JP2015197387A - アンモニアガスセンサ - Google Patents

アンモニアガスセンサ Download PDF

Info

Publication number
JP2015197387A
JP2015197387A JP2014075931A JP2014075931A JP2015197387A JP 2015197387 A JP2015197387 A JP 2015197387A JP 2014075931 A JP2014075931 A JP 2014075931A JP 2014075931 A JP2014075931 A JP 2014075931A JP 2015197387 A JP2015197387 A JP 2015197387A
Authority
JP
Japan
Prior art keywords
ammonia gas
detection electrode
solid electrolyte
electrode
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014075931A
Other languages
English (en)
Other versions
JP6204252B2 (ja
Inventor
吉博 中埜
Yoshihiro Nakano
吉博 中埜
柿元 志郎
Shiro Kakimoto
志郎 柿元
山田 哲生
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014075931A priority Critical patent/JP6204252B2/ja
Publication of JP2015197387A publication Critical patent/JP2015197387A/ja
Application granted granted Critical
Publication of JP6204252B2 publication Critical patent/JP6204252B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

【課題】熱に対する経時安定性に優れ、かつアンモニアガス以外の可燃性ガスの影響を低減してアンモニアガスのみの選択性に優れたアンモニアガスセンサを提供する。
【解決手段】酸素イオン伝導性の固体電解質体22Aと、固体電解質体の表面にそれぞれ設けられる検知電極2A及び基準電極4Aとを備え、検知電極は貴金属を主成分とし、BiTi(但し、x、y、zは価数)を含有し、かつBiTiが少なくとも検知電極と固体電解質体との界面領域に存在しているアンモニアガスセンサである。
【選択図】図3

Description

本発明は、例えば燃焼器や内燃機関等の燃焼ガスや排気ガス中のアンモニアガス濃度測定に好適に用いられるアンモニアガスセンサに関する。
自動車等の内燃機関の排気ガス中の窒素酸化物(NO)の浄化方法として、尿素SCR(Selective Catalytic Reduction、選択還元触媒)方式が開発されている。尿素SCR方式は、SCR触媒に尿素を添加してアンモニアを発生させ、アンモニアによりNOを還元するものであり、尿素SCR方式には、NOを還元するアンモニア濃度が適量かどうかを測定するためのアンモニアガスセンサが用いられている。
このようなアンモニアガスセンサとして、酸素イオン伝導性の固体電解質体の表面に基準電極部と検知電極部とを形成し、電極間の起電力に基づいてアンモニア濃度を検出するセンサが提案されている(特許文献1参照)。又、このセンサにおいては、ビスマスバナジウム酸化物等の金属酸化物を含む選択反応層で白金、金等の貴金属を主成分とする検知電極部を覆うことで、アンモニアガス以外の可燃性ガスの影響を低減してアンモニアガスのみを選択的に検知可能(以下、選択性と言う)にすると共に、選択反応層をさらに保護層で覆うことで、被測定ガス中の不純物(例えば、リン、鉛等)から選択反応層を保護している。
特開2012-211928号公報
ところで、特許文献1のようなアンモニアガスセンサを高温で長期間使用した場合に、検知電極部又は選択反応層の熱に対する経時安定性が高いことが要求される。つまり、検知電極部又は選択反応層が熱によって劣化し、アンモニア濃度の出力が低下することを抑制する必要がある。
しかしながら、特許文献1の場合には、白金や金等の貴金属を主成分とする検知電極は、経時安定性に優れているものの、選択反応層に用いるビスマスバナジウム酸化物は、検知電極に比べると経時安定性が低いため、アンモニアガスセンサを長時間使用した場合に、選択反応層が劣化し、その結果、アンモニア濃度の出力が低下する虞がある。
すなわち、本発明は、熱に対する経時安定性に優れ、かつアンモニアガス以外の可燃性ガスの影響を低減してアンモニアガスのみの選択性に優れたアンモニアガスセンサの提供を目的とする。
上記課題を解決するため、本発明のアンモニアガスセンサは、酸素イオン伝導性の固体電解質体と、前記固体電解質体の表面にそれぞれ設けられる検知電極及び基準電極とを備え、前記検知電極は貴金属を主成分とし、BiTi(但し、x、y、zは価数)を含有し、かつBiTiが少なくとも前記検知電極と前記固体電解質体との界面領域に存在している。
このように、検知電極にBiTiを含有している。このBiTiは、熱に対する経時安定性がビスマスバナジウム酸化物に対して高い。このため、アンモニアガスセンサを高温で長期間使用しても、検知電極が劣化して、アンモニア濃度の出力が低下することを抑制
できる。
その上、検知電極にBiTiを含有しつつ、且つBiTiが上記界面領域に存在すると、アンモニアのみの選択性を確保できる。これは上記界面領域に介在するBiTiが界面領域でのNH3以外の可燃性のガス種との電極反応を抑制するためと考えられる。
なお、特許請求の範囲の「界面領域」とは、固体電解質体の成分と検知電極の成分とが混ざりあった領域のことを指し、具体的には、検知電極と固体電解質体を含むアンモニアガスセンサの断面をEPMA(電子線マイクロアナライザ)等にて分析することで、両方の成分が混ざり合った領域を特定することができる。
さらに、界面領域には、貴金属が存在していても良い。これにより、アンモニアのみの選択性をさらに確保できる。
また、本発明のアンモニアガスセンサにおいて、前記BiTiは、少なくとも前記界面領域のうち前記固体電解質体との界面に接してなることが好ましい。
このように、固体電解質体との界面にBiTiが直接接してなることで、NH3 以外の可燃性のガス種との電極反応が最も生じる固体電解質体の界面にBiTiが存在するため、この電極反応をより抑制することができ、アンモニアのみの選択性をより確保できる。
また、本発明のアンモニアガスセンサにおいて、前記BiTiは、BiTi12、Bi12TiO12、Bi24Ti40、Bi20TiO32、BiTi、及びBiTi11の群から選ばれる1種以上であることが好ましい。このような種類のBiTiを選択することで、アンモニアのみの選択性の向上を図ることができる。
ところで、特許文献1にも記載されているように、通常、保護層はアルミナ等の無機酸化物を含むペーストを焼成して形成されるため、なるべく高温で焼成して皮膜強度を向上させることが好ましい。一方、特許文献1の選択反応層に用いるビスマスバナジウム酸化物は、上述したように熱に対する経時安定性が低く、保護層に用いる無機酸化物に比べても劣る。そのため、選択反応層を形成する際にはなるべく低温で焼成したいという要望があり、両者の兼ね合いから焼成温度を高温にするには制限がある。
これに対し、本願のように、熱に対する経時安定性が高いBiTiを検知電極に含有することで、アンモニアガスセンサを高温で焼成して製造することができる。その結果、アンモニアガスセンサの検知電極の表面を覆うように保護層を設けた場合に、この保護層の皮膜強度を向上させることができる。
この発明によれば、熱に対する経時安定性に優れ、かつアンモニアガス以外の可燃性ガスの影響を低減してアンモニアガスのみの選択性に優れたアンモニアガスセンサが得られる。
本発明の実施形態に係るアンモニアガスセンサの長手方向に沿う断面図である。 センサ素子部の構成を示す展開図である。 図2のIII−III線に沿う断面図である。 界面領域を示す模式図である。 界面領域内の検知電極の変形例を示す断面図である。 検知電極の変形例を示す断面図である。 実施例のアンモニアガスセンサの選択性試験の結果を示す図である。 比較例1のアンモニアガスセンサの選択性試験の結果を示す図である。 比較例2のアンモニアガスセンサの選択性試験の結果を示す図である。 700℃でのアンモニアガスセンサの耐久試験の結果を示す図である。 800℃でのアンモニアガスセンサの耐久試験の結果を示す図である。
以下、本発明の実施形態について説明する。
図1は、本発明の実施形態に係るアンモニアガスセンサ(アンモニアセンサ)200Aの長手方向に沿う断面図を示す。アンモニアセンサ200Aは、アンモニアを検出するセンサ素子部50Aを組み付けたアッセンブリである。アンモニアセンサ200Aは、軸線方向に延びる板状のセンサ素子部50Aと、排気管に固定されるためのねじ部139が外表面に形成された筒状の主体金具138と、センサ素子部50Aの径方向周囲を取り囲むように配置される筒状のセラミックスリーブ106と、軸線方向に貫通するコンタクト挿通孔168の内壁面がセンサ素子部50Aの後端部の周囲を取り囲む状態で配置される絶縁コンタクト部材166と、センサ素子部50Aと絶縁コンタクト部材166との間に配置される複数個(図1では2つのみ図示)の接続端子110とを備えている。
主体金具138は、軸線方向に貫通する貫通孔154を有し、貫通孔154の径方向内側に突出する棚部152を有する略筒状形状に構成されている。また、主体金具138は、センサ素子部50Aの先端側を貫通孔154の先端側外部に配置し、電極端子部40A〜44Aを貫通孔154の後端側外部に配置する状態で、センサ素子部50Aを貫通孔154に保持している。さらに、棚部152は、軸線方向に垂直な平面に対して傾きを有する内向きのテーパ面として形成されている。
なお、主体金具138の貫通孔154の内部には、センサ素子部50Aの径方向周囲を取り囲む状態で環状形状のセラミックホルダ151、粉末充填層153、156(以下、滑石リング153、156ともいう)、および上述のセラミックスリーブ106がこの順に先端側から後端側にかけて積層されている。また、セラミックスリーブ106と主体金具138の後端部140との間には、加締めパッキン157が配置されており、セラミックホルダ151と主体金具138の棚部152との間には、滑石リング153やセラミックホルダ151を保持するための金属ホルダ158が配置されている。なお、主体金具138の後端部140は、加締めパッキン157を介してセラミックスリーブ106を先端側に押し付けるように、加締められている。
一方、図1に示すように、主体金具138の先端側(図1における下方)外周には、センサ素子部50Aの突出部分を覆うと共に、複数の孔部を有する金属製(例えば、ステンレスなど)二重の外部プロテクタ142および内部プロテクタ143が、溶接等によって取り付けられている。
そして、主体金具138の後端側外周には、外筒144が固定されている。また、外筒144の後端側(図1における上方)の開口部には、センサ素子部50Aの電極端子部40A〜44Aとそれぞれ電気的に接続される5本のリード線146(図1では3本のみ)が挿通されるリード線挿通孔161が形成されたグロメット150が配置されている。
また、主体金具138の後端部140より突出されたセンサ素子部50Aの後端側(図1における上方)には、絶縁コンタクト部材166が配置される。なお、この絶縁コンタクト部材166は、センサ素子部50Aの後端側の表面に形成される電極端子部40A〜44Aの周囲に配置される。この絶縁コンタクト部材166は、軸線方向に貫通するコンタクト挿通孔168を有する筒状形状に形成されると共に、外表面から径方向外側に突出する鍔部167が備えられている。絶縁コンタクト部材166は、鍔部167が保持部材169を介して外筒144に当接することで、外筒144の内部に配置される。そして、絶縁コンタクト部材166側の接続端子110と、センサ素子部50Aの電極端子部40A〜44Aとが電気的に接続され、リード線146により外部と導通するようになっている。
次に、センサ素子部50Aの構成について展開図2を参照して説明する。センサ素子部50Aは長尺板状であり、排気ガス中のアンモニアガスを検出する検知部が先端部に露出し、センサ素子部50Aの後端部には、電極端子部40A〜44Aがそれぞれ露出している。
図2において、絶縁層6Aの上面には、長手方向に沿ってリード31Aが延び、リード31Aの末端が電極端子部41Aを形成している。さらに、絶縁層6A上には、リード31Aと平行にリード30Aが延び、リード30Aの末端(絶縁層6Aの右端部)が電極端子部40Aを形成している。なお、リード30A、31Aは絶縁層6Aの中央部分から末端にかけて長手方向に延びている。さらに、リード30A,31Aを覆うように絶縁層20Aが形成されている。但し、絶縁層6Aの先端側(リード30A、31Aが形成されていない部位)、リード30A、31Aの先端側及び電極端子部40A、41Aは、絶縁層20Aで被覆されずに露出している。
一方、絶縁層6Aのうち絶縁層20Aに覆われていない部位には、固体電解質体22Aが積層される。さらに、固体電解質体22A上には、基準電極4Aが形成されると共に、基準電極と平行に検知電極2Aが形成されている。基準電極4Aは、リード31Aと接続し、検知電極2Aは、リード30Aと接続している。
このように、基準電極4Aと検知電極2Aは固体電解質体22Aの同じ面側に露出し、被測定ガスに曝される。又、固体電解質体22A、基準電極4A、及び検知電極2Aがセル70を構成している。
また、検知電極2A及び基準電極4Aを覆うようにしてガス透過性の保護層60Aが設けられている。
一方、絶縁層26Aの下面(図2の下面)には、測温抵抗体である温度検出手段(温度センサ)14A及びリード32A、34Aが形成されている。そして、リード34Aの末端が電極端子部44Aを形成している。また、リード34Aと平行にリード32Aが延び、リード32Aの末端が電極端子部42Aを形成している。絶縁層26Aの上面には、発熱抵抗体16A、及び発熱抵抗体16Aから延長するリード35A,36Aが形成されている。温度検出手段14A及びリード32A、34Aは、絶縁層11Aで被覆されており、発熱抵抗体16A、及びリード35A,36Aは絶縁層6Aで被覆されている。さらに、絶縁層26Aの右端にはそれぞれスルーホール26x、26yが開口している。そして、リード35A,36Aは、それぞれスルーホール26x、26yを介して、絶縁層26Aの下面に配置された電極端子部42A、43Aにそれぞれ接続されている。
検知電極2Aは、可燃性ガスが電極表面では燃焼し難い電極である。そして、アンモニアは検知電極2Aを通って固体電解質体との界面で酸素と反応して燃焼するので、アンモニアガスの検知電極として機能する。
この検知電極2Aは、貴金属を主成分とし、BiTi(但し、x、y、zは価数)を含有し、かつBiTiが少なくとも前記検知電極と前記固体電解質体との界面領域に存在していることが必要である。
ここで、特許請求の範囲の「貴金属を主成分とする」とは、検知電極2A中の貴金属の割合が50質量%を超えることをいう。又、貴金属は、Au、Pt、Ag、Ir,Ru、及びこれらの合金であり、特にAuが好ましい。又、BiTiとしては、例えば、BiTiは、BiTi12、Bi12TiO12、Bi24Ti40、Bi20TiO32、BiTi、BiTi11が挙げられる。このような種類のBiTiを選択することで、アンモニアのみの選択性の向上を図ることができる。検知電極2Aは、上記したBiTiの1種又は2種以上を含有することができる。
保護層60Aは、検知電極2Aを覆うことで、被測定ガス中の不純物(例えば、リン、鉛等)から検知電極2Aを保護し、検知電極2Aがこれら不純物の影響を受けることを抑制する。よって、検知電極2Aが被測定ガス中のアンモニアガス以外の可燃性ガスを良好に燃焼させて、可燃性ガスが固体電解質体へ到達することを良好に抑制できる。なお、保護層60Aとしては、MgAl、Al、SiO/Al、ゼオライト等の材料が挙げられる。
ここで、保護層60Aはアルミナ等の無機酸化物を含むペーストを焼成して形成されるため、なるべく高温(例えば1000〜1400℃)で焼成して皮膜強度を向上させることが好ましい。これに対し、本発明のアンモニアガスセンサにおいては、検知電極2Aが熱に対する経時安定性の高いBiTiを含有するため、センサ素子部50Aを高温で焼成して製造することができる。その結果、保護層60Aの皮膜強度を向上させることができる。
図3は、図2のIII−III線に沿う断面図である。なお、図3では、セル70以外の構成については簡略化して図示している。検知電極2Aは、例えば、90質量%のAuと、10質量%のBiTiを含有し、さらに、検知電極2Aと固体電解質体22Aとの界面領域にはBiTiが存在している。
BiTiが界面領域に存在することは、検知電極2Aと固体電解質体22Aを含むアンモニアガスセンサの断面をEPMA(電子線マイクロアナライザ)分析することで確認することができる。
ここで、図4に示すように、固体電解質体22A側から検知電極2Aに向かって上記断面を厚み方向にEPMA分析すると、固体電解質体22Aの成分(この例では、YSZ(イットリア安定化ジルコニア))の濃度がほぼ一定の最大値(Max)から急激に減少し、やがてほぼ一定の最小値(Min)になる。この際、最大値(Max)から所定の割合で減少した地点の濃度をP1とし、最小値(Min)から所定の割合で増加した地点の濃度をP2とし、各濃度P1,P2のときの厚み方向の位置をL1、L2とする。このとき、L1〜L2の間の領域を、特許請求の範囲の「界面領域R」と規定する。そして、界面領域RでEPMAの検出限界を超えてBiTiが検出されれば、これらの成分が界面領域Rに存在しているとみなす。また、L1を固体電解質体22Aの界面とみなす。
なお、最大値(Max)及び最小値(Min)からの乖離率が5%となった地点をそれぞれP2,P1と定める。なぜなら、最大値(Max)及び最小値(Min)となった地点をそれぞれP2,P1としてしまうと、多少の変動、誤差も含んでしまうため精度が下げる可能性があるからである。又、最大値(Max)及び最小値(Min)は、例えばL1及びL2から厚み方向に十分離れた領域での固体電解質体22Aの成分濃度を厚み方向に複数測定し、それらの平均値を採用することができる。なお、最大値(Max)が100質量%である必要はなく、例えば、固体電解質体22AがYSZ80質量%とアルミナ(Al)20質量%とから形成されている場合には、最大値(Max)は80質量%とみなせばよい。また、最小値(Min)が0質量%である必要はなく、例えば、検知電極2Aに共素地としてYSZが20質量%含有されている場合には、最小値(Min)は20質量%とみなせばよい。
又、EPMA分析は、上記した断面のうち、15μm四方の視野を複数箇所(例えば、3箇所)測定と、界面領域Rを特定する精度が向上するので、より好ましい。
なお、図5(b)に示すように、界面領域R(L1〜L2)内では、検知電極2Aが、固体電解質層22A側から順に、BiTiを含む層2AB、Auを含む層2AAの2層構造となっていてもよい。また、図5(c)に示すように、界面領域R内では、検知電極2Aが、固体電解質層22A側から順に、AuとBiTiとの混合物からなる層2AC、BiTiを含む層2ADの2層構造となっていてもよい。また、図5(d)に示すように、図5(c)とは逆に、界面領域R内では、検知電極2Aが、固体電解質層22A側から順に、BiTiを含む層2AD、AuとBiTiとの混合物からなる層2ACの2層構造となっていてもよい。さらに、図5(e)に示すように、界面領域R内では、検知電極2Aが、固体電解質層22A側から順に、AuとBiTiとの混合物からなる層2AE、Auを含む層2AFの2層構造となっていてもよい。
一方、図5(a)に示すように、図5(b)とは逆に、界面領域R内で、検知電極2Aが、固体電解質層22A側から順に、Auを含む層2AA、BiTiを含む層2ABの2層構造となっている場合は、固体電解質体22Aの界面にBiTiが存在していないため、アンモニアのみの選択性が劣ることがある。
同様に、図5(f)に示すように、図5(e)とは逆に、界面領域R内で、検知電極2Aが、固体電解質層22A側から順に、Auを含む層2AF、AuとBiTiとの混合物からなる層2AEの2層構造となっている場合も、固体電解質体22Aの界面にBiTiが存在していないため、アンモニアのみの選択性が劣ることがある。
つまり、BiTiは、少なくとも界面領域Rのうち固体電解質体22Aの界面に接してなることが好ましい。このように、固体電解質体22Aの界面にBiTiが直接接してなることで、NH3以外の可燃性のガス種との電極反応が最も生じる固体電解質体22Aの界面にBiTiが存在するため、この電極反応をより抑制することができ、アンモニアのみの選択性をより確保できる。
なお、図5(a)〜図5(f)の層2AA、層2AB、層2AC、層2AD、層2AE、層2AFには、固体電解質体22Aの成分が含有されていることは言うまでもない。
図6は、検知電極2Aの変形例を示す断面図である。図6に示す検知電極2A2は、AuとBiTiとの混合物からなる検知電極層2AXの表面及び側面に、BiTiからなる被覆層2Cを設けた断面構造を示す。この検知電極2A2においても、BiTiが界面領域Rに確実に存在する。
なお、図6に示す検知電極2A2において、検知電極層2AXをAu又はBiTiとしてもよい。又、被覆層2CをAu、BiTi又はAuとBiTiとの混合物としてもよい。すなわち、検知電極2A2の場合、検知電極層2AX又は被覆層2Cの少なくとも一方がBiTiを含んでいれば、BiTiが固体電解質層22Aに直接接しているので、BiTiが界面領域Rに確実に存在する。
以上のようにして、BiTiが界面領域Rに存在すると、アンモニアガス以外のガス(HCガス等)に対する感度が低下し、アンモニアガスの選択性が向上する。この原因は明確ではないが、界面領域Rに介在するBiTiが、界面でのNH3以外の可燃性のガス種との電極反応を抑制するためと考えられる。
さらに、界面領域には、貴金属が存在していても良い。これにより、アンモニアのみの選択性
をさらに確保できる。
検知電極2A中のBiTiの含有割合が1〜30質量%であることが好ましい。検知電極2A中のBiTiの含有割合が1質量%未満であると、上記したアンモニアガスの選択性の向上効果が十分でなく、さらに被測定ガス中の酸素の影響が大きくなる。検知電極2A中のBiTiの含有割合が30質量%を超えると、検知電極2Aの導電性が低下し、導通不良となる。
又、検知電極は貴金属を70質量%以上含有すると集電能力に優れるので好ましい。検知電極中の貴金属が70質量%未満になると、集電体としての能力が得られず、導通不良が生じてアンモニアガスが検出できないことがある。
検知電極2Aは、BiTi及び上記した貴金属の混合物を含むものであればよく、他の副成分を更に含んでもよい。副成分としては、固体電解質体を構成する成分(例えばYSZ)や、Al2O3が挙げられる。これら副成分を混合して使用してもよい。固体電解質体を構成する成分は、共素地として検知電極の密着性向上や接触抵抗の低減を図ることができる。
一方、基準電極4Aは、その電極表面で可燃性ガスが燃焼する電極であり、例えばPt単体であるか、又はPtを主成分とする材料で構成されている。
各リード30A、31A、32A、34A、35A,36A、電極端子部40A〜44A、温度検出手段14A及び発熱抵抗体16Aは、例えばPt、Pd又はこれらの合金を主成分とする材料で構成されている。
各絶縁層6A、11A、20A及び26Aは、例えばアルミナ等の絶縁性セラミックで構成されている。
固体電解質体22Aは、例えば部分安定化ジルコニア(YSZ等)で構成されている。そして、固体電解質体22Aは、発熱抵抗体16Aによって活性化温度に制御される。固体電解質体22Aとしては、YSZ(イットリア部分安定化ジルコニア)の他、SDC(サマリアドープセリア)、ScSZ(スカンジア安定化ジルコニア)が挙げられる。
次に、センサ素子部50Aの製造方法の一例を簡単に説明する。まず、センサ素子部の本体となる比較的厚い(例えば300μm)グリーンシートのアルミナ絶縁層26Aを用意し、絶縁層26Aの上面にPt、アルミナ(共素地として用いる無機酸化物)バインダー及び有機溶剤を含む電極ペースト(以下、「Pt系ペースト」という)をスクリーン印刷して発熱抵抗体16A(及びこれから延長するリード35A,36A)を、下面に温度検出手段14A(及びこれから延長するリード32A、34A)、電極端子部42A,43A,44Aを形成する。さらに、温度検出手段14Aの下面に絶縁材料(アルミナ等)、バインダー及び有機溶剤を含むペーストをスクリーン印刷して絶縁層11Aを形成する。なお、絶縁層26Aのスルーホール26x、26yの内面に適宜スルーホール導体を充填する。
次に、センサ素子部の本体となる比較的厚い(例えば300μm)グリーンシートのアルミナ絶縁層6Aを、発熱抵抗体16Aに積層する。そして、絶縁層6A上にリード30A、31A、及び電極端子部40A、41Aを形成する。さらに、リード30A,31Aを覆うようにして絶縁層20Aをスクリーン印刷する。なお、絶縁層6Aは、絶縁ペーストをスクリーン印刷して形成してもよい。
そして、この積層体を所定温度(例えば、250℃)で脱バインダーし、所定温度(例えば、1450℃)で焼成する。
次に、固体電解質体の成分となる酸化物粉末、バインダー及び有機溶剤を含むペーストを焼成後の絶縁層6A上にスクリーン印刷して固体電解質体22Aを形成し、所定温度(例えば、1500℃)で焼成する。
そして、固体電解質体22A上に、Pt系ペーストをスクリーン印刷して基準電極4Aを形成し、所定温度(例えば、1450℃)で焼成し、その後、Au系ペースト(上記BiTiを含む)をスクリーン印刷して検知電極2Aを形成し、所定温度(例えば、1000℃)で焼成する。
次に、検知電極2A、基準電極4Aを含む所定領域を覆うように、アルミナ系ペーストをスクリーン印刷し、所定温度(例えば、1000℃)で焼成して保護層を形成する。
これにより、センサ素子部50Aが完成する。なお、その後は、公知の製造方法により、センサ素子部50Aを主体金具138等に組み付けアンモニアガスセンサ200Aを作成する。
本発明は上記した実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、固体電解質体の表面と裏面とにそれぞれ検知電極と基準電極とを設け、基準電極を大気雰囲気に曝し、検知電極を被測定ガスに曝すよう、2室型のセンサ構造としてもよい。
又、固体電解質体を筒状として、筒の外面と内面とにそれぞれ検知電極と基準電極とを設け、筒内面を大気雰囲気に曝し、筒外面の検知電極を被測定ガスに曝すようなセンサ構造としてもよい。
以下、実施例を挙げて、本発明を具体的に説明するが、本発明は勿論これらの例に限定されるものではない。
図1、図2に示す上記実施形態に係るアンモニアガスセンサを作製した。まず、アルミナ基板(絶縁層)26Aの上面に、Pt系ペーストをスクリーン印刷して発熱抵抗体16A(及びこれから延長するリード35A,36A)を形成し、下面にPt系ペーストをスクリーン印刷して温度検出手段14A(及びこれから延長するリード32A、34A)、電極端子部42A,43A,44Aを形成した。さらに、発熱抵抗体16A上及び温度検出手段14A上に絶縁材料、バインダー及び有機溶剤を含むペーストをスクリーン印刷して絶縁層11Aを形成した。
次に、センサ素子部の本体となる比較的厚い(例えば300μm)グリーンシートのアルミナ絶縁層6Aを、発熱抵抗体16Aに積層した。そして、絶縁層6Aの上にPtペーストをスクリーン印刷してリード30A、31A、及び電極端子部40A、41Aを形成し、さらにリード30A、31Aを覆うようにして絶縁層20Aをスクリーン印刷した。その後、14500℃で60分間焼成した。
次に、絶縁層6A上に固体電解質体22Aの材料となるYSZ(Y安定化ジルコニア)ペーストを印刷した。この積層体を1500℃で60分間焼成した。YSZペーストは、乳鉢にYSZ、有機溶剤、分散剤を入れ、らいかい機で4時間分散混合した後、バインダー、粘度調整剤を所定量添加し、更に4時間湿式混合を行い調製した。
そして、固体電解質体22A上に、Pt系ペーストをスクリーン印刷して基準電極4Aを形成して1450℃で焼成した後、以下に示した成分にて形成されたAu系ペーストをスクリーン印刷して検知電極2Aを形成し、1000℃で焼成した。得られたセンサ素子部を主体金具等に組み付け、アンモニアガスセンサを作製した。
なお、上記Au系ペーストは以下のようにして調製した。まず、Bi粉末とTiO粉末(79.5:20.5(質量比))とを、らいかい機で1時間乾式混合した後、得られた混合粉末をルツボに入れ、電気炉で1000℃で3時間焼成し、BiTi12粉末を得た。さらに、焼成後の粉末を、らいかい機で1時間乾式混合した。次に、市販のAuペーストに対し、BiTi12粉末を(90.0:10.0 (質量比))の割合で混入し、さらに有機溶剤、バインダー及び分散剤を加え、らいかい機で4時間混合し、Au系ペーストを調製した。
又、上記Pt系ペーストは、乳鉢にPt粉末、Pt粉末に対し10wt%のYSZ粉末、及び有機溶剤を入れ、らいかい機で4時間分散混合した後、有機バインダー、粘度調整剤を所定量添加し、更に4時間湿式混合して調製した。
比較のため、検知電極2A用の上記Au系ペースト中のBiTi12粉末を、BiVO粉末に代えて、同様に比較例1のアンモニアガスセンサを作製した。
また、検知電極2A用の上記Au系ペースト中にBi4Ti3O12粉末を入れずに、比較例2のアンモニアガスセンサを作製した。
<評価>
1.アンモニアガスセンサの選択性試験
モデルガス発生装置のガス流中に実施例及び各比較例のアンモニアガスセンサを取り付け、アンモニアのガス選択性の評価を行った。モデルガスのガス温度150℃、センサ素子部の制御温度(ヒータ加熱)を700℃とした。そして、モデルガス発生装置に流すガス組成をO2=7% H2O=4% N2=bal.(基準ガス)とし、この基準ガスにNH3をそれぞれ0ppm〜150ppmさらに添加した。同様にして上記基準ガスにC3H6 をそれぞれ0ppm〜150ppmさらに添加して評価を行った。
そして、それぞれNH3あるいはC3H6濃度に対するアンモニアガスセンサのEMF出力を求め、「EMF出力-アンモニア濃度」換算式に基づき、NH3濃度に換算した。
得られた結果を図7、図8、図9に示す。なお、図7は、実施例のアンモニアガスセンサの選択性試験の結果であり、図8は、比較例1のアンモニアガスセンサの選択性試験の結果であり、比較例2のアンモニアガスセンサの選択性試験の結果である。
図7、図8に示すように、実施例、比較例1のアンモニアガスセンサは、C3H6に対するNH3濃度の出力変化は生じなかったが、図9に示すように、比較例2のアンモニアガスセンサは、C3H6に対するNH3濃度の出力変化が生じた。これより、実施例、比較例1のアンモニアガスセンサは、アンモニアガスのみの選択性が得られていることが分かる。
2.アンモニアガスセンサの耐久試験
モデルガス発生装置のガス流中に実施例及び比較例1のアンモニアガスセンサを取り付け、センサの感度の評価(以下、感度評価と言う)を行った。モデルガスのガス温度150℃、センサ素子部の制御温度(ヒータ加熱)を700℃とし、ガス組成をO2=7% H2O=4% N2=bal.とし、さらにNH3をそれぞれ20,50,100ppm添加した。そして、NH3 をそれぞれ10,50,100ppm の間でモデルガスに混合してガスを流したときのアンモニアガスセンサのEMF出力を測定し、上記換算式に基づいてNH3 濃度に換算し、初期特性を算出した。
その後、センサをモデルガス発生装置から取り外し、大気雰囲気中でアンモニアガスセンサのヒータを連続通電した。なお、このときのセンサ素子部の制御温度を700℃と800℃の2種類で行った。そして、任意の時間毎にヒータの連続通電を停止し、アンモニアガスセンサをモデルガス発生装置に再度取り付け、上記の感度評価をその都度実施し、NH3 濃度からセンサの経時変化を観察した。
得られた結果を図10、図11に示す。なお、図10は、ヒータ連続通電時のセンサ素子部の制御温度(ヒータ加熱)を700℃としたときの耐久試験の結果であり、図11は、ヒータ連続通電時のセンサ素子部の制御温度800℃としたときの耐久試験の結果である。
図10に示すように、700℃の耐久試験の場合、実施例、比較例1ともに、長時間(2000時間)試験後もセンサのEMF出力(NH3濃度出力)はほとんど変化しなかった。
一方、図11に示すように、800℃の耐久試験の場合、実施例は長時間(2000時間)試験後もEMF出力(NH3濃度出力)はほとんど変化せず、高温での熱に対する経時安定性に優れていた。これに対し、比較例1は試験時間が経過すると共にEMF出力(NH3濃度出力)が低下し、高温での熱に対する経時安定性が劣った。
2A、2A2〜2A6 検知電極
4A 基準電極
22A 固体電解質体
50A ガスセンサ素子
60A 保護層
200A アンモニアガスセンサ

Claims (4)

  1. 酸素イオン伝導性の固体電解質体と、前記固体電解質体の表面にそれぞれ設けられる検知電極及び基準電極とを備え、
    前記検知電極は貴金属を主成分とし、BiTi(但し、x、y、zは価数)を含有し、かつBiTiが少なくとも前記検知電極と前記固体電解質体との界面領域に存在しているアンモニアガスセンサ。
  2. 前記BiTiは、少なくとも前記界面領域のうち前記固体電解質体との界面に接してなる請求項1に記載のアンモニアガスセンサ。
  3. 前記BiTiは、BiTi12、Bi12TiO12、Bi24Ti40、Bi20TiO32、BiTi、及びBiTi11の群から選ばれる1種以上である請求項1又は2に記載のアンモニアガスセンサ。
  4. 前記検知電極の表面を覆う保護層をさらに設けてなる請求項1〜3のいずれかに記載のアンモニアガスセンサ。
JP2014075931A 2014-04-02 2014-04-02 アンモニアガスセンサ Active JP6204252B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075931A JP6204252B2 (ja) 2014-04-02 2014-04-02 アンモニアガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075931A JP6204252B2 (ja) 2014-04-02 2014-04-02 アンモニアガスセンサ

Publications (2)

Publication Number Publication Date
JP2015197387A true JP2015197387A (ja) 2015-11-09
JP6204252B2 JP6204252B2 (ja) 2017-09-27

Family

ID=54547170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075931A Active JP6204252B2 (ja) 2014-04-02 2014-04-02 アンモニアガスセンサ

Country Status (1)

Country Link
JP (1) JP6204252B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220326205A1 (en) * 2021-04-08 2022-10-13 Qingdao University, China Bismuth oxide based ammonia sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112720A (ja) * 2004-11-19 2005-04-28 Toyota Central Res & Dev Lab Inc セラミックス粉末及びその前駆体
JP2005522663A (ja) * 2002-04-05 2005-07-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガス放出プロセスを制御する方法および装置ならびに関連するデバイス
US20070125647A1 (en) * 2005-12-01 2007-06-07 Wang Da Y Sensor and sensing method
JP2011047758A (ja) * 2009-08-26 2011-03-10 Ngk Spark Plug Co Ltd アンモニアガスセンサ
JP2011047756A (ja) * 2009-08-26 2011-03-10 Ngk Spark Plug Co Ltd アンモニアガスセンサ
JP2013053940A (ja) * 2011-09-05 2013-03-21 Ngk Spark Plug Co Ltd アンモニアガスセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522663A (ja) * 2002-04-05 2005-07-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガス放出プロセスを制御する方法および装置ならびに関連するデバイス
JP2005112720A (ja) * 2004-11-19 2005-04-28 Toyota Central Res & Dev Lab Inc セラミックス粉末及びその前駆体
US20070125647A1 (en) * 2005-12-01 2007-06-07 Wang Da Y Sensor and sensing method
JP2011047758A (ja) * 2009-08-26 2011-03-10 Ngk Spark Plug Co Ltd アンモニアガスセンサ
JP2011047756A (ja) * 2009-08-26 2011-03-10 Ngk Spark Plug Co Ltd アンモニアガスセンサ
JP2013053940A (ja) * 2011-09-05 2013-03-21 Ngk Spark Plug Co Ltd アンモニアガスセンサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220326205A1 (en) * 2021-04-08 2022-10-13 Qingdao University, China Bismuth oxide based ammonia sensor
US11913930B2 (en) * 2021-04-08 2024-02-27 Qingdao University, China Bismuth oxide based ammonia sensor

Also Published As

Publication number Publication date
JP6204252B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5119131B2 (ja) アンモニアガスセンサ
JP6857051B2 (ja) ガスセンサ素子およびガスセンサ
JP5033017B2 (ja) アンモニアガスセンサ
JP5134399B2 (ja) ガスセンサ及びガスセンサ制御装置
JP2013068607A (ja) アンモニアガスセンサ
JP5281988B2 (ja) アンモニアガスセンサ
US20090014331A1 (en) Ammonia gas sensor
JP2009115776A (ja) アンモニアガスセンサ
JP2011047756A (ja) アンモニアガスセンサ
JP5083898B2 (ja) アンモニアガスセンサ
JP5479409B2 (ja) アンモニアガスセンサ
JP6204252B2 (ja) アンモニアガスセンサ
JP5271978B2 (ja) アンモニアガスセンサ
JP4874764B2 (ja) アンモニアガスセンサ及びその製造方法
JP5070082B2 (ja) アンモニアガスセンサ
JP5070102B2 (ja) アンモニアガスセンサ
CN111492235B (zh) 传感器元件和气体传感器
JP2013053940A (ja) アンモニアガスセンサ
US20190302050A1 (en) Gas sensor element, heater and gas sensor
JP2009229352A (ja) 酸素センサ
JP2019184471A (ja) 温度センサ
JP2010139238A (ja) アンモニアガスセンサ
JP2013007642A (ja) ガスセンサ
JP7063168B2 (ja) ガスセンサ
JP4964169B2 (ja) アンモニアガスセンサ。

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170831

R150 Certificate of patent or registration of utility model

Ref document number: 6204252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250