JP2016027309A - 液採取装置及びその液採取装置を備えた自動分析装置 - Google Patents

液採取装置及びその液採取装置を備えた自動分析装置 Download PDF

Info

Publication number
JP2016027309A
JP2016027309A JP2014228702A JP2014228702A JP2016027309A JP 2016027309 A JP2016027309 A JP 2016027309A JP 2014228702 A JP2014228702 A JP 2014228702A JP 2014228702 A JP2014228702 A JP 2014228702A JP 2016027309 A JP2016027309 A JP 2016027309A
Authority
JP
Japan
Prior art keywords
liquid
liquid level
probe
container
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014228702A
Other languages
English (en)
Other versions
JP6274081B2 (ja
Inventor
清浩 杉山
Kiyohiro Sugiyama
清浩 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014228702A priority Critical patent/JP6274081B2/ja
Publication of JP2016027309A publication Critical patent/JP2016027309A/ja
Application granted granted Critical
Publication of JP6274081B2 publication Critical patent/JP6274081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】新たなセンサを追加することなく、液面センサを利用して吸入対象の液面に発生した泡を検知することができるようにする。
【解決手段】液採取装置は、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知し、さらに泡の存在を検知したときはオペレータに警告を表示するように構成されている。
【選択図】図1

Description

本発明は、プローブを介して容器内に収容されている液を採取する液採取装置及びその液採取装置を備えた自動分析装置に関するものである。
例えば自動分析装置は、所定量の検体を反応容器に分注し、さらにその検体に所定量の試薬を添加した後、所定の測定部において反応容器内の反応を光学的に測定するという一連の動作が自動的に実行されるようになっている。検体に添加される種々の試薬は装置の所定の試薬収容部にオペレータによって設置され、その設置された試薬の情報と設置位置とが対応付けられて装置側に登録されている。
かかる自動分析装置において、検体容器から検体を採取して反応容器に分注する作業や、試薬収容部に設置された試薬を採取して反応容器に分注する作業は、液の吸入と吐出を行なうプローブを利用して行なわれることが一般的である。その場合、プローブを目的の検体や試薬を収容した容器上の位置に配置し、そこから下降させてプローブ先端をその容器内に進入させて液を吸入した後、プローブを反応容器の位置へ移動させて吸入した液を反応容器に分注する。
上記の自動分析装置では、プローブで検体や試薬の吸入を行なう際に、プローブが必要以上に検体や試薬内に浸漬されて汚染されることを防止することを目的の一つとして、プローブの先端が液面に接触したことを検知する液面センサが設けられることがある(例えば、特許文献1参照。)。この場合、吸入対象の液の上方からプローブを下降させてプローブ先端が液に接触したときのプローブの位置を液面センサに基づいて検出し、その位置から必要な距離だけプローブを下降させてから液の吸入を行なうことで、プローブの外面が必要以上に検体や試薬によって汚染されることを防止できる。
また、液面センサによってプローブ先端が液に接触したときのプローブの高さを検出することで、その容器内の液面高さを求めることができるため、吸入対象の液の残量を自動的に認識するという機能も実現される。
特許第5093164号公報
自動分析装置の検体としては血清などが挙げられるが、このような検体に添加される試薬には界面活性剤が含まれている場合が多く、そのような試薬の液面には泡が発生しやすい。しかし、装置に設けられた液面センサでは、プローブ先端が泡に接触した場合でも液面に接触した場合と同様に検知してしまうため、液面センサが試薬の液面を検知したのか泡を検知したのかを区別することはできない。そのため、試薬の液面に泡が発生している場合、プローブ先端が泡に接触してそれを液面センサが検知すると、その位置を基準に試薬の吸入動作が実行されてしまい、所定量の試薬が吸入されず、その試薬が添加された検体についての分析結果の信頼性が低くなる。さらには、試薬の液面の泡が原因で分析結果の信頼性が低下しても、オペレータはそれを認識することは困難であった。
液面センサに加えて圧力センサを追加し、プローブにかかる圧力の微小変化を検出することで、プローブ先端が液面に接触したのか泡に接触したのかを判断することも考えられる。しかし、液面センサとは別に圧力センサを追加する必要があるため、装置コストが増大するほか、圧力の微小変化を高精度に検出する必要があるため、センサの調整が難しいという問題がある。
そこで、本発明は、新たなセンサを追加することなく、液面センサを利用して吸入対象の液面に発生した泡を検知することができるようにすることを目的とするものである。
本発明にかかる液採取装置の一実施形態は、プローブ、プローブ駆動機構、ポンプ、液面センサ、プローブ動作制御手段、液面高さ検出手段、吸入後液面高さ算出手段、液面高さ記憶部、第1しきい値保持部、第2しきい値保持部、差分算出手段、泡検知手段及び警告表示手段を備えている。
この実施形態の液面センサはプローブの先端が液面に接触したことを検知するものである。プローブ駆動機構はプローブを少なくとも鉛直方向へ駆動するものであり、プローブ動作制御手段はプローブ下降動作と吸入動作が実行されるようにプローブ駆動機構及びポンプを制御するように構成されたものである。液面高さ検出手段はプローブ下降動作の際のプローブ先端が液面に接触したときのプローブの位置を検知することにより、吸入動作前の液面高さを検出するように構成されたものである。吸入後液面高さ算出手段は液面高さ検出手段により検出された吸入動作前の液面高さとその吸入動作の際の吸入量に基づいて、その吸入動作後の液面高さの理論値を算出するように構成されており、液面高さ記憶部はその液面高さの理論値を記憶するものである。
第1しきい値保持部は予め設定された第1のしきい値を保持しており、第2しきい値保持部は予め設定された第2のしきい値を保持している。第1のしきい値とは、吸入後液面高さ算出手段により算出された吸入動作後の液面高さの理論値と吸入動作後の実際の液面高さとの相違として許容される誤差の最大値である。第2のしきい値は第1のしきい値よりも大きく設定されたものである。
差分算出手段は、同一の吸入対象の容器に対して2回目以降のプローブ下降動作を実行する際に、液面高さ検出手段により検出された液面高さと、液面高さ記憶部に記憶されている当該容器についての吸入動作後の液面高さの理論値との差分を算出するように構成されたものである。泡検知手段は、差分算出手段により算出された差分値と第1のしきい値及び第2のしきい値とを比較し、差分値が第1のしきい値を超え、かつ第2のしきい値以下であるときに泡の存在を検知するように構成されたものであり、警告表示手段は、泡検知手段が泡の存在を検知したときに、オペレータの認識しうる方法でその旨を出力するように構成されたものである。
すなわち、この実施形態では、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知し、さらに泡の存在を検知したときはオペレータに警告を表示するように構成されている。
本発明に係る液採取装置のさらに好ましい実施形態は、液面高さ記憶部が、容器に収容された液の液面高さの初期値も記憶しており、差分算出手段は、吸入対象の容器に対する1回目のプローブ下降動作を実行する際に液面高さ検出手段により検出された液面高さと初期値保持部に保持された当該容器内の液の液面高さの初期値との差分を、泡検知手段が泡の検知に用いる前記差分値として算出するように構成されていることが好ましい。これにより、新たに設置された容器に対して1回目の吸入動作を行なう際に、その容器内に泡が発生しているか否かを検知することができる。
ところで、第2のしきい値が容器内の液面に発生しうる泡の大きさの最大値よりも小さく設定されていると、泡が発生しているにもかかわらず泡の発生が検知されないことが起こる。また、第2のしきい値が容器内の液面に発生しうる泡の大きさの最大値を大幅に超えて大きく設定されていると、例えば、吸入対象である試薬容器が新たな試薬容器に交換されていた場合やオペレータによって試薬が補充されていたような場合でも、泡が発生していると認識されてしまうことが起こりうる。したがって、第2のしきい値としては、発生しうる泡の大きさの最大値に比べて極端に小さい値や大きい値は、好ましい値とはいえない。そこで、第2のしきい値としては、容器内の液面に発生しうる泡の大きさの最大値に基づいて設定されたものであることが好ましい。
プローブによる吸入対象となる液を収容した容器が複数設けられ、第2のしきい値が吸入対象の液の種類ごとに個別に設定されている場合には、吸入対象の液の種類に応じて第2のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第2のしきい値を用いて泡の存在を検知するように構成されていることが好ましい。吸入対象の液の液面に発生する泡の大きさは、液の種類(性質)によって変わることがあるからである。
また、プローブによる吸入対象となる液を収容した容器が複数設けられ、第2のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されている場合には、吸入対象の液を収容した容器の大きさ又は形状に応じて第2のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第2のしきい値を用いて泡の存在を検知するように構成されていることが好ましい。吸入対象の液の液面に発生する泡の大きさは、液を収容する容器の大きさや形状によっても変わることがあるからである。
プローブによる吸入対象となる液を収容した容器が複数設けられている場合には、第1のしきい値についても、吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されていることが好ましい。ポンプによる吸入精度による吸入後の液面高さの誤差は、容器の大きさや形状によっても異なってくるからである。その場合、吸入対象の液を収容した容器吸入対象の液を収容した容器の大きさ又は形状に応じて第1のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第1のしきい値を用いて泡の存在を検知するように構成されている。
さらに、泡検知手段は、差分算出手段により算出された差分値が第2のしきい値を超えているときにその吸入対象の液を収容した容器が新たな容器であることを検知するように構成されていることが好ましい。そうすれば、例えば試薬容器が新たなものに交換されたり試薬が充填されたりした場合に、装置側がそれを自動で認識することができるようになる。
さらに好ましい実施形態の一例として、プローブ動作制御手段、液面高さ検出手段、吸入後液面高さ算出手段、液面高さ記憶部、しきい値保持部、差分算出手段及び泡検知手段を備えた演算制御装置と、演算制御装置に接続され、演算制御装置の有する情報を表示する情報表示部と、をさらに備え、警告表示手段は、泡検知手段が泡の存在を検知したときにその旨を情報表示部に表示するように構成されているものが挙げられる。
本発明に係る自動分析装置の一実施形態は、検体を収容した検体容器から検体を採取し、検体を反応させるための反応容器に分注する検体採取機構と、本発明の液採取装置によって構成され、試薬を収容した試薬容器から試薬を吸入して反応容器に分注する試薬分注機構と、検体及び試薬を収容した反応容器内を測定する測定部と、を備えたものである。
自動分析装置のさらに好ましい実施形態の一例として、検体採取機構、試薬分注機構及び測定部をそれぞれ備えた分析装置が複数設けられており、分析装置の各々は、複数の検体容器が保持された検体ラックを一方向に搬送するベルトコンベアを備え、互いに隣接して配置された分析装置のうち一方のベルトコンベアの終端と他方のベルトコンベアの始端が対向するように配置されており、それらのベルトコンベアの間が、一方のベルトコンベアの終端に到達した検体ラックを保持して他方のベルトコンベアの始端へ輸送する輸送機構を有する装置間輸送装置によって連結されているものが挙げられる。
本発明の液採取装置の一実施形態では、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知するように構成されているので、圧力センサなどの新たなセンサを設けることなく、液面に発生した泡を検知することができる。さらに、泡の存在を検知したときはオペレータに警告を表示するように構成されているので、オペレータは液面に泡が発生していることを認識することが容易である。
本発明の自動分析装置の一実施形態では、試薬分注機構が本発明の液採取装置によって構成されているので、検体に添加する試薬を収容した試薬容器内の液面に泡が発生している場合にそれを検知することができ、オペレータがそれを認識することができる。
液採取装置の一実施例を示す概略構成図である。 同実施例のプローブ周辺の機構を概略的に示す図である。 同実施例の液の採取及び分注動作を示すフローチャートである。 液採取装置の他の実施例を示す概略構成図である。 同実施例の液の採取及び分注動作を示すフローチャートである。 自動分析装置の一実施例を示す概略構成図である。 同実施例の構成を概略的に示す平面図である。 同実施例における装置間輸送装置の輸送機構を示す平面図である。 同輸送機構の正面図である。 同輸送機構の斜め上側からみた分解斜視図である。 同輸送機構の斜め下側からみた分解斜視図である。 同実施例の制御系統を示すブロック図である。
(実施例1)
液採取装置の一実施例について説明する。
図1に示されているように、この液採取装置は、プローブ2、ポンプ4、プローブ駆動機構5、液面センサ8、演算制御装置10及び情報表示部30を備えている。ポンプ4は例えばシリンジポンプであり、プローブ2を介して液の吸入と吐出を行なうものである。プローブ駆動機構5はプローブ2を水平面内方向と鉛直方向へ駆動するものである。液面センサ8は静電容量センサであり、プローブ2の先端が液面に接触したときにその静電容量変化を検出することで、プローブ2の先端による液面への接触を検知するものである。
図2に示されているように、プローブ2の先端は鉛直下向きの状態でアーム34の先端部に保持されている。アーム34の基端部は鉛直向きに配置された支持軸32によって支持されており、アーム34の先端が水平方向へ延びている。支持軸32はプローブ駆動機構5を構成する上下動駆動部6と回転駆動部7によって水平面内での回転と鉛直方向における上下動を行ない、これによってアーム34に保持されたプローブ2を水平面内方向において円弧を描くように移動させ、さらにその軌道上の位置で上下動させることができる。上下動駆動部6と回転駆動部7はそれぞれパルスモータを構成として含み、パルスモータに与えるパルス数によってプローブ2の位置を制御することができる。プローブ2の基端はチューブ36を介してシリンジポンプ4と接続されている。
アーム34の内部にセンサ基板8(液面センサ)が設けられている。センサ基板8は、プローブ2の先端が液面に接したときのプローブ2の先端と液面との間の静電容量の変化を検出するものである。
図1に戻って、演算制御装置10はポンプ4及びプローブ駆動機構5の動作制御を行なうとともに、液面センサ8からの検知信号に基づいて種々の演算処理を行なうものである。情報表示部30は演算制御装置10の有する情報を表示するものである。演算制御装置10は、例えば汎用のパーソナルコンピュータ(PC)又は専用のコンピュータによって実現される。情報表示部30は、例えば汎用のPCモニタ又は専用のモニタによって実現される。
演算制御装置10はプローブ動作制御手段12、液面高さ検出手段14、吸入後液面高さ算出手段16、差分算出手段18、泡検知手段20、警告表示手段22、液面高さ記憶部24、第1しきい値保持部25及び第2しきい値保持部26を備えている。プローブ動作制御手段12、液面高さ検出手段14、吸入後液面高さ算出手段16、差分算出手段18、泡検知手段20及び警告表示手段22の各手段は、この演算制御装置10に組み込まれたプログラムとそのプログラムを実行する演算部(CPU)によって実現される機能である。液面高さ記憶部24、第1しきい値保持部25及び第2しきい値保持部26は、この演算制御装置10に設けられたハードディスクや不揮発性メモリによって実現される。
プローブ動作制御手段12は、吸入対象の液についてオペレータが指定した分注条件に基づいて、目的の液を収容した容器上の位置からプローブ2を下降させるプローブ下降動作、その容器内の液を所定量だけ吸入する吸入動作、及び吸入した液を所定の分注位置に分注する分注動作を実行するために、ポンプ4及びプローブ駆動機構5を制御するように構成されたものである。プローブ下降動作は、液面センサ8の検知信号に基づいて行なわれ、プローブ2は先端が液面に接触した高さからさらに一定の距離だけ下降した位置で停止するようになっている。吸入動作はその位置で実行されるようになっている。
液面高さ検出手段14は、プローブ下降動作の際に、液面センサ8の検知信号に基づいてプローブ2の先端が液面に接したときのプローブ2の高さを、例えばプローブ駆動機構5のパルスモータに与えられたパルス数から求め、それによって容器内の液面高さH1を検出するように構成されている。ここで検出される液面高さH1は、吸入動作が実行される前の液面高さである。検出された液面高さH1は液面高さ記憶部24に記憶される。
吸入対象の容器内に収容されている液量の初期値は、その容器が設置されたときに装置に入力されるようになっており、その入力値に基づいてその容器内の液面高さの初期値H0として液面高さ記憶部24に記憶されるようになっている。容器内の液面高さの初期値H0はその容器からの1回目の液の吸入動作を行なう際の液面における泡の存在の有無の判定に用いられる。液面高さの初期値H0は、1回目の吸入動作が終了した後に、後述する吸入後液面高さ算出手段18によって求められる吸入後の液面高さの理論値H0に置き換えられ、2回目以降の液の吸入動作の際の泡の検知にはその理論値H0が用いられる。
吸入後液面高さ算出手段18は、液面高さ検出手段14により検出された吸入動作実行前の液面高さH1を用い、その液面高さH1から液の吸入量に相当する高さを差し引いた吸入動作後の液面高さH0を算出するように構成されている。吸入後液面高さ算出手段18により算出された液面高さH0は、吸入後の実際の液面高さではなく、吸入条件に基づいて計算により求めた液面高さの理論値である。算出された液面高さの理論値H0も液面高さ記憶部24に記憶される。この理論値H0は、同じ容器に対して実行される次回のプローブ下降動作の後で、後述する差分算出手段18による差分ΔHの算出に用いられる。
差分算出手段18は、液面高さ検出手段14によって容器内の液面高さH1が検出されたときに、同じ容器について前回の液採取の際に、吸入後液面高さ算出手段18により算出されている理論値H0と、今回検出された液面高さH1との差分ΔH(=H1−H0)を算出するように構成されている。
泡検知手段20は、差分算出手段18によって算出された差分ΔHを用い、第1しきい値保持部25に保持されている第1のしきい値と第2しきい値保持部26に保持されている第2のしきい値に基づいて、吸入対象の容器の液面に泡が発生しているか否かを検知するように構成されている。
液面高さ検出手段14により検出された液面高さH1は、前回の液の吸入後の液面高さの実測値であるといえる。H0は前回の吸入動作後の液面高さを計算で求めた理論値であるから、液面センサ8によって正常に容器内の液面が検知されていれば、H1≒H0となるはずである。H1≒H0となっているか否かを差分ΔH(=H1−H0)によって判断するためのしきい値が第1のしきい値である。第1のしきい値は、ポンプ4の吸入精度による吸入量の誤差を考慮して設定されたものである。
液面センサ8によって正常に容器内の液面が検知されない場合とは、液面に泡が発生し、その泡にプローブ2の先端が接したときに液面センサ8が液面として検知した場合である。その場合は必ずH1>H0となり、ΔHは第1のしきい値を超える。液面センサ8によって正常に液面が検知されている場合、差分ΔH(=H1−H0)はプラスの値になることもマイナスの値になることもありうるため、第1のしきい値は−α〜+αとして設定されていてもよいが、液面センサ8が泡を検知したときは必ずH1>H0となるのであるから、第1のしきい値はプラス側にのみ設定されていればよい。この実施例では、第1のしきい値はプラス側にのみ設定されている。差分算出手段18によって算出された差分ΔHが第1のしきい値を超えたときは、容器内の液面に泡が発生していることが疑われる。
ただし、ΔHが第1のしきい値を超える場合として、前回の液の採取の後に、その容器が新たな(液が充填された)容器に交換されていた場合や容器内の液が補充されていた場合が考えられる。そこで、ΔHが第1のしきい値を超えたときに、その原因が液面に発生した泡によるものであるのか、又は液が増量したことによるものであるのかを判断するためのしきい値が第2のしきい値である。第2のしきい値は、その容器内の液面に発生しうる泡の大きさの最大値を考慮したものである。したがって、ΔHがこの第2のしきい値を超えている場合には、その容器が新たな容器に交換されているか、液が補充されていると判断することができる。
気泡検知手段20は、液面高さ検出手段16によって容器内の液面高さH1が検出されたときに、まずそのH1と理論値H0とを比較し、その差分ΔHが第1のしきい値を超えているか否か、そのΔHが第2のしきい値を超えているか否かによって以下のように判断するように構成されている。
ΔH≦0(H1≦H0)・・正常
第1のしきい値<ΔH≦第2のしきい値・・液面に泡が発生している
第2のしきい値<ΔH・・吸入対象の容器が新たな容器に交換されている
警告表示手段22は、気泡検知手段20によって液面に泡が発生していることが検知されたときに情報表示部30にその旨を出力するように構成されている。情報表示部30にその旨が表示されることで、オペレータがそれを認識することができる。
次に、この実施例の液の採取動作について図1とともに図3のフローチャートを用いて説明する。
この液採取装置が吸入対象とする液は、例えば自動分析装置に設置された複数種類の試薬などである。吸入対象となりうる液が複数存在し、それぞれが個別の容器に収容されて設置されている。オペレータによって採取すべき液の種類や量などの条件が指定されると、その条件に基づいて吸入対象の液(の容器)を特定し、プローブ2をその容器の上方の位置から液面センサ8が液面を検知するまで下降させる(プローブ下降動作)。
液面センサ8が液面を検知するとプローブ2を停止させ、そのときのプローブ2の位置に基づいて吸入対象容器内の液面高さH1を求める。当該吸入対象容器に対する最初の吸入動作である場合は、液面高さ記憶部24に記憶されている液面高さの初期値H0を用い、当該吸入対象容器に対する2回目以降の吸入動作である場合は、液面高さ記憶部24に記憶されている前回の吸入動作後の液面高さの理論値H0を用いて、H1とH0を比較し、H1≦H0であれば正常と判断してプローブ2をさらに一定距離だけ下降させ、液の吸入動作を実行する。その容器についての理論値H0が液面高さ記憶部24に記憶されていない場合はその容器に対する液の採取動作は初めて行なわれたものであり、正常と判断し、プローブ2をさらに一定距離だけ下降させて所定量の液を吸入し(吸入動作)、所定の容器(分注位置)にその液を分注する(分注動作)。
1>H0の場合は、差分算出手段18が差分ΔH(=H1−H0)を算出し、ΔHが第1のしきい値以下であれば正常と判断し、プローブ2をさらに一定距離だけ下降させて液の吸入動作を実行する。ΔHが第1のしきい値を超えている場合は、ΔHを第2のしきい値と比較し、第2のしきい値以下であれば液面に泡が発生していると判断する。その場合、情報表示部30にその旨を出力してから以降の吸入動作及び分注動作を実行する。この液採取装置が自動分析装置に組み込まれたものである場合には、この吸入動作で採取された液を用いて実行された分析の結果が情報表示部30に表示される際に、容器に泡が発生していた可能性がある旨の警告を表示するようにしてもよい。そうすれば、オペレータは、その分析結果の信頼性が疑わしいものであることを認識することができる。
また、別の実施態様としては、泡検知手段20によって液面の泡が検出された場合に、その旨の警告を表示し、オペレータが確認するまで以降の吸入動作及び分注動作を中断するように構成されていてもよい。
ΔHが第2のしきい値を超えている場合は、その容器を新たな容器と判断し、以降の吸入動作及び分注動作を実行する。ΔHが第2のしきい値を超えている場合も、情報表示部30に容器が新たな容器である旨の表示がなされるようになっていてもよい。
プローブ下降動作の際に検出された液面高さH1と吸入量条件に基づき、今回の吸入動作後の液面高さの理論値H0が算出される。図3では、液の分注動作の後にH0が算出されるようになっているが、この算出のタイミングはH0の算出が可能なタイミングであればいずれのタイミングであってもよい。
(実施例2)
図4を用いて液採取装置の他の実施例を説明する。
この実施例の液採取装置は、ポンプ4及びプローブ駆動機構6の動作制御を行なう演算制御装置10aの有する機能が、図1から図3を用いて説明した実施例1の演算制御装置10の有する機能と相違しており、他の構成は実施例1と同じである。
この実施例の演算制御装置10aは、実施例1の演算制御装置10の機能に加え、しきい値選択手段19及び液情報記憶部28を備えている。さらに、実施例1における第1しきい値保持部25及び第2しきい値保持部26は第1のしきい値、第2のしきい値としてそれぞれ単一の値を保持するものであるが、この実施例における第1しきい値保持部25aと第2しきい値保持部26aは、第1のしきい値、第2のしきい値としてそれぞれ複数の値を保持している。
吸入対象の容器の液面に発生する泡の大きさは液の種類、その容器の大きさや形状によってかわってくることがある。また、ポンプ4の吸入精度による吸入後の液面高さの許容誤差の範囲は、容器の大きさや形状によって異なる。そのため、第1しきい値保持部25aには、第1のしきい値として、吸入対象の液を収容した容器の大きさや形状に応じたものが保持されている。第2しきい値保持部26aには、第2のしきい値として、吸入対象の液の種類に応じたもの、又は容器の大きさ又は形状に応じたものが保持されている。液の種類や容器の大きさ又は形状は、予め液情報として装置側に登録されており、液情報保持部28に登録されている。
しきい値選択手段19は、オペレータの指定した条件に基づいて特定された吸入対象液の情報を液情報保持部28から読み取り、その液を収容する容器の大きさ又は形状に応じた第1のしきい値を第1しきい値保持部25aから選択するとともに、その液の種類、容器の大きさ又は形状に応じた第2のしきい値を第2しきい値保持部26aから選択するように構成されている。泡検知手段20は、しきい値選択手段19が選択した第1のしきい値と第2のしきい値を用いて、液面に発生した泡の検知を行なうようになっている。
この実施例の動作を図4とともに図5のフローチャートを用いて説明する。
オペレータによって採取すべき液の種類や量などの条件が指定されると、その条件に基づいて吸入対象の液(の容器)を特定し、その液の情報が液情報保持部28から読み出される。読み出された液の種類、容器の大きさ又は形状に基づいて第1のしきい値及び第2のしきい値が選択される。ここで選択された第1のしきい値と第2のしきい値が、吸入対象容器内の泡の検知に用いられる。以降のプローブ下降動作から分注動作までの一連の流れについては実施例1と同じであるので、ここでは詳細な説明を省略する。
(実施例3)
次に、上記の液採取装置を適用した自動分析装置の一実施例について図6及び図7を用いて説明する。この実施例で適用されている液採取装置は、実施例1及び実施例2のいずれのものであってもよい。
この自動分析装置101は、2つの自動分析装置102a,102bと装置間輸送装置112により構成されている。自動分析装置102a,102bは水平面内の一方向であるX方向に並んで配置され、両自動分析装置102a,102bのそれぞれの搬送機構106aと106bの間が装置間輸送装置112によって連結されている。この自動分析装置101では、前段側の自動分析装置102aにおいてサンプリングの終了した検体が装置間輸送装置112を介して後段側の自動分析装置102bに導入され、後段側の自動分析装置102bにおいてもその検体のサンプリングと分析がなされる。
前段側の自動分析装置102aは、分析動作部104a、搬送機構106a及びラック導入機構118aを備えている。搬送機構106aは検体容器を保持した検体ラック120をX方向の一方側(図6及び図7において左側)へ搬送するベルトコンベア107aを備えている。ベルトコンベア107aの周囲はカバーで覆われている。搬送機構106aの始端側(図6及び図7において右側)に検体ラック配置部108aが設けられ、終端側(同図において左側)に検体ラック回収部110aが設けられている。検体ラック配置部108aと検体ラック回収部110aのカバーは開閉可能であり、ユーザーが検体ラック配置部108aのカバーを開けて検体ラックをベルトコンベア107a上に配置したり、検体ラック回収部110aのカバーを開けてサンプリングの終了した検体ラックを取り出したりすることができる。
ラック導入機構118aは水平面内においてX方向と直交するY方向へ移動し、ベルトコンベア107a上の検体ラック120を保持して分析動作部104a側へ導入したり、サンプリングの終了した検体ラック120をベルトコンベア107a上に配置したりするものである。
分析動作部104aには、試薬収容部122a、検体収容部123a、測定部124a、サンプリングアーム125a、試薬アーム127a及び129aが設けられている。試薬収容部122aには種々の試薬を収容した複数の試薬容器121aが同一円周上に設置されている。検体収容部123aは複数の検体ラック120を収容することができ、ラック導入機構118aによって導入された検体ラック120がこの検体収容部123aに収容されるようになっている。測定部124aは複数の測定ポート(図示は省略)を備えており、それらの測定ポートに配置された反応容器内の反応を光学的に測定するようになっている。試薬収容部122a、検体収容部123a及び測定部124aはそれぞれ水平面内において回転するターンテーブルになっており、試薬容器、検体容器及び測定ポートをその円周上の任意の位置に移動させることができる。
サンプリングアーム125aは検体収容部123aと測定部124aとの間において水平方向へ延びるように配置されている。サンプリングアーム125aの先端部に、検体を採取するためのプローブ126aがその先端を鉛直下向きにした状態で固定されている。サンプリングアーム125aの基端部は、鉛直向きに配置された軸によって支持されており、その軸を中心に回転するとともにその軸に沿って上下動を行なうことができる。これにより、プローブ126aは、検体収容部123a上の位置と測定部124a上の位置との間で円軌道を描くように移動し、検体容器上の位置又は反応容器上の位置から下降して検体を吸入したり反応容器に検体を分注したりすることができる。サンプリングアーム125a及びプローブ126aは検体採取機構140a(図12を参照。)を構成している。
試薬アーム127a及び129aは、それぞれ試薬収容部122aと測定部124aとの間において水平方向へ延びるように配置されている。試薬アーム127aの先端部には試薬を採取するためのプローブ128aが、試薬アーム128aの先端部には試薬を採取するためのプローブ130aが、それぞれ先端を鉛直下向きにした状態で固定されている。試薬アーム127a及び129aの基端部は、それぞれが鉛直向きに配置された軸によって支持されており、その軸を中心に回転するとともにその軸に沿って上下動を行なうことができる。これにより、プローブ127aと129aは、試薬収容部122a上の位置と測定部124a上の位置との間で円軌道を描くように移動し、試薬容器上の位置上の位置から下降して試薬を吸入し反応容器に試薬を分注することができる。試薬アーム127aとプローブ128a、試薬アーム129aとプローブ130aはそれぞれ独立した試薬分注機構142a(図12を参照。)を構成している。
なお、この実施例では、2つの試薬アーム127a及び129aによって試薬分注機構142aが構成されているが、試薬アームが1つだけであってもよい。2つの試薬アーム127a及び129aが設けられていることにより、2以上の試薬を使用する分析項目に対応することができる。
この試薬分注機構142a(図12を参照。)には、実施例1又は実施例2の液採取装置が適用されている。すなわち、試薬アーム127a及び129aは図2におけるアーム34に対応し、プローブ128a及び130aは図2におけるプローブ2に対応する。図7には示されていないが、プローブ128aとプローブ130aの先端が液面に接触したことを検知する液面センサ144a(図12を参照。)がこの試薬分注機構142a(図12を参照。)に設けられており、液面センサ144aの検知信号はこの自動分析装置全体を管理する演算制御装置134(図12を参照。)に取り込まれるようになっている。
後段側の自動分析装置102bは前段側の自動分析装置102aと同じ構成を有する。自動分析装置102bの搬送機構106bに設けられたベルトコンベア107bの始端と前段側のベルトコンベア107aの終端とは装置間輸送装置112によって連結されている。
装置間輸送装置112は、前段側のベルトコンベア107aの終端にきた検体ラック120を保持して後段側のベルトコンベア107bの始端に配置する輸送機構とその輸送機構を覆う開閉式の遮蔽カバー114を備えている。輸送機構については後述する。
装置間輸送装置112の輸送機構の一例について図8から図11を用いて説明する。
輸送機構1100は水平面を有するテーブル1102を備えている。テーブル1102は基台1118によって支持されている。テーブル1102の水平面は両端に配置されるベルトコンベア107a,107bの搬送面とほぼ同じ高さに設定されている。テーブル1102のX方向における一方側(図において右側)の端部近傍の位置は輸送対象である検体ラックを保持して輸送を開始する輸送開始位置1103aであり、この輸送開始位置1103aに前段側のベルトコンベア107aの終端がくるように配置されている。テーブル1102のX方向における他方側(図において左側)の端部近傍の位置は検体ラックの輸送完了位置1103bとなっており、この輸送完了位置1103bに後段側のベルトコンベア107bの始端がくるように配置されている。
テーブル1102上の両側縁部にX方向に延びた腕部材1104と腕部材1106が対向して配置されている。腕部材1104と腕部材1106はテーブル1102の側縁部においてX方向とY方向へ駆動される。腕部材1104と腕部材1106は、X方向に対しては同時に同方向へ連動して移動し、Y方向に対してテーブル1102を中心として対称な方向へ連動して移動する。図には示されていないが、腕部材1104と腕部材1106を駆動するモータ等の機構は基台1118の内部に収容されている。
腕部材1104は、輸送開始位置1103a側端部に突起1104aを備え、輸送完了位置1103b側端部に突起1104bを備えている。突起1104aと突起1104bは検体ラックの腕部材1104側側面に設けられた凹部(図示は省略)に嵌め込まれて検体ラックと係合するものである。腕部材1104のY方向への移動は、突起1104a,1104bが検体ラックの凹部に嵌め込まれる位置と検体ラック自体に接触しない位置との間で行なわれる。
腕部材1106は、輸送開始位置1103a側端部に突起1106aを備え、輸送完了位置1103b側に突起1106bを備えている。突起1106aと突起1106bは検体ラックの後背面と係合するものである。腕部材1106のY方向への移動は、突起1106a,1106bが検体ラックの背面に係合する位置と突起1106a,1106bが検体ラックに接触しない位置との間で行なわれる。
腕部材1104と1106は、検体ラックを保持して輸送開始位置1103aから輸送完了位置1103bまでテーブル1102上をスライドさせて輸送するハンドラを構成している。このハンドラは、輸送開始位置1103a側と輸送完了位置1103b側の2箇所に保持部を備えている。輸送開始位置1103a側の保持部は腕部材1104の突起1104aと腕部材1106の突起1106aで構成され、輸送完了位置1103b側の保持部は腕部材1104の突起1104bと腕部材1106の突起1106bで構成される。
以下において、腕部材1104と腕部材1106をまとめて「ハンドラ1104,1106」、ハンドラ1104,1106の輸送開始位置1103a側の保持部を「第1保持部1104a,1106a」、輸送完了位置1103b側の保持部を「第2保持部1104b,1106b」と称する。
第1保持部1104a,1106aは、腕部材1104と1106の輸送開始位置1103a側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一方側の側面の凹部に突起1104aを嵌め込むとともに検体ラックの反対側後背面を突起1106aで支持する。第2保持部1104b,1106bは、腕部材1104と1106の輸送完了位置1103b側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一側面の凹部に突起1104bを嵌め込むとともに検体ラックの反対側後背面を突起1106bで支持する。ハンドラ1104,1106は、検体ラックを保持した状態でX方向へ移動し、検体ラックをテーブル1102上でスライドさせて輸送する。テーブル1102の腕部材1106側の側縁部には、テーブル1102上をスライドする検体ラックの側面に設けられた溝に嵌め込まれて検体ラックの転倒を防止するガイドレール1108が設けられている。
輸送開始位置1103aの側方には、輸送開始位置1103aへの検体ラックの到達を検知する開始センサ1110が設けられている。輸送完了位置1103bの側方には、輸送完了位置1103bへの検体ラックの到達を検知する終了センサ1112が設けられている。また、輸送開始位置1103aの近傍に、前段側のベルトコンベア107aによって輸送開始位置1103aまで搬送されてきた検体ラックを輸送開始位置1103aで一時的に停止させておくためのストッパ1114が設けられている。
基台1118の側部に回路基板1116が設けられている。回路基板1116はハンドラ1104,1106の動作を制御する制御部(以下において、制御部1116とも記載)をなしている。開始センサ1110及び終了センサ1112は配線を介して回路基板1116に接続されている。開始センサ1110及び終了センサ1112の信号は回路基板1116に取り込まれ、ハンドラ1104,1106による検体ラックの輸送動作の開始や検体ラックの輸送エラーの有無の判定に利用される。
なお、図10及び図12では、配線や回路基板1116に搭載されているモジュールの図示を省略している。図11では回路基板1116に搭載されているモジュールの一部は図示しているが、配線の図示を省略している。
次に、この自動分析装置101全体の制御系統について図12を用いて説明する。
第1自動分析装置102aには分析動作部104a、搬送機構106a及びラック導入機構118aの動作を制御する制御部132aが設けられ、第2自動分析装置102bには分析動作部104b、搬送機構106b及びラック導入機構118bの動作を制御する制御部132bが設けられている。装置間輸送装置112には輸送機構1100の動作を制御する制御部1116が設けられている。
制御部132a,132b及び1116はそれぞれ演算制御装置134と接続されている。第1自動分析装置102aの分析動作部104aで得られた測定データや第2自動分析装置102bの分析動作部104bで得られた測定データは制御部132aを介して演算制御装置134に取り込まれ、演算制御装置134において検体中の成分の同定や定量が行なわれる。
既述のように、第1自動分析装置102aの分析動作部104aは、検体採取機構140aと試薬分注機構142aを備えている。試薬分注機構142aは実施例1又は実施例2の液採取機構を適用したものであり、この試薬分注機構142aには、プローブ128a及び130aの先端が液面に接触したことをそれぞれ検知する液面センサ144aが設けられている。同様に、第2自動分析装置102bの分析動作部104bは、検体採取機構140bと試薬分注機構142bを備えており、試薬分注機構142bには、プローブ128b及び130bの先端が液面に接触したことをそれぞれ検知する液面センサ144bが設けられている。液面センサ144aの検知信号は制御部132aを介して演算制御装置134に取り込まれ、液面センサ144bの検知信号は制御部132bを介して演算制御装置134に取り込まれる。
演算制御装置134は、実施例1の演算制御装置10又は実施例2の演算制御装置10aを実現するものであり、情報表示部138は実施例1又は実施例2の情報表示部30を実現するものである。演算制御装置134は、実施例1又は実施例2において説明した、液面の泡検知機能を用いて試薬容器内の液面の泡の検知を行ない、試薬吸入の際に試薬の液面に泡が検知された場合はその旨を情報表示部138に表示する。そして、泡の検知された試薬を用いて分析がなされた場合に、その分析結果を情報表示部138に表示する際に、試薬の液面に泡が存在していた可能性がある旨の警告を行なう。
2,126a,126b,128a,128b,130a,130b プローブ
4 ポンプ
5 プローブ駆動機構
6 上下動駆動部
7 回転駆動部
8,144a,144b 液面センサ
10,10a,134 演算制御装置
12 プローブ動作制御手段
14 液面高さ検出手段
16 吸入後液面高さ算出手段
18 差分算出手段
19 しきい値選択手段
20 泡検知手段
22 警告表示手段
24 液面高さ記憶部
25 第1しきい値保持部
26,26a 第2しきい値保持部
28 液情報保持部
30,138 情報表示部
104a,104b 分析動作部
106a,106b 搬送機構
112 装置間輸送装置
118a,118b ラック導入機構
120 検体ラック
121a,121b 試薬容器
122a,122b 試薬収容部
123a,123b 検体収容部
124a,124b 測定部
125a,125b サンプリングアーム
132a,132b,1116 制御部
136 情報入力部
1100 輸送機構

Claims (10)

  1. 液を収容した容器に上方から挿入され該容器内の液を吸入するプローブと、
    前記プローブを少なくとも鉛直方向へ駆動するプローブ駆動機構と、
    前記プローブを介して液の吸入と吐出を行なうポンプと、
    前記プローブの先端が液面に接触したことを検知する液面センサと、
    吸入対象の液を収容した容器上の位置から前記プローブを下降させて該容器内に進入させるプローブ下降動作及びその容器内の液を予め設定された量だけ吸入する吸入動作が実行されるように前記プローブ駆動機構と前記ポンプを制御するプローブ動作制御手段と、
    前記液面センサの検知信号に基づき、前記プローブ下降動作の際の前記プローブ先端が液面に接触したときの前記プローブの位置を検知することにより、前記吸入動作前の液面高さを検出するように構成された液面高さ検出手段と、
    前記液面高さ検出手段により検出された前記吸入動作前の液面高さとその吸入動作の際の吸入量に基づいて、その吸入動作後の液面高さの理論値を算出するように構成された吸入後液面高さ算出手段と、
    前記吸入後液面高さ算出手段により算出された液面高さの理論値を記憶する液面高さ記憶部と、
    前記吸入後液面高さ算出手段により算出された前記吸入動作後の液面高さの理論値と前記吸入動作後の実際の液面高さとの相違として許容される誤差の最大値として設定された第1のしきい値を保持する第1しきい値保持部と、
    前記第1のしきい値よりも大きく設定された第2のしきい値を保持する第2しきい値保持部と、
    同一の吸入対象の容器に対して2回目以降の前記プローブ下降動作を実行する際に前記液面高さ検出手段により検出された液面高さと、前記液面高さ記憶部に記憶されている当該容器についての前記吸入動作後の液面高さの理論値との差分を算出するように構成された差分算出手段と、
    前記差分算出手段により算出された差分値と前記第1のしきい値及び前記第2のしきい値とを比較し、前記差分値が前記第1のしきい値を超え、かつ前記第2のしきい値以下であるときに泡の存在を検知するように構成された泡検知手段と、
    前記泡検知手段が泡の存在を検知したときに、オペレータの認識しうる方法でその旨を出力するように構成された警告表示手段と、を備えた液採取装置。
  2. 前記液面高さ記憶部は、前記容器に収容された液の液面高さの初期値を記憶しており、
    前記差分算出手段は、吸入対象の容器に対する1回目の前記プローブ下降動作を実行する際に前記液面高さ検出手段により検出された液面高さと前記液面高さ記憶部に記憶されている当該容器内の液の液面高さの初期値との差分を、前記泡検知手段が泡の検知に用いる前記差分値として算出するように構成されている請求項1に記載の液採取装置。
  3. 前記第2のしきい値は、容器内の液面に発生しうる泡の大きさの最大値に基づいて設定されたものである請求項1又は2に記載の液採取装置。
  4. 前記プローブによる吸入対象となる液であって互いに異なる種類の液を収容した容器が複数設けられ、前記第2のしきい値は吸入対象の液の種類ごとに個別に設定されており、
    吸入対象の液の種類に応じて前記第2のしきい値を選択するしきい値選択手段をさらに備え、
    前記泡検知手段は、前記しきい値選択手段の選択した前記第2のしきい値を用いて泡の存在を検知するように構成されている請求項3に記載の液採取装置。
  5. 前記プローブによる吸入対象となる液を収容した容器が複数設けられ、前記第1のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されており、
    吸入対象の液を収容した容器の大きさ又は形状に応じて前記第1のしきい値を選択するしきい値選択手段をさらに備え、
    前記泡検知手段は、前記しきい値選択手段の選択した前記第1のしきい値を用いて泡の存在を検知するように構成されている請求項3に記載の液採取装置。
  6. 前記プローブによる吸入対象となる液を収容した容器が複数設けられ、前記第2のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されており、
    吸入対象の液を収容した容器の大きさ又は形状に応じて前記第2のしきい値を選択するしきい値選択手段をさらに備え、
    前記泡検知手段は、前記しきい値選択手段の選択した前記第2のしきい値を用いて泡の存在を検知するように構成されている請求項3に記載の液採取装置。
  7. 前記泡検知手段は、前記差分算出手段により算出された差分値が前記第2のしきい値を超えているときにその吸入対象の液を収容した容器が新たな容器であることを検知するように構成されている請求項1から6のいずれか一項に記載の液採取装置。
  8. 前記プローブ動作制御手段、前記液面高さ検出手段、前記吸入後液面高さ算出手段、前記液面高さ記憶部、前記しきい値保持部、前記差分算出手段及び前記泡検知手段を備えた演算制御装置と、
    前記演算制御装置に接続され、前記演算制御装置の有する情報を表示する情報表示部と、をさらに備え、
    前記警告表示手段は、前記泡検知手段が泡の存在を検知したときにその旨を前記情報表示部に表示するように構成されている請求項1から7のいずれか一項に記載の液採取装置。
  9. 検体を収容した検体容器から検体を採取し、検体を反応させるための反応容器に分注する検体採取機構と、
    請求項1から8のいずれか一項に記載の液採取装置によって構成され、試薬を収容した試薬容器から試薬を吸入して反応容器に分注する試薬分注機構と、
    検体及び試薬を収容した反応容器内を測定する測定部と、を備えた自動分析装置。
  10. 前記検体採取機構、前記試薬分注機構及び前記測定部をそれぞれ備えた分析装置が複数設けられており、
    前記分析装置の各々は、複数の検体容器が保持された検体ラックを一方向に搬送するベルトコンベアを備え、互いに隣接して配置された分析装置のうち一方のベルトコンベアの終端と他方のベルトコンベアの始端が対向するように配置されており、それらの前記ベルトコンベアの間が、前記一方のベルトコンベアの終端に到達した前記検体ラックを保持して前記他方のベルトコンベアの始端へ輸送する輸送機構を有する装置間輸送装置によって連結されている請求項9に記載の自動分析装置。
JP2014228702A 2013-12-16 2014-11-11 液採取装置及びその液採取装置を備えた自動分析装置 Active JP6274081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228702A JP6274081B2 (ja) 2013-12-16 2014-11-11 液採取装置及びその液採取装置を備えた自動分析装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015553244 2013-12-16
JP2015553244 2013-12-16
JP2014228702A JP6274081B2 (ja) 2013-12-16 2014-11-11 液採取装置及びその液採取装置を備えた自動分析装置

Publications (2)

Publication Number Publication Date
JP2016027309A true JP2016027309A (ja) 2016-02-18
JP6274081B2 JP6274081B2 (ja) 2018-02-07

Family

ID=55352748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228702A Active JP6274081B2 (ja) 2013-12-16 2014-11-11 液採取装置及びその液採取装置を備えた自動分析装置

Country Status (1)

Country Link
JP (1) JP6274081B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520584A (ja) * 2016-07-08 2019-07-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料を処理するための装置、ラボラトリオートメーションシステム、およびラボラトリ試料をピペット操作するための方法
WO2020066189A1 (ja) 2018-09-26 2020-04-02 株式会社日立ハイテクノロジーズ 自動分析システム
CN112915011A (zh) * 2021-01-22 2021-06-08 北京中关村水木医疗科技有限公司 用于分液仪器的出液方法和装置
CN113188840A (zh) * 2021-03-31 2021-07-30 深圳普门科技股份有限公司 取样方法、装置、检测设备和存储介质
CN113324620A (zh) * 2021-06-02 2021-08-31 成都瀚辰光翼科技有限责任公司 一种液面探测方法及装置
CN113330307A (zh) * 2019-01-17 2021-08-31 株式会社岛津制作所 色谱仪用自动取样器及流体色谱分析系统
CN113544518A (zh) * 2019-04-26 2021-10-22 株式会社日立高新技术 自动分析装置
CN114624458A (zh) * 2022-05-13 2022-06-14 深圳市帝迈生物技术有限公司 样本分析装置、分析方法、分析设备以及存储介质
WO2023132156A1 (ja) * 2022-01-06 2023-07-13 株式会社日立ハイテク 自動分析装置、分注方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564628Y2 (ja) * 1991-08-01 1998-03-09 東亞医用電子株式会社 試薬分取装置における泡検知装置
JP2007322285A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2010216956A (ja) * 2009-03-16 2010-09-30 Shimadzu Corp サンプリング機構
EP2561929A1 (de) * 2011-08-18 2013-02-27 Hamilton Bonaduz AG Verfahren zum Detektieren der Oberfläche einer Flüssigkeitsprobe in einem Probenbehälter
WO2013042405A1 (ja) * 2011-09-20 2013-03-28 株式会社日立ハイテクノロジーズ 自動分析装置及びその動作不良判定方法
JP2014041045A (ja) * 2012-08-22 2014-03-06 Sysmex Corp 試薬容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564628Y2 (ja) * 1991-08-01 1998-03-09 東亞医用電子株式会社 試薬分取装置における泡検知装置
JP2007322285A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2010216956A (ja) * 2009-03-16 2010-09-30 Shimadzu Corp サンプリング機構
EP2561929A1 (de) * 2011-08-18 2013-02-27 Hamilton Bonaduz AG Verfahren zum Detektieren der Oberfläche einer Flüssigkeitsprobe in einem Probenbehälter
WO2013042405A1 (ja) * 2011-09-20 2013-03-28 株式会社日立ハイテクノロジーズ 自動分析装置及びその動作不良判定方法
JP2014041045A (ja) * 2012-08-22 2014-03-06 Sysmex Corp 試薬容器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520584A (ja) * 2016-07-08 2019-07-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料を処理するための装置、ラボラトリオートメーションシステム、およびラボラトリ試料をピペット操作するための方法
US11125601B2 (en) 2016-07-08 2021-09-21 Roche Diagnostics Operations, Inc. Laboratory automation system including improved processing of a laboratory sample by optical and tip position sensing
WO2020066189A1 (ja) 2018-09-26 2020-04-02 株式会社日立ハイテクノロジーズ 自動分析システム
CN112585477A (zh) * 2018-09-26 2021-03-30 株式会社日立高新技术 自动分析系统
JPWO2020066189A1 (ja) * 2018-09-26 2021-08-30 株式会社日立ハイテク 自動分析システム
CN112585477B (zh) * 2018-09-26 2024-02-23 株式会社日立高新技术 自动分析系统
JP7033668B2 (ja) 2018-09-26 2022-03-10 株式会社日立ハイテク 自動分析システム
US11796553B2 (en) 2018-09-26 2023-10-24 Hitachi High-Tech Corporation Automatic analysis system
CN113330307B (zh) * 2019-01-17 2023-08-01 株式会社岛津制作所 色谱仪用自动取样器及流体色谱分析系统
CN113330307A (zh) * 2019-01-17 2021-08-31 株式会社岛津制作所 色谱仪用自动取样器及流体色谱分析系统
CN113544518A (zh) * 2019-04-26 2021-10-22 株式会社日立高新技术 自动分析装置
CN112915011A (zh) * 2021-01-22 2021-06-08 北京中关村水木医疗科技有限公司 用于分液仪器的出液方法和装置
CN113188840A (zh) * 2021-03-31 2021-07-30 深圳普门科技股份有限公司 取样方法、装置、检测设备和存储介质
CN113324620B (zh) * 2021-06-02 2022-08-30 成都瀚辰光翼科技有限责任公司 一种液面探测方法及装置
CN113324620A (zh) * 2021-06-02 2021-08-31 成都瀚辰光翼科技有限责任公司 一种液面探测方法及装置
WO2023132156A1 (ja) * 2022-01-06 2023-07-13 株式会社日立ハイテク 自動分析装置、分注方法
CN114624458B (zh) * 2022-05-13 2022-10-28 深圳市帝迈生物技术有限公司 样本分析装置、分析方法、分析设备以及存储介质
CN114624458A (zh) * 2022-05-13 2022-06-14 深圳市帝迈生物技术有限公司 样本分析装置、分析方法、分析设备以及存储介质

Also Published As

Publication number Publication date
JP6274081B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6274081B2 (ja) 液採取装置及びその液採取装置を備えた自動分析装置
WO2015092844A1 (ja) 液採取装置及びその液採取装置を備えた自動分析装置
EP2703819B1 (en) Sample processing apparatus and sample processing method
EP3270168B1 (en) Automated analysis device
CN103558405B (zh) 自动分析装置
EP2853900A1 (en) Analyzer and analyzing method using a tip container with cover
JP5575410B2 (ja) 自動分析装置
JP5336555B2 (ja) 検体分析装置
JP2010048594A (ja) 血液サンプル検出方法、血液サンプル分注方法、血液サンプル分析方法、分注装置および血液サンプル種類検出方法
JP2013148360A (ja) 自動分析装置、分注機構および分注方法
JP5374092B2 (ja) 自動分析装置および血液サンプル分析方法
JP2010286324A (ja) 分注装置、自動分析装置、および分注方法
JP2017083269A (ja) 自動分析装置
EP4089417A1 (en) Automatic analysis device, display system of automatic analysis device, and method for carrying out display in automatic analysis device
JP6338898B2 (ja) 自動分析装置
WO2021079645A1 (ja) 自動分析装置および試薬の分注方法
JP2014157073A (ja) 自動分析装置
WO2015083236A1 (ja) 複数の分析装置を連結してなる自動分析システム
JPWO2016017294A1 (ja) 自動分析装置
US10908174B2 (en) Automatic analyzing apparatus
JP7270039B2 (ja) 自動分析装置、および異常検知方法
US8741219B2 (en) Sample processing system, base for sample processing system, and sample processing apparatus
JP2011007697A (ja) 自動分析装置
JP2015052610A (ja) 自動分析装置
JP3104756U (ja) 検体処理装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6274081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151