JP2015182424A - 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 - Google Patents

三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 Download PDF

Info

Publication number
JP2015182424A
JP2015182424A JP2014063429A JP2014063429A JP2015182424A JP 2015182424 A JP2015182424 A JP 2015182424A JP 2014063429 A JP2014063429 A JP 2014063429A JP 2014063429 A JP2014063429 A JP 2014063429A JP 2015182424 A JP2015182424 A JP 2015182424A
Authority
JP
Japan
Prior art keywords
dimensional structure
layer
manufacturing
binding liquid
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014063429A
Other languages
English (en)
Inventor
加藤 真一
Shinichi Kato
真一 加藤
嵩貴 平田
Koki Hirata
嵩貴 平田
福本 浩
Hiroshi Fukumoto
福本  浩
千草 佐藤
Chigusa Sato
千草 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014063429A priority Critical patent/JP2015182424A/ja
Priority to US15/111,063 priority patent/US20160339602A1/en
Priority to PCT/JP2015/001612 priority patent/WO2015146121A1/en
Publication of JP2015182424A publication Critical patent/JP2015182424A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)

Abstract

【課題】機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物の製造方法を提供すること、機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物製造装置を提供すること、また、前記三次元造形物の製造方法を用いて製造された三次元造形物を提供すること。
【解決手段】本発明の三次元造形物の製造方法は、粒体および水系溶媒を含む組成物を用いて、層1を形成する層形成工程1e,1fと、層1に前記粒体を結合するための結着液12を付与する結着液付与工程1g,1hとを含む一連の工程を繰り返し行うことにより仮成形体を得、さらに、前記仮成形体に対して加熱処理を施す仮成形体加熱工程を有することを特徴とする。
【選択図】図2

Description

本発明は、三次元造形物の製造方法、三次元造形物製造装置および三次元造形物に関する。
粉末(粒体)を含む組成物を用いて材料層(単位層)を形成し、これらを積層することにより、三次元造形物を造形する技術が知られている(例えば、特許文献1参照)。この技術では、次のような操作を繰り返すことによって三次元造形物を造形する。まず、粉末を均一な厚さで薄く敷き詰めて材料層を形成し、この材料層の所望部分のみにおいて、選択的に粉末同士を結合させ結合部を形成する。この結果、粉末同士が結合した結合部に薄い板状の部材(以下、「断面部材」という)が形成される。その後、その材料層の上にさらに材料層を薄く形成し、所望部分のみにおいて、選択的に粉末同士を結合させ結合部を形成する。その結果、新たに形成された材料層にも、新たな断面部材が形成される。このとき、新たに形成された断面部材は、先に形成された断面部材にも結合される。このような操作を繰り返して、薄い板状の断面部材(結合部)を一層ずつ積層することによって、三次元造形物を造形することができる。
しかしながら、このような技術では、最終的に得られる三次元造形物の強度が劣るという問題があった。
特開2003−53847号公報
本発明の目的は、機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物の製造方法を提供すること、機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物製造装置を提供すること、また、前記三次元造形物の製造方法を用いて製造された三次元造形物を提供することにある。
このような目的は、下記の本発明により達成される。
本発明の三次元造形物の製造方法は、粒体および水系溶媒を含む組成物を用いて、層を形成する層形成工程と、
前記層に前記粒体を結合するための結着液を付与する結着液付与工程とを含む一連の工程を繰り返し行うことにより仮成形体を得、
さらに、前記仮成形体に対して加熱処理を施す仮成形体加熱工程を有することを特徴とする。
これにより、機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物の製造方法を提供することができる。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程は、前記仮成形体を前記結着液により結合していない前記粒体を除去した後に行うものであることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとすることができる。また、三次元造形物の構成材料の不本意な変性、劣化等をより効果的に防止することができるとともに、省エネルギーの観点からも好ましい。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程は、前記仮成形体が、前記結着液により結合していない前記粒体に囲まれた状態で行うものであり、その後、前記結着液により結合していない前記粒体を除去することが好ましい。
これにより、三次元造形物の寸法精度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程における加熱温度は、50℃以上180℃以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度、寸法精度を特に優れたものとすることができる。また、三次元造形物の構成材料の不本意な変性、劣化等をより効果的に防止することができる。
本発明の三次元造形物の製造方法では、前記仮成形体において前記粒体を結合する結合剤のガラス転移温度をTg[℃]としたとき、
前記仮成形体加熱工程における加熱温度は、(Tg−20)℃以上(Tg+20)℃以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度、寸法精度を特に優れたものとすることができる。また、三次元造形物の構成材料の不本意な変性、劣化等をより効果的に防止することができる。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程での加熱時間は、1分以上180分以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度、寸法精度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程は、赤外線ヒーターを用いて行うものであることが好ましい。
これにより、製造すべき三次元造形物が大型のものであっても、好適に対応することができる。
本発明の三次元造形物の製造方法では、前記結着液が付与された前記層は、前記仮成形体加熱工程より前に加熱処理を受けたものであることが好ましい。
これにより、三次元造形物の機械的強度、寸法精度、信頼性を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記一連の工程は、前記層形成工程と前記結着液付与工程との間に、前記層に対して、加熱処理を施す層加熱工程をさらに有していることが好ましい。
これにより、三次元造形物の機械的強度のさらなる向上を図ることができる。
本発明の三次元造形物の製造方法では、前記層加熱工程では、第1の加熱処理と、前記第1の加熱処理よりも高温で加熱する第2の加熱処理とを行うことが好ましい。
これにより、三次元造形物の機械的強度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記層加熱工程は、熱風を用いて行うものであることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記第1の加熱処理での加熱温度は、30℃以上70℃以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記第2の加熱処理での加熱温度は、40℃以上120℃以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記第1の加熱処理の処理時間は、0.1秒以上60秒以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記第2の加熱処理の処理時間は、0.1秒以上60秒以下であることが好ましい。
これにより、三次元造形物の生産性を特に優れたものとしつつ、三次元造形物の機械的強度を特に優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記仮成形体加熱工程での加熱温度は、前記層加熱工程での加熱温度よりも高いものであることが好ましい。
これにより、より効率よく内部応力を緩和することができ、三次元造形物の機械的強度、寸法精度を特に優れたものとすることができる。
本発明の三次元造形物製造装置は、粒体を含む組成物を用いて、層を積層することにより、三次元造形物を製造する三次元造形物製造装置であって、
前記組成物が付与され、前記層が形成されるステージと、
前記層に前記粒体を結合するための結着液を付与する結着液付与手段と、
前記結着液が付与された前記層が積層されてなる仮成形体に加熱処理を施す仮成形体加熱手段とを備えることを特徴とする。
これにより、機械的強度に優れた三次元造形物を生産性良く製造することができる三次元造形物製造装置を提供することができる。
本発明の三次元造形物は、本発明の製造方法を用いて製造されたことを特徴とする。
これにより、機械的強度に優れた三次元造形物を提供することができる。
本発明の三次元造形物は、本発明の装置を用いて製造されたことを特徴とする。
これにより、機械的強度に優れた三次元造形物を提供することができる。
本発明の三次元造形物の製造方法の第1実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物の製造方法の第1実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物の製造方法の第1実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物の製造方法の第2実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物の製造方法の第2実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物の製造方法の第2実施形態について、各工程を模式的に示す断面図である。 本発明の三次元造形物製造装置の好適な実施形態を模式的に示す断面図である。 結着液付与工程直前の層(三次元造形用組成物)中の状態を模式的に示す断面図である。 疎水性の結合剤により、粒体同士が結合した状態を模式的に示す断面図である。
以下、添付する図面を参照しつつ、本発明の好適な実施形態について詳細な説明をする。
《三次元造形物の製造方法》
まず、本発明の三次元造形物の製造方法について説明する。
[第1実施形態]
図1、図2、図3は、本発明の三次元造形物の製造方法の第1実施形態について、各工程を模式的に示す断面図である。
図1、図2、図3に示すように、本実施形態の製造方法は、粒体111および水系溶媒を含むペースト状の組成物11を用いて、所定の厚さを有する層1を形成する層形成工程(1a、1e)と、層1を加熱する層加熱工程(1b、1f)と、インクジェット法により、層1に対し、結着液12を付与する結着液付与工程(1c、1g)と、層1に付与された結着液12中に含まれる結合剤121を硬化させ、粒体111を結合させることにより、層1中に硬化部(結合部)13を形成する硬化工程(1d、1h)とを有し、これらの工程を順次繰り返し行い仮成形体10’を得(1i)、さらに、その後に、各層1を構成する粒体111のうち、結合剤121により結合していないものを除去し、仮成形体10’を取り出す未結合粒子除去工程(1j)と、仮成形体10’を加熱する仮成形体加熱工程(1k)とを有している。
以下、各工程について説明する。
≪層形成工程≫
層形成工程では、粒体111および水系溶媒を含むペースト状の組成物(三次元造形用組成物)11を用いて、所定の厚さを有する層1を形成する(1a、1e)。
組成物11としてペースト状のものを用いることにより、組成物11の流動性を高め層1形成時の作業性を向上させることができる。また、層1形成時等における粉末(粒体111)の不本意な飛散等を防止することができる。
特に、組成物11は、ペースト状をなすものとするために、水系溶媒を含むものである。
水系溶媒は、一般に適度な揮発性を有しているため、層形成工程における作業性(作業のしやすさ、作業効率)を特に優れたものとしつつ、最終的に得られる三次元造形物10中に溶媒が不本意に残存することを確実に防止することができる。
また、水系溶媒は、水素結合等により、分子間の結合力が強く、後に詳述する層加熱工程において、層1からの溶媒分子(水系溶媒)の除去に伴い、層1の内部(深部)に存在する溶媒分子も層1の外表面側に移動する効果が非水系の溶媒に比べて強く表れる。したがって、水系溶媒を用いることにより、層1中に溶媒が不本意に残存することを効果的に防止することができる。
また、水系溶媒は、一般に安全性が高い。このため、三次元造形物10の製造時における作業者の安全を図る上でも好ましい。
なお、本発明において、水系溶媒とは、水または水との親和性の高い液体のことをいい、具体的には、25℃における水100gに対する溶解度が、50g以上のもののことをいう。
水系溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール性溶媒;メチルエチルケトン、アセトン等のケトン系溶媒;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル系溶媒;プロピレングリコール1−モノメチルエーテル2−アセタート、プロピレングリコール1−モノエチルエーテル2−アセタート等のグリコールエーテルアセテート系溶媒;ポリエチレングリコール、ポリプロピレングリコール等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
特に、水系溶媒が水を含むものである場合、三次元造形物10の製造時の安全性が高いこと、環境への負荷が小さいこと、溶媒の回収が不要であり製造装置の構造の簡略化を図ることができること、各種溶媒の中でも特に安価であることから三次元造形物10の製造コスト削減の観点から有利であること等の効果が得られる。また、水は、より好適な揮発性を有しているため、層形成工程の作業性を特に優れたものとすることができる。
水系溶媒が水を含むものである場合、水系溶媒中に占める水の割合は、80質量%以上であるのが好ましく、90質量%以上であるのがより好ましい。
これにより、前述したような効果がより顕著に発揮される。
また、組成物11が粒体111を含むものであることにより、最終的に得られる三次元造形物10の寸法精度を優れたものとすることができる。また、三次元造形物10の耐熱性や機械的強度等を優れたものとすることができる。
なお、組成物11については、後に詳述する。
本工程では、平坦化手段を用いて、層1を表面が平坦化されたものとして形成する。
1回目の層形成工程では、ステージ41の表面に所定の厚さで層1を形成する(1a)。このとき、ステージ41の側面と側面支持部45とが密着(当接)した状態となっており、ステージ41と側面支持部45との間から、組成物11が落下することが防止されている。
2回目以降の層形成工程では、先の工程で形成された層1(第1の層)の表面に新たな層1(第2の層)を形成する(1e)。このとき、ステージ41の層1(ステージ41上に複数の層1がある場合には、少なくとも最も上側に設けられた層1)の側面と側面支持部45とが密着(当接)した状態となっており、ステージ41とステージ41上の層1との間から、組成物11が落下することが防止されている。
本工程における組成物11の粘度(E型粘度計(東京計器社製 VISCONIC ELD)を用いて測定される値)は、500mPa・s以上60000mPa・s以下であるのが好ましく、1000mPa・s以上30000mPa・s以下であるのがより好ましい。これにより、形成される層1における不本意な膜厚のばらつきの発生をより効果的に防止することができる。
本工程で形成する層1の厚さは、特に限定されないが、例えば、5μm以上500μm以下であるのが好ましく、10μm以上100μm以下であるのがより好ましい。
これにより、三次元造形物10の生産性を十分に優れたものとしつつ、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度を特に優れたものとすることができる。また、層加熱工程における水系溶媒の除去も短時間で効率よく行うことができ、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。
≪層加熱工程≫
層形成工程で層1を形成した後、層1に加熱処理(層加熱処理)を施す(1b、1f)。
これにより、層1中に含まれる水系溶媒が蒸発し、最終的に得られる三次元造形物10の機械的強度のさらなる向上を図ることができる。
本工程では、第1の加熱処理と、第1の加熱処理よりも高温で加熱する第2の加熱処理とを行うのが好ましい。
このように、第1の加熱処理とその後の第2の加熱処理とを組み合わせて行うことにより、層1中の水系溶媒の含有率を効率よく低下させることができ、三次元造形物10の生産性を優れたものとしつつ、三次元造形物10中における水系溶媒の含有率を確実に低いものとすることができる。したがって、後の工程で付与される結着液12による結合の強度を確実に優れたものとすることができ、最終的に得られる三次元造形物10の機械的強度も容易かつ確実に優れたものとすることができる。
このような効果が得られるのは、以下のような理由によるものであると考えられる。
すなわち、第1の加熱処理においては、層1の外表面からの水系溶媒の蒸発速度、および、層1の内部(深部)に存在していた水系溶媒の層1の外表面付近への移行速度を比較的大きいものとしつつ、これらのバランスを保つことができ、結果として、層1の内部(深部)に水系溶媒が閉じ込められてしまうのを防止しつつ、層1全体としての水系溶媒の含有率を効率よく低下させることができる。また、第2の加熱処理においては、加熱温度を高いものとすることにより、層1に残存している水系溶媒を効率良く除去し、層1全体としての十分に低いものとすることができる。したがって、水系溶媒が層1中に残存することにより結着液による粒体の結合が阻害されることを効果的に防止することができる。その結果、最終的に得られる三次元造形物10の機械的強度を容易かつ確実に優れたものとすることができるものと考えられる。
<第1の加熱処理>
層加熱工程では、まず、第1の加熱処理を行う。
第1の加熱処理では、主に、層形成工程で形成された層1の外表面付近に存在していた水系溶媒を適切な速度で蒸発させるとともに、層1の内部(深部)に存在していた水系溶媒を層1の外表面付近に移動させることを目的としている。
第1の加熱処理での層1の加熱温度は、第2の加熱処理での加熱温度よりも低いものであればよいが、30℃以上70℃以下であるのが好ましく、35℃以上60℃以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度を特に優れたものとすることができる。
第1の加熱処理は、いかなる方法で行うものであってもよく、例えば、ホットプレートを用いた方法、赤外線ヒーターを用いた方法、熱風を用いた方法等により行うことができるが、熱風を用いた方法が好ましい。
これにより、層1の外表面からの水系溶媒の蒸発、層1の内部(深部)からの外表面への水系溶媒の移動をより効率よく進行させることができ、三次元造形物10の生産性を特に優れたものとすることができる。
第1の加熱処理での熱風の風速は、1.0m/秒以上30m/秒以下であるのが好ましく、2.0m/秒以上20m/秒以下であるのがより好ましい。
これにより、層1の不本意な変形等をより確実に防止しつつ、三次元造形物10の生産性を特に優れたものとすることができる。
第1の加熱処理の処理時間(加熱時間)は、0.1秒以上60秒以下であるのが好ましく、0.1秒以上45秒以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度を特に優れたものとすることができる。
なお、第1の加熱処理は、層1の全体に対して一括して行うものであってもよいし、層1の各部位について順次行うものであってもよい。層1の各部位について順次、第1の加熱処理を施す場合は、各部位についての処理時間が、それぞれ、前記条件を満足するのが好ましい。
熱風を用いて第1の加熱処理を行う場合、層1の外表面側の斜め方向(層1の法線方向から所定角度傾斜した方向)から熱風を吹き付けるのが好ましい。
これにより、層1の外表面からの水系溶媒の蒸発、層1の内部(深部)からの外表面への水系溶媒の移動をさらに効率よく進行させることができ、三次元造形物10の生産性をさらに優れたものとすることができる。
層1の法線と熱風の吹き付け方向とのなす角θは、10°以上85°以下であるのが好ましく、30°以上80°以下であるのがより好ましい。
これにより、前述した効果がより顕著に発揮される。
また、熱風の吹き付け方向は、一定であってもよいし、経時的に変化するものであってもよい。
<第2の加熱処理>
前述した第1の加熱処理の後に第2の加熱処理を行う。
第2の加熱処理では、第1の加熱処理での加熱温度よりも高い温度で層1を加熱する。
第2の加熱処理では、主に、前述した第1の加熱処理により水系溶媒の含有率が低くなった層に、より高い温度での加熱処理を施すことにより、三次元造形物10の生産性の低下を招くことなく、層1全体としての水系溶媒の含有率を十分に低くすることを目的とする。
第2の加熱処理での層1の加熱温度は、40℃以上120℃以下であるのが好ましく、45℃以上90℃以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度を特に優れたものとすることができる。
第2の加熱処理は、いかなる方法で行うものであってもよく、例えば、ホットプレートを用いた方法、赤外線ヒーターを用いた方法、熱風を用いた方法等により行うことができるが、熱風を用いた方法が好ましい。
これにより、層1の外表面からの水系溶媒の蒸発、層1の内部(深部)からの外表面への水系溶媒の移動をより効率よく進行させることができ、三次元造形物10の生産性を特に優れたものとすることができる。
第2の加熱処理での熱風の風速は、1.0m/秒以上30m/秒以下であるのが好ましく、2.0m/秒以上20m/秒以下であるのがより好ましい。
これにより、層1の不本意な変形等をより確実に防止しつつ、三次元造形物10の生産性を特に優れたものとすることができる。
第2の加熱処理の処理時間(加熱時間)は、0.1秒以上60秒以下であるのが好ましく、1秒以上45秒以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度を特に優れたものとすることができる。
なお、第2の加熱処理は、層1の全体に対して一括して行うものであってもよいし、層1の各部位について順次行うものであってもよい。層1の各部位について順次、第2の加熱処理を施す場合は、各部位についての処理時間が、それぞれ、前記条件を満足するのが好ましい。
熱風を用いて第2の加熱処理を行う場合、層1の外表面側の斜め方向(層1の法線方向から所定角度傾斜した方向)から熱風を吹き付けるのが好ましい。
これにより、層1の外表面からの水系溶媒の蒸発、層1の内部(深部)からの外表面への水系溶媒の移動をさらに効率よく進行させることができ、三次元造形物10の生産性をさらに優れたものとすることができる。
層1の法線と熱風の吹き付け方向とのなす角θは、10°以上85°以下であるのが好ましく、30°以上80°以下であるのがより好ましい。
これにより、前述した効果がより顕著に発揮される。
また、熱風の吹き付け方向は、一定であってもよいし、経時的に変化するものであってもよい。
≪結着液付与工程≫
次に、インクジェット法により、当該層1に対し、層1を構成する粒体111を結合するための結着液12を付与する(1c、1g)。
本工程では、層1のうち三次元造形物10の実部(実体のある部位)に対応する部位にのみ、選択的に結着液12を付与する。
これにより、層1を構成する粒体111同士を強固に結合させ、最終的に所望の形状の硬化部(結合部)13を形成することができる。また、最終的に得られる三次元造形物10の機械的強度を優れたものとすることができる。
本工程では、インクジェット法により結着液12を付与するため、結着液12の付与パターンが微細な形状のものであっても再現性よく結着液12を付与することができる。その結果、最終的に得られる三次元造形物10の寸法精度を特に高いものとすることができる。
なお、結着液12については、後に詳述する。
≪硬化工程(結合工程)≫
結着液付与工程で層1に結着液12を付与した後、層1に付与された結着液12に含まれる結合剤121を硬化させ、硬化部(結合部)13を形成する(1d、1h)。
これにより、結合剤121と粒体111との結合強度を特に優れたものとすることができ、その結果、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。
本工程は、結合剤121の種類により異なるが、例えば、結合剤121が熱硬化性樹脂の場合、加熱により行うことができ、結合剤121が光硬化性樹脂の場合、対応する光の照射により行うことができる(例えば、結合剤121が紫外線硬化性樹脂の場合は紫外線の照射により行うことができる)。
なお、結着液付与工程と硬化工程とは、同時進行的に行ってもよい。すなわち、1つの層1全体のパターン全体が形成される前に、結着液12が付与された部位から順次硬化反応を進行させるものであってもよい。
また、例えば、結合剤121が硬化性成分でない場合には、本工程を省略することができる。この場合、前述した結着液付与工程が結合工程を兼ねることとなる。
≪未結合粒子除去工程≫
そして、前記のような一連の工程を繰り返し行うことにより、仮成形体10’が得られる(1i)。そして、各層1を構成する粒体111のうち、結合剤121により結合していないもの(未結合粒子)を除去する未結合粒子除去工程(1j)を行う。これにより、仮成形体10’が取り出される。
本工程の具体的な方法としては、例えば、刷毛等で未結合粒子を払い除ける方法、未結合粒子を吸引により除去する方法、空気等の気体を吹き付ける方法、水等の液体を付与する方法(例えば、液体中に前記のようにして得られた積層体を浸漬する方法、液体を吹き付ける方法等)、超音波振動等の振動を付与する方法等が挙げられる。また、これらから選択される2種以上の方法を組み合わせて行うことができる。より具体的には、空気等の気体を吹き付けた後に、水等の液体に浸漬する方法や、水等の液体に浸漬した状態で、超音波振動を付与する方法等が挙げられる。中でも、前記のようにして得られた積層体に対し、水を含む液体を付与する方法(特に、水を含む液体中に浸漬する方法)を採用するのが好ましい。
≪仮成形体加熱工程≫
仮成形体加熱工程では、仮成形体10’に加熱処理を施す(1k)。
これにより、内部応力が緩和され、衝撃等に対する耐性が高く、優れた機械的強度を有する三次元造形物10が得られる。また、このようにして得られる三次元造形物10は、内部応力が緩和したものであるため、不本意な変形が防止されたものであり、長期間にわたって安定的に所定の形状を保持することができる。このため、三次元造形物10は、寸法精度にも優れたものとなる。
特に、本実施形態では、仮成形体加熱工程は、未結合粒子除去工程の後(仮成形体10’を結着液12により結合していない粒体111を除去した後)に行うものである。
これにより、仮成形体10’に対して熱エネルギーを効率よく付与することができ、本工程での処理時間を比較的短いものとすることができる。その結果、三次元造形物10の生産性を特に優れたものとすることができる。また、本工程での加熱温度を比較的低い温度とした場合であっても、仮成形体10’の内部(深部)まで、十分に加熱することができるため、三次元造形物10の構成材料の不本意な変性、劣化等をより効果的に防止することができるとともに、省エネルギーの観点からも好ましい。
本工程における熱処理(仮成形体熱処理)は、いかなる方法で行うものであってもよく、例えば、ホットプレートを用いた方法、赤外線ヒーターを用いた方法、熱風を用いた方法等により行うことができるが、赤外線ヒーターを用いた方法が好ましい。
これにより、仮成形体10’の内部(深部)まで、効率よく加熱することができる。したがって、製造すべき三次元造形物10が大型のものであっても、好適に対応することができる。
本工程で、赤外線ヒーターを用いる場合、赤外線ヒーターが照射する赤外線のピーク波長は、0.7μm以上1000μm以下であるのが好ましく、15μm以上100μm以下であるのがより好ましい。
これにより、仮成形体10’の内部(深部)まで、より効率よく加熱することができる。したがって、製造すべき三次元造形物10が大型のものであっても、より好適に対応することができる。
仮成形体加熱工程に供される仮成形体10’は、本工程より前に、結着液12が付与された層1に対して加熱処理を施すことにより得られたものである。より具体的には、本実施形態では、仮成形体加熱工程に先立ち、結着液12が付与された層1を含む積層体に、前述したような層加熱処理を施している。
このような場合、仮成形体中の水系溶媒の含有率を低くすることができ、最終的に得られる三次元造形物の機械的強度の向上を図ることができる一方で、仮成形体において内部応力が溜まりやすい。このため、このような場合に仮成形体に対して加熱処理を行わないと、衝撃等に対する耐性が低いものとなり、三次元造形物の機械的強度を高めることができない。また、寸法精度も低いものとなりやすい。
これに対し、本発明では、仮成形体に対して加熱処理を施すため、このような問題の発生を確実に防止することができ、三次元造形物の機械的強度、寸法精度、信頼性を特に優れたものとすることができる。すなわち、結着液が付与された層が仮成形体加熱工程より前に加熱処理を受けたものである場合に、本発明の効果がより顕著に発揮される。
本工程における加熱温度は、50℃以上180℃以下であるのが好ましく、55℃以上120℃以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度、寸法精度を特に優れたものとすることができる。また、三次元造形物10の構成材料の不本意な変性、劣化等をより効果的に防止することができる。
また、仮成形体10’において粒体111を結合する結合剤121のガラス転移温度をTg[℃]としたとき、本工程における加熱温度は、(Tg−20)℃以上(Tg+20)℃以下であるのが好ましく、(Tg−10)℃以上(Tg+10)℃以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度、寸法精度を特に優れたものとすることができる。また、三次元造形物10の構成材料の不本意な変性、劣化等をより効果的に防止することができる。
なお、ガラス転移温度は、JIS K 7121に準拠して測定することができる。
また、本工程での加熱温度は、層加熱工程での加熱温度よりも高いものであるのが好ましい。
これにより、より効率よく内部応力を緩和することができ、三次元造形物10の機械的強度、寸法精度を特に優れたものとすることができる。
また、本工程での加熱時間は、1分以上180分以下であるのが好ましく、10分以上120分以下であるのがより好ましい。
これにより、三次元造形物10の生産性を特に優れたものとしつつ、三次元造形物10の機械的強度、寸法精度を特に優れたものとすることができる。
なお、仮成形体加熱処理は、仮成形体10’の全体に対して一括して行うものであってもよいし、仮成形体10’の各部位について順次行うものであってもよい。仮成形体10’の各部位について順次、加熱処理を施す場合は、各部位についての処理時間が、それぞれ、前記条件を満足するのが好ましい。
前述したような本発明の製造方法によれば、機械的強度に優れた三次元造形物を優れた生産性で製造することができる。
[第2実施形態]
次に、本発明の三次元造形物の製造方法の第2実施形態について説明する。
図4、図5、図6は、本発明の三次元造形物の製造方法の第2実施形態について、各工程を模式的に示す断面図である。以下の説明では、前述した実施形態との相違点について中心的に説明し、同様の事項についての説明は省略する。
図3、図4、図5に示すように、本実施形態の製造方法は、粒体111および水系溶媒を含むペースト状の組成物11を用いて、所定の厚さを有する層1を形成する層形成工程(2a、2e)と、層1を加熱する層加熱工程(2b、2f)と、インクジェット法により、層1に対し、結着液12を付与する結着液付与工程(2c、2g)と、層1に付与された結着液12中に含まれる結合剤121を硬化させ、粒体111を結合させることにより、層1中に硬化部(結合部)13を形成する硬化工程(2d、2h)とを有し、これらの工程を順次繰り返し行い仮成形体10’を得(2i)、さらに、その後に、仮成形体10’を加熱する仮成形体加熱工程(2j)と、各層1を構成する粒体111のうち、結合剤121により結合していないものを除去し、三次元造形物10を取り出す未結合粒子除去工程(2k)とを有している。
すなわち、前述した実施形態では、仮成形体10’を取り出した後(未結合粒子除去工程の後)に仮成形体加熱工程を行うものであったのに対し、本実施形態では、仮成形体10’を取り出す前に(仮成形体が、前記結着液により結合していない前記粒体に囲まれた状態で)、仮成形体加熱工程を行い、その後、仮成形体加熱工程により得られた三次元造形物10を取り出す。
このような構成であることにより、未結合粒子除去工程の際、また、当該工程の後の造形物の不本意な変形等をより確実に防止することができる。その結果、三次元造形物10の寸法精度を特に優れたものとすることができる。
《三次元造形物製造装置》
次に、本発明の三次元造形物製造装置について説明する。
図7は、本発明の三次元造形物製造装置の好適な実施形態を模式的に示す断面図である。
三次元造形物製造装置100は、粒体111および水系溶媒を含むペースト状の組成物(三次元造形用組成物)11を用いて、層1を繰り返し成形し積層することにより、三次元造形物10を製造するものである。
図7に示すように、三次元造形物製造装置100は、制御部2と、粒体111を含むペースト状の組成物11を収容する組成物供給部3と、組成物供給部3から供給された組成物11を用いて層1を形成する層形成部4と、層1を加熱する加熱手段(層加熱手段)7と、層1に結着液12を吐出する結着液吐出部(結着液付与手段)5と、結着液12を硬化させるためのエネルギー線を照射するエネルギー線照射手段(硬化手段)6と、仮成形体10’を加熱する加熱手段(仮成形体加熱手段)8とを有している。
制御部2は、コンピューター21と、駆動制御部22とを有している。
コンピューター21は、内部にCPUやメモリ等を備えて構成される一般的な卓上型コンピューター等である。コンピューター21は、三次元造形物10の形状をモデルデータとしてデータ化し、それを平行な幾層もの薄い断面体にスライスして得られる断面データ(スライスデータ)を駆動制御部22に対して出力する。
駆動制御部22は、層形成部4、層加熱手段7、結着液吐出部5、エネルギー線照射手段6等をそれぞれに駆動する制御手段として機能する。具体的には、例えば、結着液吐出部5による結着液12の吐出パターンや吐出量、組成物供給部3からの組成物11の供給量、ステージ41の下降量、層加熱手段7のよる加熱の条件(加熱温度、温風の風速等)等を制御する。
組成物供給部3は、駆動制御部22からの指令により移動し、内部に収容された組成物11が、組成物仮置部44に供給されるように構成されている。
層形成部4は、組成物供給部3から供給された組成物11を一時的に保持する組成物仮置部44と、組成物仮置部44に保持された組成物11を平坦化しつつ層1を形成するスキージー(平坦化手段)42と、スキージー42の動作を規制するガイドレール43と、形成された層1を支持するステージ41と、ステージ41を取り囲む側面支持部(枠体)45とを有している。
先に形成された層1の上に、新たな層1を形成するのに際して、先に形成された層1を、側面支持部45に対して相対的に下方に移動させる。これにより、新たに形成される層1の厚さが規定される。
特に、本実施形態では、ステージ41は、先に形成された層1の上に、新たな層1を形成するのに際して、駆動制御部22からの指令により所定量だけ順次下降する。このように、ステージ41がZ方向(上下方向)に移動可能に構成されていることにより、新たな層1の形成に際して、層1の厚さを調整するために移動させるべき部材の数を減らすことができるため、三次元造形物製造装置100の構成をより単純なものとすることできる。
ステージ41は、表面(組成物11が付与される部位)が平坦なものである。
これにより、厚さの均一性の高い層1を容易かつ確実に形成することができる。また、製造される三次元造形物10において、不本意な変形等が生じることを効果的に防止することができる。
ステージ41は、高強度の材料で構成されたものであるのが好ましい。ステージ41の構成材料としては、例えば、ステンレス鋼等の各種金属材料等が挙げられる。
また、ステージ41の表面(組成物11が付与される部位)には、表面処理が施されていてもよい。これにより、例えば、組成物11の構成材料や結着液12の構成材料がステージ41に付着してしまうことをより効果的に防止したり、ステージ41の耐久性を特に優れたものとし、三次元造形物10のより長期間にわたる安定的な生産を図ったりすることができる。ステージ41の表面の表面処理に用いられる材料としては、例えば、ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられる。
スキージー42は、Y方向に延在する長手形状を有するものであり、下部先端が尖った刃状の形状を有するブレードを備えている。
ブレードのY方向の長さは、ステージ41(造形領域)の幅(Y方向の長さ)以上のものである。
なお、三次元造形物製造装置100は、スキージー42による組成物11の拡散が円滑に行えるように、ブレードに微小振動を与えるバイブレーション機構(図示せず)を備えていてもよい。
側面支持部45は、ステージ41上に形成された層1の側面を支持する機能を有する。また、層1の形成時には、層1の面積を規定する機能も有している。
また、側面支持部45の表面(組成物11と接触しうる部位)には、表面処理が施されていてもよい。これにより、例えば、組成物11の構成材料や結着液12の構成材料が側面支持部45に付着してしまうことをより効果的に防止したり、側面支持部45の耐久性を特に優れたものとし、三次元造形物10のより長期間にわたる安定的な生産を図ったりすることができる。また、先に形成された層1を側面支持部45に対して相対的に下方に移動させる際に、層1に不本意な乱れが生じることを効果的に防止することができる。その結果、最終的に得られる三次元造形物10の寸法精度、信頼性を特に優れたものとすることができる。側面支持部45の表面の表面処理に用いられる材料としては、例えば、ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられる。
層加熱手段7は、層1に加熱処理(層加熱処理)を施すものである。
特に、本実施形態では、層加熱手段7は、前述した第1の加熱処理および第2の加熱処理を施すものである。
このように、単一の層加熱手段7が第1の加熱処理および第2の加熱処理を施すことができるものであることにより、三次元造形物製造装置100の構成を簡略化することができる。
加熱処理の条件は、例えば、図示しないセンサーにより層1の温度や層1の水系溶媒の含有率等を検出し、その検出結果に基づいて、制御してもよい。また、タイマーにより、加熱条件の変更を行ってもよい。
結着液付与手段(結着液吐出部)5は、層1に結着液12を付与するものである。
このような結着液付与手段5を備えることにより、三次元造形物10の機械的強度を容易かつ確実に優れたものとすることができる。
特に、本実施形態では、結着液付与手段5が、インクジェット法により結着液12を吐出する結着液吐出部である。
これにより、微細なパターンで結着液12を付与することができ、微細な構造を有する三次元造形物10であっても特に生産性良く製造することができる。
液滴吐出方式(インクジェット法の方式)としては、ピエゾ方式や、結着液12を加熱して発生した泡(バブル)により結着液12を吐出させる方式等を用いることができるが、結着液12の構成成分の変質のし難さ等の観点から、ピエゾ方式が好ましい。
結着液吐出部(結着液付与手段)5は、駆動制御部22からの指令により、各層1において形成すべきパターン、層1の各部において付与する結着液12の量が制御されている。結着液吐出部(結着液付与手段)5による結着液12の吐出パターン、吐出量等は、スライスデータに基づいて決定される。
エネルギー線照射手段(硬化手段)6は、層1に付与された結着液12を硬化させるためのエネルギー線を照射するものである。
エネルギー線照射手段6が照射するエネルギー線の種類は、結着液12の構成材料により異なるが、例えば、紫外線、可視光線、赤外線、X線、γ線、電子線、イオンビーム等が挙げられる。中でも、コスト面、三次元造形物の生産性の観点から、紫外線を用いるのが好ましい。
仮成形体加熱手段8は、仮成形体10’に対して加熱処理(仮成形体加熱処理)を施すものである。
加熱処理の条件は、例えば、図示しないセンサーにより仮成形体10’の温度等を検出し、その検出結果に基づいて、制御してもよい。また、タイマーにより、加熱条件の変更を行ってもよい。
前述したような本発明の三次元造形物製造装置によれば、機械的強度に優れた三次元造形物を生産性良く製造することができる。
<組成物(三次元造形用組成物)>
次に、本発明の三次元造形物の製造に用いる組成物(三次元造形用組成物)11について詳細に説明する。
図8は、結着液付与工程直前の層(三次元造形用組成物)中の状態を模式的に示す断面図、図9は、疎水性の結合剤により、粒体同士が結合した状態を模式的に示す断面図である。
組成物(三次元造形用組成物)11は、少なくとも、複数個の粒体111を含む三次元造形用粉末と水系溶媒とを含み、ペースト状をなすものである。
(三次元造形用粉末(粒体111))
三次元造形用粉末を構成する粒体111は、多孔質で、かつ、疎水化処理が施されたものであるのが好ましい。このような構成であることにより、結着液12が疎水性の結合剤121を含むものである場合に、三次元造形物10を製造する際に、疎水性の結合剤121を空孔1111内に好適に侵入させることができ、アンカー効果が発揮され、その結果、粒体111同士の結合の結合力(結合剤121を介した結合力)を優れたものとすることができ、結果として、機械的強度に優れた三次元造形物10を好適に製造することができる(図9参照)。また、このような三次元造形用粉末は、好適に再利用することができる。より詳しく説明すると、三次元造形用粉末を構成する粒体111が、疎水化処理が施されたものであると、後に詳述する水溶性樹脂112が空孔1111内に入り込むことが防止されているため、三次元造形物10の製造において、結着液12が付与されなかった領域の粒体111は、水等で洗浄することにより、不純物の含有率が低く、高い純度で回収することができる。このため、再度、回収した三次元造形用粉末を、所定の割合で、水溶性樹脂112等と混合することにより、確実に所望の組成に制御された三次元造形用組成物を得ることができる。また、結着液12を構成する結合剤121が、粒体111の空孔1111内に入り込むことにより、結着液12の不本意な濡れ広がりを効果的に防止することができる。その結果、最終的に得られる三次元造形物10の寸法精度をより高いものとすることができる。
三次元造形用粉末を構成する粒体111(疎水化処理が施される母粒子)の構成材料としては、例えば、無機材料や有機材料、これらの複合体等が挙げられる。
粒体111を構成する無機材料としては、例えば、各種金属や金属化合物等が挙げられる。金属化合物としては、例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化ジルコン、酸化錫、酸化マグネシウム、チタン酸カリウム等の各種金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等の各種金属水酸化物;窒化珪素、窒化チタン、窒化アルミ等の各種金属窒化物;炭化珪素、炭化チタン等の各種金属炭化物;硫化亜鉛等の各種金属硫化物;炭酸カルシウム、炭酸マグネシウム等の各種金属の炭酸塩;硫酸カルシウム、硫酸マグネシウム等の各種金属の硫酸塩;ケイ酸カルシウム、ケイ酸マグネシウム等の各種金属のケイ酸塩;リン酸カルシウム等の各種金属のリン酸塩;ホウ酸アルミニウム、ホウ酸マグネシウム等の各種金属のホウ酸塩や、これらの複合化物等が挙げられる。
粒体111を構成する有機材料としては、例えば、合成樹脂、天然高分子等が挙げられ、より具体的には、ポリエチレン樹脂;ポリプロピレン;ポリエチレンオキサイド;ポリプロピレンオキサイド、ポリエチレンイミン;ポリスチレン;ポリウレタン;ポリウレア;ポリエステル;シリコーン樹脂;アクリルシリコーン樹脂;ポリメタクリル酸メチル等の(メタ)アクリル酸エステルを構成モノマーとする重合体;メタクリル酸メチルクロスポリマー等の(メタ)アクリル酸エステルを構成モノマーとするクロスポリマー(エチレンアクリル酸共重合樹脂等);ナイロン12、ナイロン6、共重合ナイロン等のポリアミド樹脂;ポリイミド;カルボキシメチルセルロールス;ゼラチン;デンプン;キチン;キトサン等が挙げられる。
中でも、粒体111は、無機材料で構成されたものであるのが好ましく、金属酸化物で構成されたものであるのがより好ましく、シリカで構成されたものであるのがさらに好ましい。これにより、三次元造形物10の機械的強度、耐光性等の特性を特に優れたものとすることができる。また、特に、粒体111がシリカで構成されたものであると、前述した効果がより顕著に発揮される。また、シリカは、流動性にも優れているため、厚さの均一性がより高い層1の形成に有利であるとともに、三次元造形物10の生産性、寸法精度を特に優れたものとする上でも有利である。
三次元造形用粉末を構成する粒体111に施された疎水化処理としては、粒体111(母粒子)の疎水性を高める処理であればいかなるものであってもよいが、炭化水素基を導入するものであるのが好ましい。これにより、粒体111の疎水性をより高いものとすることができる。また、容易かつ確実に、各粒体111や粒体111表面の各部位(空孔1111内部の表面を含む)での疎水化処理の程度の均一性をより高いものとすることができる。
疎水化処理に用いる化合物としては、シリル基を含むシラン化合物が好ましい。疎水化処理に用いることのできる化合物の具体例としては、例えば、ヘキサメチルジシラザン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、1−プロペニルメチルジクロロシラン、プロピルジメチルクロロシラン、プロピルメチルジクロロシラン、プロピルトリクロロシラン、プロピルトリエトキシシラン、プロピルトリメトキシシラン、スチリルエチルトリメトキシシラン、テトラデシルトリクロロシラン、3−チオシアネートプロピルトリエトキシシラン、p−トリルジメチルクロロシラン、p−トリルメチルジクロロシラン、p−トリルトリクロロシラン、p−トリルトリメトキシシラン、p−トリルトリエトキシシラン、ジ−n−プロピルジ−n−プロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジ−n−ブチルジ−n−ブチロキシシラン、ジ−sec−ブチルジ−sec−ブチロキシシラン、ジ−t−ブチルジ−t−ブチロキシシラン、オクタデシルトリクロロシラン、オクタデシルメチルジエトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルジメチルクロロシラン、オクタデシルメチルジクロロシラン、オクタデシルメトキシジクロロシラン、7−オクテニルジメチルクロロシラン、7−オクテニルトリクロロシラン、7−オクテニルトリメトキシシラン、オクチルメチルジクロロシラン、オクチルジメチルクロロシラン、オクチルトリクロロシラン、10−ウンデセニルジメチルクロロシラン、ウンデシルトリクロロシラン、ビニルジメチルクロロシラン、メチルオクタデシルジメトキシシラン、メチルドデシルジエトキシシラン、メチルオクタデシルジメトキシシラン、メチルオクタデシルジエトキシシラン、n−オクチルメチルジメトキシシラン、n−オクチルメチルジエトキシシラン、トリアコンチルジメチルクロロシラン、トリアコンチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルイソプロポキシシラン、メチル−n−ブチロキシシラン、メチルトリ−sec−ブチロキシシラン、メチルトリ−t−ブチロキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルイソプロポキシシラン、エチル−n−ブチロキシシラン、エチルトリ−sec−ブチロキシシラン、エチルトリ−t−ブチロキシシラン、n−プロピルトリメトキシシラン、イソブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、n−オクチルトリメトキシシラン、n−ドデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、n−プロピルトリエトキシシラン、イソブチルトリエトキシシラン、n−ヘキシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、n−オクチルトリエトキシシラン、n−ドデシルトリメトキシシラン、n−オクタデシルトリエトキシシラン、2−〔2−(トリクロロシリル)エチル〕ピリジン、4−〔2−(トリクロロシリル)エチル〕ピリジン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、1,3−(トリクロロシリルメチル)ヘプタコサン、ジベンジルジメトキシシラン、ジベンジルジエトキシシラン、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェニルジメチルメトキシシラン、フェニルジメトキシシラン、フェニルジエトキシシラン、フェニルメチルジエトキシシラン、フェニルジメチルエトキシシラン、ベンジルトリエトキシシラン、ベンジルトリメトキシシラン、ベンジルメチルジメトキシシラン、ベンジルジメチルメトキシシラン、ベンジルジメトキシシラン、ベンジルジエトキシシラン、ベンジルメチルジエトキシシラン、ベンジルジメチルエトキシシラン、ベンジルトリエトキシシラン、ジベンジルジメトキシシラン、ジベンジルジエトキシシラン、3−アセトキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、4−アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、6−(アミノヘキシルアミノプロピル)トリメトキシシラン、p−アミノフェニルトリメトキシシラン、p−アミノフェニルエトキシシラン、m−アミノフェニルトリメトキシシラン、m−アミノフェニルエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシシラン、ω−アミノウンデシルトリメトキシシラン、アミルトリエトキシシラン、ベンゾオキサシレピンジメチルエステル、5−(ビシクロヘプテニル)トリエトキシシラン、ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、8−ブロモオクチルトリメトキシシラン、ブロモフェニルトリメトキシシラン、3−ブロモプロピルトリメトキシシラン、n−ブチルトリメトキシシラン、2−クロロメチルトリエトキシシラン、クロロメチルメチルジエトキシシラン、クロロメチルメチルジイソプロポキシラン、p−(クロロメチル)フェニルトリメトキシシラン、クロロメチルトリエトキシシラン、クロロフェニルトリエトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、2−(4−クロロスルフォニルフェニル)エチルトリメトキシシラン、2−シアノエチルトリエトキシシラン、2−シアノエチルトリメトキシシラン、シアノメチルフェネチルトリエトキシシラン、3−シアノプロピルトリエトキシシラン、2−(3−シクロヘキセニル)エチルトリメトキシシラン、2−(3−シクロヘキセニル)エチルトリエトキシシラン、3−シクロヘキセニルトリクロロシラン、2−(3−シクロヘキセニル)エチルトリクロロシラン、2−(3−シクロヘキセニル)エチルジメチルクロロシシラン、2−(3−シクロヘキセニル)エチルメチルジクロロシシラン、
シクロヘキシルジメチルクロロシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルメチルジクロロシラン、シクロヘキシルメチルジメトキシシラン、(シクロヘキシルメチル)トリクロロシラン、シクロヘキシルトリクロロシラン、シクロヘキシルトリメトキシシラン、シクロオクチルトリクロロシラン、(4−シクロオクテニル)トリクロロシラン、シクロペンチルトリクロロシラン、シクロペンチルトリメトキシシラン、1,1−ジエトキシ−1−シラシクロペンタ−3−エン、3−(2,4−ジニトロフェニルアミノ)プロピルトリエトキシシラン、(ジメチルクロロシリル)メチル−7,7−ジメチルノルピナン、(シクロヘキシルアミノメチル)メチルジエトキシシラン、(3−シクロペンタジエニルプロピル)トリエトキシシラン、N,N−ジエチル−3−アミノプロピル)トリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、(フルフリルオキシメチル)トリエトキシシラン、2−ヒドロキシ−4−(3−トリエトキシプロポキシ)ジフェニルケトン、3−(p−メトキシフェニル)プロピルメチルジクロロシラン、3−(p−メトキシフェニル)プロピルトリクロロシラン、p−(メチルフェネチル)メチルジクロロシラン,p−(メチルフェネチル)トリクロロシラン、p−(メチルフェネチル)ジメチルクロロシラン、3−モルフォリノプロピルトリメトキシシラン、(3−グリシドキシプロピル)メチルジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、1,2,3,4,7,7,−ヘキサクロロ−6−メチルジエトキシシリル−2−ノルボルネン、1,2,3,4,7,7,−ヘキサクロロ−6−トリエトキシシリル−2−ノルボルネン、3−ヨードプロピルトリメトキシラン、3−イソシアネートプロピルトリエトキシシラン、(メルカプトメチル)メチルジエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルジメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、メチル{2−(3−トリメトキシシリルプロピルアミノ)エチルアミノ}−3−プロピオネート、7−オクテニルトリメトキシシラン、R−N−α−フェネチル−N’−トリエトキシシリルプロピルウレア、S−N−α−フェネチル−N’−トリエトキシシリルプロピルウレア、フェネチルトリメトキシシラン、フェネチルメチルジメトキシシラン、フェネチルジメチルメトキシシラン、フェネチルジメトキシシラン、フェネチルジエトキシシラン、フェネチルメチルジエトキシシラン、フェネチルジメチルエトキシシラン、フェネチルトリエトキシシラン、(3−フェニルプロピル)ジメチルクロロシラン、(3−フェニルプロピル)メチルジクロロシラン、N−フェニルアミノプロピルトリメトキシシラン、N−(トリエトキシシリルプロピル)ダンシルアミド、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、2−(トリエトキシシリルエチル)−5−(クロロアセトキシ)ビシクロヘプタン、(S)−N−トリエトキシシリルプロピル−O−メントカルバメート、3−(トリエトキシシリルプロピル)−p−ニトロベンズアミド、3−(トリエトキシシリル)プロピルサクシニック無水物、N−〔5−(トリメトキシシリル)−2−アザ−1−オキソ−ペンチル〕カプロラクタム、2−(トリメトキシシリルエチル)ピリジン、N−(トリメトキシシリルエチル)ベンジル−N,N,N−トリメチルアンモニウムクロライド、フェニルビニルジエトキシシラン、3−チオシアナートプロピルトリエトキシシラン、(トリデカフロオロ−1,1,2,2,−テトラヒドロオクチル)トリエトキシシラン、N−{3−(トリエトキシシリル)プロピル}フタルアミド酸、(3,3,3−トリフルオロプロピル)メチルジメトキシシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシシラン、1−トリメトキシシリル−2−(クロロメチル)フェニルエタン、2−(トリメトキシシリル)エチルフェニルスルホニルアジド、β−トリメトキシシリルエチル−2−ピリジン、トリメトキシシリルプロピルジエチレントリアミン、N−(3−トリメトキシシリルプロピル)ピロール、N−トリメトキシシリルプロピル−N,N,N−トリブチルアンモニウムブロマイド、N−トリメトキシシリルプロピル−N,N,N−トリブチルアンモニウムクロライド、N−トリメトキシシリルプロピル−N,N,N−トリメチルアンモニウムクロライド、ビニルメチルジエトキシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルジメチルエトキシシラン、ビニルメチルジクロロシラン、ビニルフェニルジクロロシラン、ビニルフェニルジエトキシシラン、ビニルフェニルジメチルシラン、ビニルフェニルメチルクロロシラン、ビニルトリフェノキシシラン、ビニルトリス−t−ブトキシシラン、アダマンチルエチルトリクロロシラン、アリルフェニルトリクロロシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、3−アミノフェノキシジメチルビニルシラン、フェニルトリクロロシラン、フェニルジメチルクロロシラン、フェニルメチルジクロロシラン、ベンジルトリクロロシラン、ベンジルジメチルクロロシラン、ベンジルメチルジクロロシラン、フェネチルジイソプロピルクロロシラン、フェネチルトリクロロシラン、フェネチルジメチルクロロシラン、フェネチルメチルジクロロシラン、5−(ビシクロヘプテニル)トリクロロシラン、5−(ビシクロヘプテニル)トリエトキシシラン、2−(ビシクロヘプチル)ジメチルクロロシラン、2−(ビシクロヘプチル)トリクロロシラン、1,4−ビス(トリメトキシシリルエチル)ベンゼン、ブロモフェニルトリクロロシラン、3−フェノキシプロピルジメチルクロロシラン、3−フェノキシプロピルトリクロロシラン、t−ブチルフェニルクロロシラン、t−ブチルフェニルメトキシシラン、t−ブチルフェニルジクロロシラン、p−(t−ブチル)フェネチルジメチルクロロシラン、p−(t−ブチル)フェネチルトリクロロシラン、1,3−(クロロジメチルシリルメチル)ヘプタコサン、((クロロメチル)フェニルエチル)ジメチルクロロシラン、((クロロメチル)フェニルエチル)メチルジクロロシラン、((クロロメチル)フェニルエチル)トリクロロシラン、((クロロメチル)フェニルエチル)トリメトキシシラン、クロロフェニルトリクロロシラン、2−シアノエチルトリクロロシラン、2−シアノエチルメチルジクロロシラン、3−シアノプロピルメチルジエトキシシラン、3−シアノプロピルメチルジクロロシラン、3−シアノプロピルメチルジクロロシラン、3−シアノプロピルジメチルエトキシシラン、3−シアノプロピルメチルジクロロシラン、3−シアノプロピルトリクロロシラン、フッ化アルキルシラン等を挙げることができ、これらから選択される1種または2種以上を組み合わせて用いることができる。
中でも、ヘキサメチルジシラザンを疎水化処理に用いるのが好ましい。これにより、粒体111の疎水性をより高いものとすることができる。また、容易かつ確実に、各粒体111や粒体111表面の各部位(空孔1111内部の表面を含む)での疎水化処理の程度の均一性をより高いものとすることができる。
シラン化合物を用いた疎水化処理を液相で行う場合には、シラン化合物を含む液中に、疎水化処理を施すべき粒体111(母粒子)を浸漬することで、好適に所望の反応を進行させることができ、シラン化合物の化学吸着膜を形成することができる。
また、シラン化合物を用いた疎水化処理を気相で行う場合には、シラン化合物の蒸気に疎水化処理を施すべき粒体111(母粒子)を曝すことで、好適に所望の反応を進行させることができ、シラン化合物の化学吸着膜を形成することができる。
三次元造形用粉末を構成する粒体111の平均粒径は、特に限定されないが、1μm以上25μm以下であるのが好ましく、1μm以上15μm以下であるのがより好ましい。これにより、三次元造形物10の機械的強度を特に優れたものとすることができるとともに、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度を特に優れたものとすることができる。また、三次元造形用粉末の流動性、三次元造形用粉末を含むペースト状の組成物(三次元造形用組成物)11の流動性を特に優れたものとし、三次元造形物10の生産性を特に優れたものとすることができる。
なお、本発明において、平均粒径とは、体積基準の平均粒径を言い、例えば、サンプルをメタノールに添加し、超音波分散器で3分間分散した分散液をコールターカウンター法粒度分布測定器(COULTER ELECTRONICS INS製TA−II型)にて、50μmのアパチャーを用いて測定することにより求めることができる。
三次元造形用粉末を構成する粒体111のDmaxは、3μm以上40μm以下であるのが好ましく、5μm以上30μm以下であるのがより好ましい。これにより、三次元造形物10の機械的強度を特に優れたものとすることができるとともに、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度を特に優れたものとすることができる。また、三次元造形用粉末の流動性、三次元造形用粉末を含むペースト状の組成物(三次元造形用組成物)11の流動性を特に優れたものとし、三次元造形物10の生産性を特に優れたものとすることができる。
三次元造形用粉末を構成する粒体111の空孔率は、20%以上であるのが好ましく、30%以上70%以下であるのがより好ましい。これにより、結合剤が入り込む空間(空孔1111)を十分に有するとともに、粒体111自体の機械的強度を優れたものとすることができ、結果として、空孔1111内に結合剤121が侵入してなる三次元造形物10の機械的強度を特に優れたものとすることができる。なお、本発明において、粒体(粒子)の空孔率とは、粒体の見かけ体積中に対する、粒体の内部に存在する空孔の割合(体積率)のことを言い、粒体の密度をρ[g/cm]、粒体の構成材料の真密度ρ[g/cm]としたときに、{(ρ−ρ)/ρ}×100で表される値である。
粒体111の平均空孔径(細孔直径)が10nm以上であるのが好ましく、50nm以上300nm以下であるのがより好ましい。これにより、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。また、三次元造形物10の製造に、顔料を含む結着液12(着色インク)を用いる場合において、顔料を粒体111の空孔1111内に好適に保持することができる。このため、不本意な顔料の拡散を防止することができ、高精細な画像をより確実に形成することができる。
三次元造形用粉末を構成する粒体111は、いかなる形状を有するものであってもよいが、球形状をなすものであるのが好ましい。これにより、三次元造形用粉末の流動性、三次元造形用粉末を含むペースト状の組成物(三次元造形用組成物)11の流動性を特に優れたものとし、三次元造形物10の生産性を特に優れたものとすることができるとともに、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度を特に優れたものとすることができる。
三次元造形用粉末の空隙率は、20%以上90%以下であるのが好ましく、30%以上70%以下であるのがより好ましい。これにより、三次元造形物10の機械的強度を特に優れたものとすることができる。また、三次元造形用粉末の流動性、三次元造形用粉末を含むペースト状の組成物(三次元造形用組成物)11の流動性を特に優れたものとし、三次元造形物10の生産性を特に優れたものとすることができるとともに、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度を特に優れたものとすることができる。なお、本発明において、三次元造形用粉末の空隙率とは、所定容量(例えば、100mL)の容器内を三次元造形用粉末で満たした場合における、前記容器の容量に対する、三次元造形用粉末を構成する全粒体(粒子)が有する空孔の体積と、粒体(粒子)間に存在する空隙の体積との和の比率のことを言い、三次元造形用粉末の嵩密度をΡ[g/cm]、三次元造形用粉末の構成材料の真密度Ρ[g/cm]としたときに、{(Ρ−Ρ)/Ρ}×100で表される値である。
組成物(三次元造形用組成物)11中における三次元造形用粉末の含有率は、5質量%以上90質量%以下であるのが好ましく、10質量%以上70質量%以下であるのがより好ましい。これにより、組成物(三次元造形用組成物)11の流動性を十分に優れたものとしつつ、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。
(水系溶媒)
組成物11は、粒体111に加えて、水系溶媒(図8中には図示せず)を含むものである。
これにより、好適に組成物11をペースト状のものとすることができ、組成物11の流動性を安定的に優れたものとし、三次元造形物10の生産性を特に優れたものとすることができる。これは、以下のような理由による。すなわち、本発明においては、結合部の形成時(結着液付与工程、硬化工程)には、層の形状の安定性、結合液の不本意な濡れ広がりを防止する観点から、組成物を用いて形成された層の流動性を低下させるのが好ましいが、組成物が溶媒を含む場合には、溶媒を除去する(揮発させる)ことにより、層の流動性を低下させることができる。これに対し、例えば、層形成時において、組成物に含まれる成分を溶融させるものである場合、組成物を用いて形成された層の流動性を低下させるためには、組成物(層)の温度を低下させる必要があるが、一般に、このような温度の調整による流動性の調整よりも、溶媒の除去による流動性の調整のほうが、容易かつ速やかに行うことができる。また、温度の調整による流動性の調整では、温度により、層の流動性が比較的大きく変動し、層の流動性を安定的に制御するのが困難であるが、溶媒の除去により行う場合には、容易に、層の流動性を安定的に制御することができる。また、組成物に含まれる成分を溶媒させるものである場合、組成物の加熱、冷却を繰り返し行う必要があり、これに比較的大きなエネルギーを要するのに対し、溶媒を用いた場合には、エネルギーの使用量を抑制することができる。したがって、省エネルギーの観点からも、溶媒を用いるのが好ましい。
また、水系溶媒は、水との親和性が高いものであるため、後述する水溶性樹脂112を好適に溶解することができる。これにより、組成物11の流動性を良好なものとすることができ、組成物11を用いて形成される層1の厚さの不本意なばらつきをより効果的に防止することができる。また、水系溶媒が除去された状態の層1を形成した際に、層1全体にわたって、より高い均一性で、水溶性樹脂112を粒体111に付着させることができ、不本意な組成のむらが発生するのをより効果的に防止することができる。このため、最終的に得られる三次元造形物10の各部位での機械的強度の不本意なばらつきの発生をより効果的に防止することができ、三次元造形物10の信頼性をより高いものとすることができる。なお、図8に示す構成では、水系溶媒は示されておらず、水溶性樹脂112が析出したような状態で粒体111の外表面の一部に付着して存在するものとして示されているが、水系溶媒を含む場合、例えば、水溶性樹脂112は、水系溶媒に溶解した状態で組成物11中に含まれ、この溶液が、粒体111の表面(例えば、粒体111の空孔1111以外の表面)を濡らした状態で存在していてもよい。
組成物11を構成する水系溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール性溶媒;メチルエチルケトン、アセトン等のケトン系溶媒;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル系溶媒;プロピレングリコール1−モノメチルエーテル2−アセタート、プロピレングリコール1−モノエチルエーテル2−アセタート等のグリコールエーテルアセテート系溶媒;ポリエチレングリコール、ポリプロピレングリコール等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
中でも、組成物11は、水を含むものであるのが好ましい。これにより、水溶性樹脂112をより確実に溶解することができ、組成物11の流動性、組成物11を用いて形成される層1の組成の均一性を特に優れたものとすることができる。また、水は層加熱工程での除去が容易である。また、人体に対する安全性、環境問題の観点等からも有利である。
組成物11中における水系溶媒の含有率は、5質量%以上88質量%以下であるのが好ましく、10質量%以上80質量%以下であるのがより好ましい。これにより、前述したような効果がより顕著に発揮されるとともに、三次元造形物10の生産性を特に優れたものとすることができる。
(水溶性樹脂)
組成物11は、複数個の粒体111とともに、水溶性樹脂112を含むものであってもよい。
水溶性樹脂112を含むことにより、層1の結着液12が付与されていない部位において粒体111同士を結合(仮固定)し(図8参照)、粒体111の不本意な飛散等をより効果的に防止することができる。これにより、作業者の安全や、製造される三次元造形物10の寸法精度のさらなる向上を図ることができる。
また、水溶性樹脂112を含む場合であっても、粒体111が、疎水化処理が施されたものである場合には、粒体111の空孔1111内に、水溶性樹脂112が入り込んでしまうことが効果的に防止されている。このため、粒体111同士を仮固定するという水溶性樹脂112の機能が確実に発揮されるとともに、粒体111の空孔1111内に予め水溶性樹脂112が入り込んでしまうことにより、結合剤121が入り込む空間が確保できなくなるといった問題の発生もより確実に防止することができる。
水溶性樹脂112は、少なくともその一部が水に可溶なものであればよいが、例えば、25℃における水に対する溶解度(水100gに溶解可能な質量)が5[g/100g水]以上のものであるのが好ましく、10[g/100g水]以上のものであるのがより好ましい。
水溶性樹脂112としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリカプロラクタムジオール、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、ポリアクリルアミド、変性ポリアミド、ポリエチレンイミン、ポリエチレンオキサイド、エチレンオキサイドとプロピレンオキサイドとのランダム共重合ポリマー等の合成ポリマー、コーンスターチ、マンナン、ペクチン、寒天、アルギン酸、デキストラン、にかわ、ゼラチン等の天然ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロース、酸化でんぷん、変性でんぷん等の半合成ポリマー等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
水溶性樹脂製品の具体例としては、例えば、メチルセルロース(信越化学社製、メトローズSM−15)、ヒドロキシエチルセルローズ(フジケミカル社製、AL−15)、ヒドロキシプロピルセルローズ(日本ソーダ社製、HPC−M)、カルボキシメチルセルローズ(ニチリン化学社製、CMC−30)、澱粉リン酸エステルナトリュウム(I)(松谷化学社製、ホスター5100)、ポリビニルピロリドン(東京化学社製、PVP K−90)、メチルビニールエーテル/無水マレイン酸コポリマー(GAFガントレット社製、AN−139)、ポリアクリル酸ナトリウム(東亜合成製、アロンT−50、アロンA−210、アロンAC−103)、ポリアクリル酸アンモニウム(東亜合成製、アロンA−30SL、アロンAS−1100、アロンAS−1800)、ポリアクリルアミド(和光純薬社製)、変性ポリアミド(変性ナイロン)(東レ社製、AQナイロン)、ポリエチレンオキサイド(製鉄化学社製、PEO−1、明成化学工業社製、アルコックス)、エチレンオキサイドとプロピレンオキサイドとのランダム共重合ポリマー(明成化学工業社製、アルコックスEP)、ポリアクリル酸ナトリウム(和光純薬社製)、カルボキシビニルポリマー/架橋型アクリル系水溶性樹脂(住友精化社製、アクペック)等が挙げられる。
中でも、水溶性樹脂112がポリビニルアルコールである場合、三次元造形物10の機械的強度を特に優れたものとすることができる。また、ケン化度や重合度の調整により、水溶性樹脂112の特性(例えば、水溶性、耐水性等)や組成物11の特性(例えば、粘度、粒体111の固定力、濡れ性等)をより好適に制御することができる。このため、多様な三次元造形物10の製造により好適に対応することができる。また、ポリビニルアルコールは、各種水溶性樹脂の中でも、安価で、かつ、供給が安定したものである。このため、生産コストを抑制しつつ、安定的な三次元造形物10の製造を行うことができる。
水溶性樹脂112がポリビニルアルコールを含むものである場合、当該ポリビニルアルコールのケン化度は、75以上98以下であるのが好ましい。これにより、水に対するポリビニルアルコールの溶解度の低下を抑制することができる。そのため、組成物11が水を含むものである場合に、隣接する層1間の接着性の低下をより効果的に抑制することができる。
水溶性樹脂112がポリビニルアルコールを含むものである場合、当該ポリビニルアルコールの重合度は、300以上2500以下であるのが好ましい。これにより、組成物11が水を含むものである場合に、各層1の機械的強度や隣接する層1間の接着性を特に優れたものとすることができる。
また、水溶性樹脂112がポリビニルピロリドン(PVP)である場合、以下のような効果が得られる。すなわち、ポリビニルピロリドンは、ガラス、金属、プラスチック等の各種材料に対する接着性に優れているため、層1のうち結着液12が付与されない部分の強度・形状の安定性を特に優れたものとし、最終的に得られる三次元造形物10の寸法精度を特に優れたものとすることができる。また、ポリビニルピロリドンは、各種有機溶媒に対して、高い溶解性を示すため、組成物11が有機溶媒を含む場合において、組成物11の流動性を特に優れたものとすることができ、不本意な厚さのばらつきがより効果的に防止された層1を好適に形成することができ、最終的に得られる三次元造形物10の寸法精度を特に優れたものとすることができる。また、ポリビニルピロリドンは、水に対しても高い溶解性を示すため、未結合粒子除去工程(造形終了後)において、各層1を構成する粒体111のうち、結合剤121により結合していないものを容易かつ確実に除去することができる。また、ポリビニルピロリドンは、三次元造形用粉末との親和性が適度なものであるため、前述したような空孔1111内への入り込みが十分に起こりにくいものである一方で、粒体111の表面に対する濡れ性は比較的高いものである。このため、前述したような仮固定の機能をより効果的に発揮することができる。また、ポリビニルピロリドンは、各種着色剤との親和性に優れているため、結着液付与工程において着色剤を含む結着液12を用いた場合に、着色剤が不本意に拡散してしまうのを効果的に防止することができる。また、ペースト状の組成物11がポリビニルピロリドンを含むものであると、組成物11中に泡が巻き込まれてしまうことを効果的に防止することができ、層形成工程において、泡の巻き込みによる欠陥が発生するのを効果的により防止することができる。
水溶性樹脂112がポリビニルピロリドンを含むものである場合、当該ポリビニルピロリドンの重量平均分子量は、10000以上1700000以下であるのが好ましく、30000以上1500000以下であるのがより好ましい。これにより、前述した機能をより効果的に発揮することができる。
組成物11中における水溶性樹脂112の含有率は、0.1質量%以上20質量%以下であるのが好ましく、0.2質量%以上15質量%以下であるのがより好ましい。これにより、前述したような効果がより顕著に発揮されるとともに、三次元造形物10の生産性を特に優れたものとすることができる。
(その他の成分)
また、組成物11は、前述した以外の成分を含むものであってもよい。このような成分としては、例えば、重合開始剤;重合促進剤;浸透促進剤;湿潤剤(保湿剤);定着剤;防黴剤;防腐剤;酸化防止剤;紫外線吸収剤;キレート剤;pH調整剤;水系溶媒以外の溶媒等が挙げられる。
<結着液>
次に、本発明の三次元造形物の製造に用いる結着液について詳細に説明する。
結着液12は、少なくとも結合剤121を含むものである。
(結合剤)
結合剤121は、粒体111を結合する機能を有するものであればいかなるものであってもよいが、粒体111として後に詳述するような空孔1111を有し、かつ、疎水化処理が施されたものを用いる場合には、疎水性(親油性)を有するものであるのが好ましい。これにより、結着液12と疎水化処理が施された粒体111との親和性を高いものとすることができ、層1に結着液12が付与されることにより、結着液12は、疎水化処理が施された粒体111の空孔1111内に好適に侵入することができる。その結果、結合剤121によるアンカー効果が好適に発揮され、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。なお、疎水性の結合剤は、水に対する親和性が十分に低いものであればよいが、例えば、25℃における水に対する溶解度が1[g/100g水]以下であるのが好ましい。
結合剤121としては、例えば、熱可塑性樹脂;熱硬化性樹脂;可視光領域の光により硬化する可視光硬化性樹脂(狭義の光硬化性樹脂)、紫外線硬化性樹脂、赤外線硬化性樹脂等の各種光硬化性樹脂;X線硬化性樹脂等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。中でも、得られる三次元造形物10の機械的強度や三次元造形物10の生産性等の観点から、結合剤121は、硬化性樹脂を含むものであるのが好ましい。また、各種硬化性樹脂の中でも、得られる三次元造形物10の機械的強度や三次元造形物10の生産性、結着液12の保存安定性等の観点から、特に、紫外線硬化性樹脂(重合性化合物)が好ましい。
紫外線硬化性樹脂(重合性化合物)としては、紫外線照射により、光重合開始剤から生じるラジカル種またはカチオン種等により、付加重合または開環重合が開始され、重合体を生じるものが好ましく使用される。付加重合の重合様式として、ラジカル、カチオン、アニオン、メタセシス、配位重合が挙げられる。また、開環重合の重合様式として、カチオン、アニオン、ラジカル、メタセシス、配位重合が挙げられる。
付加重合性化合物としては、例えば、少なくとも1個のエチレン性不飽和二重結合を有する化合物等が挙げられる。付加重合性化合物として、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物が好ましく使用できる。
エチレン性不飽和重合性化合物は、単官能の重合性化合物および多官能の重合性化合物、またはそれらの混合物の化学的形態をもつ。単官能の重合性化合物としては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)や、そのエステル類、アミド類等が挙げられる。多官能の重合性化合物としては、不飽和カルボン酸と脂肪族の多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族の多価アミン化合物とのアミド類が用いられる。
また、ヒドロキシル基や、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステルまたはアミド類とイソシアネート類、エポキシ類との付加反応物、カルボン酸との脱水縮合反応物等も使用できる。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルまたはアミド類と、アルコール類、アミン類およびチオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルまたはアミド類と、アルコール類、アミン類またはチオール類との置換反応物も使用できる。
不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルであるラジカル重合性化合物の具体例としては、例えば、(メタ)アクリル酸エステルが代表的であり、単官能のもの、多官能のもののいずれも用いることができる。
単官能の(メタ)アクリレートの具体例としては、例えば、トリルオキシエチル(メタ)アクリレート、フェニルオキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチル(メタ)アクリレート、メチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等が挙げられる。
二官能の(メタ)アクリレートの具体例としては、例えば、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート等が挙げられる。
三官能の(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、イソシアヌル酸アルキレンオキサイド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ヒドロキシピバルアルデヒド変性ジメチロールプロパントリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート等が挙げられる。
四官能の(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
五官能の(メタ)アクリレートの具体例としては、例えば、ソルビトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
六官能の(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート、カプトラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
(メタ)アクリレート以外の重合性化合物としては、例えば、イタコン酸エステル、クロトン酸エステル、イソクロトン酸エステル、マレイン酸エステル等が挙げられる。
イタコン酸エステルとしては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4−ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、ソルビトールテトライタコネート等が挙げられる。
クロトン酸エステルとしては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネート等が挙げられる。
イソクロトン酸エステルとしては、例えば、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテトライソクロトネート等が挙げられる。
マレイン酸エステルとしては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等が挙げられる。
その他のエステルの例としては、例えば、特公昭46−27926号公報、特公昭51−47334号公報、特開昭57−196231号公報に記載の脂肪族アルコール系エステル類や、特開昭59−5240号公報、特開昭59−5241号公報、特開平2−226149号公報に記載の芳香族系骨格を有するもの、特開平1−165613号公報に記載のアミノ基を含有するもの等も用いることができる。
また、不飽和カルボン酸と脂肪族多価アミン化合物とのアミドのモノマーの具体例としては、例えば、メチレンビス−アクリルアミド、メチレンビス−メタクリルアミド、1,6−ヘキサメチレンビス−アクリルアミド、1,6−ヘキサメチレンビス−メタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスメタクリルアミド等が挙げられる。
その他の好ましいアミド系モノマーとしては、例えば、特公昭54−21726号公報に記載のシクロへキシレン構造を有するもの等が挙げられる。
また、イソシアネートと水酸基との付加反応を用いて製造されるウレタン系付加重合性化合物も好適であり、そのような具体例としては、例えば、特公昭48−41708号公報に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記式(1)で示される水酸基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。
CH=C(R)COOCHCH(R)OH (1)
(ただし、式(1)中、RおよびRは、それぞれ独立に、HまたはCHを示す。)
本発明において、エポキシ基、オキセタン基等の環状エーテル基を分子内に1つ以上有するカチオン開環重合性の化合物を紫外線硬化性樹脂(重合性化合物)として好適に用いることができる。
カチオン重合性化合物としては、例えば、開環重合性基を含む硬化性化合物等が挙げられ、中でも、ヘテロ環状基含有硬化性化合物が特に好ましい。このような硬化性化合物としては、例えば、エポキシ誘導体、オキセタン誘導体、テトラヒドロフラン誘導体、環状ラクトン誘導体、環状カーボネート誘導体、オキサゾリン誘導体などの環状イミノエーテル類、ビニルエーテル類等が挙げられ、中でも、エポキシ誘導体、オキセタン誘導体、ビニルエーテル類が好ましい。
好ましいエポキシ誘導体の例としては、例えば、単官能グリシジルエーテル類、多官能グリシジルエーテル類、単官能脂環式エポキシ類、多官能脂環式エポキシ類等が挙げられる。
グリシジルエーテル類の具体的な化合物を例示すると、例えば、ジグリシジルエーテル類(例えば、エチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル等)、3官能以上のグリシジルエーテル類(例えば、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレート等)、4官能以上のグリシジルエーテル類(例えば、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテル等)、脂環式エポキシ類(例えば、セロキサイド2021P、セロキサイド2081、エポリードGT−301、エポリードGT−401(以上、ダイセル化学工業(株)製))、EHPE(ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテル等)、オキセタン類(例えば、OX−SQ、PNOX−1009(以上、東亞合成(株)製)等)等が挙げられる。
重合性化合物としては、脂環式エポキシ誘導体を好ましく用いることができる。「脂環式エポキシ基」とは、シクロペンテン基、シクロヘキセン基等のシクロアルケン環の二重結合を過酸化水素、過酸等の適当な酸化剤でエポキシ化した部分構造を言う。
脂環式エポキシ化合物としては、シクロヘキセンオキシド基またはシクロペンテンオキシド基を1分子内に2個以上有する多官能脂環式エポキシ類が好ましい。脂環式エポキシ化合物の具体例としては、例えば、4−ビニルシクロヘキセンジオキサイド、(3,4−エポキシシクロヘキシル)メチル−3,4−エポキシシクロヘキシルカルボキシレート、ジ(3,4−エポキシシクロヘキシル)アジペート、ジ(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(2,3−エポキシシクロペンチル)エーテル、ジ(2,3−エポキシ−6−メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド等が挙げられる。
分子内に脂環式構造を有しない通常のエポキシ基を有するグリシジル化合物を、単独で使用したり、前記の脂環式エポキシ化合物と併用することもできる。
このような通常のグリシジル化合物としては、例えば、グリシジルエーテル化合物やグリシジルエステル化合物等を挙げることができるが、グリシジルエーテル化合物を併用することが好ましい。
グリシジルエーテル化合物の具体例を挙げると、例えば、1,3−ビス(2,3−エポキシプロピロキシ)ベンゼン、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポシキ樹脂、フェノール・ノボラック型エポキシ樹脂、クレゾール・ノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂等の芳香族グリシジルエーテル化合物、1,4−ブタンジオールグリシジルエーテル、グリセロールトリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチロールプロパントリトリグリシジルエーテル等の脂肪族グリシジルエーテル化合物等が挙げられる。グリシジルエステルとしては、例えば、リノレン酸ダイマーのグリシジルエステル等を挙げることができる。
重合性化合物としては、4員環の環状エーテルであるオキセタニル基を有する化合物(以下、単に「オキセタン化合物」ともいう。)を使用することができる。オキセタニル基含有化合物は、1分子中にオキセタニル基を1個以上有する化合物である。
結着液12中における結合剤の含有率は、80質量%以上であるのが好ましく、85質量%以上であるのがより好ましい。これにより、最終的に得られる三次元造形物10の機械的強度を特に優れたものとすることができる。
(その他の成分)
また、結着液12は、前述した以外の成分を含むものであってもよい。このような成分としては、例えば、顔料、染料等の各種着色剤;分散剤;界面活性剤;重合開始剤;重合促進剤;溶媒;浸透促進剤;湿潤剤(保湿剤);定着剤;防黴剤;防腐剤;酸化防止剤;紫外線吸収剤;キレート剤;pH調整剤;増粘剤;フィラー;凝集防止剤;消泡剤等が挙げられる。
特に、結着液12が着色剤を含むことにより、着色剤の色に対応する色に着色された三次元造形物10を得ることができる。
特に、着色剤として、顔料を含むことにより、結着液12、三次元造形物10の耐光性を良好なものとすることができる。顔料は、無機顔料および有機顔料のいずれも使用することができる。
無機顔料としては、例えば、ファーネスブラック、ランプブラック、アセチレンブラック、チャネルブラック等のカーボンブラック(C.I.ピグメントブラック7)類、酸化鉄、酸化チタン等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
前記無機顔料の中でも、好ましい白色を呈するためには、酸化チタンが好ましい。
有機顔料としては、例えば、不溶性アゾ顔料、縮合アゾ顔料、アゾレーキ、キレートアゾ顔料等のアゾ顔料、フタロシアニン顔料、ペリレンおよびペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサン顔料、チオインジゴ顔料、イソインドリノン顔料、キノフタロン顔料等の多環式顔料、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレート等)、染色レーキ(塩基性染料型レーキ、酸性染料型レーキ)、ニトロ顔料、ニトロソ顔料、アニリンブラック、昼光蛍光顔料等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
さらに詳しくは、黒色(ブラック)の顔料として使用されるカーボンブラックとしては、例えば、No.2300、No.900、MCF88、No.33、No.40、No.45、No.52、MA7、MA8、MA100、No.2200B等(以上、三菱化学社(Mitsubishi Chemical Corporation)製)、Raven 5750、Raven 5250、Raven 5000、Raven 3500、Raven 1255、Raven 700等(以上、コロンビアカーボン(Carbon Columbia)社製)、Rega1 400R、Rega1 330R、Rega1 660R、Mogul L、Monarch 700、Monarch 800、Monarch 880、Monarch 900、Monarch 1000、Monarch 1100、Monarch 1300、Monarch 1400等(以上、キャボット社(CABOT JAPAN K.K.)製)、Color Black FW1、Color Black FW2、Color Black FW2V、Color Black FW18、Color Black FW200、Color B1ack S150、Color Black S160、Color Black S170、Printex 35、Printex U、Printex V、Printex 140U、Special Black 6、Special Black 5、Special Black 4A、Special Black 4(以上、デグッサ(Degussa)社製)等が挙げられる。
白色(ホワイト)の顔料としては、例えば、C.I.ピグメントホワイト 6、18、21等が挙げられる。
黄色(イエロー)の顔料としては、例えば、C.I.ピグメントイエロー 1、2、3、4、5、6、7、10、11、12、13、14、16、17、24、34、35、37、53、55、65、73、74、75、81、83、93、94、95、97、98、99、108、109、110、113、114、117、120、124、128、129、133、138、139、147、151、153、154、167、172、180等が挙げられる。
紅紫色(マゼンタ)の顔料としては、例えば、C.I.ピグメントレッド 1、2、3、4、5、6、7、8、9、10、11、12、14、15、16、17、18、19、21、22、23、30、31、32、37、38、40、41、42、48(Ca)、48(Mn)、57(Ca)、57:1、88、112、114、122、123、144、146、149、150、166、168、170、171、175、176、177、178、179、184、185、187、202、209、219、224、245、またはC.I.ピグメントヴァイオレット 19、23、32、33、36、38、43、50等が挙げられる。
藍紫色(シアン)の顔料としては、例えば、C.I.ピグメントブルー 1、2、3、15、15:1、15:2、15:3、15:34、15:4、16、18、22、25、60、65、66、C.I.バット ブルー 4、60等が挙げられる。
また、前記以外の顔料としては、例えば、C.I.ピグメントグリーン 7,10、C.I.ピグメントブラウン 3,5,25,26、C.I.ピグメントオレンジ 1,2,5,7,13,14,15,16,24,34,36,38,40,43,63等が挙げられる。
結着液12が顔料を含むものである場合、当該顔料の平均粒径は、300nm以下であるのが好ましく、50nm以上250nm以下であるのがより好ましい。これにより、結着液12の吐出安定性や結着液12中における顔料の分散安定性を特に優れたものとすることができるとともに、より優れた画質の画像を形成することができる。
また、染料としては、例えば、酸性染料、直接染料、反応性染料、および塩基性染料等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
染料の具体例としては、例えば、C.I.アシッドイエロー 17,23,42,44,79,142、C.I.アシッドレッド 52,80,82,249,254,289、C.I.アシッドブルー 9,45,249、C.I.アシッドブラック 1,2,24,94、C.I.フードブラック 1,2、C.I.ダイレクトイエロー 1,12,24,33,50,55,58,86,132,142,144,173、C.I.ダイレクトレッド 1,4,9,80,81,225,227、C.I.ダイレクトブルー 1,2,15,71,86,87,98,165,199,202、C.I.ダイレクドブラック 19,38,51,71,154,168,171,195、C.I.リアクティブレッド 14,32,55,79,249、C.I.リアクティブブラック 3,4,35等が挙げられる。
結着液12が着色剤を含むものである場合、当該結着液12中における着色剤の含有率は、1質量%以上20質量%以下であるのが好ましい。これにより、特に優れた隠蔽性および色再現性が得られる。
特に、結着液12が着色剤として酸化チタンを含むものである場合、当該結着液12中における酸化チタンの含有率は、12質量%以上30質量%以下であるのが好ましく、14質量%以上25質量%以下であるのがより好ましい。これにより、特に優れた隠蔽性が得られる。
結着液12が顔料を含む場合に、分散剤をさらに含むものであると、顔料の分散性をより良好なものとすることができる。分散剤としては、特に限定されないが、例えば、高分子分散剤等の顔料分散液を調製するのに慣用されている分散剤が挙げられる。高分子分散剤の具体例としては、例えば、ポリオキシアルキレンポリアルキレンポリアミン、ビニル系ポリマーおよびコポリマー、アクリル系ポリマーおよびコポリマー、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、アミノ系ポリマー、含珪素ポリマー、含硫黄ポリマー、含フッ素ポリマー、およびエポキシ樹脂のうち1種以上を主成分とするもの等が挙げられる。高分子分散剤の市販品としては、例えば、味の素ファインテクノ社製のアジスパーシリーズ、ノベオン(Noveon)社から入手可能なソルスパーズシリーズ(Solsperse 36000等)、BYK社製のディスパービックシリーズ、楠本化成社製のディスパロンシリーズ等が挙げられる。
結着液12が界面活性剤を含むものであると、三次元造形物10の耐擦性をより良好なものとすることができる。界面活性剤としては、特に限定されないが、例えば、シリコーン系界面活性剤としての、ポリエステル変性シリコーンやポリエーテル変性シリコーン等を用いることができ、中でも、ポリエーテル変性ポリジメチルシロキサンまたはポリエステル変性ポリジメチルシロキサンを用いるのが好ましい。界面活性剤の具体例としては、例えば、BYK−347、BYK−348、BYK−UV3500、3510、3530、3570(以上、BYK社製商品名)等を挙げられる。
また、結着液12は、溶媒を含むものであってもよい。これにより、結着液12の粘度調整を好適に行うことでき、結着液12が高粘度の成分を含むものであっても、結着液12のインクジェット方式による吐出安定性を特に優れたものとすることができる。
溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル等の酢酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル−n−ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類;エタノール、プロパノール、ブタノール等のアルコール類等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
また、結着液12の粘度は、1mPa・s以上30mPa・s以下であるのが好ましく、3mPa・s以上25mPa・s以下であるのがより好ましい。これにより、インクジェット法による結着液12の吐出安定性を特に優れたものとすることができる。なお、本明細書中において、粘度とは、特に条件の指定がない限り、E型粘度計(東京計器社製 VISCONIC ELD)を用いて25℃において測定される値をいう。
また、三次元造形物10の製造には、複数種の結着液12を用いてもよい。
例えば、着色剤を含む結着液12(カラーインク)と、着色剤を含まない結着液12(クリアインク)とを用いてもよい。これにより、例えば、三次元造形物10の外観上、色調に影響を与える領域に付与する結着液12として着色剤を含む結着液12を用い、三次元造形物10の外観上、色調に影響を与えない領域に付与する結着液12として着色剤を含まない結着液12を用いてもよい。また、最終的に得られる三次元造形物10において、着色剤を含む結着液12を用いて形成された領域の外表面に、着色剤を含まない結着液12を用いて形成された領域(コート層)を設けるように、複数種の結着液12を併用してもよい。
また、例えば、異なる組成の着色剤を含む複数種の結着液12を用いてもよい。これにより、これらの結着液12の組み合わせにより、表現できる色再現領域を広いものとすることができる。
複数種の結着液12を用いる場合、少なくとも、藍紫色(シアン)の結着液12、紅紫色(マゼンタ)の結着液12および黄色(イエロー)の結着液12を用いるのが好ましい。これにより、これらの結着液12の組み合わせにより、表現できる色再現領域をより広いものとすることができる。
また、白色(ホワイト)の結着液12を、他の有色の結着液12と併用することにより、例えば、以下のような効果が得られる。すなわち、最終的に得られる三次元造形物10を、白色(ホワイト)の結着液12が付与された第1の領域と、第1の領域と重なり合い、かつ、第1の領域よりも外表面側に設けられた白色以外の有色の結着液12が付与された領域(第2の領域)とを有するものとすることができる。これにより、白色(ホワイト)の結着液12が付与された第1の領域が隠蔽性を発揮することができ、三次元造形物10の彩度をより高めることができる。
《三次元造形物》
本発明の三次元造形物は、前述したような製造方法、製造装置を用いて製造することができる。
これにより、機械的強度に優れた三次元造形物を提供することができる。
本発明の三次元造形物の用途は、特に限定されないが、例えば、人形、フィギュア等の鑑賞物・展示物;インプラント等の医療機器等が挙げられる。
また、本発明の三次元造形物は、プロトタイプ、量産品、オーダーメード品のいずれに適用されるものであってもよい。
以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
例えば、前述した実施形態では、ステージを下降させる構成について代表的に説明したが、本発明の製造方法では、例えば、側面支持部が上方に移動するように構成されていてもよい。
また、平坦化手段として、前述したようなスキージーの代わりに、ローラー等を用いてもよい。
また、本発明の三次元造形物製造装置は、組成物供給部から供給された組成物のうち層の形成に用いられなかったものを回収するための、図示しない回収機構を備えるものであってもよい。これにより、層形成部に余剰の組成物が蓄積されることを防止しつつ、十分な量の組成物を供給することができるため、層における欠陥の発生をより効果的に防止しつつ、より安定的に三次元造形物を製造することができる。また、回収した組成物を、再度、三次元造形物の製造に用いることができるため、三次元造形物の製造コストの低減に寄与することができ、また、省資源の観点からも好ましい。
また、本発明の三次元造形物製造装置は、未結合粒子除去工程で除去された組成物を回収するための回収機構を備えていてもよい。
また、図示の構成では、三次元造形物製造装置は、層の加熱を行う加熱手段と、仮成形体の加熱を行う加熱手段とを、異なる部材として備えているが、層の加熱と、仮成形体の加熱とは、同一の部材(加熱手段)を用いて行ってもよい。
また、図示の構成では、三次元造形物製造装置は、層の加熱を行う加熱手段(層加熱手段)として、1つの加熱手段を備えているが、2つ以上の層加熱手段を備えていてもよい。これにより、例えば、第1の加熱処理および第2の加熱処理の条件の調整をより好適に行うことができる。また、層の各部位での加熱条件の不本意なばらつきをより効果的に抑制することができる。
また、前述した実施形態では、全ての層に対して、結合部を形成するものとして説明したが、結合部が形成されない層を有していてもよい。例えば、ステージの直上に形成された層に対して、結合部を形成しないものとし、犠牲層として機能させてもよい。
また、前述した実施形態では、結着液付与工程をインクジェット法により行う場合について中心的に説明したが、結着液付与工程は他の方法(例えば、他の印刷方法)を用いて行うものであってもよい。
また、前述した実施形態では、層形成工程および結着液付与工程に加え、硬化工程も、層形成工程および結着液付与工程と合わせて繰り返し行うものとして説明したが、硬化工程は、繰り返し行うものでなくてもよい。例えば、硬化されていない複数の層を備えた積層体を形成した後に一括して行うものであってもよい。
また、前述した実施形態では、繰り返し行う一連の工程中において、層加熱工程を行った後に、結着液付与工程、結合工程を行う場合について説明したが、結着液付与工程、結合工程は、層加熱工程の前に行うものであってもよい。
また、本発明の製造方法においては、必要に応じて、前処理工程、中間処理工程、後処理工程を行ってもよい。
前処理工程としては、例えば、ステージの清掃工程等が挙げられる。
後処理工程としては、例えば、洗浄工程、バリ取り等を行う形状調整工程、着色工程、被覆層形成工程、未硬化の結合剤を確実に硬化させるための光照射処理を行う結合剤硬化完了工程等が挙げられる。
また、前述した実施形態では、結着液付与工程と硬化工程(結合工程)とを有する方法について中心的に説明したが、例えば、結着液が結合剤として熱可塑性樹脂を含むものを用いた場合には、結着液付与工程の後に硬化工程(結合工程)を設ける必要がない(結着液付与工程に結合工程を兼ねさせることができる)。また、このような場合、三次元造形物製造装置は、エネルギー線照射手段(硬化手段)を備えていなくてもよい。
また、前述した実施形態では、平坦化手段がステージ上を移動するものとして説明したが、ステージが移動することにより、ステージとスキージーとの位置関係が変化し、平坦化がなされるものであってもよい。
10…三次元造形物
10’…仮成形体
1…層
11…組成物(三次元造形用組成物)
111…粒体
1111…空孔
112…水溶性樹脂
12…結着液
121…結合剤
13…硬化部(結合部)
100…三次元造形物製造装置
2…制御部
21…コンピューター
22…駆動制御部
3…組成物供給部
4…層形成部
41…ステージ
42…スキージー(平坦化手段)
43…ガイドレール
44…組成物仮置部
45…側面支持部(枠体)
5…結着液吐出部(結着液付与手段)
6…エネルギー線照射手段(硬化手段)
7…加熱手段(層加熱手段)
8…加熱手段(仮成形体加熱手段)

Claims (19)

  1. 粒体および水系溶媒を含む組成物を用いて、層を形成する層形成工程と、
    前記層に前記粒体を結合するための結着液を付与する結着液付与工程とを含む一連の工程を繰り返し行うことにより仮成形体を得、
    さらに、前記仮成形体に対して加熱処理を施す仮成形体加熱工程を有することを特徴とする三次元造形物の製造方法。
  2. 前記仮成形体加熱工程は、前記仮成形体を前記結着液により結合していない前記粒体を除去した後に行うものである請求項1に記載の三次元造形物の製造方法。
  3. 前記仮成形体加熱工程は、前記仮成形体が、前記結着液により結合していない前記粒体に囲まれた状態で行うものであり、その後、前記結着液により結合していない前記粒体を除去する請求項1または2に記載の三次元造形物の製造方法。
  4. 前記仮成形体加熱工程における加熱温度は、50℃以上180℃以下である請求項1ないし3のいずれか1項に記載の三次元造形物の製造方法。
  5. 前記仮成形体において前記粒体を結合する結合剤のガラス転移温度をTg[℃]としたとき、
    前記仮成形体加熱工程における加熱温度は、(Tg−20)℃以上(Tg+20)℃以下である請求項1ないし4のいずれか1項に記載の三次元造形物の製造方法。
  6. 前記仮成形体加熱工程での加熱時間は、1分以上180分以下である請求項1ないし5のいずれか1項に記載の三次元造形物の製造方法。
  7. 前記仮成形体加熱工程は、赤外線ヒーターを用いて行うものである請求項1ないし6のいずれか1項に記載の三次元造形物の製造方法。
  8. 前記結着液が付与された前記層は、前記仮成形体加熱工程より前に加熱処理を受けたものである請求項1ないし7のいずれか1項に記載の三次元造形物の製造方法。
  9. 前記一連の工程は、前記層形成工程と前記結着液付与工程との間に、前記層に対して、加熱処理を施す層加熱工程をさらに有している請求項1ないし8のいずれか1項に記載の三次元造形物の製造方法。
  10. 前記層加熱工程では、第1の加熱処理と、前記第1の加熱処理よりも高温で加熱する第2の加熱処理とを行う請求項9に記載の三次元造形物の製造方法。
  11. 前記層加熱工程は、熱風を用いて行うものである請求項9または10に記載の三次元造形物の製造方法。
  12. 前記第1の加熱処理での加熱温度は、30℃以上70℃以下である請求項9ないし11のいずれか1項に記載の三次元造形物の製造方法。
  13. 前記第2の加熱処理での加熱温度は、40℃以上120℃以下である請求項9ないし12のいずれか1項に記載の三次元造形物の製造方法。
  14. 前記第1の加熱処理の処理時間は、0.1秒以上60秒以下である請求項9ないし13のいずれか1項に記載の三次元造形物の製造方法。
  15. 前記第2の加熱処理の処理時間は、0.1秒以上60秒以下である請求項9ないし14のいずれか1項に記載の三次元造形物の製造方法。
  16. 前記仮成形体加熱工程での加熱温度は、前記層加熱工程での加熱温度よりも高いものである請求項9ないし15のいずれか1項に記載の三次元造形物の製造方法。
  17. 粒体を含む組成物を用いて、層を積層することにより、三次元造形物を製造する三次元造形物製造装置であって、
    前記組成物が付与され、前記層が形成されるステージと、
    前記層に前記粒体を結合するための結着液を付与する結着液付与手段と、
    前記結着液が付与された前記層が積層されてなる仮成形体に加熱処理を施す仮成形体加熱手段とを備えることを特徴とする三次元造形物製造装置。
  18. 請求項1ないし16のいずれか1項に記載の製造方法を用いて製造されたことを特徴とする三次元造形物。
  19. 請求項17に記載の装置を用いて製造されたことを特徴とする三次元造形物。
JP2014063429A 2014-03-26 2014-03-26 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 Withdrawn JP2015182424A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014063429A JP2015182424A (ja) 2014-03-26 2014-03-26 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
US15/111,063 US20160339602A1 (en) 2014-03-26 2015-03-23 Method of manufacturing three-dimensional structure, three-dimensional structure manufacturing apparatus, and three-dimensional structure
PCT/JP2015/001612 WO2015146121A1 (en) 2014-03-26 2015-03-23 Method of manufacturing three-dimensional structure, three-dimensional structure manufacturing apparatus, and three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063429A JP2015182424A (ja) 2014-03-26 2014-03-26 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物

Publications (1)

Publication Number Publication Date
JP2015182424A true JP2015182424A (ja) 2015-10-22

Family

ID=54194671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063429A Withdrawn JP2015182424A (ja) 2014-03-26 2014-03-26 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物

Country Status (3)

Country Link
US (1) US20160339602A1 (ja)
JP (1) JP2015182424A (ja)
WO (1) WO2015146121A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094599A (ja) * 2015-11-24 2017-06-01 日本合成化学工業株式会社 積層造形用サポート材およびそれを用いた積層造形物、ならびに積層造形物の製造方法
CN109483879A (zh) * 2017-09-12 2019-03-19 精工爱普生株式会社 三维造型物的制造方法
KR20210019106A (ko) 2019-01-23 2021-02-19 미쯔칸 홀딩즈 씨오., 엘티디. 식용 식물 건조 분말, 음식품 및 그 제조 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078337A (ja) * 2014-10-17 2016-05-16 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形物
JP6373220B2 (ja) * 2015-03-31 2018-08-15 株式会社ノリタケカンパニーリミテド 三次元立体造形用粉体および三次元立体造形物
DE102015006363A1 (de) * 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
US10233110B2 (en) * 2015-06-22 2019-03-19 Ricoh Company, Ltd. Material set for manufacturing glass object, liquid material for manufacturing glass object, method of manufacturing glass object, glass object, and device for manufacturing glass object
JP2018144262A (ja) * 2017-03-01 2018-09-20 株式会社ミマキエンジニアリング 三次元造形装置及び三次元造形方法
JP2018144261A (ja) * 2017-03-01 2018-09-20 株式会社ミマキエンジニアリング 三次元造形装置及び三次元造形方法
JP2018178195A (ja) 2017-04-13 2018-11-15 株式会社ノリタケカンパニーリミテド 積層造形用粉体および積層造形物
US11565465B2 (en) * 2017-12-07 2023-01-31 Canon Kabushiki Kaisha Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article
JP2020059227A (ja) * 2018-10-11 2020-04-16 株式会社リコー 立体造形物の製造方法及び立体造形物の製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2729110B2 (ja) * 1989-12-08 1998-03-18 マサチューセッツ・インスティチュート・オブ・テクノロジー 三次元プリント技術
JP2001150556A (ja) * 1999-09-14 2001-06-05 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2008184622A (ja) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2012040721A (ja) * 2010-08-17 2012-03-01 Seiko Epson Corp 造形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056566A1 (en) * 1997-06-13 1998-12-17 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2729110B2 (ja) * 1989-12-08 1998-03-18 マサチューセッツ・インスティチュート・オブ・テクノロジー 三次元プリント技術
JP2001150556A (ja) * 1999-09-14 2001-06-05 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2008184622A (ja) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2012040721A (ja) * 2010-08-17 2012-03-01 Seiko Epson Corp 造形方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094599A (ja) * 2015-11-24 2017-06-01 日本合成化学工業株式会社 積層造形用サポート材およびそれを用いた積層造形物、ならびに積層造形物の製造方法
CN109483879A (zh) * 2017-09-12 2019-03-19 精工爱普生株式会社 三维造型物的制造方法
JP2019052325A (ja) * 2017-09-12 2019-04-04 セイコーエプソン株式会社 三次元造形物の製造方法
KR20210019106A (ko) 2019-01-23 2021-02-19 미쯔칸 홀딩즈 씨오., 엘티디. 식용 식물 건조 분말, 음식품 및 그 제조 방법

Also Published As

Publication number Publication date
WO2015146121A1 (en) 2015-10-01
US20160339602A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6241244B2 (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015174427A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015182424A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2015174338A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015174272A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP6458346B2 (ja) 三次元造形物製造装置および三次元造形物の製造方法
JP2015157387A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015150825A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP6515557B2 (ja) 三次元造形物製造用部材、三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015182425A (ja) 三次元造形物の製造方法および三次元造形物
JP2015174339A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015112845A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2015174361A (ja) 三次元造形物の製造方法および三次元造形物
JP2016168704A (ja) 三次元造形装置、製造方法およびコンピュータープログラム
JP2015168112A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP6398178B2 (ja) 三次元造形用粉末、三次元造形用組成物および三次元造形物の製造方法
JP2016088004A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2015112846A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2016011331A (ja) インク、インクセット、三次元造形物および三次元造形物の製造方法
JP2015157423A (ja) 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2016078337A (ja) 三次元造形物の製造方法および三次元造形物
JP2016088002A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2015174426A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
US20150246483A1 (en) Three-dimensional shaped object manufacturing device, manufacturing method of three-dimensional shaped object, and three-dimensional shaped object
JP6443001B2 (ja) 層形成用組成物、三次元造形物の製造方法および三次元造形物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171208