JP2015171002A - 電気・電子機器、回路、及び通信システム - Google Patents

電気・電子機器、回路、及び通信システム Download PDF

Info

Publication number
JP2015171002A
JP2015171002A JP2014044841A JP2014044841A JP2015171002A JP 2015171002 A JP2015171002 A JP 2015171002A JP 2014044841 A JP2014044841 A JP 2014044841A JP 2014044841 A JP2014044841 A JP 2014044841A JP 2015171002 A JP2015171002 A JP 2015171002A
Authority
JP
Japan
Prior art keywords
circuit
signal
target
input
use state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044841A
Other languages
English (en)
Other versions
JP2015171002A5 (ja
JP6064930B2 (ja
Inventor
横川 峰志
Mineshi Yokogawa
峰志 横川
健一 丸子
Kenichi Maruko
健一 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014044841A priority Critical patent/JP6064930B2/ja
Priority to US14/626,171 priority patent/US9407480B2/en
Publication of JP2015171002A publication Critical patent/JP2015171002A/ja
Publication of JP2015171002A5 publication Critical patent/JP2015171002A5/ja
Application granted granted Critical
Publication of JP6064930B2 publication Critical patent/JP6064930B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0898Details of the current generators the source or sink current values being variable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】最適な回路特性を小面積かつ低消費電力で実現する。【解決手段】必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整部と、前記対象回路の使用状態/非使用状態を制御する制御部と、を備え、前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、前記特性調整部は、非使用状態の前記対象回路に対して特性の調整を行う。【選択図】図1

Description

本技術は、電気・電子機器、回路、及び通信システムに関する。
近年、MOSトランジスタの微細化により、MOSトランジスタ特性のばらつきが増大し、低電源電圧化により動作マージンが低下している。これにより、特にアナログ回路において、最適な回路特性を小面積かつ低消費電力で実現することが困難になっている。
そこで、回路特性のばらつきを解消して最適な回路特性を小面積かつ低消費電力で実現するべく、電源起動直後に特性調整を行うことで回路特性を最適化した後に回路を動作させる技術が提案されている(例えば、特許文献1参照)。
特開2009−124737号公報
しかしながら、動作中に特性調整を行うことができない回路もある。このような回路では、動作中の環境変化(例えば、電源電圧変動・温度変動)により回路特性が低下し、最悪のケースでは誤動作する可能性がある。このようなケースでは、動作中の環境変化による回路特性の変動を抑えたり、回路特性の動作マージンが大きくなるように確保したりする必要がある。しかし、その場合には消費電力の増大を伴うことが多い。
本技術は、前記課題に鑑みてなされたもので、最適な回路特性を小面積かつ低消費電力で実現することが可能な電気・電子機器、回路、及び通信システムを提供することを目的とする。
本技術の態様の1つは、必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整部と、前記対象回路の使用状態/非使用状態を制御する制御部と、を備え、前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、前記特性調整部は、非使用状態の前記対象回路に対して特性の調整を行う電気・電子機器である。
本技術の他の態様の1つは、必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整部と、前記対象回路の使用状態/非使用状態を制御する制御部と、を備え、前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、前記特性調整部は、非使用状態の前記対象回路に対して特性の調整を行う回路である。
本技術の他の態様の1つは、送信側回路と受信側回路とを備えた通信システムであって、前記受信側回路は、必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整部と、前記対象回路の使用状態/非使用状態を制御する制御部と、を有し、前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、前記特性調整部は、非使用状態の前記対象回路に対して特性の調整を行う通信システムである。
本技術によれば、最適な回路特性を小面積かつ低消費電力で実現することが可能となる。なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また付加的な効果があってもよい。
第1の実施形態に係る回路の構成を示すブロック図である。 回路における切替制御を説明する図である。 第2の実施形態に係る回路の構成を示すブロック図である。 入力データと再生クロックの定常位相誤差調整を説明する図である。 位相比較器の内部構成例を示すブロック図である。 駆動回路の内部構成例を示すブロック図である。 駆動回路の動作を説明するタイムチャートである。 駆動回路の動作を説明するタイムチャートである。 駆動回路の動作を説明するタイムチャートである。 発振回路の内部構成例を示すブロック図である。 発振回路の動作を説明するタイムチャートである。 発振回路の動作を説明するタイムチャートである。 発振回路の動作を説明するタイムチャートである。 同期化回路の内部構成例を示すブロック図である。 電圧制御発振器の周波数感度の調整を説明する図である。 ゲーテッドVCO型CDRのフリーラン周波数調整を説明する図である。 第3の実施形態に係る回路の構成を示すブロック図である。 第4の実施形態に係る通信システムの概略構成を示す図である。 第4の実施形態に係る通信システムの通信を説明する図である。
以下、下記の順序に従って本技術を説明する。
(1)第1の実施形態:
(2)第2の実施形態:
(3)第3の実施形態:
(4)第4の実施形態:
(1)第1の実施形態:
図1は、本実施形態に係る回路の構成を示すブロック図である。同図に示す回路100は、複数の対象回路11〜15から成る対象回路群10、対象回路11〜15への入力を制御する入力制御回路20、複数の対象回路11〜15からの出力を制御する出力制御回路30、及び、対象回路11〜15の特性を調整する特性調整回路40を備えている。本実施形態において、特性調整回路40は、入力制御回路20や出力制御回路30の制御部としても機能する。
回路100は、所定数の入力信号IN0〜IN3を入力され、所定数の出力信号OUT0〜OUT3を出力するように構成されている。回路100に入力された入力信号IN0〜IN3は、対象回路群10を構成するいずれかの対象回路に入力される。各対象回路は、入力信号を用いて所定の演算処理を行い、入力信号に応じた出力信号を出力する。
なお、対象回路へ入力される各入力信号は1つのデータ系列に限る必要は無く、例えば、入力信号として2系統のデータが入力されてもよい。すなわち、例えば入力信号IN0を2系統のデータの組み合わせとし、入力信号IN0を入力される対象回路は2系統のデータの組み合わせを用いて所定の演算処理を行うようにしてもよい。同様に、対象回路が出力する各出力信号も、2系統のデータの組合せとしてもよい。
[対象回路群]
図1に示す例では、対象回路群10は、対象回路11〜15を有している。対象回路11〜15は、所定の演算処理を行う同一又は互換性のある回路構成である。
対象回路群10において、対象回路11〜15は冗長化されている。すなわち、対象回路群10は、回路100において必要な最小限の対象回路の数(必要数)より多くの対象回路を有している。このため、回路100の動作中、対象回路群10を構成する対象回路11〜15の少なくとも1つが非使用状態となる。
なお、対象回路が非使用状態であるとは、その対象回路の出力信号が回路100の出力として利用されてない状態を言い、対象回路が使用状態であるとは、その対象回路の出力信号が回路100の出力として利用されている状態を言う。
図1に示す例では、回路100が5つの対象回路11〜15を有しているのに対し、回路100における対象回路の必要数は4つであり、対象回路群10は必要数より1つ多くの対象回路を有している。
このため、対象回路11〜14が使用状態のときに対象回路15が非使用状態となり、対象回路11〜13,15が使用状態のときに対象回路14が非使用状態となり、対象回路11,12,14,15が使用状態のときに対象回路13が非使用状態となり、対象回路11,13〜15が使用状態のときに対象回路12が非使用状態となり、対象回路12〜15が使用状態のときに対象回路11が非使用状態となる。
[入力制御回路]
入力制御回路20は、回路100に入力された入力信号IN0〜IN3の入力先を、対象回路11〜15から選択した何れかの回路に切り替える。このとき、同じ入力信号が異なる対象回路に入力されてもよい。
図1に示す例では、入力制御回路20は、制御部としての特性調整回路40により制御されるセレクタ21〜23を有している。セレクタ21〜23は、それぞれ、制御端子、L入力端子、H入力端子、及び、出力端子を有している。各セレクタ21〜23の制御端子は特性調整回路40に接続されている。
セレクタ21は、L入力端子に入力信号IN0が入力され、H入力端子に入力信号IN1が入力され、出力端子が対象回路12に接続されており、特性調整回路40の制御に従い、入力信号IN0と出力信号IN1の何れか一方を、出力端子から対象回路12へ出力する。
セレクタ22は、L入力端子に入力信号IN1が入力され、H入力端子に入力信号IN2が入力され、出力端子が対象回路13に接続されており、特性調整回路40の制御に従い入力信号IN1と出力信号IN2の何れか一方を出力端子から対象回路13へ出力する。
セレクタ23は、L入力端子に入力信号IN2が入力され、H入力端子に入力信号IN3が入力され、出力端子が対象回路14に接続されており、特性調整回路40の制御に従い入力信号IN1と出力信号IN2の何れか一方を出力端子から対象回路13へ出力する。
なお、対象回路11にはセレクタを介さずに入力信号IN0が入力され、対象回路15にはセレクタを介さずに入力信号IN3が入力されている。
[出力制御回路]
出力制御回路30は、対象回路11〜15が出力する5つの出力信号OUT11〜OUT15から選択したいずれか4つの出力信号を回路100の出力信号OUT0〜OUT4として出力する。
図1に示す例では、出力制御回路30は、制御部としての特性調整回路40により制御されるセレクタ31〜34を有している。セレクタ31〜34は、それぞれ、制御端子、L入力端子、H入力端子、及び、出力端子を有している。各セレクタ31〜34の制御端子は特性調整回路40に接続されている。
セレクタ31は、対象回路11からの出力信号OUT11がL入力端子に入力され、対象回路12からの出力信号OUT12がH入力端子に入力されており、特性調整回路40の制御に従い出力信号OUT11と出力信号OUT12の何れか一方を出力端子から出力する。この出力端子から出力される信号が、回路100の出力信号OUT0となる。
セレクタ32は、対象回路12からの出力信号OUT12がL入力端子に入力され、対象回路13からの出力信号OUT13がH入力端子に入力されており、特性調整回路40の制御に従い出力信号OUT12と出力信号OUT13の何れか一方を出力端子から出力する。この出力端子から出力される信号が、回路100の出力信号OUT1となる。
セレクタ33は、対象回路13からの出力信号OUT13がL入力端子に入力され、対象回路14からの出力信号OUT14がH入力端子に入力されており、特性調整回路40の制御に従い出力信号OUT13と出力信号OUT14の何れか一方を出力端子から出力する。この出力端子から出力される信号が、回路100の出力信号OUT2となる。
セレクタ34は、対象回路14からの出力信号OUT14がL入力端子に入力され、対象回路15からの出力信号OUT15がH入力端子に入力されており、特性調整回路40の制御に従い出力信号OUT14と出力信号OUT15の何れか一方を出力端子から出力する。この出力端子から出力される信号が、回路100の出力信号OUT3となる。
[各状態の説明]
図2(a)は、回路100の各信号のタイミングチャートの一例であり、図2(b)は、特性を調整される対象回路と各セレクタへ入力される制御信号との関係を示す表である。図2(a)には、入力信号IN0〜IN3、入力側制御信号IN_S[3:1]、出力側制御信号OUT_S[3:0]、及び、各タイミングにおける特性調整回路40が特性の調整を行う対象回路を示してある。
本実施形態において、特性調整回路40は、回路100の動作中、対象回路11〜15を順次に非使用状態に制御しており、対象回路11〜15を満遍なく非使用状態としている。すなわち、対象回路11〜15に対して満遍なく特性調整が行われる。これにより、対象回路11〜15の回路特性が一定の目標範囲内に維持され、回路100の誤作動が防止され、更には回路100の出力信号を入力される関連回路の誤作動が防止される。
図2に示す例では、特性調整回路40は、対象回路11,12,13,14,15,14,13,12,11,・・・の順に非使用状態に制御するとともに非使用状態の対象回路に特性調整を行っている。
[対象回路11の特性調整]
まず、対象回路11の特性調整を行う際は、入力信号IN0〜IN3が対象回路12〜15に入力されるように入力制御回路20を制御するとともに、対象回路12〜15の出力信号が出力信号OUT0〜OUT3となるように出力制御回路30を制御する。
具体的には、特性調整回路40は、セレクタ21〜23の制御端子にローレベルの制御信号を入力し、セレクタ31〜34の制御端子にハイレベルの制御信号を入力する。
これにより、入力信号IN0は対象回路12に入力され、入力信号IN1は対象回路13に入力され、入力信号IN2は対象回路14に入力され、入力信号IN3は対象回路15に入力される。また、対象回路12の出力信号が出力信号OUT0となり、対象回路13の出力信号が出力信号OUT1となり、対象回路14の出力信号が出力信号OUT2となり、対象回路15の出力信号が出力信号OUT3となる。
ここで、対象回路11にも入力信号IN0が入力されるが、対象回路11の出力信号は出力信号OUT0〜OUT3に利用されない。従って、対象回路11は非使用状態であり、特性調整回路40が対象回路11に対して所定の特性調整処理を実行しても回路100の通常動作には影響しない。
[対象回路12の特性調整]
次に、対象回路12の特性調整を行う際は、入力信号IN0〜IN3が対象回路11,13〜15に入力されるように入力制御回路20を制御するとともに、対象回路11,13〜15の出力信号が出力信号OUT0〜OUT3となるように出力制御回路30を制御する。
具体的には、特性調整回路40は、セレクタ22,23の制御端子にローレベルの制御信号を入力し、セレクタ21の制御端子にはハイレベル又はローレベルの制御信号を入力し、セレクタ31の制御端子にローレベルの制御信号を入力し、セレクタ32〜34の制御端子にハイレベルの制御信号を入力する。
これにより、入力信号IN0は対象回路11に入力され、入力信号IN1は対象回路13に入力され、入力信号IN2は対象回路14に入力され、入力信号IN3は対象回路15に入力される。また、対象回路11の出力信号は出力信号OUT0となり、対象回路13の出力信号は出力信号OUT1となり、対象回路14の出力信号は出力信号OUT2となり、対象回路15の出力信号は出力信号OUT3となる。
ここで、対象回路12にも入力信号IN0又は入力信号IN1が入力されるが、対象回路12の出力信号は出力信号OUT0〜OUT3に利用されない。従って、対象回路12は非使用状態であり、特性調整回路40が対象回路12に対して所定の特性調整処理を実行しても回路100の通常動作には影響しない。
[対象回路13の特性調整]
次に、対象回路13の特性調整を行う際は、入力信号IN0〜IN3が対象回路11,12,14,15に入力されるように入力制御回路20を制御するとともに、対象回路11,12,14,15の出力信号が出力信号OUT0〜OUT3となるように出力制御回路30を制御する。
具体的には、特性調整回路40は、セレクタ23の制御端子にローレベルの制御信号を入力し、セレクタ21の制御端子にはハイレベルの制御信号を入力し、セレクタ22の制御端子にはハイレベル又はローレベルの制御信号を入力し、セレクタ31,32の制御端子にローレベルの制御信号を入力し、セレクタ33,34の制御端子にハイレベルの制御信号を入力する。
これにより、入力信号IN0は対象回路11に入力され、入力信号IN1は対象回路12に入力され、入力信号IN2は対象回路14に入力され、入力信号IN3は対象回路15に入力される。また、対象回路11の出力信号は出力信号OUT0となり、対象回路12の出力信号は出力信号OUT1となり、対象回路14の出力信号は出力信号OUT2となり、対象回路15の出力信号は出力信号OUT3となる。
ここで、対象回路13にも入力信号IN1又は入力信号IN2が入力されるが、対象回路13の出力信号は出力信号OUT0〜OUT3に利用されない。従って、対象回路13は非使用状態であり、特性調整回路40が対象回路13に対して所定の特性調整処理を実行しても回路100の通常動作には影響しない。
[対象回路14の特性調整]
次に、対象回路14の特性調整を行う際は、入力信号IN0〜IN3が対象回路11〜13,15に入力されるように入力制御回路20を制御するとともに、対象回路11〜13,15の出力信号が出力信号OUT0〜OUT3となるように出力制御回路30を制御する。
具体的には、特性調整回路40は、セレクタ21,22の制御端子にハイレベルの制御信号を入力し、セレクタ23の制御端子にはハイレベル又はローレベルの制御信号を入力し、セレクタ31〜33の制御端子にローレベルの制御信号を入力し、セレクタ34の制御端子にハイレベルの制御信号を入力する。
これにより、入力信号IN0は対象回路11に入力され、入力信号IN1は対象回路12に入力され、入力信号IN2は対象回路13に入力され、入力信号IN3は対象回路15に入力される。また、対象回路11の出力信号は出力信号OUT0となり、対象回路12の出力信号は出力信号OUT1となり、対象回路13の出力信号は出力信号OUT2となり、対象回路15の出力信号は出力信号OUT3となる。
ここで、対象回路14にも入力信号IN2又は入力信号IN3が入力されるが、対象回路14の出力信号は出力信号OUT0〜OUT3に利用されない。従って、対象回路14は非使用状態であり、特性調整回路40が対象回路14に対して所定の特性調整処理を実行しても回路100の通常動作には影響しない。
[対象回路15の特性調整]
次に、対象回路15の特性調整を行う際は、入力信号IN0〜IN3が対象回路11〜14に入力されるように入力制御回路20を制御するとともに、対象回路11〜14の出力信号が出力信号OUT0〜OUT3となるように出力制御回路30を制御する。
具体的には、特性調整回路40は、セレクタ21〜23の制御端子にハイレベルの制御信号を入力し、セレクタ31〜34の制御端子にローレベルの制御信号を入力する。
これにより、入力信号IN0は対象回路11に入力され、入力信号IN1は対象回路12に入力され、入力信号IN2は対象回路13に入力され、入力信号IN3は対象回路14に入力される。また、対象回路11の出力信号は出力信号OUT0となり、対象回路12の出力信号は出力信号OUT1となり、対象回路13の出力信号は出力信号OUT2となり、対象回路14の出力信号は出力信号OUT3となる。
ここで、対象回路15にも入力信号IN3が入力されるが、対象回路15の出力信号は出力信号OUT0〜OUT3に利用されない。従って、対象回路15は非使用状態であり、特性調整回路40が対象回路15に対して所定の特性調整処理を実行しても回路100の通常動作には影響しない。
[まとめ]
以上説明したように、本実施形態に係る回路100は、必要数よりも多い複数の対象回路11〜15と、対象回路11〜15の特性を調整し、対象回路11〜15の使用状態/非使用状態を制御する特性調整回路40と、を備え、特性調整回路40は、必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、非使用状態の対象回路に対して特性の調整を行う。
従って、回路100の通常動作中に、対象回路11〜15のいずれかの回路特性が調整されることとなり、動作中の環境変化による回路特性の変動が抑制される。また、回路特性の動作マージンが大きくなるような設計が不要になり、消費電力・回路面積の増大を抑制することができる。なお、以上説明した回路100は、電気・電子機器等の装置に組み込まれた状態で実施されたり、他の方法とともに実施されたりする等、様々な態様で実施可能である。
(2)第2の実施形態:
図3は、本実施形態に係る回路200の構成を示す例である。同図に示す回路200は、高速シリアル伝送の受信器の例であり、クロックデータ再生回路群(CDR回路群)210、入力制御回路220、出力制御回路230、特性調整回路240、及びスキュー調整回路250を備えている。本実施形態において、特性調整回路240は、入力制御回路220や出力制御回路230、スキュー調整回路250の制御部としても機能する。
回路200は、所定数の入力信号IN0〜IN3を入力され、所定数の出力信号OUT0〜OUT3を出力するように構成されている。回路200に入力された入力信号IN0〜IN3は、CDR回路群210を構成するいずれかのクロックデータ再生回路(CDR回路)に入力される。
各CDR回路は、後段のデジタル部に入力する前に周波数を下げるためにデータとクロックをパラレル化する。このパラレル化されるクロックは、CDR回路それぞれの自走カウンタで分周される分周クロックであるため、各CDR回路から出力されるデータとクロックにはスキューが載る。
[CDR回路群]
図3に示す例では、CDR回路群210は、CDR回路211〜215を有している。CDR回路211〜215は、クロックデータ再生動作を行う同一又は互換性ある回路構成である。
CDR回路群210において、CDR回路211〜215は冗長化されている。すなわち、CDR回路群210は、回路200において必要な最小限のCDR回路の数(必要数)より多くのCDR回路を有している。このため、CDR回路群210では、CDR回路211〜215の少なくとも1つが非使用状態となる。
なお、CDR回路が非使用状態であるとは、そのCDR回路の出力が回路200の出力処理に利用されてない状態を言い、CDR回路が使用状態であるとは、そのCDR回路の出力が回路200の出力処理に利用されている状態を言う。
図3に示す例では、回路200は5つのCDR回路211〜215を有しているのに対し、回路200におけるCDR回路の必要数は4つであるため、CDR回路群210は必要数より1つ多くのCDR回路を有していることになる。このため、CDR回路211〜214が使用状態のときにCDR回路215は非使用状態となり、CDR回路211〜213,215が使用状態のときにCDR回路214は非使用状態となり、CDR回路211〜212,214,215が使用状態のときにCDR回路213は非使用状態となり、CDR回路211,213〜215が使用状態のときにCDR回路212は非使用状態となり、CDR回路212〜215が使用状態のときにCDR回路211は非使用状態となる。
[スキュー調整回路]
スキュー調整回路250は、各CDR回路から出力されるデータとクロックにスキュー調整を行う。本実施形態では、調整中のCDR回路と全く同じデータ系列を出力しているCDR回路が存在している。
例えば、後述する特性調整時においては、CDR回路211の調整中はCDR回路212がCDR回路211と全く同じデータ系列を出力し、CDR回路212の調整中はCDR回路211もしくはCDR回路213がCDR回路212と全く同じデータ系列を出力し、CDR回路213の調整中はCDR回路212もしくはCDR回路214がCDR回路213と全く同じデータ系列を出力し、CDR回路214の調整中はCDR回路213もしくはCDR回路215がCDR回路214と全く同じデータ系列を出力し、CDR回路215の調整中はCDR回路214がCDR回路215と全く同じデータ系列を出力している。
後述するように、セレクタ221〜225の制御は特性調整回路240が担当するため、特性調整回路240は、特性調整中のCDR回路と当該特性調整中のCDR回路と同じデータ系列が入力されるCDR回路とを判別可能である。そこで、特性調整回路240は、セレクタ制御状態に応じて、特性調整中のCDR回路が出力するデータ系列をスキューを調整すべきデータ系列としてスキュー調整回路250へ指示し、当該特性調整中のCDR回路と同じデータ系列が入力されるCDR回路が出力するデータ系列をスキュー調整の基準とするデータ系列としてスキュー調整回路250へ指示する。
スキュー調整回路250は、特性調整中のCDR回路が出力する出力データ系列のデータやクロックと、この特性調整中のCDR回路と同じデータ系列を出力しているCDR回路の出力データ系列のデータやクロックとを比較してスキューの検出と調整とを行う。
[入力制御回路]
入力制御回路220は、回路200に入力された入力信号IN0〜IN3の入力先を、CDR回路211〜215から選択して切り替える。このとき、同じ入力信号が異なるCDR回路に入力されてもよい。
図3に示す例では、入力制御回路220は、制御部としての特性調整回路240により制御されるセレクタ221〜225を有している。セレクタ221〜225は、それぞれ、制御端子、L入力端子、H入力端子、及び、出力端子を有している。各セレクタ222〜224の制御端子は特性調整回路40に接続されている。
セレクタ221は、L入力端子への入力は無く、H入力端子に入力信号IN0が入力され、出力端子がCDR回路211に接続されている。セレクタ221の制御端子にはハイレベルの制御信号が入力されており、セレクタ224は、常に入力信号IN0を出力端子からCDR回路211へ出力する。
セレクタ222は、L入力端子に入力信号IN0が入力され、H入力端子に入力信号IN1が入力され、出力端子がCDR回路212に接続されている。セレクタ222は、制御端子にローレベルの制御信号が入力されると、L入力端子に入力される入力信号IN0を出力端子からCDR回路212へ出力し、制御端子にハイレベルの制御信号が入力されると、H入力端子に入力される入力信号IN1を出力端子からCDR回路212へ出力する。
セレクタ223は、L入力端子に入力信号IN1が入力され、H入力端子に入力信号IN2が入力され、出力端子がCDR回路213に接続されている。セレクタ223は、制御端子にローレベルの制御信号が入力されると、L入力端子に入力される入力信号IN1を出力端子からCDR回路213へ出力し、制御端子にハイレベルの制御信号が入力されると、H入力端子に入力される入力信号IN2を出力端子からCDR回路213へ出力する。
セレクタ224は、L入力端子に入力信号IN2が入力され、H入力端子に入力信号IN3が入力され、出力端子がCDR回路214に接続されている。セレクタ224は、制御端子にローレベルの制御信号が入力されると、L入力端子に入力される入力信号IN2を出力端子からCDR回路214へ出力し、制御端子にハイレベルの制御信号が入力されると、H入力端子に入力される入力信号IN3を出力端子からCDR回路214へ出力する。
セレクタ225は、L入力端子に入力信号IN3が入力され、H入力端子への入力は無く、出力端子がCDR回路215に接続されている。セレクタ225の制御端子にはローレベルの制御信号が入力されており、セレクタ225は常に入力信号IN3を出力端子からCDR回路215へ出力する。
[出力制御回路]
出力制御回路230は、CDR回路211〜215が出力する5つの出力信号OUT11〜OUT15から選択したいずれか4つの出力信号を、回路200の出力信号OUT0〜OUT4として出力する。
図3に示す例では、出力制御回路230は、制御部としての特性調整回路240により制御されるセレクタ231〜234を有している。セレクタ231〜234は、それぞれ、制御端子、L入力端子、H入力端子、及び、出力端子を有している。各セレクタ231〜234の制御端子は特性調整回路240に接続されている。
セレクタ231は、CDR回路211からの出力信号OUT11がスキュー調整回路250を介してL入力端子に入力され、CDR回路212からの出力信号OUT12がスキュー調整回路250を介してH入力端子に入力されており、特性調整回路240の制御に従い、出力信号OUT11と出力信号OUT12の何れか一方を出力端子から出力する。この出力端子から出力される信号が回路200の出力信号OUT0となる。
セレクタ232は、CDR回路212からの出力信号OUT12がスキュー調整回路250を介してL入力端子に入力され、CDR回路213からの出力信号OUT13がスキュー調整回路250を介してH入力端子に入力されており、特性調整回路240の制御に従い、出力信号OUT12と出力信号OUT13の何れか一方を、出力端子から出力する。この出力端子から出力される信号が、回路200の出力信号OUT1となる。
セレクタ233は、CDR回路213からの出力信号OUT13がスキュー調整回路250を介してL入力端子に入力され、CDR回路214からの出力信号OUT14がスキュー調整回路250を介してH入力端子に入力されており、特性調整回路240の制御に従い、出力信号OUT13と出力信号OUT14の何れか一方を出力端子から出力する。この出力端子から出力される信号が回路200の出力信号OUT2となる。
セレクタ234は、CDR回路214からの出力信号OUT14がスキュー調整回路250を介してL入力端子に入力され、CDR回路215からの出力信号OUT15がスキュー調整回路250を介してH入力端子に入力されており、特性調整回路240の制御に従い出力信号OUT14と出力信号OUT15の何れか一方を出力端子から出力する。この出力端子から出力される信号が、回路200の出力信号OUT3となる。
[各状態の説明]
本実施形態において、特性調整回路240は、CDR回路211〜215を、上述した対象回路11〜15と同様に順次に非使用状態に制御するとともに、非使用状態のCDR回路に特性調整を行っている。従って、各CDR回路211〜215の特性調整を行う際の入力制御回路220及び出力制御回路230の制御は、上述した第1実施形態における入力制御回路20及び出力制御回路30の制御と同様であるので以下では説明を省略する。
本実施形態の特性調整回路240が行う特性調整としては、例えば、入力データと再生クロックの定常位相誤差調整、CDR回路を構成する電圧制御発振器(VCO)の周波数感度の調整、ゲーテッド電圧制御発振器(VCO)型CDRにおけるフリーラン周波数調整、等が例示される。
[定常位相誤差の調整]
図4は、入力データと再生クロックの定常位相誤差調整を説明する図であり、CDR回路の一例としてクロック再生用PLL(phase locked loop)回路を示している。
同図に示すクロック再生用PLL300は、位相比較器310、駆動回路320、発振回路330、分周器340、及び、同期化回路350を備えている。
位相比較器310は、データ信号Dataを入力されるとともに、分周器340が出力する再生クロック信号Clock2を入力されている。位相比較器310は、データ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相を比較して、ループ内位相誤差信号Dif2を生成する。
駆動回路320は、ループ内位相誤差信号Dif2を位相比較器310から入力されており、このループ内位相誤差信号Dif2からチャージポンプにより制御電圧V_ctlを生成する。駆動回路320の出力端子に接続されたループフィルタは、制御電圧V_ctlをコンデンサにより平滑化して直流にする。
発振回路330は、平滑化された制御電圧V_ctlを駆動回路320から入力されており、この平滑化された制御電圧V_ctlに応じた周波数を持つ信号をVCO(Voltage-controlled oscillator)により逓倍クロック信号Clock1として生成する。
分周器340は、逓倍クロック信号Clock1を発振回路330から入力されており、この逓倍クロック信号Clock1を分周して得た信号を再生クロック信号Clock2として位相比較器310にフィードバックする。再生クロック信号Clock2は、同期化回路350へも入力される。
同期化回路350は、データ信号Dataと再生クロック信号Clock2とを入力として受け取り、再生クロック信号Clock2の立ち下がりエッジに同期するようにデータ信号Dataを例えばDフリップフロップでラッチして、同期化データ信号Data’の出力と、この同期化データ信号Data’を取り込むべきタイミングを表す同期化クロック信号Clock3の出力とを行う。
また、同期化回路350は、データ信号Dataの立ち上がりエッジと、再生クロック信号Clock2の立ち上がりエッジと、の間の位相オフセットを表すループ外位相誤差信号Dif1を出力する機能も有する。
特性調整回路240は、ループ外位相誤差信号Dif1を入力され、ロック時の同期化回路350の入力において、再生クロック信号Clock2の立ち下がりエッジに対するデータ信号Dataのセットアップ時間及びホールド時間として各々最低限T/2が確保されるように、同期化回路350から供給されたループ外位相誤差信号Dif1に応じて、位相比較器310と駆動回路320と発振回路330と同期化回路350とのうち少なくとも1つを制御する調整信号ADJを見出し、かつ当該調整信号ADJを保持する機能を有する。
以下、位相比較器310、駆動回路320、発振回路330、同期化回路350の各々における調整信号ADJの使用例を説明する。
[位相比較器における調整信号の使用例]
図5は、位相比較器310の内部構成例を示している。
同図において、位相比較器310は、位相比較回路311、遅延バッファ312、遅延回路313を有している。
遅延バッファ312は、データ信号Dataを固定の遅延時間td1だけ遅延させた遅延データ信号DDataを位相比較回路311へ供給する。
遅延回路313は、再生クロック信号Clock2を可変の遅延時間td2だけ遅延させた遅延クロック信号DClockを位相比較回路311へ供給する。調整信号ADJは、この遅延時間td2を調整するための信号として使用される。
位相比較回路311は、遅延データ信号DDataの立ち上がりエッジと遅延クロック信号DClockの立ち上がりエッジとの位相を比較するための比較回路を実装したものであり、駆動回路320へループ内位相誤差信号Dif2を供給するように構成されている。
ここで、位相比較回路311は、遅延データ信号DDataと遅延クロック信号DClockとが同じタイミングで立ち上がるようにPLL制御する。したがって、一方の遅延時間td1を固定したまま他方の遅延時間td2を変化させると、位相比較器310の入力におけるデータ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係が変化する。つまり、調整信号ADJにより、同期化回路350の入力におけるデータ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係を調整することができる。
[駆動回路における調整信号の使用例]
図6は、駆動回路320の内部構成例を示している。
同図において、駆動回路320は、吐き出し側電流源321、吸い込み側電流源322、第1のスイッチ323、第2のスイッチ324を有している。
吐き出し側電流源321は、第1のスイッチ323が閉じたときに制御電圧V_ctlの信号線へ電流Ip(固定値)を吐き出す。吸い込み側電流源322は、第2のスイッチ324が閉じたときに制御電圧V_ctlの信号線から電流In(可変値)を吸い込む。調整信号ADJは、この電流Inの値を調整するための信号として使用される。
ループ内位相誤差信号Dif2は、再生クロック信号Clock2の位相を進めるべきことを示すアップ信号と、再生クロック信号Clock2の位相を送らせるべきことを示すダウン信号とを含む。アップ信号は第1のスイッチ323の開閉を制御する信号であり、ダウン信号は第2のスイッチ324の開閉を制御する信号である。
図7〜図9は、駆動回路320の動作を説明するタイムチャートである。これらの図では、アップ信号のパルス幅をtp、ダウン信号のパルス幅をtnとしている。
図7には、位相比較器310の入力において、再生クロック信号Clock2がデータ信号Dataと同相である状態を示している。Ip=Inのとき同図に示すようにtp=tnとなり、位相比較器310の入力においてデータ信号Dataと再生クロック信号Clock2とが同じタイミングで立ち上がるようにPLL制御が実行される。
図8には、位相比較器310の入力において、再生クロック信号Clock2がデータ信号Dataより進んでいる状態を示している。Ip>Inのとき同図に示すようにtp<tnとなり、位相比較器310の入力において再生クロック信号Clock2の立ち上がりエッジがデータ信号Dataの立ち上がりエッジより進んだ位相を有することとなる。
図9には、位相比較器310の入力において、再生クロック信号Clock2がデータ信号Dataより遅れている状態を示している。Ip<Inのとき同図に示すようにtp>tnとなり、位相比較器310の入力において再生クロック信号Clock2の立ち上がりエッジがデータ信号Dataの立ち上がりエッジより遅れた位相を有することとなる。
以上説明したように、一方の電流値Ipを固定したまま他方の電流値Inを変化させると、位相比較器310の入力におけるデータ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係が変化する。つまり、調整信号ADJにより、同期化回路350の入力におけるデータ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係を調整することができる。
なお、吐き出し側電流Ipを可変値とし、吸い込み側電流Inを固定値としてもよい。また、電流Ip及びInの双方を可変値とすることも可能である。駆動回路320において調整信号ADJを使用しない場合には、電流Ip及びInの双方を固定値とすればよい。
[発振回路における調整信号の使用例]
図10は、発振回路330の内部構成例を示している。
図10において、発振回路330は、電圧制御発振器(VCO)331、デューティ調整回路332である。VCO331は、制御電圧V_ctlに応じた周波数を持つ信号を生成する。デューティ調整回路332は、VCO331により生成された信号のデューティをパルス幅変調により調整し、その結果を逓倍クロック信号Clock1として供給する。調整信号ADJは、このパルス幅変調においてデューティを調整するための信号として使用される。
図11〜図13は、発振回路330の動作を説明するタイムチャートである。
これらの図に示す例では、特性調整回路240は、データ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係を調整するのではなく、再生クロック信号Clock2のデューティが次第に増大するように制御する。
図11には、同期化回路350の入力において再生クロック信号Clock2がデータ信号Dataより進んでおり、かつ再生クロック信号Clock2のデューティが12.5%の状態を示している。この状態では、同期化データ信号Data’のハイレベル期間が4Tであり、再生クロック信号Clock2の立ち下がりエッジに対するデータ信号Dataのホールド時間がT/2より短くなっている。
図12には、同期化回路350の入力において再生クロック信号Clock2がデータ信号Dataより進んでおり、かつ再生クロック信号Clock2のデューティが50%である状態を示している。この状態では、同期化データ信号Data’のハイレベル期間が5Tであり、再生クロック信号Clock2の立ち下がりエッジに対するデータ信号Dataのセットアップ時間がT/2より短くなっている。
図13は、同期化回路350の入力において再生クロック信号Clock2がデータ信号Dataより進んでおり、かつ再生クロック信号Clock2のデューティが87.5%である状態を示している。この状態では、同期化データ信号Data’のハイレベル期間が4Tであり、再生クロック信号Clock2の立ち下がりエッジに対するデータ信号Dataのセットアップ時間及びホールド時間として各々最低限T/2が確保されている。したがって、この状態でデータ信号Dataが供給された場合、同期化回路350におけるミスラッチの発生確率が最も低くなる。
特性調整回路240は、データ信号Dataに対する同期化データ信号Data’が5T/3T状態から4T/4T状態へと遷移した時点の調整信号ADJを見出し、かつ該見出した調整信号ADJを保持すればよい。これにより、同期化回路350におけるミスラッチの発生確率が低減される。
なお、発振回路330において調整信号ADJを使用しない場合には、図10中のデューティ調整回路332の配設を省略し、VCO331が逓倍クロック信号Clock1を供給するようにすればよい。
[同期化回路における調整信号の使用例]
図14は、同期化回路350の内部構成例を示している。
同図において、同期化回路350は、遅延バッファ351、遅延回路352、インバータ353、Dフリップフロップ354、位相オフセット検出回路355を有している。
遅延バッファ351は、データ信号Dataを固定の遅延時間だけ遅延させた正転データ信号FDataをDフリップフロップ354のデータ入力端子Dへ供給する。
遅延回路352は、再生クロック信号Clock2を可変の遅延時間だけ遅延させた信号をインバータ353の入力端子へ供給する。調整信号ADJは、遅延回路352の遅延時間を調整するための信号として使用される。
インバータ353は、遅延回路352の出力を反転させた反転クロック信号FClockをDフリップフロップ354のクロック入力端子CKへ供給する。Dフリップフロップ354は、反転クロック信号FClockの立ち上がりエッジに同期して正転データ信号FDataをラッチする。Dフリップフロップ354のQ出力が同期化データ信号Data’であり、遅延回路352の出力が同期化クロック信号Clock3である。
位相オフセット検出回路355は、テストモードにおいて正転データ信号FDataの立ち上がりエッジと同期化クロック信号Clock3の立ち上がりエッジとの間の位相オフセットを表すループ外位相誤差信号Dif1を特性調整回路240へ供給する。
図14の同期化回路350によれば、遅延バッファ351の遅延時間を固定したまま遅延回路352の遅延時間を調整信号ADJにより変化させることで、同期化回路350の入力におけるデータ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相関係を調整することができる。なお、図14中の遅延バッファ351と遅延回路352との位置を交換した構成でもよい。
同期化回路350において調整信号ADJを使用しない場合には、図14中の遅延バッファ351及び遅延回路352の配設を省略し、データ信号DataをDフリップフロップ354のデータ入力端子Dへ、再生クロック信号Clock2をインバータ353の入力端子へそれぞれ直接入力する。
[VCOの周波数感度の調整]
図15は、電圧制御発振器の周波数感度の調整を説明する図であり、CDR回路の一例として、自動調整位相同期回路(PLL)の概略構成を示してある。なお、同図には、電圧制御発振器の周波数感度の調整に必要な構成のみを記載してある。
PLL400は、位相比較器410、駆動回路420、セレクタ430、電圧制御発振器440、及び分周器450を備えている。
位相比較器410は、データ信号Dataを入力されるとともに、分周器450が出力する再生クロック信号Clock2を入力されている。位相比較器410は、データ信号Dataの立ち上がりエッジと再生クロック信号Clock2の立ち上がりエッジとの位相を比較して、ループ内位相誤差信号Dif2を生成する。
駆動回路420は、ループ内位相誤差信号Dif2を位相比較器410から入力されており、このループ内位相誤差信号Dif2からチャージポンプによりパルス信号を生成する。駆動回路420の出力端子に接続されたループフィルタは、駆動回路420が出力するパルス信号を平滑化して直流電圧にする。
セレクタ430は、駆動回路420から入力される直流電圧と第1の参照電圧Vref1と第2の参照電圧Vref2とを、特性調整回路240から入力される選択信号Sによって選択して、制御電圧V_ctlとして出力する。
電圧制御発振器440は、制御電圧V_ctlをセレクタ430から入力されており、この制御電圧V_ctlに応じた周波数を持つ信号をVCO(Voltage-controlled oscillator)により逓倍クロック信号Clock1として生成する。
また電圧制御発振器440は、リミット機能を持つ電圧電流変換回路を備えており、上限周波数の自動トリミングが可能に構成されている。すなわち、制御電圧V_ctlと基準電圧Vlim、及び特性調整回路240から与えられるトリミング信号Tとリミット信号Lを入力として、制御電圧V_ctlに応じた周波数を持つ逓倍クロック信号Clock1の周波数を変えるとともに、出力信号Soutの上限周波数が制限される。電圧制御発振器440は、トリミング信号Tによって制御電圧V_ctlに対して出力する出力信号Soutの周波数特性の感度を、また、リミット信号Lによって出力信号Soutの上限周波数を、夫々変えることができる。VCOの周波数感度の調整においては、調整信号ADJはトリミング信号Tとして用いられる。
分周器450は、逓倍クロック信号Clock1を電圧制御発振器440から入力されており、この逓倍クロック信号Clock1を分周して得た信号を再生クロック信号Clock2として位相比較器410にフィードバックする。
特性調整回路240は、データ信号Dataと再生クロック信号Clock2から、キャリブレーション時の調整用信号すなわち選択信号Sとトリミング信号T及びリミット信号Lを出力する機能を有する。
PLL400は、調整期間において、特性調整回路240により、電圧制御発振器440の周波数特性が調整される。この調整期間において、電圧制御発振器440の出力信号Soutが所定の周波数を満たすまで判定が繰り返されてトリミング信号T、リミット信号Lが更新される。
特性調整が開始されると、特性調整回路240は選択信号をS=1とし、分周器450の再生クロック信号Clock2の出力を停止させる。これにより、分周器450は再生クロック信号Clock2を出力しなくなり、セレクタ430は第1の参照電圧Vref1を選択して制御電圧V_ctlとして出力してPLLループをオープンループにする。また、特性調整回路240は、トリミング信号T、リミット信号Lをリセットする(T=0、L=X)。
この状態で、特性調整回路240は、出力信号Soutの周波数の判定を開始する。特性調整回路240は、出力信号Soutの周波数が所定の周波数以下であると判断すると、トリミング信号Tを更新して、T=1として再度出力信号Soutの周波数を判定する。特性調整回路240は出力信号Soutの周波数が所定の周波数以上になるまで、トリミング信号Tを更新する。トリミング信号Tを更新して、出力信号Soutが所定の周波数以上に設定されたら、分周器450は選択信号Sを更新してS=2とする。
このとき、セレクタ430は第2の参照電圧Vref2を選択して制御電圧V_ctlとして出力する。さらに、特性調整回路240は、トリミング信号Tとして上記動作で出力信号Soutの周波数が所定の周波数以上になったときの値を設定し、リミット信号LはL=0にリセットし、分周器450が再生クロック信号Clock2を出力をしない状態とする。この状態で、特性調整回路240は出力信号Soutの周波数の判定を開始する。
特性調整回路240は、出力信号Soutの周波数が所定の周波数以下であると判断すると、リミット信号Lを更新して、L=1として再度出力信号Soutの周波数を判定する。特性調整回路240は出力信号Soutの周波数が所定の周波数以上になるまで、リミット信号を更新する。リミット信号Lを更新して、出力信号Soutが所定の周波数以上に設定されたら、特性調整回路240は選択信号Sをリセットして、S=0とする。
このとき、セレクタ430はループフィルタを選択して、特性調整回路240はトリミング信号T、リミット信号Lを上記動作で出力信号Soutの周波数が所定の周波数以上になったときの値を設定して、再生クロック信号Clock2を出力してPLLループをクローズドループに設定する。この状態で、PLL400は収束期間に移行する。
[ゲーテッドVCO型CDRのフリーラン周波数調整]
図16は、ゲーテッドVCO型CDRのフリーラン周波数調整を説明する図であり、CDR回路の一例として、マルチビットレートのタイミング抽出回路を示してある。
同図に示すタイミング抽出回路500は、バースト信号のビット位相に合致したクロックを発生するものであり、バースト信号を入力するためのバースト信号入力端子T1、クロックの出力端子T2、基準クロックを発生する基準クロック源510、バースト信号入力端子T1に入力するバースト信号のビットレートを不図示の回路で識別して得てその識別信号を入力するビットレート識別信号入力端子T3、を有する。
またタイミング抽出回路500は、クロック生成回路520とPLL回路530とを備えている。
クロック生成回路520は、電圧制御発振器521,522、インバータ523、ORゲート524を有する。電圧制御発振器521,522は、従来の電圧制御オシレータよりもその出力周波数可変範囲が広くなっている。
電圧制御発振器521は、受信信号入力端子521a、制御信号入力端子521b、識別信号入力端子521c、出力端子521dを有する。受信信号入力端子521aにはバースト信号入力端子T1に入力されたバースト信号が入力され、制御信号入力端子521bにはPLL回路530から後述の制御電圧が入力され、識別信号入力端子521cにはビットレート識別信号入力端子T3に入力される識別信号が入力され、出力端子521dから出力する発振クロックはORゲート524の一方の入力端子524aに入力される。
電圧制御発振器522は、受信信号入力端子522a、制御信号入力端子522b、識別信号入力端子522c、出力端子522dを有する。受信信号入力端子522aにはバースト信号入力端子T1に入力されたバースト信号をインバータ523によって反転した信号が入力され、制御信号入力端子522bにはPLL回路530から後述の制御電圧が入力され、識別信号入力端子522cにはビットレート識別信号入力端子T3に入力される識別信号が入力され、出力端子522dから出力する発振クロックはORゲート524の他方の入力端子524bに入力される。
ORゲート524は、電圧制御発振器521,522の出力信号の論理和を取る。
PLL回路530は、電圧制御発振器531、位相比較器532、制御電圧発生回路533、を有する。
電圧制御発振器531は、上述した電圧制御発振器521,522と同一構成同一特性であり、受信信号入力端子531a、制御信号入力端子531b、識別信号入力端子531c、出力端子531dを有する。受信信号入力端子531aには定電圧+Vが入力されて常時「H」にプルアップされ、制御信号入力端子531bには制御電圧発生回路533の出力する制御電圧が入力され、識別信号入力端子531cには特定の発振周波数範囲を選択する定電圧Vsが入力され、出力端子531dから出力する発振クロックは位相比較器532に入力される。
位相比較器532は、基準クロック源510からの基準クロックと、電圧制御発振器531からの出力クロック信号の位相を比較してその比較信号を出力する。制御電圧発生回路533は、位相比較器532の出力信号に応じて電圧制御発振器521,522,531に制御電圧を与える。
次に、タイミング抽出回路500の動作を説明する。
PLL回路530は、電源投入後しばらくすると、基準クロック源510が出力する基準クロックと、連続発振する電圧制御発振器531が出力するクロックの位相が同期して、その時の制御電圧を制御電圧発生回路533から出力する。この制御電圧は、クロック生成回路520の電圧制御発振器521,522の制御信号入力端子521b,522bにも入力される。
電圧制御発振器521,522は、発振可能な状態であれば、識別信号入力端子521c,522cに入力するビットレート識別信号Iに対応した特定の周波数範囲において、制御信号入力端子521b,522bに入力される制御電圧に応じた周波数で発振が行われる。すなわち、電圧制御発振器521,522に入力される制御電圧は、PLL回路530によって、基準クロックに対応するよう、つまり外部環境の影響により揺らがないよう安定化されている。ゲーテッドVCO型CDRのフリーラン周波数調整においては、調整信号ADJはビットレート識別信号Iとして用いられる。
ここで、バースト信号入力端子T1より受信信号がクロック生成回路520に入力されると、一方の電圧制御発振器521にはそのまま入力し、他方の電圧制御発振器522にはインバータ523で反転した信号が入力される。そして、その受信信号が「H」のときは一方の電圧制御発振器521で発振動作が行われ、「L」のときは他方の電圧制御発振器522で発振動作が行われる。
電圧制御発振器521,522は、ビットレート識別信号Iが識別信号入力端子521c,522cに入力されており、その発振周波数範囲(レンジ)が当該ビットレート識別信号Iに応じて切り替わっている。従って、電圧制御発振器521,522は、そのビットレートに対応した周波数範囲において制御信号入力端子521b,522bに入力される制御電圧に応じた周波数のクロックを発振する。
このとき、電圧制御発振器521,522は、その受信信号入力端子521a,522aに入力している信号が「L」→「H」に変化したときに発振を開始し、出力端子521d,522dの出力信号が「H」に立ち上がるので、入力信号の符号変化に伴いクロック位相が適正な位置に戻されるタイミング抽出(リタイミング)が行われる。この動作は電圧制御発振器521,522で補完し合うので、ORゲート524で論理和が取られて出力端子T2に現れる出力信号は、受信信号のビットに位相同期した連続的なクロックとなる。
以上説明したように、複数のビットレートの信号が時間多重(時分割多重)されて入力されるときは、そのビットレートが変化する毎にビットレート識別信号Iによって周波数範囲が切り替えられ、制御電圧によって当該のビットレートに応じた周波数に調整され、当該のビットレートの受信信号のビットに位相同期した連続クロックが得られる。
(3)第3の実施形態:
図17は、本実施形態に係る回路600の構成を示す例である。同図に示す回路600は、高速シリアル伝送の受信器の例であり、クロックデータ再生回路群610、入力制御回路620、出力制御回路630、特性調整回路640、スキュー調整回路650、等価器群660、及び受信終端群670を備えている。本実施形態において、特性調整回路640は、入力制御回路620や出力制御回路630、スキュー調整回路650の制御部としても機能する。
なお、本実施形態に係る回路600において、クロックデータ再生回路群610、入力制御回路620、出力制御回路630、スキュー調整回路650は、上述した第2の実施形態に係る回路200におけるクロックデータ再生回路群210、入力制御回路220、出力制御回路230、スキュー調整回路250、と同様であるため以下では説明を省略する。
等価器群660は、複数の等価器661〜665を有し、各等価器は、セレクタとCDR回路の間の伝送経路上に配置されている。すなわち、本実施形態においては、セレクタから出力された信号は等価器を通ってCDR回路に入力される事になる。
なお、等価器は、伝送路の特性によって変化を受けた信号波形の復元や変化の最小化を目的に、受信信号の周波数特性を調整するものであり、高速伝送のために伝送路の帯域上限まで使って送られて来た信号に対して、ローパス・フィルタを経由したのと同様に失われた高周波成分を補強する目的で高域側を増幅することで補正する回路である。
等価器群660において、等価器661〜665は冗長化されている。すなわち、等価器群660は、回路600において必要な等価器の数(必要数)より多くの等価器を有している。このため、等価器群660では、等価器661〜665の少なくとも1つが非使用状態となる。
なお、等価器が非使用状態であるとは、その等価器の出力が回路600の出力として利用されてない状態を言い、等価器が使用状態であるとは、その等価器の出力が回路600の出力として利用されている状態を言う。
図17に示す例では、回路600は5つの等価器661〜665を有しているのに対し、回路600における等価器の必要数は4つであるため、等価器群660は必要数より1つ多くの等価器を有していることになる。このため、等価器661〜664が使用状態のときに等価器665は非使用状態となり、等価器661〜663,665が使用状態のときに等価器664は非使用状態となり、等価器661,662,664,665が使用状態のときに等価器663は非使用状態となり、等価器661,663〜665が使用状態のときに等価器662は非使用状態となり、等価器662〜665が使用状態のときに等価器661は非使用状態となる。
このようにして非使用状態に制御された等価器に対して、特性調整回路640が、特性の調整を行う。等価器の特性調整としては、等価器の周波数特性調整、オフセット電圧の補正などがある。これらは、LSI(Large Scale Integrated Circuit)の電源電圧の変動、LSIの温度変動、送信機から受信機に信号を伝送する伝送路の温度変化などの動作中の環境変化により変動し得る特性であり、動作マージンに影響する要素である。特性調整回路640は、これら調整に係る調整の基準データを保持している。従って、回路600を動作させつつ順次に各等価器の周波数特性調整やオフセット電圧の補正を行う事で、回路600の特性調整のための時間を設けずに、回路600を連続動作させることができる。
(4)第4の実施形態:
図18は、本実施形態に係る通信システム700の概略構成を示す図である。同図に示す通信システム700は、送信側回路としての送信側LSI710と受信側回路としての受信側LSI720を備えている。送信側LSI710から出力される信号は、伝送路を介して受信側LSI720に入力される。
受信側LSI720は、上述した第1〜第3の実施形態の回路のように必要数以上の対象回路を有しており調整時間を必要としない構成のものの場合と、従来のように、必要数の対象回路しか有しておらず、一定時間おきに対象回路の調整時間を必要とする構成のものの場合と、がある。
送信側LSI710は、受信側LSI720の調整時間の要否を判別する調整時間要否判別部711を有している。例えば、通信相手となる受信側LSI720が調整時間を必要とするか否かに係る調整時間要否情報を記憶するためのレジスタを送信側LSI710に設けて、調整時間要否判別部711は、このレジスタを参照して受信側LSI720の調整時間要否を判断する。調整時間要否情報は、送信側LSI710が受信側LSI720との通信開始時に受信側LSI720から取得してレジスタに記憶する構成としてもよいし予めレジスタに記憶される構成としてもよい。
受信側LSI720が調整時間を要する場合、送信側LSI710は、図19(a)に示すように定期的に受信側LSI720へのデータ送信を所定時間停止して受信側LSI720が対象回路の特性調整を完了するのを待機し、受信側LSI720が特性調整を完了するとデータ送信を再開する。このように、待機時間を設けつつ断続的にデータ送信を行うため待機時間の分だけ送信時間が長くなる。
一方、受信側LSI720が調整時間を要さない場合、送信側LSI710は、図19(b)に示すように受信側LSI720へのデータ送信を連続的に送信することができる。これにより、送信側LSI710と受信側LSI720間の通信速度が、調整時間を要する受信側LSI720との通信に比べて大幅に向上する。
なお、本技術は上述した各実施形態に限られず、上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また,本技術の技術的範囲は上述した実施形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。
そして、本技術は、以下の(a)〜(m)のような構成を取ることができる。
(a)
必要数よりも多い複数の対象回路と、
前記対象回路の特性を調整する特性調整回路と、
前記対象回路の使用状態/非使用状態を制御する制御部と、
を備え、
前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う電気・電子機器。
(b)
前記制御部は、前記複数の対象回路からの出力を制御する出力制御回路を有し、
前記出力制御回路は、使用状態の前記対象回路の出力信号を出力し、非使用状態の前記対象回路の出力信号を出力しない前記(a)に記載の電気・電子機器。
(c)
前記複数の対象回路への入力データの数は、前記必要数と同数であり、
前記制御部は、各前記対象回路への入力データの入力を制御する入力制御回路を更に有し、
前記入力制御回路は、使用状態の前記対象回路には前記入力データのいずれかを入力し、非使用状態の前記対象回路には使用状態の前記対象回路の何れかと同じ入力データを入力し、
前記特性調整回路は、同じ入力データが入力されている使用状態の前記対象回路と非使用状態の前記対象回路とを比較して、非使用状態の前記対象回路の特性を調整する前記(a)又は(b)に記載の電気・電子機器。
(d)
前記制御回路は、前記複数の対象回路が満遍なく非使用状態になるように前記対象回路の使用状態/非使用状態を制御する前記(a)〜(c)の何れか1つに記載の電気・電子機器。
(e)
前記対象回路は、前記入力データから再生した再生データと再生クロックを出力するクロックデータ再生回路である前記(a)〜(d)の何れか1つに記載の電気・電子機器。
(f)
前記特性調整回路は、前記クロックデータ再生回路の定常位相誤差を調整する前記(e)に記載の電気・電子機器。
(g)
前記特性調整回路は、前記クロックデータ再生回路を構成する電圧制御発振器の周波数感度を調整する前記(e)又は(f)に記載の電気・電子機器。
(h)
前記特性調整回路は、ゲーテッド電圧制御発振器型の前記クロックデータ再生回路のフリーラン周波数を調整する前記(e)〜(g)の何れか1つに記載の電気・電子機器。
(i)
前記入力データは、高速シリアル伝送されてきら受信データであり
前記対象回路は、前記入力データの周波数特性を調整する等価器である前記(a)〜(d)の何れか1つに記載の電気・電子機器。
(j)
前記再生データと前記再生クロックのスキューを調整するスキュー調整回路を更に備え、
前記特性調整回路は、同じ入力データが入力されている使用状態の前記クロックデータ再生回路の出力データ系列と非使用状態の前記クロックデータ再生回路の出力データ系列とを比較してスキュー量を検出し、
前記スキュー調整回路は、前記特性調整回路が検出したスキュー量を解消するようにスキューの調整を行う前記(a)〜(i)の何れか1つに記載の電気・電子機器。
(k)
必要数よりも多い複数の対象回路と、
前記対象回路の特性を調整する特性調整回路と、
前記対象回路の使用状態/非使用状態を制御する制御部と、
を備え、
前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う回路。
(l)
送信側回路と受信側回路とを備えた通信システムであって、
前記受信側回路は、必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整回路と、前記対象回路の使用状態/非使用状態を制御する制御部と、を有し、
前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う通信システム。
(m)
前記送信側回路は、前記受信側回路との通信においては調整用の待機時間を設けずに連続的にデータを送信し、前記受信側回路のように非使用状態の対象回路に対する特性調整機能を持たない受信側回路との通信においては調整用の待機時間を設けつつ断続的にデータを送信する前記(k)に記載の通信システム。
10…対象回路群、11…対象回路、12…対象回路、13…対象回路、14…対象回路、15…対象回路、20…入力制御回路、21…セレクタ、22…セレクタ、23…セレクタ、30…出力制御回路、31…セレクタ、32…セレクタ、33…セレクタ、34…セレクタ、40…特性調整回路、100…回路、200…回路、210…クロックデータ再生回路群、211…CDR回路、212…CDR回路、213…CDR回路、214…CDR回路、215…CDR回路、220…入力制御回路、221…セレクタ、222…セレクタ、224…セレクタ、225…セレクタ、230…出力制御回路、231…セレクタ、232…セレクタ、233…セレクタ、234…セレクタ、240…特性調整回路、250…スキュー調整回路、310…位相比較器、311…位相比較回路、312…遅延バッファ、313…遅延回路、320…駆動回路、321…側電流源、322…側電流源、323…第1のスイッチ、324…第2のスイッチ、330…発振回路、331…電圧制御発振器(VCO)、332…デューティ調整回路、340…分周器、350…期化回路、351…遅延バッファ、352…遅延回路、353…インバータ、354…Dフリップフロップ、355…位相オフセット検出回路、410…位相比較器、420…駆動回路、430…セレクタ、440…電圧制御発振器、450…分周器、500…タイミング抽出回路、510…基準クロック源、520…クロック生成回路、521…電圧制御発振器、521a…受信信号入力端子、521b…制御信号入力端子、521c…識別信号入力端子、521d…出力端子、522…電圧制御発振器、522a…受信信号入力端子、522b…制御信号入力端子、522c…識別信号入力端子、522d…出力端子、523…インバータ、524…ORゲート、524a…入力端子、524b…入力端子、530…PLL回路、531…電圧制御発振器、531a…受信信号入力端子、531b…制御信号入力端子、531c…識別信号入力端子、531d…出力端子、532…位相比較器、533…制御電圧発生回路、600…回路、610…クロックデータ再生回路群、620…入力制御回路、630…出力制御回路、640…特性調整回路、650…スキュー調整回路、660…等価器群、661…等価器、662…等価器、663…等価器、664…等価器、665…等価器、670…受信終端群、700…通信システム、710…送信側LSI、711…調整時間要否判別部、720…受信側LSI、CK…クロック入力端子、T1…バースト信号入力端子、T2…出力端子、T3…ビットレート識別信号入力端子

Claims (13)

  1. 必要数よりも多い複数の対象回路と、
    前記対象回路の特性を調整する特性調整回路と、
    前記対象回路の使用状態/非使用状態を制御する制御部と、
    を備え、
    前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
    前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う電気・電子機器。
  2. 前記制御部は、前記複数の対象回路からの出力を制御する出力制御回路を有し、
    前記出力制御回路は、使用状態の前記対象回路の出力信号を出力し、非使用状態の前記対象回路の出力信号を出力しない請求項1に記載の電気・電子機器。
  3. 前記複数の対象回路への入力データの数は、前記必要数と同数であり、
    前記制御部は、各前記対象回路への入力データの入力を制御する入力制御回路を更に有し、
    前記入力制御回路は、使用状態の前記対象回路には前記入力データのいずれかを入力し、非使用状態の前記対象回路には使用状態の前記対象回路の何れかと同じ入力データを入力し、
    前記特性調整回路は、同じ入力データが入力されている使用状態の前記対象回路と非使用状態の前記対象回路とを比較して、非使用状態の前記対象回路の特性を調整する請求項1に記載の電気・電子機器。
  4. 前記制御部は、前記複数の対象回路が満遍なく非使用状態になるように前記対象回路の使用状態/非使用状態を制御する請求項1に記載の電気・電子機器。
  5. 前記対象回路は、前記入力データから再生した再生データと再生クロックを出力するクロックデータ再生回路である請求項1に記載の電気・電子機器。
  6. 前記特性調整回路は、前記クロックデータ再生回路の定常位相誤差を調整する請求項5に記載の電気・電子機器。
  7. 前記特性調整回路は、前記クロックデータ再生回路を構成する電圧制御発振器の周波数感度を調整する請求項5に記載の電気・電子機器。
  8. 前記特性調整回路は、ゲーテッド電圧制御発振器型の前記クロックデータ再生回路のフリーラン周波数を調整する請求項5に記載の電気・電子機器。
  9. 前記入力データは、高速シリアル伝送されてきら受信データであり
    前記対象回路は、前記入力データの周波数特性を調整する等価器である請求項1に記載の電気・電子機器。
  10. 前記再生データと前記再生クロックのスキューを調整するスキュー調整回路を更に備え、
    前記特性調整回路は、同じ入力データが入力されている使用状態の前記クロックデータ再生回路の出力データ系列と非使用状態の前記クロックデータ再生回路の出力データ系列とを比較してスキュー量を検出し、
    前記スキュー調整回路は、前記特性調整回路が検出したスキュー量を解消するようにスキューの調整を行う請求項1に記載の電気・電子機器。
  11. 必要数よりも多い複数の対象回路と、
    前記対象回路の特性を調整する特性調整回路と、
    前記対象回路の使用状態/非使用状態を制御する制御部と、
    を備え、
    前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
    前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う回路。
  12. 送信側回路と受信側回路とを備えた通信システムであって、
    前記受信側回路は、必要数よりも多い複数の対象回路と、前記対象回路の特性を調整する特性調整回路と、前記対象回路の使用状態/非使用状態を制御する制御部と、を有し、
    前記制御部は、前記必要数の対象回路を使用状態とし、残りの対象回路を非使用状態とし、
    前記特性調整回路は、非使用状態の前記対象回路に対して特性の調整を行う通信システム。
  13. 前記送信側回路は、前記受信側回路との通信においては調整用の待機時間を設けずに連続的にデータを送信し、前記受信側回路のように非使用状態の対象回路に対する特性調整機能を持たない受信側回路との通信においては調整用の待機時間を設けつつ断続的にデータを送信する請求項12に記載の通信システム。
JP2014044841A 2014-03-07 2014-03-07 電気・電子機器、回路、及び通信システム Expired - Fee Related JP6064930B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014044841A JP6064930B2 (ja) 2014-03-07 2014-03-07 電気・電子機器、回路、及び通信システム
US14/626,171 US9407480B2 (en) 2014-03-07 2015-02-19 Electric and electronic apparatus, circuit, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044841A JP6064930B2 (ja) 2014-03-07 2014-03-07 電気・電子機器、回路、及び通信システム

Publications (3)

Publication Number Publication Date
JP2015171002A true JP2015171002A (ja) 2015-09-28
JP2015171002A5 JP2015171002A5 (ja) 2016-03-03
JP6064930B2 JP6064930B2 (ja) 2017-01-25

Family

ID=54018433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044841A Expired - Fee Related JP6064930B2 (ja) 2014-03-07 2014-03-07 電気・電子機器、回路、及び通信システム

Country Status (2)

Country Link
US (1) US9407480B2 (ja)
JP (1) JP6064930B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086639B1 (ja) * 2016-05-12 2017-03-01 株式会社セレブレクス データ受信装置
KR102403623B1 (ko) * 2017-08-18 2022-05-30 삼성전자주식회사 클록 신호들 사이의 스큐를 조절하도록 구성되는 전자 회로

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213572A (ja) * 1998-01-30 1999-08-06 Toshiba Corp 再生クロック生成回路と光ディスク装置
WO2008041292A1 (fr) * 2006-09-29 2008-04-10 Fujitsu Limited Circuit intégré
JP2010011034A (ja) * 2008-06-26 2010-01-14 Fujitsu Ltd Ad変換回路および受信回路
JP2011049746A (ja) * 2009-08-26 2011-03-10 Nec Corp A/d変換装置
JP2013110489A (ja) * 2011-11-18 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> ゲーティッドvco回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016463A (en) * 1996-08-26 2000-01-18 Texas Instruments Incorporated Channel quality monitor for read channel IC
JP3758953B2 (ja) * 2000-07-21 2006-03-22 富士通株式会社 スキュー補正装置
US7123660B2 (en) * 2001-02-27 2006-10-17 Jazio, Inc. Method and system for deskewing parallel bus channels to increase data transfer rates
JP4067787B2 (ja) * 2001-07-05 2008-03-26 富士通株式会社 パラレル信号伝送装置
JP4718933B2 (ja) * 2005-08-24 2011-07-06 富士通株式会社 並列信号のスキュー調整回路及びスキュー調整方法
US8090971B2 (en) * 2007-12-04 2012-01-03 Synopsys, Inc. Data recovery architecture (CDR) for low-voltage differential signaling (LVDS) video transceiver applications
KR100903132B1 (ko) * 2007-12-11 2009-06-16 한국전자통신연구원 병렬 수신 장치 및 방법
JP4555379B2 (ja) 2009-01-19 2010-09-29 ルネサスエレクトロニクス株式会社 位相同期回路およびそれを用いた半導体集積回路装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213572A (ja) * 1998-01-30 1999-08-06 Toshiba Corp 再生クロック生成回路と光ディスク装置
WO2008041292A1 (fr) * 2006-09-29 2008-04-10 Fujitsu Limited Circuit intégré
JP2010011034A (ja) * 2008-06-26 2010-01-14 Fujitsu Ltd Ad変換回路および受信回路
JP2011049746A (ja) * 2009-08-26 2011-03-10 Nec Corp A/d変換装置
JP2013110489A (ja) * 2011-11-18 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> ゲーティッドvco回路

Also Published As

Publication number Publication date
US9407480B2 (en) 2016-08-02
JP6064930B2 (ja) 2017-01-25
US20150256154A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
US11374558B2 (en) Measurement and correction of multiphase clock duty cycle and skew
US9520883B2 (en) Frequency detection circuit and reception circuit
JP5463246B2 (ja) 位相同期回路、cdr回路及び受信回路
US7756232B2 (en) Clock and data recovery circuit
KR101382500B1 (ko) 지연 고정 회로 및 클록 생성 방법
US7734000B2 (en) Clock and data recovery circuits
US9264219B1 (en) Clock and data recovery circuit and method
KR102604641B1 (ko) 듀티 사이클 보정을 위한 회로 및 디스플레이
WO2011004580A1 (ja) クロックデータリカバリ回路
JP5553999B2 (ja) デジタル位相ロックループを実施するためのシステム及び方法
JP2004222276A (ja) トラッキングアナログ−デジタル変換器を備えるアナログ遅延固定ループ及びアナログ位相固定ループ
US9660797B2 (en) Method and apparatus for implementing clock holdover
CN101795125A (zh) 振荡器电路及门控振荡器的校准方法
JP2017058790A (ja) レギュレータ、シリアライザ、デシリアライザ、並列直列相互変換回路及びその制御方法
JP6064930B2 (ja) 電気・電子機器、回路、及び通信システム
US20200259630A1 (en) Phase detector, phase synchronization circuit, and method of controlling phase synchronization circuit
US10018970B2 (en) Time-to-digital system and associated frequency synthesizer
US9685962B2 (en) Clock data recovery apparatus and method and phase detector
EP1404020A1 (en) Phase-locked loop circuit reducing steady state phase error
KR101297413B1 (ko) 적응형 클럭 생성 장치 및 방법
US20100239059A1 (en) Transmission method and transmission apparatus
US10483989B2 (en) Phase-locked loop, phase-locking method, and communication unit
JP2020161983A (ja) 半導体装置
US9350527B1 (en) Reception unit and receiving method
JP2004356701A (ja) ハーフレートcdr回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6064930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees