JP2016032806A - 液体処理装置 - Google Patents

液体処理装置 Download PDF

Info

Publication number
JP2016032806A
JP2016032806A JP2015122367A JP2015122367A JP2016032806A JP 2016032806 A JP2016032806 A JP 2016032806A JP 2015122367 A JP2015122367 A JP 2015122367A JP 2015122367 A JP2015122367 A JP 2015122367A JP 2016032806 A JP2016032806 A JP 2016032806A
Authority
JP
Japan
Prior art keywords
space
water
electrode
liquid
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122367A
Other languages
English (en)
Other versions
JP6541105B2 (ja
Inventor
今井 伸一
Shinichi Imai
伸一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015122367A priority Critical patent/JP6541105B2/ja
Publication of JP2016032806A publication Critical patent/JP2016032806A/ja
Application granted granted Critical
Publication of JP6541105B2 publication Critical patent/JP6541105B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】十分な濃度の酸性水とアルカリ水との両方を同時に生成する。
【解決手段】本開示の一態様に係る液体処理装置10は、相互への液体の移動が抑制された第1の空間22と第2の空間23とに分割され、第1の空間22及び第2の空間23のそれぞれに液体を入れることができる反応槽20と、第1の空間22に少なくとも一部が配置される第1の電極110と、第2の空間23に少なくとも一部が配置される第2の電極120と、第1の電極110と第2の電極120との間に交流電圧又はパルス電圧を印加する電源130と、を含み、液体中にプラズマを発生させるプラズマ生成器100と、を備え、反応槽20は、第1の空間22と第2の空間23との間でイオン又は電子を伝導する隔壁30を含む。
【選択図】図1

Description

本開示は、プラズマを用いた液体処理装置に関する。
水の電気分解を利用してイオン水を生成する、イオン水生成装置が知られている。例えば、特許文献1に記載のイオン水生成装置は、蒸留水に浸漬した電極対間に、放電場が介在した電流経路を形成して電気分解を行う。さらに、放電場内にストリーマ放電が生起されるように、電極対間に電圧を印加する。特許文献1には、水の電気分解により、正極側に酸性水が生成され、負極側にアルカリ水が生成されると記載されている。
特開2012−75973号公報
しかしながら、上記従来のイオン水生成装置では、十分な濃度のアルカリ水と酸性水との両方を同時に又は長時間生成することができないという課題がある。
そこで、本開示は、十分な濃度のアルカリ水及び酸性水を生成することができる液体処理装置を提供する。
本開示の一態様に係る液体処理装置は、相互への液体の移動が抑制された第1の空間と第2の空間とに分割され、前記第1の空間及び第2の空間のそれぞれに液体を入れることができる反応槽と、前記第1の空間に少なくとも一部が配置される第1の電極と、前記第2の空間に少なくとも一部が配置される第2の電極と、前記第1の電極と前記第2の電極との間に交流電圧又はパルス電圧を印加する電源と、を含み、前記液体中にプラズマを発生させるプラズマ生成器と、を備え、前記反応槽は、前記第1の空間と前記第2の空間との間でイオン又は電子を伝導する内壁を含む。
本開示によれば、十分な濃度のアルカリ水と酸性水との両方を同時に生成することができる。
実施の形態1に係る液体処理装置の構成を示す図である。 実施の形態1に係る液体処理装置の第2の電極及び絶縁体の構成を示す図である。 実施の形態1に係る液体処理装置の第2の電極及び絶縁体を示す斜視図である。 実施の形態1に係る液体処理装置の第2の電極及び絶縁体を示す断面図である。 実施の形態1に係る液体処理装置の動作を示すフローチャートである。 実施の形態1に係る液体処理装置の第1の電極及び第2の電極のそれぞれの近傍のpHを示す図である。 実施の形態1に係る液体処理装置の正極に発生する物質を示す図である。 実施の形態1に係る液体処理装置の負極に発生する物質を示す図である。 実施の形態1に係る液体処理装置を用いた汚れ除去の様子を模式的に示す図である。 実施の形態1に係る液体処理装置を用いた汚れ除去方法を示すフローチャートである。 実施の形態1に係る液体処理装置の別の構成を示す図である。 実施の形態1の変形例に係る液体処理装置の第2の電極及び絶縁体の構成を示す図である。 実施の形態2に係る液体処理装置の構成を示す図である。 実施の形態2に係る液体処理装置の動作を示すフローチャートである。 実施の形態2に係る液体処理装置の第1の電極及び第2の電極近傍のpHを示す図である。 実施の形態2に係る液体処理装置を用いた汚れ除去の様子を模式的に示す図である。 実施の形態3に係る液体処理装置の構成を示す図である。 実施の形態3に係る液体処理装置の第1の電極及び第2の電極近傍のpHを示す図である。
(本開示の基礎となった知見)
本発明者は、「背景技術」の欄において記載した従来のイオン水生成装置に関し、以下の問題が生じることを見出した。
水中で放電場を形成し、水の電気分解を行うためには、水流を制御することが必要になると考えられる。例えば、水流が大きい場合、水のバルク抵抗値が不安定になるため、放電場などが乱されて電流経路の形成が不十分になる。これにより、電気分解の能力が低下するおそれがある。また、水流が大きい場合には、生成したアルカリ水と酸性水とが混合し、中和してしまうおそれもある。
特許文献1に記載のイオン水生成装置は、電解槽を二つの部屋に仕切る隔壁に貫通孔が形成されている。さらに、各部屋において、水の給排出により大きな水流が発生する。すなわち、動水系である。本発明者は、このような装置において、電極対間に電圧を印加した結果、十分な濃度のアルカリ水が得られなかった。これは、電解槽内における水流の制御が十分ではなかったためと考えられる。
以上のことから、十分な濃度の酸性水及びアルカリ水を得るためには、水流を制御することが必要であると考えた。また、水流を制御する必要のない方法についても検討した。
そこで、本開示の一態様に係る液体処理装置は、相互への液体の移動が抑制された第1の空間と第2の空間とに分割され、前記第1の空間及び第2の空間のそれぞれに液体を入れることができる反応槽と、前記第1の空間に少なくとも一部が配置される第1の電極と、前記第2の空間に少なくとも一部が配置される第2の電極と、前記第1の電極と前記第2の電極との間に交流電圧又はパルス電圧を印加する電源と、を含み、前記液体中にプラズマを発生させるプラズマ生成器と、を備え、前記反応槽は、前記第1の空間と前記第2の空間との間でイオン又は電子を伝導する内壁を含む。
これにより、反応槽の内壁がイオン又は電子を伝導するので、第1の電極と第2の電極との間で電流経路を形成することができる。したがって、水の電気分解によりアルカリ水と酸性水とを生成することができる。また、第1の電極と第2の電極との間で放電を起こすことができ、プラズマを生成することができる。また、第1の空間と第2の空間との間で液体の移動が抑制されている。そのため、第1の空間で生成されるアルカリ水と、第2の空間で生成される酸性水とが混合するのを抑制することができる。このように、第1の空間と第2の空間との間における液体の移動を抑制することで、アルカリ水と酸性水とを同時に生成することができる。
また、上記構成において、前記内壁は、前記第1の空間と前記第2の空間とを分割する隔壁を含み、前記隔壁が前記第1の空間と前記第2の空間との間でイオン又は電子を伝導してもよい。
また、上記構成において、前記隔壁は、イオン交換膜又は電子交換膜であってもよい。
また、上記構成において、前記隔壁は、多孔質膜であってもよい。
これにより、多孔質の隔壁が第1の空間と第2の空間との間で液体の移動を抑制することで、安定した放電及びプラズマ生成が可能になる。
また、上記構成において、前記隔壁として機能する分離層は、前記第1の空間と前記第2の空間との間の水であって、前記第1の空間内及び前記第2の空間内より高い水圧が維持された水であってもよい。
これにより、水圧の変化によって所定の期間経過後にはアルカリ性から酸性に変化する水を生成することができる。
また、上記構成において、前記反応槽は、さらに、前記第1の空間へ前記液体を供給するための第1の供給口と、前記第2の空間へ前記液体を供給するための第2の供給口と、前記第1の空間から前記液体を排出するための第1の排出口と、前記第2の空間から前記液体を排出するための第2の排出口と、を備えてもよい。
これにより、第1の供給口及び第1の排出口により第1の空間に液体の流れを形成し、第2の供給口及び第2の排出口により第2の空間に液体の流れを形成することができる。つまり、水を流した状態で水の電気分解及びプラズマの生成を行うことができる。言い換えると、水を流しながらアルカリ水と酸性水とを生成することができるので、例えば、アルカリ水と酸性水とを連続して生成し続けることができ、一度の多くのアルカリ水と酸性水とを生成することができる。
また、上記構成において、前記プラズマ生成器は、前記第1の空間において前記液体が前記第1の供給口から第1の排出口へ流れ、前記第2の空間において前記液体が前記第2の供給口から第2の排出口へ流れている状態でプラズマを発生させてもよい。
これにより、アルカリ水と酸性水とを同時に生成することができる。つまり、第1の空間及び第2の空間のそれぞれの中で水の流れがあったとしても、アルカリ水と酸性水とを同時に生成することができる。したがって、水を流しながらアルカリ水と酸性水とを生成することができるので、例えば、一度に多くのアルカリ水と酸性水とを生成することができる。
また、上記構成において、前記プラズマ生成器は、前記第1の空間及び前記第2の空間に前記液体を滞留させた状態でプラズマを発生させてもよい。
これにより、第1の空間と第2の空間との間で液体の移動が抑制され、安定した放電及びプラズマ生成が可能になる。よって、アルカリ水と酸性水とを同時に生成することができる。
また、上記構成において、前記プラズマ生成器は、前記反応槽内の前記液体中に気体を供給する気体供給器をさらに備え、前記気体供給器は、前記第1の電極又は前記第2の電極が前記気体で覆われるように前記気体を供給してもよい。
これにより、放電及びプラズマ生成を効率良く行うことができる。よって、アルカリ水と酸性水とを同時に効率良く生成することができる。
以下では、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
[1.液体処理装置]
まず、実施の形態1に係る液体処理装置の構成について、図1を用いて説明する。図1は、本実施の形態に係る液体処理装置10の構成を示す図である。
図1に示すように、液体処理装置10は、反応槽20と、隔壁30と、プラズマ生成器100とを備える。本実施の形態に係る液体処理装置10は、動水(流水)中でプラズマを生成することにより、アルカリ水及び酸性水を同時に生成する。
[1−1.反応槽]
反応槽20は、水40が入れられる空間21を形成する容器である。つまり、空間21は、反応槽20の内面によって囲まれた空間である。
反応槽20は、具体的には、H型セルである。H型セルは、一対の円筒状の管と、これらを繋ぐ接続管とから構成される。一対の管の内径は、例えば5mmである。接続管は、例えば円筒状であり内径は10mmである。接続管には、隔壁30が配置されている。反応槽20の容積は40ccであり、接続管の長さは48mmである。なお、一対の管の形状及び接続管の形状は円筒状に限定されない。
空間21は、隔壁30によって第1の空間22と第2の空間23とに分けられる。第1の空間22は、例えば、反応槽20の内面と、隔壁30の一方の面とによって形成される空間であり、図1における紙面左側の反応槽20内の空間である。第2の空間23は、例えば、反応槽20の内面と隔壁30の他方の面とによって形成される空間であり、図1における紙面右側の反応槽20内の空間である。
具体的には、H型セルの一方の管と接続管の一部が第1の空間22を形成し、他方の管と接続管の一部が第2の空間23を形成する。一方の管には第1の水41が供給され、他方の管には第2の水42が供給される。第1の水41及び第2の水42は両方とも、反応槽20内に留まることなく排出される。
反応槽20は、水を溜めるための容器であってもよく、水を流すことができる細い管であってもよい。反応槽20の大きさ及び形状は、特に限定されない。例えば、反応槽20は、タンク又は管の一部である。なお、径の細い管になるほど液体の流れが速くなる。そのため、第1の空間22と第2の空間23との間を仕切る隔壁の機能が不十分であると、両空間の水は混合しやすくなる。
反応槽20は、酸及びアルカリに耐性を有する材料から構成される。例えば、反応槽20は、ポリ塩化ビニルなどの樹脂材料、ステンレスなどの金属材料、又は、セラミックなどから構成される。
反応槽20は、第1の供給口24と、第2の供給口25と、第1の排出口26と、第2の排出口27とを備える。第1の供給口24は、第1の空間22へ給水するために設けられ、第2の供給口25は、第2の空間23へ給水するために設けられる。第1の排出口26は、第1の空間22から排水するために設けられ、第2の排出口27は、第2の空間23から排水するために設けられている。
つまり、反応槽20には、水40が、第1の供給口24及び第2の供給口25から供給されて、第1の排出口26及び第2の排出口27から排出される。なお、本実施の形態では、水40は、例えば、水道水である。水40は、純水又は蒸留水に限らず、所定の物質が溶融した水溶液でもよい。
水40は、第1の水41と、第2の水42とを含む。第1の水41は、第1の供給口24から第1の排出口26に向かって第1の空間22を流れる。第2の水42は、第2の供給口25から第2の排出口27に向かって第2の空間23を流れる。例えば、第1の水41及び第2の水42の流速は、0.1L/分以上、1L/分以下である。
具体的には、第1の供給口24から、第1の水41が第1の空間22に供給される。また、第2の供給口25から、第2の水42が第2の空間23に供給される。このとき、第1の空間22に入れられた第1の水41と、第2の空間23に入れられた第2の水42とは、隔壁30が設けられているため、ほとんど混合しない。
プラズマ生成器100によって、第1の水41からアルカリ水43が生成される。プラズマ生成器100によって、第2の水42から酸性水44が生成される。第1の空間22と第2の空間23との間で水はほとんど混合しない。そのため、第1の水41から生成されたアルカリ水43は、第1の排出口26から排出される。また、第2の水42から生成された酸性水44は、第2の排出口27から排出される。
[1−2.隔壁]
隔壁30は、水40が入れられる空間21を、第1の空間22と第2の空間23とに仕切る仕切り部材である。隔壁30は、第1の空間22と第2の空間23との間で、イオン又は電子の伝導を可能とし、かつ、水分子の移動を抑制する。
隔壁30は、例えば、陽イオン若しくは陰イオンの通過を可能とするイオン交換膜、又は、電子の通過を可能とする電子交換膜である。具体的には、隔壁30は、ナフィオン(デュポン社製、「ナフィオン」は登録商標である。)、セレミオン(旭硝子社製、「セレミオン」は登録商標である。)、又は、導電性プラスチックであってもよい。
隔壁30は、反応槽20の接続管の内面に接続されている。具体的には、隔壁30は、接続管との間に隙間が形成されないように配置されている。これにより、反応槽20内で水分子の移動を実質的に遮断することができる。
「実質的に遮断」とは、水分子の移動を完全に遮断することだけでなく、水分子の僅かな移動が可能であることも意味する。つまり、隔壁30は、耐水圧が十分に高い膜である。なお、水が流れる空間が狭くなるほど、第1の空間22と第2の空間23における流速の差に起因する圧力差が大きくなる。つまり、両空間の水が混合しやすくなる。この場合でも、例えば、隔壁30としてセレミオンを使用することにより、水分子を実質的に遮断することができる。
[1−3.プラズマ生成装置]
プラズマ生成器100は、第1の電極110と、第2の電極120と、電源130と、気体供給器140とを備える。図1に示すように、第1の電極110は、少なくとも一部が第1の空間22に配置されている。第2の電極120は、少なくとも一部が第2の空間23に配置されている。
プラズマ生成器100は、水40の中でプラズマ142を生成する。具体的には、プラズマ生成器100は、反応槽20に入れられた水40の中で、第2の電極120の近傍にプラズマ142を生成する。より具体的には、プラズマ生成器100は、第2の空間23に入れられた第2の水42内に気泡141を発生させ、気泡141内でプラズマ142を生成する。
第1の電極110は、プラズマ生成器100が備える一対の電極の一方である。具体的には、第1の電極110は、電源130によって負電圧が印加される負極である。第1の電極110は、例えば、棒状の電極である。具体的には、第1の電極110は円柱体であり、例えば、その直径は2mmである。
第1の電極110は、少なくとも一部が第1の空間22に配置され、第2の空間23には配置されていない。図1に示すように、隔壁30を間に挟んで第2の電極120と対向するように配置されている。
第1の電極110としては、導電性の金属材料を利用することができる。第1の電極110は、例えば、タングステン、銅、アルミニウム又は鉄から構成される。なお、第1の電極110は、アルカリに耐性を有する材料から構成されることが望ましい。
第2の電極120は、プラズマ生成器100が備える一対の電極の他方である。具体的には、第2の電極120は、電源130によって正電圧が印加される正極である。第2の電極120は、少なくとも一部が第2の空間23に配置され、第1の空間22には配置されていない。
例えば、第2の電極120は、接続管の側方を避けるように設置される。具体的には、流水が接続管の側方を通過した後に、第2の電極120の近傍を通過するように、第2の電極120は配置される。
これは、第2の電極120の近傍に放出される気泡が接続管内に入り込むことを避けるためである。接続管内に気泡が入り込んだ場合、抵抗が大きくなり、プラズマの生成が困難になる。プラズマの生成が困難になれば、酸性水及びアルカリ水を生成することが困難になる。極端な例では、接続管が気体で完全に満たされた場合、プラズマは生成しなくなる。
第1の電極110についても同様に、接続管の側方を避けるように配置される。具体的には、流水が接続管の側方を通過した後に、第1の電極110の近傍を通過するように、第1の電極110は配置される。第1の電極110からは、水素ガスを主成分とするマイクロバブルが発生する。そのため、第1の電極110を接続管の側方に配置すると、第2の電極120の場合と同様の問題が発生する恐れがある。
なお、第1の電極110及び第2の電極120を接続管の近傍に配置する場合は、H型セル全体を傾斜させることで、上記問題を回避することができる。あるいは、H型セル全体を振り子のように運動させることでも、上記問題を回避することができる。したがって、第1の電極110及び第2の電極120のそれぞれが配置される位置は、上記の例には限られない。つまり、第1の電極110は、第1の空間22内であればどこに配置されてもよい。また、第2の電極120は、第2の空間23内であればどこに配置されてもよい。
第2の電極120の詳細な構成については、図2〜図3Bを用いて後で説明する。
電源130は、第1の電極110と第2の電極120との間に、所定の交流電圧又はパルス電圧を印加する。例えば、印加する電圧は、2kV〜50kV/cm、1Hz〜100kHzの高電圧パルスである。電圧波形は、例えば、矩形波状、正弦半波形及び正弦波状のいずれでもよい。また、第1の電極110と第2の電極120との間に流れる電流値は、例えば、1mA〜3Aである。具体的には、電源130は、ピーク電圧が4kV、パルス幅が1μs、周波数が30kHzのパルス電圧を印加する。例えば、電源130による入力電力は、30Wである。
電源130には、ダイオードなどの整流素子131が接続されている。これにより、電源130は、第2の電極120に正電圧を、第1の電極110に負電圧を印加する。すなわち、第2の電極120が正極であり、第1の電極110が負極である。
本開示において、「電源が第1の電極と第2の電極との間に交流電圧又はパルス電圧を印加する」とは、電源の出力電圧が整流素子によって整流されて、正又は負のいずれか一方向のみの電圧が第1の電極又は第2の電極に印加される状態も含む。言い換えると、本開示において、「交流電圧又はパルス電圧」とは、時間によって、大きさ及び方向(正又は負)の少なくとも一方が周期的に変化する電圧を総称するものである。
このように、第1の電極110と第2の電極120との間には、交流電圧又はパルス電圧が印加される。
これに対し、第1の電極110と第2の電極120との間に直流電圧(時間によって大きさ及び方向のいずれも変化しない電圧)が印加された場合には、一般的に、水の抵抗値が水中の気体相に対して圧倒的に小さくなる。したがって、気体相内で放電を行う場合に、少しでも電極対の間に水の経路が存在してしまうと、当該経路で漏れ電流が発生する。この影響により、電極対の間の気体相内の電流密度が小さくなってしまい安定した放電を行うことができないという問題が生じる。
一方、本開示のように、交流電圧又はパルス電圧を印加した場合には、水中の気体相内を電流が流れたのと等価な状態を実現できる。これは、コンデンサの充放電の原理で説明できる。したがって、直流電源を使用するよりも、交流電源又はパルス電源を使用する方が、漏れ電流の影響を小さくでき安定した放電を実現できる。
また、隔壁30として、絶縁体であるイオン交換膜、又は電子交換膜を使用する場合は、直流電圧を印加しても第1の空間22と第2の空間23との間を電流が流れない。一方、本開示のように交流電圧又はパルス電圧を印加した場合には、上述と同様の理由でイオン交換膜、又は電子交換膜の内部を電流が流れたのと等価な状態を実現できる。
気体供給器140は、第2の電極120を気体で覆うように、気体を供給する。例えば、気体供給器140は、第2の電極120の近傍に気体を供給することで、第2の空間23内に気泡141を発生させる。気体供給器140は、例えば、ポンプである。気体供給器140は、例えば、周囲の空気を取り込んで、取り込んだ空気を供給する。あるいは、気体供給器140は、アルゴン、ヘリウム又は酸素ガスなどを供給してもよい。
[2.電極構成]
続いて、本実施の形態に係るプラズマ生成器100が備える電極の詳細な構成について、図2〜図3Bを用いて説明する。
図2は、本実施の形態に係る液体処理装置10の、第2の電極120及び絶縁体122の構成を示す図である。図3A及び図3Bはそれぞれ、本実施の形態に係る液体処理装置10の、第2の電極120及び絶縁体122を示す斜視図及び断面図である。
本実施の形態に係るプラズマ生成器100は、図2に示すように、第2の電極120と、絶縁体122と、保持ブロック125とを備える。第2の電極120は、筒状の絶縁体122内に空隙123を形成するように配置されている。第2の電極120及び絶縁体122は、保持ブロック125に保持されている。
[2−1.第2の電極]
第2の電極120は、中空部121を有する筒状の電極である。具体的には、図3Aに示すように、第2の電極120は、円筒体である。第2の電極120の外径(図3Bのr1)は、例えば2mm以下であり、一例として2mmである。
第2の電極120は、絶縁体122に囲まれている。このとき、第2の電極120と絶縁体122との間には、空隙123が形成される。また、第2の電極120は、保持ブロック125に保持される。
第2の電極120は、一方の端部が、第2の空間23内の第2の水42に接触するように配置され、他方の端部が気体供給器140に接続されている。気体供給器140から供給される気体は、第2の電極120の中空部121を通って、第2の電極120の先端から放出される。放出された気体は、空隙123に入り込み、第2の電極120を覆う。さらに、供給された気体は、絶縁体122の開口部124を通って、第2の水42中に気泡141として放出される。なお、気体が供給されない場合には、第2の電極120の先端は第2の水42に覆われる。これに対し、気体が供給された場合には、第2の電極120の先端は気泡141に覆われて第2の水42には接触しない。
第2の電極120は、反応電極として用いられ、周囲にプラズマ142が生成される。具体的には、生成したプラズマ142は、気泡141内に存在する。
第2の電極120としては、導電性の金属材料を利用することができ、例えば、耐プラズマ性の金属材料を利用することができる。具体的には、第2の電極120は、タングステンから構成される。なお、第2の電極120としては、他の耐プラズマ性の金属材料を用いてもよい。あるいは、第2の電極120としては、耐久性は悪化するものの、銅、アルミニウム、鉄及びこれらの合金を用いてもよい。ただし、第2の電極120は、酸に耐性を有する材料であることが望ましい。
さらに、第2の電極120の表面の一部に、導電性物質を混合した酸化イットリウムの溶射を行なってもよい。導電性物質としては、例えばイットリウム金属を用いることができ、導電性物質を混合することによって、1Ω・cm〜30Ω・cmの導電性を付与することができる。この酸化イットリウムの溶射により、電極寿命が長くなるという効果が得られる。
中空部121は、第2の電極120を軸方向に貫通する貫通孔である。中空部121の直径、すなわち、第2の電極120の内径(図3Bのr2)は、例えば、0.9mm以下であり、一例として、0.3mmである。なお、第2の電極120には、側面を貫通する1以上の貫通孔が別途設けられていてもよい。
なお、第2の電極120は、角筒体でもよい。また、中空部121の断面(管の軸方向に垂直な断面)は、円形に限らず、楕円形又は矩形などでもよい。
[2−2.絶縁体]
絶縁体122は、第2の電極120を囲むように配置され、第2の電極120との間に空隙123を形成する。空隙123は、中空部121と連通している。さらに、絶縁体122は、第2の空間23と空隙123とを連通する開口部124を有する。このように、絶縁体122は、第2の水42から電気的に第2の電極120を絶縁する。
なお、実際には、開口部124を介して絶縁体122内に、第2の水42が流入するので、第2の電極120は第2の水42と接触している。しかし、気体供給器140から気体が供給された場合には、開口部124を気体が塞ぐことにより、第2の電極120は、第2の水42と電気的に絶縁される。
絶縁体122は、例えば、図3Aに示すように、円筒体である。例えば、第2の電極120の軸方向と絶縁体122の軸方向とが平行になるように、絶縁体122の筒内に第2の電極120が配置されている。具体的には、第2の電極120の軸と絶縁体122の軸とが一致するように、絶縁体122と第2の電極120とが配置されている。
絶縁体122の内径、すなわち、開口部124の直径(図3BのR)は、例えば、3mm以下であり、一例として、2mmである。絶縁体122の外径は、特に限定されないが、小型化を実現するためには、例えば、1mm以下である。
絶縁体122は、例えば、アルミナセラミックから構成される。あるいは、絶縁体122は、マグネシア、石英又は酸化イットリウムなどから構成されてもよい。
空隙123は、いわゆる微小ギャップ(マイクロギャップ)である。空隙123のギャップ(図3Bのd1)は、例えば、プラズマの電子温度及び換算電界と、気体の媒質密度とに基づいて決定される。例えば、ギャップd1は、0.5mm以下である。
第2の電極120の端面は、絶縁体122の端面よりも、所定の距離(図3Bの距離d2)だけ内側に後退した位置に配置される。距離d2は、例えば、7mm未満であり、望ましくは、3mm以上5mm以下である。
第2の電極120の端面が、絶縁体122の端面より内側に位置することにより、中空部121の先端から放出される気体は、開口部124から第2の空間23に放出されるだけでなく、空隙123にも入りやすくなる。空隙123に気体が充填されることにより、電圧が印加された場合に、空隙123内での放電を起こすことができる。
なお、絶縁体122は、円筒体に限らず、角筒体でもよい。また、絶縁体122は、保持ブロック125に保持されているが、反応槽20の壁面に固定されていてもよく、着脱可能に固定されてもよい。
また、絶縁体122と第2の電極120との間に空隙123が無くてもよい。言い換えると、絶縁体122と第2の電極120とは密着して配置されてもよい。
[2−3.保持ブロック]
保持ブロック125は、第2の電極120及び絶縁体122を保持するための部材である。保持ブロック125は、例えば、反応槽20に固定されている。なお、保持ブロック125は、反応槽20と一体に形成されてもよく、あるいは、別体で設けられてもよい。
[3.動作]
続いて、本実施の形態に係る液体処理装置10の動作について、図4を用いて説明する。図4は、本実施の形態に係る液体処理装置10の動作を示すフローチャートである。
まず、隔壁30、第1の電極110及び第2の電極120を、反応槽20の空間21内に配置する(S11)。具体的には、空間21を第1の空間22と第2の空間23とに仕切る隔壁30を、空間21内に配置する。隔壁30を配置することで、第1の空間22と第2の空間23との間で、イオン又は電子の伝導を可能とし、かつ、水分子の移動を実質的に遮断する。さらに、第1の空間22に第1の電極110を配置し、第2の空間23に第2の電極120を配置する。
次に、空間21に動水を供給する(S12)。言い換えると、空間21に水40を流す。具体的には、第1の空間22には、第1の供給口24から第1の水41を供給し、第1の排出口26から排出する。つまり、第1の空間22内には、第1の供給口24から第1の排出口26に向かう方向に第1の水41の流れが形成される。同様に、第2の空間23には、第2の供給口25から第2の水42を供給し、第2の排出口27から排出する。つまり、第2の空間23内には、第2の供給口25から第2の排出口27に向かう方向に第2の水42の流れが形成される。
なお、水40を流す工程(S12)を行なった後、隔壁30など配置する工程(S11)を行なってもよい。
また、隔壁30、第1の電極110及び第2の電極120が配置された反応槽20が準備された状態で、動水の供給(S12)から開始してもよい。言い換えると、隔壁30、第1の電極110及び第2の電極120を空間21内に配置する工程(S11)を行う主体と、空間21への動水の供給(S12)を行う主体とは異なっていてもよい。
次に、プラズマ生成器100が水40中でプラズマ142を生成する(S13)。具体的には、第1の電極110と第2の電極120との間に交流電圧又はパルス電圧を印加して、水40の中にプラズマ142を生成することで、第1の水41からアルカリ水43を生成し、第2の水42から酸性水44を生成する。
より具体的には、まず、気体供給器140が、第2の電極120が気体で覆われるように、気体を第2の空間23に供給する。次に、電源130が、第1の電極110と第2の電極120との間にパルス電圧を印加する。これにより、第2の電極120の近傍に発生した気泡141中で放電が起こり、プラズマ142が生成される。
第1の電極110と第2の電極120との間には、第1の水41、隔壁30、第2の水42、及び気泡141中のプラズマ142を介した電流経路が形成される。これにより、第1の水41及び第2の水42をそれぞれ電気分解することができ、第1の水41からはアルカリ水43が生成され、第2の水42からは酸性水44が生成される。
第1の空間22内は第1の供給口24から第1の排出口26に向かう方向に水が流れる。したがって、生成されたアルカリ水43は、第1の排出口26から排出される。同様に、第2の空間23内は第2の供給口25から第2の排出口27に向かう方向に水が流れる。したがって、生成された酸性水44は、第2の排出口27から排出される。
以上のように、本実施の形態では、空間21が第1の空間22と第2の空間23とに仕切られる。また、第1の空間22には第1の電極110が配置され、第2の空間23には第2の電極120が配置される。そして、電極間に電圧を印加することにより、プラズマ142を生成される。これにより、第1の空間22内の第1の水41からアルカリ水43が生成され、第2の空間23内の第2の水42から酸性水44が生成される。
[4.実験結果]
続いて、本実施の形態に係る液体処理装置10を用いて水を処理した結果について、図5〜図6Bを用いて説明する。
図5は、本実施の形態に係る液体処理装置10において、第1の電極110及び第2の電極120のそれぞれの近傍の水のpHの時間変化を示す図である。横軸は、電圧を印加し始めてからの経過時間を示している。図5には、0.6L/分の流速で水を流したときの結果を示している。
図5に示すように、電圧の印加を開始すると、すなわち、放電によりプラズマの生成が開始されると、正極である第2の電極120近傍のpHは減少している。つまり、第2の水42から酸性水44が生成されていることが分かる。具体的には、第2の電極120の近傍では、以下の(式1)に示すような反応が起きている。
(式1) 2HO → O+4H+4e
このように、第2の水42が分解されて、酸素と水素イオンと電子とが生成される。生成された水素イオンによって、第2の電極120の近傍には酸性水44が生成される。図5に示す結果では、pHが約2の酸性水44が生成されている。
なお、第2の電極120の近傍では、プラズマ142が生成される。プラズマ142は、例えば、過酸化水素、ヒドロキシラジカルなどの活性種を発生する。
一方で、負極である第1の電極110近傍のpHは増加している。つまり、第1の水41からアルカリ水43が生成されていることが分かる。具体的には、第1の電極110の近傍では、以下の(式2)に示すような反応が起きている。
(式2) 4HO+4e → 2H+4OH
このように、第1の水41が分解されて、水素と水酸化物イオンとが生成される。生成された水酸化物イオンによって、第1の電極110の近傍にはアルカリ水43が生成される。図5に示す結果では、pHが約10のアルカリ水43が生成されている。
以上のように、本実施の形態に係る液体処理装置10は、アルカリ水43と酸性水44とを同時に生成することができる。生成したアルカリ水43及び酸性水44は、例えば、汚れ除去などに利用することができる。
なお、本実施の形態に係る液体処理装置10では、第2の電極120(正極)側でも水素ガスが発生する。すなわち、第2の空間23内でも上述した(式2)の反応が一部起きていると考えられる。これは、気泡141による気液界面が負極として機能したためと考えられる。また、第2の電極120側で発生した水素ガスは、マイクロバブルとして生成され放出される。したがって、第2の電極120近傍の空間ではアルカリ水を生成すると同時に、水素ガス及び水素ガスを含むマイクロバブルを生成することができる。
図6A及び図6Bはそれぞれ、本実施の形態に係る液体処理装置10の正極(第2の電極120)及び負極(第1の電極110)に発生する物質を示す図である。横軸は、原子質量単位であり、縦軸は、質量分析法によって得られる信号強度の相対値を示している。図6A及び図6Bに示すように、本実施の形態では、正極及び負極の両方に水素ガス(H)が発生していることが分かる。
[5.汚れ除去方法]
図7及び図8を用いて、本実施の形態に係る液体処理装置10を用いた汚れ除去方法を説明する。図7は、本実施の形態に係る液体処理装置10を用いた汚れ除去の様子を、模式的に示す図である。図8は、本実施の形態に係る液体処理装置10を用いた汚れ除去方法を示すフローチャートである。
上述したように、液体処理装置10では、第1の排出口26からアルカリ水43が排出され、第2の排出口27から酸性水44が排出される。アルカリ水43と酸性水44とを処理対象物に接触させることで、処理対象物の汚れを除去することができる。
本実施の形態では、例えば、図7に示すように、第1の排出口26と第1の供給口24とは配管などで接続されている。そして、第1の排出口26、配管、第1の供給口24、及び第1の空間22が、第1の水41及びアルカリ水43の循環経路を構成する。同様に、第2の排出口27と第2の供給口25とは配管などで接続されている。そして、第2の排出口27、配管、第2の供給口25、及び第2の空間23が、第2の水42及び酸性水44の循環経路を構成する。水を循環させるためには、例えば、ポンプなどの送液装置を循環経路内に配置すればよい。
さらに、第1の排出口26及び第2の排出口27にはそれぞれ、循環経路から分岐する支管28及び29が設けられ、支管28及び29にはそれぞれ、開閉自在のバルブ50及び51が設けられている。バルブ50又は51を開閉することで、アルカリ水43又は酸性水44を取り出して利用することができる。
つまり、本実施の形態では、水を循環させながらアルカリ水43及び酸性水44を生成する。アルカリ水43又は酸性水44を使用することで、循環経路内の水量が減った場合には、適宜、水を追加することができる。したがって、例えば、半永久的にアルカリ水43及び酸性水44を連続して生成して利用することができる。
次に、汚れ除去方法について説明する。まず、汚物61を含む処理対象物60をアルカリ水43に接触させる(S21)。例えば、図7の(a)に示すように、バルブ50を開けることで、第1の排出口26の支管28からアルカリ水43を放出させる。放出されたアルカリ水43に処理対象物60を接触させる。
なお、処理対象物60は、気体、液体、固体のいずれでもよい。例えば、処理対象物は、食器、調理器具などのキッチン用品である。汚物61は、難溶性の物質であり、例えば、油脂、茶渋、ぬめりなどである。処理対象物60をアルカリ水43に接触させることで、アルカリ水43によって汚物61が処理対象物60から剥離される。
次に、処理対象物60を酸性水44に接触させる(S22)。例えば、図7の(b)に示すように、バルブ51を開けることで、第2の排出口27の支管29から酸性水44を放出させる。放出された酸性水44に処理対象物60を接触させる。
これにより、処理対象物60から剥離した汚物61が酸性水44によって分解されて、除去される。
なお、汚物61が水溶性の物質の場合は、アルカリ水43に接触させなくてもよく、酸性水44のみに接触させるだけで、汚物61を分解し、除去することができる。また、酸性水44には、プラズマ142によって発生した過酸化水素、ヒドロキシラジカルなどの活性種を含んでいる。このため、汚物61の分解、除菌などを促進し、汚れ除去を短期間で行うことができる。
[6.効果など]
以上のように、本実施の形態に係る液体処理装置10は、水40が入れられる空間21を第1の空間22と第2の空間23とに仕切る隔壁30であって、第1の空間22と第2の空間23との間で、イオン又は電子の伝導を可能とし、かつ、水分子の移動を実質的に遮断する隔壁30と、水40の中でプラズマを生成するプラズマ生成器100とを備え、プラズマ生成器100は、第1の空間22に少なくとも一部が配置される第1の電極110と、第2の空間23に少なくとも一部が配置される第2の電極120と、第1の電極110と第2の電極120との間に、所定の交流電圧又はパルス電圧を印加する電源130とを有する。
これにより、第1の空間22と第2の空間23との間でイオン又は電子の移動が可能であるので、第1の空間22と第2の空間23との間で隔壁30を介した電流経路を形成することができる。したがって、水の電気分解及びプラズマの生成を行うことができる。
このとき、水分子の移動を実質的に遮断するので、電気分解により生成したアルカリ水43及び酸性水44が混合するのを抑制することができる。よって、本実施の形態に係る液体処理装置10によれば、アルカリ水43と酸性水44とを同時に生成することができる。
本実施の形態では、動水中で電気分解及びプラズマの生成を行うことができる。したがって、連続してアルカリ水43及び酸性水44を生成することができ、一度に多量のアルカリ水43及び酸性水44を生成することができる。
なお、本実施の形態に係る液体処理装置10では、図1に示すように、電源130と第2の電極120との間に整流素子131を設けた。しかし、図9に示す液体処理装置11のように、電源130と第1の電極110との間に整流素子132を設けてもよい。これにより、電源130は、第2の電極120に正電圧を、第1の電極110に負電圧を印加することができる。
本実施の形態において、反応槽は、反応槽20によって例示される。液体は、水40によって例示される。プラズマ生成器は、第1の電極110、第2の電極120、電源130を含むプラズマ生成器100によって例示される。第1の空間と第2の空間との間でイオン又は電子を伝導する内壁は、隔壁30によって例示される。
(変形例)
続いて、実施の形態1に係る液体処理装置10の変形例について説明する。
本変形例に係る液体処理装置は、プラズマ生成器の電極の構成が異なっている。具体的には、本変形例に係るプラズマ生成器は、第2の電極120の代わりに、図10に示す第2の電極220を備える。なお、図10は、本変形例に係る液体処理装置の第2の電極220及び絶縁体122の構成を示す図である。
以下では、実施の形態1と異なる点を中心に説明する。
第2の電極220は、金属電極部220aと、金属ネジ部220bとを備える。
金属電極部220aは、例えば、円柱状の金属電極である。例えば、金属電極部220aの直径は、2mm以下であり、一例として、0.95mmである。
金属電極部220aは、絶縁体122に囲まれている。金属電極部220aと絶縁体122との間には、空隙123が形成される。
金属電極部220aは、一方の端部(先端)が第2の水42に接触するように配置され、他方の端部(根元)が金属ネジ部220bに圧入されている。なお、金属電極部220aは、絶縁体122の開口部124より外方に突出しないように設けられている。
金属電極部220aは、反応電極として用いられ、周囲にプラズマ142が生成される。金属電極部220aとしては、例えば、第2の電極120と同じ材料を利用することができる。
金属ネジ部220bは、例えば、棒状部材である。具体的には、金属ネジ部220bは、円柱体である。例えば、金属ネジ部220bは、その直径が金属電極部220aより大きく、一例として、3mmである。
金属ネジ部220bは、例えば、鉄から構成される。なお、金属ネジ部220bとしては、一般的なネジに用いられる材料である、銅、亜鉛、アルミニウム、スズ及び真鍮などを用いてもよい。なお、金属ネジ部220bと金属電極部220aとは、同一の材料、及び、同一のサイズで構成されてもよい。すなわち、第2の電極220は、1本の柱体でもよい。
金属ネジ部220bには、貫通孔221が形成されて、気体供給器140に接続されている。貫通孔221は、金属ネジ部220bを軸方向に貫通する。
貫通孔221は、空隙123と連通している。気体供給器140から供給される気体は、貫通孔221を通って空隙123に供給される。そして、空隙123に供給された気体は、開口部124を介して第2の空間23に放出される。貫通孔221は、例えば、直径が0.3mmである。
金属ネジ部220bの外周には、ネジ部が設けられている。例えば、ネジ部は、雄ネジであり、保持ブロック125に設けられたネジ部に螺合する。
なお、本変形例において、絶縁体122及び保持ブロック125は、実施の形態1と略同じであるが、その形状が異なっていてもよい。例えば、本変形例に係る絶縁体122は、金属電極部220aの径に応じた形状でもよい。例えば、金属電極部220aの径が実施の形態1に係る第2の電極120の径より小さい場合に、空隙123のギャップが実施の形態1と同じになるように、絶縁体122の形状を変更してもよい。
(実施の形態2)
続いて、実施の形態2について説明する。
[1.液体処理装置]
図11を用いて、本実施の形態に係る液体処理装置の構成を説明する。図11は、本実施の形態に係る液体処理装置300の構成を示す図である。
図11に示すように、液体処理装置300は、実施の形態1に係る図1に示す液体処理装置10と比較して、隔壁30の代わりに隔壁330を備える点が異なっている。以下では、異なる点を中心に説明する。
[1−1.静水]
本実施の形態に係る液体処理装置300では、反応槽20内に水340が入れられる。実施の形態1では、水を流した状態でプラズマを生成したのに対して、本実施の形態では、水を流さない状態でプラズマを生成する。すなわち、静水中でプラズマを生成する。
水340は、第1の供給口24又は第2の供給口25から供給されて、反応槽20内に溜められる。水340は、反応槽20内においてほとんど移動しない。具体的には、第1の排出口26及び第2の排出口27が閉じられた状態で、第1の供給口24又は第2の供給口25から水が反応槽20に供給される。その後、所定期間経過することにより、反応槽20内で水340の対流がおさまる。
水340は、例えば、水道水である。つまり、水340は、純水又は蒸留水に限らず、所定の物質が溶融した水溶液でもよい。
具体的には、水340は、第1の水341と、第2の水342とを含む。第1の水341は、第1の供給口24から供給されて第1の空間22に溜められる。第2の水342は、第2の供給口25から供給されて第2の空間23に溜められる。
[1−2.隔壁]
隔壁330は、水340が入れられる空間21を、第1の空間22と第2の空間23とに仕切る。隔壁330は、第1の空間22と第2の空間23との間で、イオン又は電子の伝導を可能とし、かつ、水分子の移動を抑制する。具体的には、隔壁330は、水分子の移動は可能であるものの、水分子の自由な移動を制限している。
例えば、隔壁330は、多孔質の隔壁である。具体的には、隔壁330は、多孔質セラミック、又は、多孔質ガラスから構成される。
隔壁330は、反応槽20の内面に接続されている。例えば、隔壁330は、反応槽20との間に隙間が形成されないように配置されている。これにより、水分子は、反応槽20内で隔壁330を通過することなく、第1の空間22と第2の空間23との間で移動することができない。
[2.動作]
続いて、本実施の形態に係る液体処理装置300の動作について、図12を用いて説明する。図12は、本実施の形態に係る液体処理装置300の動作を示すフローチャートである。
まず、隔壁330、第1の電極110及び第2の電極120を、反応槽20内の空間21に配置する(S31)。具体的には、空間21を第1の空間22と第2の空間23とに仕切るように、隔壁330を空間21内に配置する。隔壁330を配置することで、第1の空間22と第2の空間23との間で、イオン又は電子の伝導を可能とし、かつ、水分子の移動を抑制する。さらに、第1の空間22に第1の電極110を配置し、第2の空間23に第2の電極120を配置する。
次に、空間21に水340を溜める(S32)。具体的には、第1の供給口24及び第2の供給口25から水を供給し、しばらく待機することで、第1の空間22には第1の水341を溜め、第2の空間23には第2の水342を溜める。
なお、隔壁330を介して水分子の移動は可能であるため、第1の供給口24及び第2の供給口25のいずれか一方のみから給水してもよい。つまり、反応槽20は、第1の供給口24及び第2の供給口25のいずれか一方のみを有してもよい。
次に、プラズマ生成器100が水340中でプラズマ142を生成する(S33)。具体的には、第1の電極110と第2の電極120との間に交流電圧又はパルス電圧を印加して水340の中にプラズマ142を生成させる。これにより、第1の水341からアルカリ水43を生成し、第2の水342から酸性水44を生成する。
より具体的には、まず、気体供給器140が、第2の電極120が気体で覆われるように、気体を第2の空間23に供給する。次に、電源130が、第1の電極110と第2の電極120との間にパルス電圧を印加する。これにより、第2の電極120の近傍に発生した気泡141中で放電が生じ、プラズマ142が生成される。
第1の電極110と第2の電極120との間には、第1の水341、隔壁330、第2の水342、気泡141中のプラズマ142を介して電流経路が形成される。これにより、第1の水341及び第2の水342をそれぞれ電気分解することができ、第1の水341からはアルカリ水43が生成され、第2の水342からは酸性水44が生成される。
生成したアルカリ水43及び酸性水44は、例えば、プラズマ142の生成の終了後、すなわち、電源130による電圧印加の停止後に、第1の排出口26及び第2の排出口27のそれぞれから排出される。
[3.実験結果]
続いて、本実施の形態に係る液体処理装置300を用いて、水を処理した結果について、図13を用いて説明する。図13は、本実施の形態に係る液体処理装置300の第1の電極110及び第2の電極120のそれぞれの近傍の水のpHの時間変化を示す図である。横軸は、電圧を印加し始めてからの経過時間を示している。なお、ここでは、実施の形態1と同様に、H型セルを利用した。但し、反応槽20内の水は流動させず、ほぼ静止した状態とした。
第1の電極110の近傍では、図13に示すように、pHが約10のアルカリ水43が生成される。第2の電極120の近傍では、図13に示すように、pHが約2の酸性水44が生成される。
以上のように、本実施の形態に係る液体処理装置300は、アルカリ水43と酸性水44とを同時に生成することができる。つまり、空間21内の水が静止した状態にすることにより、すなわち、水の流れがなくなるように制御することで、アルカリ水43と酸性水44とを同時に生成することができる。生成したアルカリ水43及び酸性水44は、例えば、汚れ除去などに利用することができる。
[4.汚れ除去方法]
続いて、本実施の形態に係る液体処理装置300を用いた汚れ除去方法について、図14及び図8を用いて説明する。図14は、本実施の形態に係る液体処理装置300を用いた汚れ除去の様子を模式的に示す図である。
本実施の形態に係る汚れ除去方法は、実施の形態1と略同じである。すなわち、図8に示すように、汚物61を含む処理対象物60をアルカリ水43に接触させた後に、酸性水44に接触させる。このとき、実施の形態1ではプラズマの生成を行いながら、汚れ除去を行なったのに対して、本実施の形態では、プラズマの生成を終了した後で、汚れ除去を行う。
具体的には、まず、図14の(a)に示すように、バルブ50を開けることで、第1の排出口26からアルカリ水43を放出させる。放出されたアルカリ水43に処理対象物60を接触させる。
次に、図14の(b)に示すように、バルブ51を開けることで、第2の排出口27から酸性水44を放出させる。放出された酸性水44に処理対象物60を接触させる。
これにより、アルカリ水43によって処理対象物60から汚物61が剥離し、酸性水44によって汚物61が分解される。これにより、処理対象物60の汚物61を除去することができる。
なお、本実施の形態では、水を循環させることができないので、図14の(a)に示すように、放出させたアルカリ水43の量だけ第1の空間22内のアルカリ水43の量が減少する。同様に、図14の(b)に示すように、放出された酸性水44の量だけ第2の空間23内の酸性水44の量が減少する。
汚物61の除去が完了した後は、第1の供給口24及び第2の供給口25から水道水などを空間21内に供給することにより、空間21内に水340を溜めることができる。
したがって、本実施の形態に係る液体処理装置300は、連続してアルカリ水43及び酸性水44を利用しないときに有用である。また、水を循環させるためのポンプなども必要ではないので、装置を小型化することができ、消費電力を削減することもできる。
本実施の形態において、反応槽は、反応槽20によって例示される。液体は、水340によって例示される。プラズマ生成器は、第1の電極110、第2の電極120、電源130を含むプラズマ生成器100によって例示される。第1の空間と第2の空間との間でイオン又は電子を伝導する内壁は、隔壁330によって例示される。
(実施の形態3)
実施の形態2では、第1の空間22と第2の空間23とを仕切る隔壁として、多孔質の隔壁を用いたが、本実施の形態で示すように、水圧を利用した分離層を用いてもよい。以下では、まず、本実施の形態に係る液体処理装置の構成について、図15を用いて説明する。
[1.液体処理装置]
図15は、本実施の形態に係る液体処理装置400の構成を示す図である。
図15に示すように、液体処理装置400は、実施の形態2に係る図11に示す液体処理装置300と比較して、反応槽20及び隔壁330の代わりに、反応槽420及び分離層430を備える点が異なっている。以下では、異なる点を中心に説明する。
[1−1.反応槽]
反応槽420は、水が入れられる空間421を形成する容器である。具体的には、反応槽420は、H型セルである。
空間421は、分離層430によって第1の空間422と第2の空間423とに分けられる。第1の空間422は、H型セルの一方の管内に位置し、第2の空間423は、H型セルの他方の管内に位置する。
反応槽420は、例えば、一対の円筒状の管と、これらを繋ぐ接続管とから構成される。反応槽420は、酸及びアルカリに耐性を有する材料から構成される。例えば、反応槽420は、ポリ塩化ビニルなどの樹脂材料、ステンレスなどの金属材料、又は、セラミックなどから構成される。酸性ラジカルの消費を抑制するためには、セラミック又はガラスであってもよい。
反応槽420は、供給口424と、排出口426とを備える。供給口424は、空間421へ給水するために設けられている。排出口426は、空間421から排水するために設けられている。
供給口424から入れられた水は、第1の空間422と、第2の空間423とに溜められる。つまり、H型セルの接続管を通って、第1の空間422から第2の空間423に流入する。
さらに、反応槽420は、圧力制御口428を備える。圧力制御口428には、配管などが接続されて、例えば、外部から所定の水圧が加えられることにより、圧力制御口428の近傍に分離層430を形成する。
[1−2.分離層]
分離層430は、第1の空間422と第2の空間423との境に位置する水であって、第1の空間422内及び第2の空間423内より高い水圧が維持された水である。簡単に言い換えると、分離層430は、水圧の高さを利用した水の壁であり、第1の空間422と第2の空間423との間で水の移動を抑制する。具体的には、分離層430には、圧力制御口428に接続された配管によって、第1の空間422内及び第2の空間423内の水圧より高い水圧がかけられる。
[2.実験結果]
本実施の形態に係る液体処理装置400を用いて、水を処理した結果を、図16を用いて説明する。図16は、本実施の形態に係る液体処理装置400の第1の電極110及び第2の電極120のそれぞれの近傍の水のpHの時間変化を示す図である。なお、ここでは、実施の形態2と同様に、H型セルを利用した。
図16に示すように、電圧の印加を開始することにより、第1の電極110の近傍の水はpHが増加し、第2の電極120の近傍の水はpHが減少する。つまり、第1の空間422ではアルカリ水が生成され、第2の空間423では酸性水が生成されている。
しかしながら、電圧の印加開始から5分後には、第1の電極110の近傍のpHが第2の電極120の近傍のpHと略同じになる。つまり、第1の空間422に生成されたアルカリ水と、第2の空間423に生成された酸性水とが混合して、空間421内の水が全体的に酸性になった。
これは、時間の経過によって、分離層430が第1の空間422と第2の空間423とを分離しなくなったことに起因する。分離層430は、電圧の印加の開始時点では、第1の空間422内及び第2の空間423内より高い水圧が維持されているので、第1の空間422と第2の空間423とを分離することができる。電圧が印加されると、水が電気分解されることにより、第1の空間422には水素が発生し、第2の空間423には酸素が発生する。
(式1)及び(式2)で示したように、発生する酸素の体積は、水素の体積の半分である。このため、第1の空間422と第2の空間423との境界部分では、第2の空間423側の水圧が、第1の空間422側の水圧より大きくなる。水圧の差が分離層430の水圧を超えたときに、第2の空間423の酸性水が、分離層430を超えて第1の空間422に流入し、酸性水とアルカリ水との混合が起きる。
さらに、熱による対流も混合の原因と考えられる。プラズマ生成のために電流を流すことにより電極近傍の温度が上昇する。この温度上昇によって水の対流が生じる。そのため、酸性水とアルカリ水の混合が生じると考えている。
酸性水とアルカリ水の混合が生じた場合、液中には、酸性ラジカルの量がアルカリ性ラジカルの量よりも多いので、空間421内の水が全体的に酸性になる。
なお、図16に示した結果では、約5分でアルカリ水と酸性水との混合が生じたが、当該混合が生じるまでの時間は、例えば、反応槽420内の水量、分離層430の水圧、H型セルの接続管の長さ、水温などに依存する。例えば、反応槽420内の水量を少なくすることで、混合が生じるまでの時間を長くすることができる。また、分離層430の水圧を高くすることで、混合が生じるまでの時間を長くすることができる。あるいは、接続管の長さを長くすることで、混合が生じるまでの時間を長くすることができる。また、水温を下げることで、熱対流の発生を抑制して、混合が生じるまでの時間を長くすることができる。
[3.効果など]
以上のように、本実施の形態に係る液体処理装置400によれば、所定期間の経過後には、酸性水に変化するアルカリ水を生成することができる。したがって、実施の形態1及び2と同様に、難溶性の汚れを除去する汚れ除去方法などに利用することができる。
あるいは、本実施の形態に係るアルカリ水は、髪の毛の染色などにも利用することができる。例えば、髪の毛をアルカリ水に接触させた後、酸性水に接触させることで、髪の毛の染色を行う。
具体的には、染料を含むアルカリ水に髪の毛を接触させることで、キューティクルを開いて染料を浸透させることができる。その後、髪の毛を酸性水に接触させることで、メラニン色素を脱色するとともに、染料を酸化して発色させることができる。
本実施の形態に係る液体処理装置400が生成するアルカリ水は、所定期間の経過後には酸性水に変化するので、髪の毛の染色に利用することができる。例えば、酸性水に変化するまでの期間を制御することができるので、髪の毛にダメージを与えないための時間管理を容易に行うことができる。
本実施の形態において、反応槽は、反応槽420によって例示される。液体は、水340によって例示される。プラズマ生成器は、第1の電極110、第2の電極120、電源130を含むプラズマ生成器100によって例示される。第1の空間と第2の空間との間でイオン又は電子を伝導する内壁は、分離層430によって例示される。
(他の実施の形態)
以上、1つ又は複数の態様に係る液体処理装置、液体処理方法及び汚れ分解方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
例えば、上記の実施の形態では、第2の電極120に気体供給器140を接続する構成について示したが、第1の電極110に気体供給器140を接続してもいい。すなわち、プラズマ生成器100が備える一対の電極の一方に気体が供給されればよく、当該電極は正極でもよく、負極でもよい。
また、図1に示す液体処理装置において、第1の空間と第2の空間との間でイオン又は電子を伝導する機能を、隔壁30ではなく接続管の内壁に持たせてもよい。すなわち、接続管の内壁を、イオン又は電子を伝導する材料で構成してもよい。これにより、接続管の内壁を介して第1の空間の水と第2の空間の水との間でイオン又は電子を伝導することができる。したがって、実施の形態1と同様に、酸性水及びアルカリ水を生成することができる。なお、接続管の内壁の材料としては、例えば、隔壁30と同じ材料、導電性プラスチック、黒鉛を用いることができる。本実施の形態においては、反応槽20の内壁は、接続管の内壁によって例示される。
また、第1の空間と第2の空間とをそれぞれ異なる容器で形成し、これらの容器の間でイオン又は電子を伝導できるように、第1の容器と第2の容器とを接続してもよい。このような構成であれば、水分子の混合を防止することができる。したがって、より効率良くアルカリ水と酸性水とを同時に生成することができる。
本開示の一態様に係る汚れ除去方法は、水中にプラズマを生成することで、水を空間的に分離して酸性水とアルカリ水とを生成し、アルカリ水を、汚物を含む処理対象物に接触させた後、酸性水を処理対象物に接触させることで、汚物を分解してもよい。
上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示は、アルカリ水及び酸性水を同時に生成することができる液体処理装置などとして利用でき、例えば、汚れを除去する汚れ除去方法、髪の毛の染色方法などに利用することができる。
10、11、300、400 液体処理装置
20、420 反応槽
21、421 空間
22、422 第1の空間
23、423 第2の空間
24、25、424 供給口
26、27、426 排出口
28、29 支管
30 隔壁
40、340 水
41、341 第1の水
42、342 第2の水
43 アルカリ水
44 酸性水
50、51 バルブ
60 処理対象物
61 汚物
100 プラズマ生成器
110 第1の電極
120、220 第2の電極
121 中空部
122 絶縁体
123 空隙
124 開口部
125 保持ブロック
130 電源
131、132 整流素子
140 気体供給器
141 気泡
142 プラズマ
220a 金属電極部
220b 金属ネジ部
221 貫通孔
330 隔壁
428 圧力制御口
430 分離層

Claims (8)

  1. 相互への液体の移動が抑制された第1の空間と第2の空間とに分割され、前記第1の空間及び前記第2の空間のそれぞれに液体を入れることができる反応槽と、
    前記第1の空間に少なくとも一部が配置される第1の電極と、前記第2の空間に少なくとも一部が配置される第2の電極と、前記第1の電極と前記第2の電極との間に交流電圧又はパルス電圧を印加する電源と、を含み、前記液体中にプラズマを発生させるプラズマ生成器と、
    を備え、
    前記反応槽は、前記第1の空間と前記第2の空間との間でイオン又は電子を伝導する内壁を含む、
    液体処理装置。
  2. 前記内壁は、前記第1の空間と前記第2の空間とを分割する隔壁を含み、
    前記隔壁が前記第1の空間と前記第2の空間との間でイオン又は電子を伝導する、
    請求項1に記載の液体処理装置。
  3. 前記隔壁は、イオン交換膜又は電子交換膜である、
    請求項2に記載の液体処理装置。
  4. 前記隔壁は、多孔質膜である、
    請求項2に記載の液体処理装置。
  5. 前記反応槽は、さらに、
    前記第1の空間へ前記液体を供給するための第1の供給口と、
    前記第2の空間へ前記液体を供給するための第2の供給口と、
    前記第1の空間から前記液体を排出するための第1の排出口と、
    前記第2の空間から前記液体を排出するための第2の排出口と、
    を備える、
    請求項1〜4のいずれか1項に記載の液体処理装置。
  6. 前記プラズマ生成器は、前記第1の空間において前記液体が前記第1の供給口から第1の排出口へ流れ、前記第2の空間において前記液体が前記第2の供給口から第2の排出口へ流れている状態でプラズマを発生させる、
    請求項5に記載の液体処理装置。
  7. 前記プラズマ生成器は、前記第1の空間及び前記第2の空間に前記液体を滞留させた状態でプラズマを発生させる、
    請求項1〜4のいずれか1項に記載の液体処理装置。
  8. 前記プラズマ生成器は、前記反応槽内の前記液体中に気体を供給する気体供給器をさらに備え、
    前記気体供給器は、前記第1の電極又は前記第2の電極が前記気体で覆われるように前記気体を供給する、
    請求項1〜7のいずれか1項に記載の液体処理装置。
JP2015122367A 2014-07-30 2015-06-17 液体処理装置 Active JP6541105B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122367A JP6541105B2 (ja) 2014-07-30 2015-06-17 液体処理装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014155278 2014-07-30
JP2014155278 2014-07-30
JP2015122367A JP6541105B2 (ja) 2014-07-30 2015-06-17 液体処理装置

Publications (2)

Publication Number Publication Date
JP2016032806A true JP2016032806A (ja) 2016-03-10
JP6541105B2 JP6541105B2 (ja) 2019-07-10

Family

ID=55179426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122367A Active JP6541105B2 (ja) 2014-07-30 2015-06-17 液体処理装置

Country Status (3)

Country Link
US (1) US9702048B2 (ja)
JP (1) JP6541105B2 (ja)
CN (1) CN105314710A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703653B2 (en) * 2016-02-17 2020-07-07 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment device utilizing plasma

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630915A (en) * 1994-01-11 1997-05-20 Greene; Hugh W. Liquid decontamination system using electrical discharge with gas injection
JPH1177050A (ja) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The 電解イオン水生成装置、電解イオン水生成方法及び洗浄方法
JP2012075973A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd イオン水を生成する方法及びイオン水生成装置
WO2012157248A1 (ja) * 2011-05-17 2012-11-22 パナソニック株式会社 プラズマ発生装置およびプラズマ発生方法
JP2013138981A (ja) * 2011-12-29 2013-07-18 Daikin Industries Ltd イオン水生成装置
JP2013211204A (ja) * 2012-03-30 2013-10-10 Osaka City Univ 液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン含有液体生成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177050A (ja) * 1987-12-29 1989-07-13 Minolta Camera Co Ltd データ入力装置
EP0873184A1 (en) 1995-12-21 1998-10-28 Tecnotion B.V. Method and device for treating an aqueous solution
JP3864891B2 (ja) * 2002-07-01 2007-01-10 栗田工業株式会社 電気式脱イオン装置
US6749759B2 (en) * 2002-07-12 2004-06-15 Wisconsin Alumni Research Foundation Method for disinfecting a dense fluid medium in a dense medium plasma reactor
JP4848144B2 (ja) 2005-06-30 2011-12-28 前澤工業株式会社 廃水処理装置
JP4889124B2 (ja) 2007-11-01 2012-03-07 光弘 渡邉 流体処理装置
JP5364906B2 (ja) 2009-02-16 2013-12-11 国立大学法人 東京大学 酸性水製造方法及び酸性水製造装置
JP2012052209A (ja) 2010-09-03 2012-03-15 Sapporo Nbt:Kk ナノスケールの導電性微粒子を連続的に製造する装置及び方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630915A (en) * 1994-01-11 1997-05-20 Greene; Hugh W. Liquid decontamination system using electrical discharge with gas injection
JPH1177050A (ja) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The 電解イオン水生成装置、電解イオン水生成方法及び洗浄方法
JP2012075973A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd イオン水を生成する方法及びイオン水生成装置
WO2012157248A1 (ja) * 2011-05-17 2012-11-22 パナソニック株式会社 プラズマ発生装置およびプラズマ発生方法
JP2013138981A (ja) * 2011-12-29 2013-07-18 Daikin Industries Ltd イオン水生成装置
JP2013211204A (ja) * 2012-03-30 2013-10-10 Osaka City Univ 液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン含有液体生成装置

Also Published As

Publication number Publication date
CN105314710A (zh) 2016-02-10
US9702048B2 (en) 2017-07-11
JP6541105B2 (ja) 2019-07-10
US20160032466A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5884074B2 (ja) 液体処理装置及び液体処理方法
CN104583131B (zh) 液体处理装置以及液体处理方法
JP5899455B2 (ja) 液体処理装置及び液体処理方法
JP6869188B2 (ja) 還元水の製造装置および還元水の製造方法
JP6562205B2 (ja) 亜硝酸生成装置
JP2014517148A (ja) 水素ガス発生器
JP2017205755A (ja) 液体処理装置及び液体処理方法
JP2013049015A (ja) 水処理装置
JP2014210222A (ja) 液体処理装置
JP6541105B2 (ja) 液体処理装置
CN1330794C (zh) 自支撑有序通孔氧化铝膜的制备方法
JP2017144425A (ja) 液体処理装置
JP2009234900A (ja) 水中オゾナイザ
JP2013138981A (ja) イオン水生成装置
CN107089704B (zh) 液体处理装置
JP2017516916A (ja) 陽極酸化処理の実装を意図したデバイスおよび陽極酸化処理
KR20190067281A (ko) 전해 나노 이온수의 생성 장치
JP2012075975A (ja) イオン水生成装置
JP2013081916A (ja) 水処理装置
JP2012075973A (ja) イオン水を生成する方法及びイオン水生成装置
JP6675112B2 (ja) 電解原水貯留式電解装置
JP2012075966A (ja) プール用循環システム
WO2016147434A1 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
JP2015116558A (ja) 液体処理装置
KR101686638B1 (ko) 수중 아크 방전에 의한 알칼리수 생성장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6541105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151