JP2015205659A - 車両の振動低減システム - Google Patents

車両の振動低減システム Download PDF

Info

Publication number
JP2015205659A
JP2015205659A JP2014088980A JP2014088980A JP2015205659A JP 2015205659 A JP2015205659 A JP 2015205659A JP 2014088980 A JP2014088980 A JP 2014088980A JP 2014088980 A JP2014088980 A JP 2014088980A JP 2015205659 A JP2015205659 A JP 2015205659A
Authority
JP
Japan
Prior art keywords
vibration
control
vehicle
generation source
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014088980A
Other languages
English (en)
Inventor
宏和 渡井
Hirokazu Watai
宏和 渡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2014088980A priority Critical patent/JP2015205659A/ja
Publication of JP2015205659A publication Critical patent/JP2015205659A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

【課題】車両の振動低減効果を向上する車両の振動低減システムを提供する。【解決手段】車両の振動低減システムは、車両の所定の第1の部位における振動に対する車両の複数の第2の部位の寄与度に基づいて生成され、振動の発生源の回転数に応じた第2の部位を示す対応情報を予め記憶する記憶部26と、発生源の回転数及び対応情報に基づいて振動制御の対象である制御部位を決定する制御部27と、を備える。【選択図】図2

Description

本発明は、車両の所定部位の振動を低減する振動低減システムに関する。
一般に、適応デジタルフィルタを用いた適応制御技術は、振動や音の低減を目的として広く用いられており、Filtered−X LMS(Least Mean Square)など多くの手法が提案されている。さらに、適応フィルタの構造についても、FIR(Finite Impulse Response)フィルタやSAN(Single-frequency Adaptive Notch)フィルタなど、様々な構造が提案されている。
その中で、自動車のエンジン振動等の周期信号を対象とした適応制御については、制御演算量やフィルタの収束性向上の面で、適応デジタルフィルタをSANフィルタで構成する手法が主に広く用いられている。
また、制御のずれが最大の振動検出位置を対象として、適応制御により電磁式アクチュエータを駆動することにより、振動検出位置での振動を低減する能動型防振装置が提案されている(例えば、特許文献1参照)。また、適応制御の手法については、種々のものが提案されている(例えば、特許文献2参照)。
特開2002−155985号公報 特開平8−44377号公報
しかしながら、以下に説明するように、従来の技術において振動低減効果が十分でない場合があった。振動源の振動が車両に伝搬する振動伝達経路は、エンジンマウントを介する経路以外にも複数存在する。また、振動伝達経路の伝達特性は、振動源の周波数によって種々の特性を有する。このため、例えば制御のずれが最大の振動検出位置を制御対象として振動制御を行っても、他の振動伝達経路の影響が大きい場合、車両の乗員が直接に感じる振動や音を十分に低減できない場合があった。
かかる事情に鑑みてなされた本発明の目的は、車両の振動低減効果を向上する車両の振動低減システムを提供することにある。
上記課題を解決するために、第1の発明は、
車両の所定の第1の部位における振動に対する前記車両の複数の第2の部位の寄与度に基づいて生成され、振動の発生源の回転数に応じた前記第2の部位を示す対応情報を予め記憶する記憶部と、
前記発生源の回転数及び前記対応情報に基づいて振動制御の対象である制御部位を決定する制御部と、を備える
ことを特徴とする。
また、第2の発明は、
前記記憶部は、前記発生源の回転次数ごとに生成された前記対応情報を予め記憶する
ことを特徴とする。
また、第3の発明は、
加振力を発生する加振装置と、
前記加振装置を動作させる適応フィルタと、を更に備え、
前記記憶部は、前記発生源の周波数と、前記適応フィルタのフィルタ係数の過去の収束値と、の対応関係を示す情報を予め記憶し、
前記適応フィルタは、前記記憶部が記憶する前記情報から前記発生源の周波数に応じて抽出された前記収束値を、フィルタ係数の初期値として用いる
ことを特徴とする。
第1の発明によれば、寄与解析の解析結果に基づいて対応情報を作成するので、車両の実走行時における発生源10の回転数に応じて制御すべき部位を制御部位に定めることにより、車両の振動低減効果を向上可能となる。
第2の発明によれば、対応情報は、発生源10の回転次数ごとに、発生源10の回転数範囲及び制御部位に定める部位を対応付けて含むため、複数の次数成分による振動を低減して車両の振動低減効果を更に向上可能となる。
第3の発明によれば、低減したい制御対象の周波数が変動した際、予め保存されたフィルタ係数の過去の収束値を初期値として与えるので、適応フィルタの収束値(最適解)までの到達時間が短くなり、制御の高速性を大幅に向上可能となる。
本発明の一実施形態に係る、車両の振動低減システムの構成要素の配置を示す模式図である。 本発明の一実施形態に係る、車両の振動低減システムの制御系を示すブロック線図である。 図2の記憶部に記憶されている、伝達特性に関する情報を示す図である。 図2の記憶部に記憶されている、フィルタ係数に関する情報を示す図である。 図2の記憶部に記憶されている対応情報を示す図である。 振動の寄与度解析結果を示す図である。 対応情報を生成する手順を説明するフローチャートである。 図2の車両の振動低減システムの動作を説明するフローチャートである。 クランク軸の回転パルス信号とクランク軸の回転1次、2次振動の波形との関係を示す図である。
本発明の実施形態について図面を参照して説明する。
図1は、本発明の一実施形態に係る車両の振動低減システムの構成要素の、車両における配置を示す模式図である。図1に示すように、エンジン(発生源)10は、電磁式アクチュエータを内蔵させた複数のACM(加振装置)11と複数のエンジンマウント12とによって支持されている。発生源10には、回転数センサ13が設けられている。車両の複数の部位には、振動をリアルタイムで検出する振動センサ14がそれぞれ設置されている。振動センサ14は、乗員が高い感度で体感する場所や振動源近傍(例えばエンジンマウント12の車体側部位など)に配置されるのが好ましい。振動センサ14が設置される部位は、例えばフロア部、ステアリング部、インストルメントパネル部、各ドア部、右エンジンマウント部、左エンジンマウント部、リアエンジンマウント部、及びメインフレーム部を含むが、車両の任意の部位であってもよい。
図2は、本実施形態に係る車両の振動低減システムの制御系を示すブロック線図である。制御系は、複数のACM11(11−1,11−2,…)と、回転数センサ13と、複数の振動センサ14(14−1,14−2,…)と、制御装置15と、を備える。図2において、説明の簡便のため、1つのACM11−m(m=1,2,…)及び1つの振動センサ14−n(n=1,2,…)を図示する。以下、1つのACM11−m及び1つの振動センサ14−nの組合せを用いた制御手法ついて説明する。複数のAMC11及び複数の振動センサ14を同時に用いる場合、m及びnが取り得る値の各組合せについて、以下に説明する制御手法を元に並列演算される。
ACM11−mは、制御装置15によって駆動(制御)され、車両の振動制御の対象である部位(制御部位)、即ち振動を低減したい部位の振動を低減するように、加振力を発生する。
回転数センサ13は、発生源10のクランク軸の回転パルス信号に基づいて発生源10の回転数を検出する。
振動センサ14−nは、本実施形態において加速度センサであるが、例えば荷重センサなど、任意のセンサを採用可能である。振動センサ14−nは、発生源10及びACM11−mから振動センサ14−nの設置部位に伝搬した加速度信号を検出し、検出した信号を誤差信号eとして出力する。
制御装置15は、制御周波数算出部16と、余弦波生成部17と、正弦波生成部18と、適応フィルタ19と、適応フィルタ20と、加算器21と、加算器22と、LMS演算部23と、加算器24と、LMS演算部25と、記憶部26と、制御部27と、を備える。
制御周波数算出部16は、回転数センサ13から出力されたクランク軸の回転数に基づいて、制御する周波数(制御周波数)を算出する。
余弦波生成部17は、制御周波数算出部16で算出された制御周波数及びその実数倍の周波数の余弦波を生成する。
正弦波生成部18は、制御周波数算出部16で算出された制御周波数及びその実数倍の周波数の正弦波を生成する。
適応フィルタ19は、余弦波生成部17が出力した余弦波のゲインを、フィルタ係数Wmnrを用いて調整する。フィルタ係数Wmnrは、AMC11−m及び振動センサ14−nの組合せを用いて振動制御を行う場合における、適応フィルタ19のフィルタ係数である。適応フィルタ19は、調整した余弦波を信号y1として出力する。
適応フィルタ20は、正弦波生成部18が出力した正弦波のゲインを、フィルタ係数Wmniを用いて調整する。フィルタ係数Wmniは、AMC11−m及び振動センサ14−nの組合せを用いて振動制御を行う場合における、適応フィルタ20のフィルタ係数である。適応フィルタ20は、調整した正弦波を信号y2として出力する。
加算器21は、信号y1と信号y2とを加算した制御信号yを、AMC11−mに出力する。制御信号yにより、ACM11−mが駆動(制御)される。
加算器22は、余弦波生成部17が生成した余弦波に伝達特性Cmnrを乗じた信号と、正弦波生成部18が生成した正弦波に伝達特性Cmniを乗じた信号とを加算した信号を出力する。伝達特性Cmnr及びCmniは、AMC11−mから振動センサ14−nまでの伝達特性Cmnを余弦波及び正弦波の和で表す場合の、それぞれ余弦成分の係数及び正弦成分の係数である。伝達特性Cmnr及びCmniの値は、制御部27により、記憶部26が記憶している伝達特性に関する情報から抽出される。伝達特性に関する情報の詳細については後述する。
LMS演算部23は、適応フィルタ19が用いるフィルタ係数Wmnrの初期値を設定する。具体的には、LMS演算部23は、発生源10の周波数(回転数)が変化すると、記憶部26が記憶しているフィルタ係数に関する情報から、変化後の周波数に対応するフィルタ係数Wmnrの過去の収束値を抽出する。LMS演算部23は、抽出した収束値を、適応フィルタ19のフィルタ係数Wmnrの初期値として設定する。フィルタ係数に関する情報の詳細については後述する。
また、LMS演算部23は、加算器22が出力した信号及び振動センサ14−nが出力した誤差信号eに基づいて、LMSアルゴリズムを用いて適応フィルタ19のフィルタ係数Wmnrを更新する。
加算器24は、余弦波生成部17が生成した余弦波に伝達特性−Cmniを乗じた信号と、正弦波生成部18が生成した正弦波に伝達特性Cmnrを乗じた信号とを加算した信号を出力する。
LMS演算部25は、適応フィルタ20が用いるフィルタ係数Wmniの初期値を設定する。具体的には、LMS演算部25は、発生源10の周波数(回転数)が変化すると、記憶部26が記憶しているフィルタ係数に関する情報から、変化後の周波数に対応するフィルタ係数Wmniの過去の収束値を抽出する。LMS演算部25は、抽出した収束値を、適応フィルタ20のフィルタ係数Wmniの初期値として設定する。
また、LMS演算部25は、加算器24が出力した信号及び振動センサ14−nが出力した誤差信号eに基づいて、LMSアルゴリズムを用いて適応フィルタ20のフィルタ係数Wmniを更新する。
記憶部26は、以下に説明する伝達特性に関する情報及びフィルタ係数に関する情報を記憶している。
伝達特性に関する情報は、m及びnが取り得る各組合せについて、ACM11−mから振動センサ14−nまでの伝達特性Cmnに対応する伝達特性Cmnr(f)及びCmni(f)の値を、周波数毎に含む。伝達特性Cmnr(f)及びCmni(f)は、周波数fにおける伝達特性Cmnを余弦波及び正弦波の和で表す場合の、それぞれ余弦成分の係数及び正弦成分の係数である。伝達特性Cmnr(f)及びCmni(f)の値は、実験又はシミュレーションなどにより、予め決定可能である。
例えば、図3に示す伝達特性に関する情報に含まれるC12は、ACM11−1から振動センサ14−2までの伝達特性である。また、例えばC12r(f0)及びC12i(f0)は、周波数f0における伝達特性C12の、それぞれ余弦成分の係数及び正弦成分の係数である。
フィルタ係数に関する情報は、m及びnが取り得る各組合せについて、ACM11−m及び振動センサ14−nの組合せを用いて過去に適応制御を行った際に、各周波数において得られたフィルタ係数Wmnr(f)及びWmni(f)の各収束値を、周波数毎に含む。フィルタ係数Wmnr(f)及びWmni(f)の各収束値は、例えば実験又はシミュレーションなどにより、予め決定可能である。
例えば、図4に示すフィルタ係数に関する情報に含まれるW12r(f0)は、ACM11−1及び振動センサ14−2の組合せを用いて過去に適応制御を行った際に得られた、周波数f0における適応フィルタ19のフィルタ係数W12rの収束値である。同様に、W12i(f0)は、ACM11−1及び振動センサ14−2の組合せを用いて過去に適応制御を行った際に得られた、周波数f0における適応フィルタ20のフィルタ係数W12iの収束値である。
ここで、フィルタ係数の収束値は、運転状態(例えば、緩加速や急加速、路面状態の違いによるエンジンの負荷状態など)によって最適解が異なることが考えられる。このため、本実施形態において、複数の異なる運転状態それぞれについて予めフィルタ係数の収束値を定めて記憶しておき、その時々の運転状態に対応するフィルタ係数の収束値が抽出されるようにしてもよい。
また、記憶部26は(図2参照)、車両の所定の評価部位(第1の部位)における振動に対する、車両の複数の他の部位(第2の部位)の寄与度に基づいて生成された情報であって、発生源10の回転数に応じた他の部位(第2の部位)を示す対応情報を記憶している。
例えば、図5に示す対応情報は、発生源10の回転数の範囲と、回転数の範囲に応じた部位との対応関係を示す。好適には、記憶部26は、発生源10の回転次数成分ごとに生成された対応情報を記憶している。例えば、図5に示すように、発生源10の回転の1次成分に関する対応情報において、回転数範囲“帯域A”,“帯域B”,“帯域C”にそれぞれ“部位1”、“部位2”、“部位3”が対応付けられている。また、発生源10の回転の2次成分に関する対応情報において、回転数範囲“帯域A”,“帯域B”,“帯域C”にそれぞれ“部位4”、“部位5”、“部位6”が対応付けられている。また、発生源10の回転の3次成分に関する対応情報において、回転数範囲“帯域A”,“帯域B”,“帯域C”にそれぞれ“部位7”、“部位8”、“部位9”が対応付けられている。ここで、部位n(n=1,2,…)は、振動センサ14−nが設置されている車両の部位である。複数の部位が、1つの回転数範囲に対応付けられてもよい。対応情報を生成する手順の詳細については後述する。
制御部27は(図2参照)、制御装置15の動作全体を制御する。
例えば、制御部27は、回転数センサ13から取得した発生源10の回転数及び記憶部26が記憶している対応情報に基づいて、振動制御の対象である部位(制御部位)を決定する。具体的には、制御部27は、取得した回転数に対応する部位nを対応情報から抽出し、抽出した部位nを制御部位に定めて、振動制御に用いる振動センサ14−nを決定する。このようにして、振動制御に用いるACM11−m及び振動センサ14−nの組合せ、即ちm及びnの値の組合せが決定される。
また、制御部27は、記憶部26が記憶している伝達特性に関する情報から、制御周波数算出部16から取得した制御周波数に対応する伝達特性Cmnr及びCmniの値をそれぞれ抽出する。
(対応情報について)
次に、対応情報を作成する手順について説明する。対応情報は、例えば発生源経路寄与解析に基づいて作成する。寄与度は、振動の評価対象である車両の所定の評価部位(第1の部位)の振動(振動特性)に対し、車両の他の部位(第2の部位)がどの程度寄与しているかを示す指標である。寄与度が高い部位における振動を低減すると、評価部位における振動が効率良く低減される。評価部位は、音・振動に対する車両の乗員の感度が高い部位に定めることが好適である。評価部位の振動は、例えば運転席又は後部座席における車内音やフロア振動などに定められる。
図6は、発生源10の回転の1次成分に関する寄与度解析結果を示す図である。図6において、横軸は発生源10の回転数を示し、“帯域A”,“帯域B”“帯域C”の3つの帯域に区分されている。また、縦軸は、評価部位と、振動センサ14−n(n=1,2,…)が設置されている、車両の部位nとを示す。図6に示す領域D,E,Fは、評価部位において検出された振動が大きい(例えば、所定値以上)、発生源10の回転数の範囲を示す。また、領域G,H,Iは、評価部位の振動(振動特性)に対する寄与度が高い(例えば、所定値以上)、車両の部位及び発生源10の回転数の範囲を示す。図6に示す解析結果によれば、帯域Aにおいて部位1、帯域Bにおいて部位2、及び帯域Cにおいて部位3の寄与度が高い。かかる場合、例えば図5に示すように、発生源10の回転の1次成分について、回転数範囲“帯域A”,“帯域B”,“帯域C”に、それぞれ寄与度が高い“部位1”,“部位2”,“部位3”を対応付けて対応情報を生成する。好適には、発生源10の回転次数ごとに対応情報を生成する。
上述したように、寄与度が高い部位における振動を低減すると、評価部位における振動が効率良く低減される。したがって、車両の走行中に時々刻々と変化する発生源10の回転数に応じて、制御部位を寄与度が高い部位に切り替えることが望ましい。本実施形態において、発生源10の回転数範囲と、寄与度の高い部位とを対応付けて対応情報が生成されるので、制御部27により、発生源10の回転数に応じて寄与度が高い部位が制御部位に定められる。
次に、対応情報を生成する手順について、図7に示すフローチャートを用いて説明する。
はじめに、評価対象に定める評価信号及び振動・音の発生源10を指定する(ステップS101)。例えば、運転席又は後部座席を評価部位に定めて、評価部位における加速度信号を評価信号に指定する。また、車両のエンジンを発生源10に指定する。
続いて、解析対象とする発生源10の回転次数を指定する(ステップS102)。
続いて、ステップS102において指定した発生源10の回転次数について、発生源10の回転数を変化させて、評価信号に対する車両の複数の部位の寄与度を解析する(ステップS103)。
続いて、解析対象とする所望の回転次数についてステップS102及びステップS103を繰返し実行し、回転次数ごとに評価信号に対する車両の複数部位の寄与度を解析する(ステップS104)。
続いて、ステップS104において得た寄与解析結果に基づいて、発生源10の回転次数ごとに対応情報を生成し、記憶部26に記憶させる(ステップS105)。
(振動制御について)
次に、本実施形態の振動低減システムによる振動制御の動作について、図8のフローチャートを参照して説明する。以下、説明の簡便のため、1つのACM11−mを用いる場合について説明する。
はじめに、制御装置15は、制御周波数算出部16にて、回転数センサ13から取得した発生源10の回転数に基づいて周波数を算出する(ステップS201)。
次に、制御装置15は、周波数(回転数)が変化したか否かを判定する(ステップS202)。
ステップS202において周波数が変化したとき(ステップS202−Yes)、制御装置15は、制御部27にて、記憶部26が記憶している対応情報から、発生源10の回転数に対応する車両の部位n(n=1,2,…)を抽出する。制御装置15は、制御部27にて、抽出した部位nを制御部位に定めて(ステップS203)、振動制御に用いる振動センサ14−nを決定する。
続いて、制御装置15は、LMS演算部23及びLMS演算部25にて、記憶部26が記憶しているフィルタ係数に関する情報から、ステップS201において算出した周波数に対応するフィルタ係数Wmnr及びWmniの収束値をそれぞれ抽出する。制御装置15は、抽出した各収束値を、それぞれフィルタ係数Wmnr及びWmniの初期値として設定する(ステップS204)。
そして、制御装置15は、加算器21にて、適応フィルタ19及び20がそれぞれフィルタ係数Wmnr及びWmniを用いて生成した信号y1及びy2を加算し、制御信号yをACM11−mに出力する(ステップS207)。
一方、ステップS202において周波数が変化していないとき(ステップS202−No)、制御装置15は、制御部27にて、ステップS201において算出した周波数に対応する伝達特性Cmnr及びCmniを、記憶部26が記憶している伝達特性に関する情報からそれぞれ抽出する。制御装置15は、加算器22が出力した信号と、振動センサ14−nが出力した誤差信号eとをLMS演算部23に入力し、加算器24が出力した信号と、誤差信号emnとをLMS演算部25に入力する(ステップS205)。
続いて、制御装置15は、LMS演算部23及び25にて、ステップS205において入力された信号に基づいて、適応フィルタ19及び20のフィルタ係数Wmnr及びWmniの更新をそれぞれ行う(ステップS206)。
そして、制御装置15は、加算器21にて、適応フィルタ19及び20がそれぞれフィルタ係数Wmnr及びWmniを用いて生成した信号y1及びy2を加算し、制御信号yをACM11−mに出力する(ステップS207)。
(参照信号について)
次に、余弦波生成部17及び正弦波生成部18が、余弦波および正弦波をそれぞれ生成する際に余弦波および正弦波の原点を決定する方法について説明する。図9は、クランク軸の回転パルス信号とクランク軸の回転1次、2次振動の波形との関係を示す図である。図9に示す回転パルス信号は、クランク軸のクランク角などの検出に用いられる歯抜けが存在するパルス信号である。
図9において、aとbの位置は、クランク角が同位置となるため、この位置を、余弦波生成部17及び正弦波生成部18がそれぞれ生成する余弦波および正弦波の原点(正弦波の振幅が0、もしくは余弦波の振幅が1となる点)とする。原点は、クランク軸の回転パルス信号の歯抜け位置を基準にして決定される。
歯抜け位置は、例えば、(1つ前のHighレベルの期間)×2<(Lowレベルの期間)と判定された位置である。図9に示した例では、判定された歯抜け位置(歯抜け期間)後の最初のパルス信号の立ち下がりを検出した時点を原点に設定している。サンプリング周波数が十分に高い場合は、パルス信号の立ち上がりを検出した時点を原点に設定してもよい。
記憶部26に記憶されている適応フィルタ19及び20のフィルタ係数Wmnr及びWmniは、この原点を基準として生成された係数である。このため、本発明は、例えば、上述のような手法で正弦波および余弦波の原点を決定すれば、記憶部26に記憶されているフィルタ係数を用いて高速な制御効果を得ることができる。
なお、このような原点の決定方法以外にも、クランク軸の回転パルス信号が歯抜け無しの場合などは、ある特定のシリンダーの点火パルス信号やピストンのTDC(Top Dead Center:上死点)位置を検出する信号などを用いて、クランク軸の基準点(正弦波および余弦波の原点位置)を決定してもよいことは言うまでもない。
また、3気筒エンジンなど奇数個のシリンダーを持つエンジンにおいては、1.5次などハーフ次数の振動・音が主となる。ここで、クランク軸の回転パルス信号のみで原点を求め、上記の制御を実行した場合、制御を開始するタイミングによっては、制御対象を低減できる場合と、加振してしまう場合が考えられる。これは、奇数個のシリンダーを持つエンジンでは、上記方法で原点とするクランク角度位置における制御対象の振動方向が一意に定まらないためであり、現在の制御開始時の原点位置における振動方向が、過去の制御開始時の原点位置における振動方向と逆方向である場合に生じる。しかしながら、このような場合にも、例えば、クランク軸の回転パルス信号だけでなく、上述したシリンダーの点火パルス信号やTDC位置を検出する信号などの別の信号を併用することで、原点およびその位置での振動方向が一意に決定できるため、提案する制御手法を適用することが可能である。
以上説明したように、本実施形態に係る車両の振動低減システムによれば、寄与解析の解析結果に基づいて対応情報を作成するので、車両の実走行時における発生源10の回転数に応じて制御すべき部位、即ち寄与度が高い部位を制御部位に定めることにより、車両の振動低減効果を向上可能となる。また、振動制御に用いる振動センサ14の数を低減するため、振動制御に必要な処理負担を低減し、消費エネルギーの低減及び振動制御の効率の向上が可能となる。
また、対応情報は、発生源10の回転次数ごとに、発生源10の回転数範囲及び制御部位に定める部位を対応付けて含むため、複数の次数成分による振動を低減して車両の振動低減効果を更に向上可能となる。
また、発生源10の周波数(回転数)が変動した際、適応フィルタ19及び20のフィルタ係数Wmnr及びWmniの初期値をゼロにリセットせず、予め記憶部26に記憶されたフィルタ係数の過去の収束値、即ち過去の制御結果を基に作成された収束値をフィルタ係数Wmnr及びWmniの初期値に定める。このようにして、フィルタ係数の初期値が、ほぼ収束値に等しいので、適応フィルタ19及び20の収束値(最適解)までの到達時間が短くなり、制御の高速性を向上可能となる。
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
例えば、上述の実施形態においてACM11を加振装置として採用したが、アクティブマスダンパー(Active Mass Damper)やトルクロッドタイプなど、任意の加振装置を採用可能である。また、加振装置を設ける箇所は、発生源10下部に限らず、例えばサスペンション装置と車体との間でもよい。例えば、加振装置をサスペンション装置と車体との間に設けることにより、タイヤの回転による振動をより効率良く低減することができる。
また、車両の発生源10は、エンジンに限られず、例えば車両のタイヤ又は冷却ファンなど、任意の振動発生源であってもよい。
また、本発明は、振動である音の低減についても適用可能である。かかる場合、本発明の実施形態に係る車両の振動低減システムは、例えば音を低減するためのスピーカーを加振装置として備え、例えばマイクロフォン等の騒音検出装置を振動センサ14として備える。
また、上述した実施形態において、LMSアルゴリズムを用いて適応フィルタ19及び20のフィルタ係数の更新を行ったが、フィルタ係数の更新は、複素LMSアルゴリズム(Complex Least Mean Square Algorithm)、正規化LMSアルゴリズム(Normalized Least Mean Square Algorithm)、射影アルゴリズム(Projection Algorithm)、SHARFアルゴリズム(Simple Hyperstable Adaptive Recursive Filter Algorithm)、RLSアルゴリズム(Recursive Least Square Algorithm)、FLMSアルゴリズム(Fast Least Mean Square Algorithm)、DCTを用いた適法フィルタ(Adaptive Filter using Discrete Cosine Transform)、ニューラルネットワーク(Neural Network)、遺伝的アルゴリズム(Genetic Algorithm)など、種々のアルゴリズムを用いて行うことができることは言うまでもない。
また、記憶部26が記憶している対応情報において、3つの回転数範囲(帯域A−C)に区分して対応する部位を定めたが、任意の数の回転数範囲に区分してもよく、また1つの回転数範囲に複数の部位を定めてもよい。また、発生源10の回転次数ごとに異なる回転数範囲に区分してもよい。例えば、1次成分について3つの帯域(帯域A,帯域B,帯域C)に区分し、2次成分について2つの帯域に区分してもよい。
また、LMS演算部23及び25は、ある周波数において適応フィルタ19及び20のフィルタ係数を更新するとともに、記憶部26が記憶しているフィルタ係数に関する情報に含まれる、当該周波数に対応するフィルタ係数の過去の収束値を、更新したフィルタ係数の値で書き換えてもよい。例えば、ACM11の経年劣化や使用される環境(温度など)の変化の影響により、記憶部26が記憶している過去の収束値が現在の収束値から大きくずれることが考えられる。かかる場合、適応フィルタ19及び20の収束値までの到達時間が増加する。上述の構成により、記憶部26が記憶する過去の収束値が最新の制御結果のフィルタ係数に書き換えられるため、適応フィルタ19及び20の収束値までの到達時間の増加を抑制可能である。
また、上述の実施形態において、対応情報は、発生源10の回転数に応じた部位を示すが、発生源10の周波数に応じた部位を示す情報であってもよい。かかる場合、対応情報は、例えば発生源10の周波数の範囲と、周波数の範囲に応じた部位との対応関係を示す。
また、制御装置15は、複数の振動センサ14の動作を個別に制御する機能を更に備え、複数の振動センサ14のうち、発生源10の回転数に応じて振動制御に用いる振動センサ14のみを動作させ、他の振動センサ14の動作を停止させてもよい。このように、制御部位以外の部位に設置された振動センサ14の動作を停止させるので、車両の振動低減システム全体の消費電力を低減可能である。
10 発生源
11,11−m ACM
12 エンジンマウント
13 回転数センサ
14,14−n 振動センサ
15 制御装置
16 制御周波数算出部
17 余弦波生成部
18 正弦波生成部
19 適応フィルタ
20 適応フィルタ
21 加算器
22 加算器
23 LMS演算部
24 加算器
25 LMS演算部
26 記憶部
27 制御部

Claims (3)

  1. 車両の所定の第1の部位における振動に対する前記車両の複数の第2の部位の寄与度に基づいて生成され、振動の発生源の回転数に応じた前記第2の部位を示す対応情報を予め記憶する記憶部と、
    前記発生源の回転数及び前記対応情報に基づいて振動制御の対象である制御部位を決定する制御部と、
    を備える車両の振動低減システム。
  2. 請求項1に記載の振動低減システムであって、
    前記記憶部は、前記発生源の回転次数ごとに生成された前記対応情報を予め記憶する、
    車両の振動低減システム。
  3. 請求項1又は2に記載の振動低減システムであって、
    加振力を発生する加振装置と、
    前記加振装置を動作させる適応フィルタと、を更に備え、
    前記記憶部は、前記発生源の周波数と、前記適応フィルタのフィルタ係数の過去の収束値と、の対応関係を示す情報を予め記憶し、
    前記適応フィルタは、前記記憶部が記憶する前記情報から前記発生源の周波数に応じて抽出された前記収束値を、フィルタ係数の初期値として用いる、
    車両の振動低減システム。
JP2014088980A 2014-04-23 2014-04-23 車両の振動低減システム Pending JP2015205659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088980A JP2015205659A (ja) 2014-04-23 2014-04-23 車両の振動低減システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088980A JP2015205659A (ja) 2014-04-23 2014-04-23 車両の振動低減システム

Publications (1)

Publication Number Publication Date
JP2015205659A true JP2015205659A (ja) 2015-11-19

Family

ID=54602878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088980A Pending JP2015205659A (ja) 2014-04-23 2014-04-23 車両の振動低減システム

Country Status (1)

Country Link
JP (1) JP2015205659A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272892A (zh) * 2018-11-05 2021-08-17 雷诺股份公司 具有邻近多媒体系统的参考传感器的机动车辆运行噪声的前馈主动控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177453A (ja) * 1994-12-22 1996-07-09 Nippon Soken Inc 騒音制御装置
JP3320842B2 (ja) * 1992-07-06 2002-09-03 マツダ株式会社 車両の振動低減装置
WO2012137418A1 (ja) * 2011-04-05 2012-10-11 株式会社ブリヂストン 車両の振動低減システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320842B2 (ja) * 1992-07-06 2002-09-03 マツダ株式会社 車両の振動低減装置
JPH08177453A (ja) * 1994-12-22 1996-07-09 Nippon Soken Inc 騒音制御装置
WO2012137418A1 (ja) * 2011-04-05 2012-10-11 株式会社ブリヂストン 車両の振動低減システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272892A (zh) * 2018-11-05 2021-08-17 雷诺股份公司 具有邻近多媒体系统的参考传感器的机动车辆运行噪声的前馈主动控制系统
CN113272892B (zh) * 2018-11-05 2023-11-03 雷诺股份公司 具有邻近多媒体系统的参考传感器的机动车辆运行噪声的前馈主动控制系统

Similar Documents

Publication Publication Date Title
JP5736036B2 (ja) 車両の振動低減システム
JP5278202B2 (ja) 振動低減装置
JP5661972B2 (ja) 能動振動低減装置
US5651072A (en) Vibration damping system for vehicle
WO2014006846A1 (ja) 能動騒音低減装置および能動騒音低減方法
JP5479371B2 (ja) 車載用能動型振動低減装置
WO2007129627A1 (ja) 自動車車体の振動を低減する自動車用制振装置
JP2012148722A (ja) 能動型振動騒音制御装置
KR20200110365A (ko) 가변성의 액추에이터 및 센서 참여를 사용하는 능동 잡음 제어 방법 및 시스템
JP2015205659A (ja) 車両の振動低減システム
JP2006213297A (ja) 能動騒音振動制御装置及び能動騒音振動制御方法
JP5238368B2 (ja) 車両用能動型音響制御システム
JP5249062B2 (ja) 能動型振動制御装置
JP5207991B2 (ja) 能動型振動制御装置
JP2012201241A (ja) 能動型振動騒音抑制装置
JP2018135941A (ja) 振動低減装置
JP6264952B2 (ja) 振動低減装置
JP2012082866A (ja) 車両の振動低減システムおよび車両の振動低減方法
JP2011179553A (ja) 車両の振動低減システム
JP6655435B2 (ja) 能動型振動騒音制御装置
JP5775724B2 (ja) 車両の振動低減システム
JP5814024B2 (ja) 車両の振動低減システム及び車両の振動低減方法
JPH0883084A (ja) 能動型騒音制御装置及び能動型振動制御装置
JP2012061896A (ja) 車両の振動低減システムおよび車両の振動低減方法
JP5674568B2 (ja) 能動型振動騒音抑制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180529