用意する。図では、炭素材料21として、板状のグラファイトおよび繊維状のマルチウォールカーボンナノチューブを模式的に示している。炭素材料21は、表面を酸化し、絶縁層22を形成した後に十分な厚さの炭素材料21が残存するよう、炭素が結合した層を複数備えていることが好ましい。
用意した炭素材料21を例えば、酸化剤を含む溶液に浸漬することによって、炭素材料21の表面を酸化し、図2(b)に示すように、表面に絶縁層22を形成する。酸化剤を含む溶液として、例えば、硝酸、硫酸および過酸化水素からなる群から得らばれる少なくとも1つを含む水溶液を用いることができる。詳細な手順は、例えば、特開2013−56818号公報に開示されたグラファイトの酸化処理方法に従うことができる。
絶縁層22は、炭素材料21を酸素プラズマに曝すことによって行ってもよい。例えば、特開平5−24990号公報に開示された条件を用いて炭素材料21を酸化させることができる。
上述したように、絶縁層22の厚さは、層状の炭素構造の1層または数層程度であってもよい。また、この後に形成する金属酸化物層23と絶縁層22との密着性を高めるため、絶縁層22に含まれるエポキシ基、カルボキシル基、カルボニル基、水酸基等に有機置換基を導入してもよい。この場合、所望の置換基を有するシランカップリング剤と絶縁層22の上述した官能基とを反応させてもよい。
次に、絶縁層22が設けられた炭素材料21を金属酸化物層23で被覆する。金属酸化物層23は、物理的な堆積方法によって形成することができる。例えば、特開2008−94962号公報等に開示されたゾルゲル法を用いることができる。
また、「浮上式流動層CVDによるTiN−Al23系複合粉末の合成」木村勇雄、他、日本セラミックス協会学術論文誌97[12]1525−29(1989)」に記載された窒化チタンを酸化アルミニウムで被覆する方法に従い、絶縁層22が設けられた炭素材料21を流動させながらCVD法によって酸化アルミニウムの被膜を形成してもよい。
あるいは、特開2008−038218号公報に開示された回転式のチャンバーを備えたスパッタ装置を用い、チャンバー内に絶縁層22が設けられた炭素材料21を導入し、チャンバーを回転させながら酸化アルミニウムを被覆してもよい。
これらの方法を用い、酸化アルミニウムに替えて、酸化ジルコニウムまたは酸化チタンを絶縁層22が設けられた炭素材料21に被覆させてもよい。
また、無電解メッキ法を用いてもよい。例えば、特開2013−209643号公報に開示されるように、Pdのナノ粒子を含む樹脂を絶縁層22が設けられた炭素材料21の表面に付着させ、SnやNiなどの微粒子を絶縁層22の表面に析出させる。次いで、析出した金属を酸化させることによって酸化スズまたは酸化ニッケルで絶縁層22の表面を被覆してもよい。以上の工程によって、熱伝導性フィラーが製造される。
金属酸化物層23を金属酸化物粒子によって構成する場合には、絶縁層22が設けられた炭素材料21への金属酸化物粒子の付加は化学反応を用いる。
図3(a)に示すように、絶縁層22が設けられた炭素材料21に第1官能基を有するシランカップリング剤28を反応させる。これにより、第1官能基を有するシランカップリング剤28で修飾された絶縁層22が得られる。
一方、図3(b)に示すように、金属酸化物粒子26としてアルミナ粒子を用意し、金属酸化物粒子26の表面に存在する水酸基と第2官能基を有するシランカップリング剤27と反応させる。これにより、第2官能基を有するシランカップリング剤27で修飾された金属酸化物粒子26(以下、修飾された金属酸化物粒子25と呼ぶ)が得られる。シランカップリング剤28の第1官能基とシランカップリング剤27の第2官能基とは、互いに反応し得る組み合わせを選択する。例えば、第1官能基および第2官能基として、エポキシ基およびアミノ基を用いることができる。
次に図3(c)に示すように、シランカップリング剤28で修飾された絶縁層22と修飾された金属酸化物粒子25とを有機溶媒中で加熱しながら混合する。これにより、第1官能基および第2官能基が互いに反応し、エポキシ基が開環してアミノ基の窒素原子と炭素原子とが共有結合によって結合する。その結果、修飾された金属酸化物粒子25が絶縁層22の表面において固定される。
また、図3(d)に示すように、シランカップリング剤28を金属酸化物粒子26に修飾させ、図2(b)に示す炭素材料21絶縁層22に含まれるエポキシ基、カルボキシル基、カルボニル基、水酸基等の官能基とシランカップリング剤28で修飾された金属酸化物粒子26と(以下、修飾された金属酸化物粒子25’と呼ぶ)を適当な硬化触媒(例えば、トリフェニルホスフィン系硬化触媒)の存在下で反応させ、修飾された金属酸化物粒子25’を絶縁層22の表面に固定することもできる。
この時、修飾された金属酸化物粒子25’の第2官能基を有するシランカップリング剤27どうしは反応しないため、修飾された金属酸化物粒子25’上に修飾された金属酸化物粒子25’がさらに重なって固定されることはなく、絶縁層22の表面において、修飾された金属酸化物粒子25’が自己組織化により(自己整合的に)配列する。これにより、修飾された金属酸化物粒子25’の配列によって構成される金属酸化物層23で絶縁層22が被覆され、熱伝導性フィラーが完成する。
(第2の実施形態)
[構造]
本開示の熱伝導性繊維の実施形態を説明する。図4は、熱伝導性繊維12の構造を模式的に示している。熱伝導性繊維は、無機材料からなる繊維31と、繊維31の表面に配置された熱伝導性フィラー11とを備える。
繊維31には、種々の無機材料、有機材料等、絶縁性を有する材料から形成されている。具体的には、繊維31は、ガラス繊維、金属酸化物の針状の結晶、有機繊維等であってもよい。例えば、繊維31の直径(断面)は、例えば、1μm以上500μm以下程度である。また、繊維の長さは、5μm以上1mm以下である。図4では、1本の繊維31を示しているが、繊維31は、複数本であり、互いに絡み合っていてもよい。
熱伝導性フィラー11には、第1の実施形態で説明した熱伝導性フィラーを用いることができる。熱伝導性フィラー11は、少なくとも一部が繊維31の表面において、隣接する熱伝導性フィラー11の粒子と接触するように配列されている。熱伝導性フィラー11は、繊維31の表面において、繊維の表面に自己組織化により配列していてもよい。
熱伝導性繊維12によれば、熱伝導性フィラー11の少なくとも一部は、繊維31の表面において隣接する熱伝導性フィラー11の粒子と接触している。このため、熱伝導性フィラー11の粒子よりも長い熱伝導経路を有しており、熱伝導性フィラー11に比べて、より熱伝導性に優れる。特に、フィラーとして樹脂等に添加した場合に、長い熱伝導経路を有するため、熱伝導性繊維12を含む樹脂材料は、高い熱伝導性を示す。また、熱伝導性フィラー11の粒子を直接樹脂に分散させる場合に比べて、熱伝導性フィラー11の密度を高めることができる。よって、この点からも、熱伝導性繊維12を含む樹脂材料は、高い熱伝導性を示す。
[製造方法]
熱伝導性繊維12の製造方法の一例を説明する。
まず図5(a)に示すように、繊維31を用意する。例えば、ガラス繊維を用意する。
次に図5(b)に示すように、繊維31の表面に存在する水酸基と第1官能基を有するシランカップリング剤32(エポキシ系シランカップリング剤が好ましい)と反応させる。これにより、第1官能基を有するシランカップリング剤32で修飾された繊維31が得られる。
また、図5(c)に示すように、第1の実施形態の熱伝導性フィラー11を用意し、熱伝導性フィラー11の金属酸化(アミン系シランカップリング剤が好ましい)物層23の表面に存在する水酸基と第2官能基を有するシランカップリング剤33とを反応させる。これにより、第2官能基を有するシランカップリング剤で修飾された熱伝導性フィラー11が得られる。
第1の実施形態において説明したように、シランカップリング剤を用いて金属酸化物層23を形成した熱伝導性フィラー11’を用いる場合には、金属酸化物層23の表面に未反応の第2官能基を有するシランカップリング剤が残存している。この場合には、残存しているシランカップリング剤を利用できるため、シランカップリング剤33で修飾しなくてもよい。
第1の実施形態と同様、シランカップリング剤32の第1官能基とシランカップリング剤33の第2官能基とは、互いに反応し得る組み合わせを選択する。例えば、第1官能基および第2官能基として、エポキシ基およびアミノ基を用いることができる。
次にシランカップリング剤32で修飾された繊維31とシランカップリング剤33で修飾された熱伝導性フィラー11とを有機溶媒中で加熱しながら混合する。これにより、第1官能基および第2官能基が互いに反応し、エポキシ基が開環してアミノ基の窒素原子と炭素原子とが共有結合によって結合する。その結果、シランカップリング剤33で修飾された熱伝導性フィラー11が繊維31の表面において固定される。繊維31の表面において、熱伝導性フィラー11は自己組織化により配列する。これにより、隣接する熱伝導性フィラー11どうしが接触し、配列した熱伝導性繊維が得られる。
(第3の実施形態)
本開示の熱伝導性樹脂の実施形態を説明する。図6は、熱伝導性樹脂13の構造を模式的に示している。熱伝導性樹脂13は、樹脂41と樹脂41に分散した熱伝導性フィラー11とを備える。
熱伝導性樹脂13には、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ABS樹脂等種々の樹脂を用いることができる。また樹脂として、ゴム、例えばシリコーンゴムなどを用いることができる。
熱伝導性フィラー11には、第1の実施形態で説明した熱伝導性フィラーを用いることができる。
図7は、熱伝導性樹脂13’の構造を模式的に示している。熱伝導性樹脂13は、樹脂41と樹脂41に分散した熱伝導性繊維12とを備える。
熱伝導性樹脂13には、上述した樹脂を用いることできる。また、熱伝導性繊維12には、第2の実施形態で説明した熱伝導性繊維を用いることができる。
熱伝導性樹脂13、13’は、上述した熱伝導性フィラー11または熱伝導性繊維12を樹脂41に分散させることによって製造することができる。
熱伝導性樹脂13、13’によれば、熱伝導性に優れた熱伝導性フィラーまたは熱伝導性繊維を含むため、放熱性に優れる。また、樹脂をマトリックスとして用いるため、熱可塑性、熱硬化性、エネルギ線硬化性等を利用して成形することが可能である。よって、パワーデバイス、LED等の発光デバイス等のパーッケージや放熱部品として好適に用いることができる。
本願に開示された本発明は、パワー半導体デバイス、発光デバイス、バッテリー等の放熱に好適に用いることができる。
11 熱伝導性フィラー
12 熱伝導性繊維
13、13’ 熱伝導性樹脂
21 炭素材料
22 絶縁層
23 金属酸化物層
26 金属酸化物粒子
27、28、32、33 シランカップリング剤

Claims (6)

  1. 結晶性を有する炭素材料と、
    前記炭素材料の周囲を被覆する金属酸化物層と、
    前記炭素材料と前記金属酸化物層との間に位置し、酸素及び炭素を含む絶縁層と
    を備えた熱伝導性フィラー。
  2. 前記炭素材料は、板形状、繊維形状または球形状を有し、0.5μm以上の大きさを有する請求項1に記載の熱伝導性フィラー。
  3. 絶縁性の繊維と、
    前記繊維の表面に配置された請求項1または2に記載の熱伝導性フィラーと、
    を備える熱伝導性繊維。
  4. 前記熱伝導性フィラーは、前記繊維の表面に自己組織化により配列している請求項3に記載の熱伝導性繊維。
  5. 樹脂と、
    前記樹脂中に分散した請求項1または2に記載の熱伝導性フィラーと、
    を含む熱伝導性樹脂。
  6. 樹脂と、
    前記樹脂中に分散した請求項3または4に記載の熱伝導性繊維と、
    を含む熱伝導性樹脂。
JP2014174252A 2014-08-28 2014-08-28 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂 Pending JP2016050213A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174252A JP2016050213A (ja) 2014-08-28 2014-08-28 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174252A JP2016050213A (ja) 2014-08-28 2014-08-28 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂

Publications (1)

Publication Number Publication Date
JP2016050213A true JP2016050213A (ja) 2016-04-11

Family

ID=55657976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174252A Pending JP2016050213A (ja) 2014-08-28 2014-08-28 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂

Country Status (1)

Country Link
JP (1) JP2016050213A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901596B1 (ko) 2017-06-02 2018-09-27 재단법인 철원플라즈마 산업기술연구원 절연특성과 높은 열전도성을 갖는 탄소-세라믹 복합소재 및 그 제조방법
CN111592738A (zh) * 2020-06-16 2020-08-28 郑州大学 一种EP/h-BN/MWCNTs@Al2O3导热绝缘导热复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901596B1 (ko) 2017-06-02 2018-09-27 재단법인 철원플라즈마 산업기술연구원 절연특성과 높은 열전도성을 갖는 탄소-세라믹 복합소재 및 그 제조방법
CN111592738A (zh) * 2020-06-16 2020-08-28 郑州大学 一种EP/h-BN/MWCNTs@Al2O3导热绝缘导热复合材料及其制备方法

Similar Documents

Publication Publication Date Title
JP4653029B2 (ja) 熱伝導材料及びその製造方法
JP4759122B2 (ja) 熱伝導性シート及び熱伝導性グリス
WO2017115832A1 (ja) カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法
JP4686274B2 (ja) 放熱部品及びその製造方法
KR100954768B1 (ko) 열전도성 성형체 및 그 제조방법
JP4663153B2 (ja) 熱伝導性複合材料組成物
KR101266391B1 (ko) 피복 입자, 이를 포함하는 조성물 및 열전달 시트
JP4938466B2 (ja) 電子実装基板、光反射性熱伝導カバーレイフィルム
TW201524335A (zh) 電磁波吸收放熱片及電子機器
JP2002121404A (ja) 熱伝導性高分子シート
JP6803874B2 (ja) カーボン修飾窒化ホウ素、その製造方法および高熱伝導性樹脂組成物
JP2011086700A (ja) 放熱用部品
TW201223429A (en) Moulded interconnect device(MID) with thermal conductive property and method for production thereof
Wu et al. High thermal conductivity 2D materials: From theory and engineering to applications
Shen et al. Enhanced thermal conductivity of epoxy composites with core‐shell SiC@ SiO2 nanowires
JP2009191392A (ja) ピッチ系炭素繊維フィラー及びそれを用いた成形体
JP2002097372A (ja) 熱伝導性高分子組成物及び熱伝導性成形体
JP2016050213A (ja) 熱伝導性フィラー、熱伝導性繊維および熱伝導性樹脂
KR101894139B1 (ko) 방열기판 및 그의 제조방법
JP2012188305A (ja) 赤外吸収熱伝導部材
JP2004315761A (ja) 放熱体
KR20200080961A (ko) 절연 방열 나노와이어, 이의 제조방법 및 이를 포함하는 복합체
JP2002088256A (ja) 熱伝導性高分子組成物及び熱伝導性成形体
KR102384105B1 (ko) 방열복합소재 및 그 제조 방법
JP2015185562A (ja) 電子機器とその組み立て方法、及びシート状構造体とその製造方法