JP2015148487A - 分光器、及び分光器の製造方法 - Google Patents

分光器、及び分光器の製造方法 Download PDF

Info

Publication number
JP2015148487A
JP2015148487A JP2014020667A JP2014020667A JP2015148487A JP 2015148487 A JP2015148487 A JP 2015148487A JP 2014020667 A JP2014020667 A JP 2014020667A JP 2014020667 A JP2014020667 A JP 2014020667A JP 2015148487 A JP2015148487 A JP 2015148487A
Authority
JP
Japan
Prior art keywords
light
unit
light detection
space
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014020667A
Other languages
English (en)
Other versions
JP6251073B2 (ja
Inventor
隆文 能野
Takafumi Yoshino
隆文 能野
柴山 勝己
Katsumi Shibayama
勝己 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014020667A priority Critical patent/JP6251073B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to EP15745768.0A priority patent/EP3104144B1/en
Priority to KR1020227016709A priority patent/KR102506746B1/ko
Priority to KR1020167017142A priority patent/KR102400968B1/ko
Priority to EP18159898.8A priority patent/EP3351912B1/en
Priority to CN201811221868.9A priority patent/CN109341854B/zh
Priority to CN201580007241.1A priority patent/CN105980820B/zh
Priority to PCT/JP2015/052926 priority patent/WO2015119094A1/ja
Priority to US15/116,893 priority patent/US10060792B2/en
Priority to TW108104803A priority patent/TWI724372B/zh
Priority to TW104103952A priority patent/TWI655415B/zh
Publication of JP2015148487A publication Critical patent/JP2015148487A/ja
Application granted granted Critical
Publication of JP6251073B2 publication Critical patent/JP6251073B2/ja
Priority to US15/911,714 priority patent/US10775236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】検出精度の低下を抑制しつつ小型化を図ることができる分光器、及びそのような分光器を容易に製造することができる分光器の製造方法を提供する。
【解決手段】分光器1Aは、光通過部21、第1光検出部22及び第2光検出部26が設けられた光検出素子20と、空間Sが形成されるように光検出素子20に固定された支持体30と、支持体30に設けられ、空間Sにおいて、光通過部21を通過した光L1を反射する第1反射部11と、光検出素子20に設けられ、空間Sにおいて、第1反射部11で反射された光L1を反射する第2反射部12Aと、支持体30に設けられ、空間Sにおいて、第2反射部12Aで反射された光L1を第1光検出部22に対して分光すると共に反射する分光部40Aと、を備える。第2光検出部26は、第2反射部12Aを包囲する領域に複数配置されている。
【選択図】図1

Description

本発明は、光を分光して検出する分光器、及び分光器の製造方法に関する。
例えば、特許文献1には、光入射部と、光入射部から入射した光を分光すると共に反射する分光部と、分光部によって分光されると共に反射された光を検出する光検出素子と、光入射部、分光部及び光検出素子を支持する箱状の支持体と、を備える分光器が記載されている。
特開2000―298066号公報
上述したような分光器には、用途の拡大に応じて、更なる小型化が求められている。しかし、分光器が小型化されればされるほど、種々の原因によって分光器の検出精度が低下し易くなる。
そこで、本発明は、検出精度の低下を抑制しつつ小型化を図ることができる分光器、及びそのような分光器を容易に製造することができる分光器の製造方法を提供することを目的とする。
本発明の分光器は、光通過部、第1光検出部及び第2光検出部が設けられた光検出素子と、光通過部、第1光検出部及び第2光検出部との間に空間が形成されるように光検出素子に固定された支持体と、支持体に設けられ、空間において、光通過部を通過した光を反射する第1光学部と、光検出素子に設けられ、空間において、第1光学部で反射された光を反射する第2光学部と、支持体に設けられ、空間において、第2光学部で反射された光を第1光検出部に対して反射する第3光学部と、を備え、第2光学部又は第3光学部は、空間において、入射した光を分光すると共に反射し、第2光検出部は、第2光学部を包囲する領域に複数配置されている。
この分光器では、光検出素子及び支持体によって形成された空間内に、光通過部から第1光検出部に至る光路が形成される。これにより、分光器の小型化を図ることができる。更に、複数の第2光検出部が、第2光学部を包囲する領域に配置されている。これにより、第2光学部を包囲する領域において、分光される前の光の状態をモニタすることが可能となり、光通過部を通過する光の入射NA及び入射方向等を適切に調整することができる。よって、この分光器によれば、検出精度の低下を抑制しつつ小型化を図ることが可能となる。
本発明の分光器では、第1光学部は、空間において、光通過部を通過した光を反射する第1反射部であり、第2光学部は、空間において、第1反射部で反射された光を反射する第2反射部であり、第3光学部は、空間において、第2反射部で反射された光を第1光検出部に対して分光すると共に反射する分光部であってもよい。この構成によれば、光通過部を通過した光が第1反射部及び第2反射部で順次反射されて分光部に入射することになる。これにより、分光部に入射する光の入射方向、及び当該光の広がり乃至収束状態を調整することが容易となるため、分光部から第1光検出部に至る光路長を短くしても、分光部で分光された光を精度良く第1光検出部の所定位置に集光させることができる。
本発明の分光器では、第1光学部は、空間において、光通過部を通過した光を反射する第1反射部であり、第2光学部は、空間において、第1反射部で反射された光を分光すると共に反射する分光部であり、第3光学部は、空間において、分光部で分光されると共に反射された光を第1光検出部に対して反射する第2反射部であってもよい。この構成によれば、光通過部、第1光検出部及び第2光検出部と共に分光部が光検出素子に設けられているため、光通過部、分光部、第1光検出部及び第2光検出部の相互の位置関係を精度良く維持することができる。更に、第1反射部及び第2反射部に比べて製造が複雑化し易い分光部を、光通過部、第1光検出部及び第2光検出部と共に光検出素子に設けることで、支持体の歩留まり、延いては分光器の歩留まりを向上させることができる。
本発明の分光器では、光通過部、第1光学部、第2光学部、第3光学部及び第1光検出部は、光通過部を通過する光の光軸方向から見た場合に、基準線に沿って並んでおり、複数の第2光検出部は、光軸方向から見た場合に、基準線に平行な方向及び基準線に垂直な方向のそれぞれの方向において、第2光学部を挟んで互いに対向していてもよい。この構成によれば、基準線に平行な方向及び基準線に垂直な方向のそれぞれの方向において、第2光学部に入射する光のずれ方をモニタすることが可能となる。
本発明の分光器では、複数の第2光検出部は、第2光学部を包囲するように第2光学部の外縁に沿って並んでいてもよい。この構成によれば、第2光学部の周囲全体において、第2光学部に入射する光のずれ方をモニタすることが可能となる。
本発明の分光器では、複数の第2光検出部は、第2光学部を包囲する領域において、2次元状に配列されていてもよい。この構成によれば、第2光学部の周囲全体において、第2光学部に入射する光のずれ方をイメージとしてモニタすることが可能となる。
本発明の分光器では、支持体には、第1光検出部及び第2光検出部に電気的に接続された配線が設けられており、配線における第1光検出部及び第2光検出部側の端部は、光検出素子と支持体との固定部において、光検出素子に設けられた端子に接続されていてもよい。
本発明の分光器では、支持体の材料は、セラミックであってもよい。この構成によれば、分光器が使用される環境の温度変化等に起因する支持体の膨張及び収縮を抑制することができる。したがって、分光部と第1光検出部との位置関係にずれが生じることに起因する検出精度の低下(第1光検出部で検出された光におけるピーク波長のシフト等)を抑制することができる。
本発明の分光器では、空間は、光検出素子及び支持体を構成として含むパッケージによって、気密に封止されていてもよい。この構成によれば、湿気による空間内の部材の劣化及び外気温の低下による空間内での結露の発生等に起因する検出精度の低下を抑制することができる。
本発明の分光器では、空間は、光検出素子及び支持体を収容するパッケージによって、気密に封止されていてもよい。この構成によれば、湿気による空間内の部材の劣化及び外気温の低下による空間内での結露の発生等に起因する検出精度の低下を抑制することができる。
本発明の分光器は、光通過部及び光検出部が設けられた光検出素子と、光通過部及び光検出部との間に空間が形成されるように光検出素子に固定された支持体と、支持体に設けられ、空間において、光通過部を通過した光を反射する第1反射部と、光検出素子に設けられ、空間において、第1反射部で反射された光を分光すると共に反射する分光部と、支持体に設けられ、空間において、分光部で分光されると共に反射された光を光検出部に対して反射する第2反射部と、を備える。
この分光器では、光検出素子及び支持体によって形成された空間内に、光通過部から光検出部に至る光路が形成される。これにより、分光器の小型化を図ることができる。更に、光通過部及び光検出部と共に分光部が光検出素子に設けられている。これにより、光通過部、分光部及び光検出部の相互の位置関係が精度良く維持される。よって、この分光器によれば、検出精度の低下を抑制しつつ小型化を図ることが可能となる。
本発明の分光器の製造方法は、第1反射部及び第2反射部が設けられた支持体を用意する第1工程と、光通過部、分光部及び光検出部が設けられた光検出素子を用意する第2工程と、前記第1工程及び前記第2工程の後に、空間が形成されるように前記支持体と前記光検出素子とを固定することで、前記光通過部を通過した光が前記第1反射部で反射され、前記第1反射部で反射された光が前記分光部で分光されると共に反射され、前記分光部で分光されると共に反射された光が前記第2反射部で反射され、前記第2反射部で反射された光が前記光検出部に入射する光路を前記空間内に形成する第3工程と、を備える。
この分光器の製造方法では、第1反射部及び第2反射部が設けられた支持体と、光通過部、分光部及び光検出部が設けられた光検出素子とを固定するだけで、空間内に、光通過部から光検出部に至る光路が形成される。よって、この分光器の製造方法によれば、検出精度の低下を抑制しつつ小型化を図ることができる分光器を容易に製造することが可能となる。なお、第1工程及び第2工程の実施順序は任意である。
本発明によれば、検出精度の低下を抑制しつつ小型化を図ることができる分光器、及びそのような分光器を容易に製造することができる分光器の製造方法を提供することが可能となる。
本発明の第1実施形態の分光器の断面図である。 本発明の第1実施形態の分光器の平面図である。 本発明の第1実施形態の分光器の光検出素子の平面図である。 本発明の第1実施形態の分光器の変形例の光検出素子の平面図である。 本発明の第1実施形態の分光器の変形例の第2反射部及び第2光検出部の平面図である。 本発明の第2実施形態の分光器の断面図である。 本発明の第2実施形態の分光器の光検出素子の平面図である。
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
図1及び図2に示されるように、分光器1Aは、光検出素子20と、支持体30と、第1反射部(第1光学部)11と、第2反射部(第2光学部)12Aと、分光部(第3光学部)40Aと、カバー50と、を備えている。光検出素子20には、光通過部21、第1光検出部22、複数の第2光検出部26及び0次光捕捉部23が設けられている。支持体30には、第1光検出部22及び第2光検出部26に対して電気信号を入出力するための配線13が設けられている。支持体30は、光通過部21、第1光検出部22、複数の第2光検出部26及び0次光捕捉部23との間に空間Sが形成されるように光検出素子20に固定されている。一例として、分光器1Aは、X軸方向、Y軸方向及びZ軸方向のそれぞれの方向の長さが10mm以下である直方体状に形成されている。なお、配線13及び支持体30は、成形回路部品(MID:Molded Interconnect Device)として構成されたものである。
光通過部21、第1反射部11、第2反射部12A、分光部40A、第1光検出部22及び0次光捕捉部23は、光通過部21を通過する光L1の光軸方向(すなわち、Z軸方向)から見た場合に、X軸方向に延在する基準線RLに沿って並んでいる。分光器1Aでは、光通過部21を通過した光L1は、第1反射部11及び第2反射部12Aで順次反射されて分光部40Aに入射し、分光部40Aで分光されると共に反射される。そして、分光部40Aで分光されると共に反射された光のうち、0次光L0以外の光L2は、第1光検出部22に入射して第1光検出部22で検出され、0次光L0は、0次光捕捉部23に入射して0次光捕捉部23で捕捉される。光通過部21から分光部40Aに至る光L1の光路、分光部40Aから第1光検出部22に至る光L2の光路、及び分光部40Aから0次光捕捉部23に至る0次光L0の光路は、空間S内に形成される。
光検出素子20は、基板24を有している。基板24は、例えば、シリコン等の半導体材料によって矩形板状に形成されている。光通過部21は、基板24に形成されたスリットであり、Y軸方向に延在している。0次光捕捉部23は、基板24に形成されたスリットであり、光通過部21と第1光検出部22との間においてY軸方向に延在している。なお、光通過部21における光L1の入射側の端部は、X軸方向及びY軸方向のそれぞれの方向において、光L1の入射側に向かって末広がりとなっている。また、0次光捕捉部23における0次光L0の入射側とは反対側の端部は、X軸方向及びY軸方向のそれぞれの方向において、0次光L0の入射側とは反対側に向かって末広がりとなっている。0次光L0が0次光捕捉部23に斜めに入射するように構成することで、0次光捕捉部23に入射した0次光L0が空間Sに戻るのをより確実に抑制することができる。
第1光検出部22は、基板24における空間S側の表面24aに設けられている。より具体的には、第1光検出部22は、基板24に貼り付けられているのではなく、半導体材料からなる基板24に作り込まれている。つまり、第1光検出部22は、半導体材料からなる基板24内の第一導電型の領域と、該領域内に設けられた第二導電型の領域とで形成された複数のフォトダイオードによって、構成されている。第1光検出部22は、例えば、フォトダイオードアレイ、C−MOSイメージセンサ、CCDイメージセンサ等として構成されたものであり、基準線RLに沿って並んだ複数の光検出チャネルを有している。第1光検出部22の各光検出チャネルには、異なる波長を有する光L2が入射させられる。各第2光検出部26は、第1光検出部22と同様に、基板24に作り込まれたフォトダイオードであり、第2反射部12Aを包囲する領域に配置されている。基板24の表面24aには、第1光検出部22及び第2光検出部26に対して電気信号を入出力するための複数の端子25が設けられている。なお、第1光検出部22及び第2光検出部26は、表面入射型のフォトダイオードとして構成されていてもよいし、或いは裏面入射型のフォトダイオードとして構成されていてもよい。
図3に示されるように、複数の第2光検出部26は、光通過部21を通過する光L1の光軸方向から見た場合に、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、第2反射部12Aを挟んで互いに対向している。基準線RLに平行な方向において互いに対向する第2光検出部26のそれぞれは、Y軸方向に延在する長尺状の形状を有している。基準線RLに垂直な方向において互いに対向する第2光検出部26のそれぞれは、X軸方向に延在する長尺状の形状を有している。
図1及び図2に示されるように、支持体30は、ベース壁部31と、一対の側壁部32と、一対の側壁部33と、を有している。ベース壁部31は、空間Sを介して、Z軸方向において光検出素子20と対向している。ベース壁部31には、空間S側に開口する凹部34、空間S側とは反対側に突出する複数の凸部35、及び空間S側とその反対側とに開口する複数の貫通孔36が形成されている。一対の側壁部32は、空間Sを介して、X軸方向において互いに対向している。一対の側壁部33は、空間Sを介して、Y軸方向において互いに対向している。ベース壁部31、一対の側壁部32及び一対の側壁部33は、AlN、Al等のセラミックによって一体的に形成されている。
第1反射部11は、支持体30に設けられている。より具体的には、第1反射部11は、ベース壁部31における空間S側の表面31aのうち凹部34の内面34aの球面状の領域に、成形層41を介して設けられている。第1反射部11は、例えば、Al、Au等の金属蒸着膜からなり且つ鏡面を有する凹面ミラーであり、空間Sにおいて、光通過部21を通過した光L1を第2反射部12Aに対して反射する。なお、第1反射部11は、成形層41を介さずに、凹部34の内面34aの球面状の領域に直接設けられていてもよい。
第2反射部12Aは、光検出素子20に設けられている。より具体的には、第2反射部12Aは、基板24の表面24aのうち光通過部21と0次光捕捉部23との間の領域に、設けられている。第2反射部12Aは、例えば、Al、Au等の金属蒸着膜からなり且つ鏡面を有する平面ミラーであり、空間Sにおいて、第1反射部11で反射された光L1を分光部40Aに対して反射する。
分光部40Aは、支持体30に設けられている。より具体的には、以下のとおりである。すなわち、ベース壁部31の表面31aには、凹部34を覆うように成形層41が配置されている。成形層41は、凹部34の内面34aに沿って膜状に形成されている。内面34aのうち球面状の領域に対応する成形層41の所定領域には、例えば、鋸歯状断面のブレーズドグレーティング、矩形状断面のバイナリグレーティング、正弦波状断面のホログラフィックグレーティング等に対応するグレーティングパターン41aが形成されている。成形層41の表面には、グレーティングパターン41aを覆うように、例えば、Al、Au等の金属蒸着膜からなる反射膜42が形成されている。反射膜42は、グレーティングパターン41aの形状に沿って形成されており、この部分が、反射型グレーティングである分光部40Aとなっている。なお、成形層41は、成形材料(例えば、光硬化性のエポキシ樹脂、アクリル樹脂、フッ素系樹脂、シリコーン、有機・無機ハイブリッド樹脂等のレプリカ用光学樹脂等)に成形型を押し当て、その状態で、成形材料を硬化(例えば、UV光等による光硬化、熱硬化等)させることで、形成される。
以上のように、分光部40Aは、ベース壁部31の表面31aのうち凹部34の内面34aの球面状の領域に、設けられている。分光部40Aは、基準線RLに沿って並んだ複数のグレーティング溝を有しており、空間Sにおいて、第2反射部12Aで反射された光L1を第1光検出部22に対して分光すると共に反射する。なお、分光部40Aは、上述したように、支持体30に直接形成されたものに限定されない。例えば、分光部40Aと、分光部40Aが形成された基板と、を有する分光素子が、支持体30に貼り付けられることで、分光部40Aが支持体30に設けられていてもよい。
各配線13は、第1光検出部22及び第2光検出部26側の端部13aと、第1光検出部22及び第2光検出部26側とは反対側の端部13bと、接続部13cと、を有している。各配線13の端部13aは、光検出素子20の各端子25と対向するように、各側壁部32の端面32aに位置している。各配線13の端部13bは、ベース壁部31における空間S側とは反対側の表面31bのうち各凸部35の表面に、位置している。各配線13の接続部13cは、各側壁部32における空間S側の表面32b、ベース壁部31の表面31a、及び各貫通孔36の内面において、端部13aから端部13bに至っている。このように、配線13が支持体30における空間S側の表面を引き回されることで、配線13の劣化を防止することができる。
対向する光検出素子20の端子25と配線13の端部13aとは、例えば、Au、半田等からなるバンプ14によって接続されている。分光器1Aでは、複数のバンプ14によって、支持体30が光検出素子20に固定されていると共に、複数の配線13が光検出素子20の第1光検出部22及び第2光検出部26に電気的に接続されている。このように、各配線13の端部13aは、光検出素子20と支持体30との固定部において、光検出素子20の各端子25に接続されている。
カバー50は、光検出素子20の基板24における空間S側とは反対側の表面24bに固定されている。カバー50は、光透過部材51と、遮光膜52と、を有している。光透過部材51は、例えば、石英、硼珪酸ガラス(BK7)、パイレックス(登録商標)ガラス、コバールガラス等、光L1を透過させる材料によって、矩形板状に形成されている。遮光膜52は、光透過部材51における空間S側の表面51aに形成されている。遮光膜52には、Z軸方向において光検出素子20の光通過部21と対向するように、光通過開口52aが形成されている。光通過開口52aは、遮光膜52に形成されたスリットであり、Y軸方向に延在している。分光器1Aでは、遮光膜52の光通過開口52a及び光検出素子20の光通過部21によって、空間Sに入射する光L1の入射NAが規定される。
なお、赤外線を検出する場合には、光透過部材51の材料として、シリコン、ゲルマニウム等も有効である。また、光透過部材51に、AR(Anti Reflection)コートを施したり、所定波長の光のみを透過させるフィルタ機能を持たせたりしてもよい。また、遮光膜52の材料としては、例えば、黒レジスト、Al等を用いることができる。ただし、0次光捕捉部23に入射した0次光L0が空間Sに戻ることを抑制する観点からは、遮光膜52の材料として、黒レジストが有効である。
また、カバー50が、光透過部材51における空間S側とは反対側の表面に形成された遮光膜を更に有していてもよい。その場合、Z軸方向において光検出素子20の光通過部21と対向するように、当該遮光膜に光通過開口を形成することで、当該遮光膜の光通過開口、遮光膜52の光通過開口52a及び光検出素子20の光通過部21を用いて、空間Sに入射する光L1の入射NAをより精度良く規定することができる。当該遮光膜の材料としては、遮光膜52と同様に、例えば、黒レジスト、Al等を用いることができる。また、カバー50が、上述した遮光膜を更に有する場合には、Z軸方向において光検出素子20の0次光捕捉部23と対向するように、遮光膜52に光通過開口を形成してもよい。その場合、0次光捕捉部23に入射した0次光L0が空間Sに戻ることをより確実に抑制することができる。
基板24の表面24aと各側壁部32の端面32a及び各側壁部33の端面33aとの間には、例えば樹脂等からなる封止部材15が配置されている。また、ベース壁部31の貫通孔36内には、例えばガラスビーズ等からなる封止部材16が配置されていると共に、樹脂からなる封止部材17が充填されている。分光器1Aでは、光検出素子20、支持体30、カバー50及び封止部材15,16,17を構成として含むパッケージ60によって、空間Sが気密に封止されている。分光器1Aを外部の回路基板に実装する際には、各配線13の端部13bが電極パッドとして機能する。なお、基板24の表面24bにカバー50を配置することに代えて、基板24の光通過部21に光透過性の樹脂を充填することで、基板24の光通過部21を気密に封止してもよい。また、ベース壁部31の貫通孔36内に、例えばガラスビーズ等からなる封止部材16を配置せずに、樹脂からなる封止部材17のみを充填してもよい。
以上説明したように、分光器1Aでは、光検出素子20及び支持体30によって形成された空間S内に、光通過部21から第1光検出部22に至る光路が形成される。これにより、分光器1Aの小型化を図ることができる。更に、複数の第2光検出部26が、第2反射部12Aを包囲する領域に配置されている。これにより、第2反射部12Aを包囲する領域において、分光される前の光L1の状態をモニタすることが可能となり、光通過部21を通過する光L1の入射NA及び入射方向等を適切に調整することができる。よって、分光器1Aによれば、検出精度の低下を抑制しつつ小型化を図ることが可能となる。
また、分光器1Aでは、複数の第2光検出部26が、光通過部21を通過する光L1の光軸方向から見た場合に、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、第2反射部12Aを挟んで互いに対向している。これにより、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、第2反射部12Aに入射する光L1のずれ方をモニタすることが可能となる。
なお、図4に示されるように、複数の第2光検出部26は、第2反射部12Aを包囲するように第2反射部12Aの外縁に沿って並んでいてもよい。この場合、第2反射部12Aの周囲全体において、第2反射部12Aに入射する光のずれ方をモニタすることが可能となる。また、図5の(a)に示されるように、複数の第2光検出部26は、基準線RLに平行な方向における第2反射部12Aの両側、及び基準線RLに垂直な方向における第2反射部12Aの両側において、1次元状に配列されていてもよい。この場合、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、第2反射部12Aに入射する光L1のずれ方をより詳細にモニタすることが可能となる。また、図5の(b)に示されるように、複数の第2光検出部26は、第2反射部12Aを包囲する領域において、2次元状に配列されていてもよい。この場合、第2反射部12Aの周囲全体において、第2反射部12Aに入射する光L1のずれ方をイメージとしてモニタすることが可能となる。
また、分光器1Aでは、光通過部21を通過した光L1が第1反射部11及び第2反射部12Aで順次反射されて分光部40Aに入射することになる。これにより、分光部40Aに入射する光L1の入射方向、及び当該光L1の広がり乃至収束状態を調整することが容易となるため、分光部40Aから第1光検出部22に至る光路長を短くしても、分光部40Aで分光された光L2を精度良く第1光検出部22の所定位置に集光させることができる。
また、分光器1Aでは、第1反射部11が凹面ミラーとなっている。これにより、第1反射部11で光L1の広がり角が抑えられるため、光通過部21を通過する光L1の入射NAを大きくして感度を高くしたり、分光部40Aから第1光検出部22に至る光路長をより短くして分光器1Bの更なる小型化を図ったりすることができる。具体的には、次のとおりである。すなわち、第1反射部11が凹面ミラーである場合、光L1は、コリメートされたような状態で分光部40Aに照射される。そのため、光L1が広がりつつ分光部40Aに照射される場合に比べ、分光部40Aが第1光検出部22に光L2を集光する距離が短くて済む。そこで、当該光L1の入射NAを大きくして感度を高くしたり、分光部40Aから第1光検出部22に至る光路長をより短くして分光器1Bの更なる小型化を図ったりすることができる。
また、分光器1Aでは、支持体30に、第1光検出部22及び第2光検出部26に電気的に接続された配線13が設けられている。そして、配線13における第1光検出部22及び第2光検出部26側の端部13aが、光検出素子20と支持体30との固定部において、光検出素子20に設けられた端子25に接続されている。これにより、第1光検出部22及び第2光検出部26と配線13との電気的な接続の確実化を図ることができる。
また、分光器1Aでは、支持体30の材料がセラミックとなっている。これにより、分光器1Aが使用される環境の温度変化、第1光検出部22及び第2光検出部での発熱等に起因する支持体30の膨張及び収縮を抑制することができる。したがって、分光部40Aと第1光検出部22との位置関係にずれが生じることに起因する検出精度の低下(第1光検出部22で検出された光におけるピーク波長のシフト等)を抑制することができる。分光器1Aでは、小型化が図られていることから、わずかな光路の変化であっても、光学系に大きな影響を及ぼし、検出精度の低下に繋がるおそれがある。そのため、特に、上述したように、分光部40Aが支持体30に直接形成されている場合には、支持体30の膨張及び収縮を抑制することは極めて重要である。
また、分光器1Aでは、光検出素子20及び支持体30を構成として含むパッケージ60によって、空間Sが気密に封止されていている。これにより、湿気による空間S内の部材の劣化及び外気温の低下による空間S内での結露の発生等に起因する検出精度の低下を抑制することができる。
また、分光器1Aでは、ベース壁部31の表面31aのうち凹部34の周囲に平坦な領域(若干傾いていてもよい)が存在している。これにより、第1光検出部22で反射光が生じたとしても、当該反射光が第1光検出部22に再度到達することを抑制することができる。また、樹脂に成形型を押し当てて凹部34の内面34aに成形層41を形成する際、及び、基板24の表面24aと各側壁部32の端面32a及び各側壁部33の端面33aとの間に、樹脂からなる封止部材15を配置する際に、当該平坦な領域が余分な樹脂の逃げ場となる。このとき、ベース壁部31の貫通孔36に余分な樹脂を流し込むようにすれば、例えばガラスビーズ等からなる封止部材16が不要となり、当該樹脂が封止部材17として機能する。
ここで、第1光検出部22を包囲する領域にではなく、第2反射部12Aを包囲する領域に複数の第2光検出部26を配置することによるメリットについて、より詳細に説明する。例えば、基準線RLに平行な方向において、第1光検出部22を挟んで互いに対向するように複数の第2光検出部26が配置されていると、複数の第2光検出部26は、分光された光L2のうち短波長の光又は長波長の光を検出することになるため、検出波長が限定され、また、検出強度がばらつくことになる。また、基準線RLに垂直な方向において、第1光検出部22を挟んで互いに対向するように複数の第2光検出部26が配置されていると、Y軸方向における光路のずれをモニタすることはできるものの、分光部40Aの位置のずれ、グレーティング溝の方向のずれ等を含んだ結果をモニタすることになる。
このように、第1光検出部22を包囲する領域に複数の第2光検出部26が配置されていると、分光された光L2を検出することになるため、光路のずれが、光検出素子20と支持体30との位置ずれに起因するものなのか、或いは支持体30における分光部40Aの位置ずれ等に起因するものなのか、判断することができない。
それに対し、第2反射部12Aを包囲する領域に複数の第2光検出部26が配置されていると、分光される前の光L1を検出することになるため、第1光検出部22による光L2の検出結果と併せて、より詳細な光路のずれ情報を取得することが可能となる。特に、基準線RLに平行な方向における光路のずれは、検出精度の劣化に繋がり易いため、少なくとも基準線RLに平行な方向おいて第2反射部12A(後述する第2実施形態では、分光部40B)を挟んで互いに対向するように、複数の第2光検出部26を配置することが重要である。
また、第1反射部11の領域及び分光部40Aの領域を光L1の入射NAに対して広いものとし、第2反射部12Aの領域の広さで光L1の入射NAを規定する場合、例えば、光検出素子20と支持体30とに位置ずれが生じたとしても、第1反射部11で全ての光L1が反射されることになる。更に、第2反射部12Aでは、規定した入射NA分の光L1しか反射されないため、分光部40Aには、規定した入射NA分の光L1が入射することになる。このとき、第2反射部12Aを包囲する領域に配置された複数の第2光検出部26を用いて、第2反射部12Aでの光路のずれをモニタすることができる。
また、支持体30に対して光検出素子20が傾斜している場合、第1反射部11で反射された光L1の反射角度が変わるため、複数の第2光検出部26によって当該反射角度のずれ方向を知得することができる。支持体30に対して光検出素子20が傾斜していると、第1反射部11による光L1のコリメート状態のくずれに繋がり易く、分解能を低下させるZ軸方向への位置ずれにも繋がり易い。複数の第2光検出部26による光L1の検出結果と第1光検出部22による光L2の検出結果とを併せることで、単にZ軸方向に位置ずれが生じているのか、或いは、支持体30に対して光検出素子20が傾斜しているのか等を知得することが可能となる。
また、第2反射部12Aで規定する入射NAよりも大きい入射NAで第2反射部12Aに光L1を入射させる場合に、複数の第2光検出部26で光L1が検出されないように分光器1Aに入射させる光L1の入射NAを調整していけば、検出精度をより向上させることが可能となる。また、分光器1Aに入射させる光L1の入射方向にずれが生じている場合にも、複数の第2光検出部26で光L1の状態をモニタしながら、当該入射方向の調整を行うことが可能となる。
また、分光器1Aを製造する際には、第1反射部11及び分光部40Aが設けられた支持体30を用意し(第1工程)、光通過部21、第2反射部12A、第1光検出部22及び複数の第2光検出部26が設けられた光検出素子20を用意し(第2工程)、それらの後に、空間Sが形成されるように支持体30と光検出素子20とを固定することで、光通過部21から第1光検出部22に至る光路を空間S内に形成する(第3工程)。このように、支持体30と光検出素子20とを固定するだけで、空間S内に、光通過部21から第1光検出部22に至る光路が形成される。よって、分光器1Aの製造方法によれば、検出精度の低下を抑制しつつ小型化を図ることができる分光器1Aを容易に製造することが可能となる。なお、支持体30を用意する工程及び光検出素子20を用意する工程の実施順序は任意である。
特に、分光器1Aを製造する際には、支持体30に設けられた配線13の端部13aを光検出素子20の端子25に接続するだけで、配線13と第1光検出部22及び第2光検出部26との電気的な接続だけでなく、支持体30と光検出素子20との固定、及び光通過部21から第1光検出部22に至る光路の形成が実現される。
[第2実施形態]
図6に示されるように、分光器1Bは、光検出素子20に分光部(第2光学部)40Bが設けられており且つ支持体30に第2反射部(第3光学部)12Bが設けられている点で、上述した分光器1Aと主に相違している。
分光器1Bでは、第1反射部11は、ベース壁部31の表面31aのうち所定角度で傾斜する平坦な傾斜面37に、成形層41を介して設けられている。第1反射部11は、例えば、Al、Au等の金属蒸着膜からなり且つ鏡面を有する平面ミラーであり、空間Sにおいて、光通過部21を通過した光L1を分光部40Bに対して反射する。なお、第1反射部11は、成形層41を介さずに、支持体30の傾斜面37に直接設けられていてもよい。
分光部40Bは、基板24の表面24aのうち光通過部21と第1光検出部22との間の領域に、設けられている。分光部40Bは、反射型グレーティングであり、空間Sにおいて、第1反射部11で反射された光L1を第2反射部12Bに対して分光すると共に反射する。
第2反射部12Bは、ベース壁部31の表面31aのうち球面状の凹面38に、成形層41を介して設けられている。第2反射部12Bは、例えば、Al、Au等の金属蒸着膜からなり且つ鏡面を有する凹面ミラーであり、空間Sにおいて、分光部40Bで分光されると共に反射された光L1を第1光検出部22に対して反射する。なお、第2反射部12Bは、成形層41を介さずに、支持体30の凹面38に直接設けられていてもよい。
図7に示されるように、複数の第2光検出部26は、分光部40Bを包囲する領域に配置されている。より具体的には、複数の第2光検出部26は、光通過部21を通過する光L1の光軸方向から見た場合に、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、分光部40Bを挟んで互いに対向している。基準線RLに平行な方向において互いに対向する第2光検出部26のそれぞれは、Y軸方向に延在する長尺状の形状を有している。基準線RLに垂直な方向において互いに対向する第2光検出部26のそれぞれは、X軸方向に延在する長尺状の形状を有している。
図6に示されるように、分光部40Bで分光されると共に反射された光のうち0次光L0は、ベース壁部31の表面31aのうち所定角度で傾斜する平坦な傾斜面39上の成形層41で反射される。傾斜面39上の成形層41の反射面は、0次光反射制御部41bとして機能する。傾斜面39を傾斜面37及び凹面38と異なる面とすることで、0次光L0の多重反射を抑制することができる。なお、分光器1Aと同様に、光検出素子20に0次光捕捉部23を設けてもよい。
0次光反射制御部41bは、ベース壁部31の表面31aのうち分光部40Bから0次光L0が入射する領域に設けられている。分光器1Bでは、0次光反射制御部41bは、光通過部21を通過する光L1の光軸方向(すなわち、Z軸方向)から見た場合に、基準線RLに平行な方向(すなわち、X軸方向)において、第1反射部11と第2反射部12との間に位置している。0次光反射制御部41bの傾きは、0次光を第1光検出部22に入射させないように、設定されている。よって、0次光を第1光検出部22に入射させない傾きであれば、0次光反射制御部41bは、第1光検出部22側に0次光L0を反射させるような傾きを有していてもよい。勿論、0次光の影響を確実に排除する観点からは、0次光反射制御部41bは、第1光検出部22側とは逆側に0次光L0を反射させるような傾きを有していることが好ましい。
なお、分光器1Bの製造工程においては、上述したように、成形型を用いて、ベース壁部31の傾斜面37に平滑な成形層41を形成し、その成形層41に第1反射部11を形成している。同時に、ベース壁部31の傾斜面39に平滑な成形層41を形成し、その成形層41の表面を0次光反射制御部41bとしている。通常、支持体30の表面よりも成形層41の表面のほうが、凸凹が少なく平滑であるため、第1反射部11及び0次光反射制御部41bをより精度良く形成することができる。ただし、成形層41を介さずに、ベース壁部31の傾斜面37に第1反射部11を直接形成したり、ベース壁部31の傾斜面39を0次光反射制御部41bとしたりしてもよい。この場合、成形層41に用いる成形材料を減らすことができ、また、成形型の形状を単純化することができるため、成形層41を容易に形成することが可能となる。
以上のように構成された分光器1Bによれば、上述した分光器1Aと同様の理由により、検出精度の低下を抑制しつつ小型化を図ることが可能となる。また、分光器1Bでは、光通過部21、第1光検出部22及び第2光検出部26と共に分光部40Bが光検出素子20に設けられているため、光通過部21、分光部40B、第1光検出部22及び第2光検出部26の相互の位置関係を精度良く維持することができる。更に、第1反射部11及び第2反射部12Bに比べて製造が複雑化し易い分光部40Bを、光通過部21、第1光検出部22及び第2光検出部26と共に光検出素子20に設けることで、支持体30の歩留まり、延いては分光器1Bの歩留まりを向上させることができる。
分光部40Bについては、基板24の表面24aに一括で形成することが可能であるため、フォトプロセス(ステッパー等を使用)、ナノインプリントプロセス等を用いて、曲面に形成する場合よりも高精度に分光部40Bを形成することが可能となる。したがって、分光部40Bのアライメント等が容易となり、高い位置精度が得られる。一方、支持体30には分光部を形成する必要がなくなるため、支持体30の形成は容易となる。
なお、複数の第2光検出部26は、分光部40Bを包囲するように分光部40Bの外縁に沿って並んでいてもよい。この場合、分光部40Bの周囲全体において、第2反射部12Aに入射する光のずれ方をモニタすることが可能となる。また、複数の第2光検出部26は、基準線RLに平行な方向における分光部40Bの両側、及び基準線RLに垂直な方向における分光部40Bの両側において、1次元状に配列されていてもよい。この場合、基準線RLに平行な方向及び基準線RLに垂直な方向のそれぞれの方向において、分光部40Bに入射する光L1のずれ方をより詳細にモニタすることが可能となる。また、複数の第2光検出部26は、分光部40Bを包囲する領域において、2次元状に配列されていてもよい。この場合、分光部40Bの周囲全体において、分光部40Bに入射する光L1のずれ方をイメージとしてモニタすることが可能となる。
また、分光器1Bを製造する際には、第1反射部11及び第2反射部12Bが設けられた支持体30を用意し(第1工程)、光通過部21、分光部40B、第1光検出部22及び複数の第2光検出部26が設けられた光検出素子20を用意し(第2工程)、それらの後に、空間Sが形成されるように支持体30と光検出素子20とを固定することで、光通過部21から第1光検出部22に至る光路を空間S内に形成する(第3工程)。このように、支持体30と光検出素子20とを固定するだけで、空間S内に、光通過部21から第1光検出部22に至る光路が形成される。よって、分光器1Bの製造方法によれば、検出精度の低下を抑制しつつ小型化を図ることができる分光器1Bを容易に製造することが可能となる。なお、支持体30を用意する工程及び光検出素子20を用意する工程の実施順序は任意である。
特に、分光器1Bを製造する際には、支持体30に設けられた配線13の端部13aを光検出素子20の端子25に接続するだけで、配線13と第1光検出部22及び第2光検出部26との電気的な接続だけでなく、支持体30と光検出素子20との固定、及び光通過部21から第1光検出部22に至る光路の形成が実現される。
以上、本発明の第1及び第2実施形態について説明したが、本発明は、上記各実施形態に限定されるものではない。例えば、上記各実施形態では、空間Sに入射する光L1の入射NAが光検出素子20の光通過部21及び遮光膜52の光通過開口52a(場合によっては、光透過部材51における空間S側とは反対側の表面に形成された遮光膜等)の形状によって規定されていたが、これに限定されない。上記第1実施形態では、第1反射部11、第2反射部12A及び分光部40Aの少なくとも1つの領域の形状を調整することで、空間Sに入射する光L1の入射NAを実質的に規定することができる。第1光検出部22に入射する光L2は回折光であるため、成形層41においてグレーティングパターン41aが形成された所定領域の形状を調整することで、当該入射NAを実質的に規定することができる。上記第2実施形態では、第1反射部11、分光部40B及び第2反射部12Bの少なくとも1つの領域の形状を調整することで、空間Sに入射する光L1の入射NAを実質的に規定することができる。
また、空間Sは、光検出素子20及び支持体30を構成として含むパッケージ60に代えて、光検出素子20及び支持体30を収容するパッケージによって気密に封止されてもよい。その場合にも、湿気による空間S内の部材の劣化及び外気温の低下による空間S内での結露の発生等に起因する検出精度の低下を抑制することができる。ここで、当該パッケージは、複数のリードピンが挿通されたステム、及び光通過部21に光L1を入射させる光入射部が設けられたキャップによって、構成することができる。そして、各リードピンにおけるパッケージ内の端部を、ベース壁部31の表面31bにおいて、支持体30に設けられた各配線13の端部13bに接続することで、対応するリードピンと配線13との電気的な接続、並びにパッケージに対する光検出素子20及び支持体30の位置決めを実現することができる。
なお、光検出素子20及び支持体30がパッケージに収容されることから、上述した分光器1Aのように、封止部材15,16を配置したり、カバー50を設けたりすることが不要となる。また、リードピンにおけるパッケージ内の端部は、ベース壁部31に形成された貫通孔内、又はベース壁部31の表面31bに形成された凹部内に配置された状態で、当該貫通孔内又は当該凹部内に延在する配線13の端部13bに接続されていてもよい。また、リードピンにおけるパッケージ内の端部と配線13の端部13bとは、支持体30がバンプボンディング等により実装された配線基板を介して電気的に接続されていてもよい。この場合、リードピンにおけるパッケージ内の端部は、ステムの厚さ方向(すなわち、Z軸方向)から見た場合に支持体30を包囲するように、配置されていてもよい。また、当該配線基板は、ステムに接触した状態でステムに配置されていてもよいし、或いはステムから離間した状態で複数のリードピンによって支持されていてもよい。
また、支持体30の材料は、セラミックに限定されず、LCP、PPA、エポキシ等の樹脂、成形用ガラスといった他の成形材料であってもよい。また、光検出素子20及び支持体30を収容するパッケージによって空間Sが気密に封止されている場合等には、支持体30は、空間Sを包囲する一対の側壁部32及び一対の側壁部33に代えて、互いに離間する複数の柱部又は複数の側壁部を有するものであってもよい。このように、分光器1A,1Bの各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を適用することができる。
また、分光器1Aでは、第1反射部11が平面ミラーであってもよい。その場合、光通過部21を通過する光L1の入射NAを小さくし且つ「光通過部21を通過した光L1が有する広がり角と同じ広がり角を有する光L1の光路長であって、光通過部21から分光部40Aに至る光路長」>「分光部40Aから第1光検出部22に至る光路長」(縮小光学系)とすることで、分光部40Aで分光される光L2の分解能を高くすることができる。具体的には、次のとおりである。すなわち、第1反射部11が平面ミラーである場合、光L1は、広がりつつ分光部40Aに照射される。そのため、分光部40Aの領域が広くなるのを抑制する観点、及び、分光部40Aが第1光検出部22に光L2を集光する距離が長くなるのを抑制する観点からは、光通過部21を通過する光L1の入射NAを小さくする必要がある。そこで、当該光L1の入射NAを小さくし且つ縮小光学系とすることで、分光部40Aで分光される光L2の分解能を高くすることができる。
また、分光器1Bでは、光検出素子20に第2光検出部26が設けられていなくてもよい。その場合にも、光検出素子20及び支持体30によって形成された空間S内に、光通過部21から第1光検出部22に至る光路が形成されることから、分光器1Bの小型化を図ることができる。更に、光通過部21及び第1光検出部22と共に分光部40Bが光検出素子20に設けられていることから、光通過部21、分光部40B及び第1光検出部22の相互の位置関係が精度良く維持される。よって、その場合にも、検出精度の低下を抑制しつつ小型化を図ることが可能となる。
なお、第2光検出部26が設けられていない分光器1Bにおいて、第1反射部11は、平面ミラーに限定されず、凹面ミラーであってもよい。また、分光部40Bは、平面グレーティングに限定されず、凹面グレーティングであってもよい。また、第2反射部12Bは、凹面ミラーに限定されず、平面ミラーであってもよい。ただし、第1反射部11が平面ミラーであるか凹面ミラーであるかによらず、分光部40Bが平面グレーティングであり且つ第2反射部12Bが凹面ミラーである光学系が、分光器1Bの小型化及び高精度化を図る上で有利である。その理由は、平坦面である基板24の表面24aに、凹面グレーティングである分光部40Bを形成することは困難であり、その場合、光L2を第1光検出部22に集光させるために、第2反射部12Bが凹面ミラーである必要があるからである。更に、第1反射部11が平面ミラーであることが、分光器1Bの小型化を図る上で、より好ましい。その理由は、光L1が所定の広がり角を有しながら分光部40Bに入射することになるからである。
また、第2光検出部26が設けられていない分光器1Bを製造する際には、第1反射部11及び第2反射部12Bが設けられた支持体30を用意し(第1工程)、光通過部21、分光部40B及び第1光検出部22が設けられた光検出素子20を用意し(第2工程)、それらの後に、空間Sが形成されるように支持体30と光検出素子20とを固定することで、光通過部21から第1光検出部22に至る光路を空間S内に形成する(第3工程)。このように、支持体30と光検出素子20とを固定するだけで、空間S内に、光通過部21から第1光検出部22に至る光路が形成される。よって、分光器1Bの製造方法によれば、検出精度の低下を抑制しつつ小型化を図ることができる分光器1Bを容易に製造することが可能となる。なお、支持体30を用意する工程及び光検出素子20を用意する工程の実施順序は任意である。
特に、分光器1Bを製造する際には、支持体30に設けられた配線13の端部13aを光検出素子20の端子25に接続するだけで、配線13と第1光検出部22との電気的な接続だけでなく、支持体30と光検出素子20との固定、及び光通過部21から第1光検出部22に至る光路の形成が実現される。
また、上記各実施形態では、対向する光検出素子20の端子25と配線13の端部13aとがバンプ14によって接続されていたが、対向する光検出素子20の端子25と配線13の端部13aとを半田付けで接続してもよい。また、対向する光検出素子20の端子25と配線13の端部13aとの接続を、支持体30の各側壁部32の端面32aにおいてだけでなく、支持体30の各側壁部33の端面33aにおいて行ってもよいし、或いは支持体30の各側壁部32の端面32a及び各側壁部33の端面33aにおいて行ってもよい。また、分光器1A,1Bにおいて、配線13は、支持体30における空間S側とは反対側の表面を引き回されていてもよい。これにより、空間Sに露出した配線13による光の散乱を防止することができる。
1A,1B…分光器、11…第1反射部(第1光学部)、12A…第2反射部(第2光学部)、12B…第2反射部(第3光学部)、13…配線、13a…端部、20…光検出素子、21…光通過部、22…第1光検出部、25…端子、26…第2光検出部、30…支持体、40A…分光部(第3光学部)、40B…分光部(第2光学部)、60…パッケージ、S…空間、RL…基準線。

Claims (12)

  1. 光通過部、第1光検出部及び第2光検出部が設けられた光検出素子と、
    前記光通過部、前記第1光検出部及び前記第2光検出部との間に空間が形成されるように前記光検出素子に固定された支持体と、
    前記支持体に設けられ、前記空間において、前記光通過部を通過した光を反射する第1光学部と、
    前記光検出素子に設けられ、前記空間において、前記第1光学部で反射された光を反射する第2光学部と、
    前記支持体に設けられ、前記空間において、前記第2光学部で反射された光を前記第1光検出部に対して反射する第3光学部と、を備え、
    前記第2光学部又は前記第3光学部は、前記空間において、入射した光を分光すると共に反射し、
    前記第2光検出部は、前記第2光学部を包囲する領域に複数配置されている、分光器。
  2. 前記第1光学部は、前記空間において、前記光通過部を通過した光を反射する第1反射部であり、
    前記第2光学部は、前記空間において、前記第1反射部で反射された光を反射する第2反射部であり、
    前記第3光学部は、前記空間において、前記第2反射部で反射された光を前記第1光検出部に対して分光すると共に反射する分光部である、請求項1記載の分光器。
  3. 前記第1光学部は、前記空間において、前記光通過部を通過した光を反射する第1反射部であり、
    前記第2光学部は、前記空間において、前記第1反射部で反射された光を分光すると共に反射する分光部であり、
    前記第3光学部は、前記空間において、前記分光部で分光されると共に反射された光を前記第1光検出部に対して反射する第2反射部である、請求項1記載の分光器。
  4. 前記光通過部、前記第1光学部、前記第2光学部、前記第3光学部及び前記第1光検出部は、前記光通過部を通過する光の光軸方向から見た場合に、基準線に沿って並んでおり、
    前記複数の第2光検出部は、前記光軸方向から見た場合に、前記基準線に平行な方向及び前記基準線に垂直な方向のそれぞれの方向において、前記第2光学部を挟んで互いに対向している、請求項1〜3のいずれか一項記載の分光器。
  5. 前記複数の第2光検出部は、前記第2光学部を包囲するように前記第2光学部の外縁に沿って並んでいる、請求項1〜3のいずれか一項記載の分光器。
  6. 前記複数の第2光検出部は、前記第2光学部を包囲する前記領域において、2次元状に配列されている、請求項1〜3のいずれか一項記載の分光器。
  7. 前記支持体には、前記第1光検出部及び前記第2光検出部に電気的に接続された配線が設けられており、
    前記配線における前記第1光検出部及び前記第2光検出部側の端部は、前記光検出素子と前記支持体との固定部において、前記光検出素子に設けられた端子に接続されている、請求項1〜6のいずれか一項記載の分光器。
  8. 前記支持体の材料は、セラミックである、請求項1〜7のいずれか一項記載の分光器。
  9. 前記空間は、前記光検出素子及び前記支持体を構成として含むパッケージによって、気密に封止されている、請求項1〜8のいずれか一項記載の分光器。
  10. 前記空間は、前記光検出素子及び前記支持体を収容するパッケージによって、気密に封止されている、請求項1〜8のいずれか一項記載の分光器。
  11. 光通過部及び光検出部が設けられた光検出素子と、
    前記光通過部及び前記光検出部との間に空間が形成されるように前記光検出素子に固定された支持体と、
    前記支持体に設けられ、前記空間において、前記光通過部を通過した光を反射する第1反射部と、
    前記光検出素子に設けられ、前記空間において、前記第1反射部で反射された光を分光すると共に反射する分光部と、
    前記支持体に設けられ、前記空間において、前記分光部で分光されると共に反射された光を前記光検出部に対して反射する第2反射部と、を備える、分光器。
  12. 第1反射部及び第2反射部が設けられた支持体を用意する第1工程と、
    光通過部、分光部及び光検出部が設けられた光検出素子を用意する第2工程と、
    前記第1工程及び前記第2工程の後に、空間が形成されるように前記支持体と前記光検出素子とを固定することで、前記光通過部を通過した光が前記第1反射部で反射され、前記第1反射部で反射された光が前記分光部で分光されると共に反射され、前記分光部で分光されると共に反射された光が前記第2反射部で反射され、前記第2反射部で反射された光が前記光検出部に入射する光路を前記空間内に形成する第3工程と、を備える、分光器の製造方法。
JP2014020667A 2014-02-05 2014-02-05 分光器、及び分光器の製造方法 Active JP6251073B2 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2014020667A JP6251073B2 (ja) 2014-02-05 2014-02-05 分光器、及び分光器の製造方法
US15/116,893 US10060792B2 (en) 2014-02-05 2015-02-03 Spectrometer, and spectrometer production method
KR1020167017142A KR102400968B1 (ko) 2014-02-05 2015-02-03 분광기, 및 분광기의 제조 방법
EP18159898.8A EP3351912B1 (en) 2014-02-05 2015-02-03 Spectrometer, and production method thereof
CN201811221868.9A CN109341854B (zh) 2014-02-05 2015-02-03 分光器及分光器的制造方法
CN201580007241.1A CN105980820B (zh) 2014-02-05 2015-02-03 分光器及分光器的制造方法
EP15745768.0A EP3104144B1 (en) 2014-02-05 2015-02-03 Spectrometer
KR1020227016709A KR102506746B1 (ko) 2014-02-05 2015-02-03 분광기, 및 분광기의 제조 방법
PCT/JP2015/052926 WO2015119094A1 (ja) 2014-02-05 2015-02-03 分光器、及び分光器の製造方法
TW108104803A TWI724372B (zh) 2014-02-05 2015-02-05 分光器
TW104103952A TWI655415B (zh) 2014-02-05 2015-02-05 分光器、及分光器之製造方法
US15/911,714 US10775236B2 (en) 2014-02-05 2018-03-05 Spectrometer, and spectrometer production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020667A JP6251073B2 (ja) 2014-02-05 2014-02-05 分光器、及び分光器の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017225826A Division JP6293967B2 (ja) 2017-11-24 2017-11-24 分光器、及び分光器の製造方法

Publications (2)

Publication Number Publication Date
JP2015148487A true JP2015148487A (ja) 2015-08-20
JP6251073B2 JP6251073B2 (ja) 2017-12-20

Family

ID=53777899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020667A Active JP6251073B2 (ja) 2014-02-05 2014-02-05 分光器、及び分光器の製造方法

Country Status (7)

Country Link
US (2) US10060792B2 (ja)
EP (2) EP3351912B1 (ja)
JP (1) JP6251073B2 (ja)
KR (2) KR102400968B1 (ja)
CN (2) CN105980820B (ja)
TW (2) TWI724372B (ja)
WO (1) WO2015119094A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122698A (ja) * 2019-01-30 2020-08-13 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
TWI721210B (zh) * 2017-09-05 2021-03-11 台灣超微光學股份有限公司 設變光譜儀和光譜儀整合設計與製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251073B2 (ja) * 2014-02-05 2017-12-20 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
CN105681592B (zh) * 2016-03-28 2019-12-24 联想(北京)有限公司 成像装置、成像方法和电子设备
TWI743188B (zh) * 2016-09-20 2021-10-21 新加坡商新加坡恒立私人有限公司 光學裝置、具有此裝置之合成光學裝置及製造此裝置之方法
JP7147143B2 (ja) * 2017-01-20 2022-10-05 株式会社リコー 分光器および分析装置
EP3372966B1 (en) * 2017-03-10 2021-09-01 Hitachi High-Tech Analytical Science Limited A portable analyzer using optical emission spectoscopy
IL269289B2 (en) * 2017-03-21 2024-10-01 Magic Leap Inc Low profile beam splitter
DE102017221719B4 (de) * 2017-12-01 2023-03-30 Bruker Axs Gmbh Optisches emissionsspektrometer mit kaskadierten ladungsspeichern
US11639873B2 (en) * 2020-04-15 2023-05-02 Viavi Solutions Inc. High resolution multi-pass optical spectrum analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241084A (ja) * 2003-02-07 2004-08-26 Sharp Corp 光源装置および光ディスク装置
US20090262346A1 (en) * 2008-04-18 2009-10-22 Franuhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical apparatus of a stacked design, and method of producing same

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468122A (en) * 1981-09-01 1984-08-28 Vysshee Voennoe Tekhnicheskoe Uchilische Imeni N.E. Baumana Interferometer for checking the shape of convex surfaces of optical components
DE3216516A1 (de) * 1982-05-03 1983-11-03 Siemens AG, 1000 Berlin und 8000 München Optischer wellenlaengendemultiplexer nach dem beugungsgitterprinzip
DE3528947A1 (de) * 1985-08-13 1987-02-26 Zeiss Carl Fa Reflexionsbeugungsgitter mit hohem wirkungsgrad
FR2651575B1 (fr) * 1989-09-05 1993-11-19 Instruments Sa Dispositif d'analyse par spectrocopie.
US5050991A (en) * 1989-09-29 1991-09-24 The United States Of America As Represented By The Secretary Of The Navy High optical density measuring spectrometer
US5026160A (en) * 1989-10-04 1991-06-25 The United States Of America As Represented By The Secretary Of The Navy Monolithic optical programmable spectrograph (MOPS)
DE4038638A1 (de) * 1990-12-04 1992-06-11 Zeiss Carl Fa Diodenzeilen-spektrometer
US5257085A (en) * 1991-04-24 1993-10-26 Kaman Aerospace Corporation Spectrally dispersive imaging lidar system
FI95509C (fi) * 1992-03-20 1996-02-12 Rautaruukki Oy Spektroskopinen menetelmä ja laite optisen säteilyn mittaamiseksi
GB9416223D0 (en) * 1994-08-11 1994-10-05 Ridyard Andrew W Radiation detector
DE4434814A1 (de) 1994-09-29 1996-04-04 Microparts Gmbh Infrarotspektrometrischer Sensor für Gase
AU7598996A (en) * 1995-10-25 1997-05-15 University Of Washington Surface plasmon resonance probe systems based on a folded planar lightpipe
US5880834A (en) * 1996-10-16 1999-03-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Convex diffraction grating imaging spectrometer
US5926272A (en) * 1997-04-08 1999-07-20 Curtiss; Lawrence E. Spectroscopy
US6303934B1 (en) * 1997-04-10 2001-10-16 James T. Daly Monolithic infrared spectrometer apparatus and methods
ATE272224T1 (de) * 1997-11-17 2004-08-15 Max Planck Gesellschaft Konfokales spektroskopiesystem und -verfahren
EP0942267B1 (de) 1998-03-11 2006-08-30 Gretag-Macbeth AG Spektrometer
US6181418B1 (en) * 1998-03-12 2001-01-30 Gretag Macbeth Llc Concentric spectrometer
US6122051A (en) * 1998-06-04 2000-09-19 Raytheon Company Multi-slit spectrometer
US6381008B1 (en) * 1998-06-20 2002-04-30 Sd Acquisition Inc. Method and system for identifying etch end points in semiconductor circuit fabrication
US6249348B1 (en) * 1998-11-23 2001-06-19 Lj Laboratories, L.L.C. Integrated spectrometer assembly and methods
US6249346B1 (en) * 1998-12-21 2001-06-19 Xerox Corporation Monolithic spectrophotometer
US6399405B1 (en) * 1998-12-21 2002-06-04 Xerox Corporation Process for constructing a spectrophotometer
AU3032700A (en) * 1999-01-08 2000-07-24 Ibsen Micro Structures A/S Spectrometer
EP1041372B1 (de) 1999-04-01 2006-03-01 Gretag-Macbeth AG Spektrometer
JP2001272636A (ja) * 2000-01-19 2001-10-05 Hamamatsu Photonics Kk レーザ加工装置
WO2002004901A1 (en) * 2000-07-11 2002-01-17 Adc Telecommunications, Inc. Monitoring apparatus for optical transmission systems
US6657723B2 (en) * 2000-12-13 2003-12-02 International Business Machines Corporation Multimode planar spectrographs for wavelength demultiplexing and methods of fabrication
FR2821670B1 (fr) * 2001-03-02 2004-07-09 Jobin Yvon Sas Spectrometre a reponse adaptable par optique matricielle active
US6587198B2 (en) * 2001-03-02 2003-07-01 Michael Cohnitz Olshausen Compact, solar spectrometer with sub-one-third angstrom resolution, faint-light compensation, and infrared and ultraviolet suppression
US7253897B2 (en) * 2001-06-01 2007-08-07 Cidra Corporation Optical spectrum analyzer
US7085492B2 (en) * 2001-08-27 2006-08-01 Ibsen Photonics A/S Wavelength division multiplexed device
JP2003234281A (ja) * 2002-02-08 2003-08-22 Canon Inc 露光装置、デバイス製造方法
US6886953B2 (en) * 2002-03-22 2005-05-03 Raytheon Company High-resolution, all-reflective imaging spectrometer
US7148488B2 (en) * 2002-06-13 2006-12-12 University Of Hawaii Apparatus for measuring radiation and method of use
JP3842176B2 (ja) 2002-06-28 2006-11-08 セイレイ工業株式会社 コンバイン
US7351977B2 (en) * 2002-11-08 2008-04-01 L-3 Communications Cincinnati Electronics Corporation Methods and systems for distinguishing multiple wavelengths of radiation and increasing detected signals in a detection system using micro-optic structures
DE60335595D1 (de) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
US7061611B2 (en) * 2002-12-31 2006-06-13 Wavefront Research, Inc. Refractive relay spectrometer
DE10304312A1 (de) * 2003-02-04 2004-08-12 Carl Zeiss Jena Gmbh Kompakt-Spektrometer
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7262845B2 (en) * 2003-05-27 2007-08-28 Wayne State University Diffractive imaging spectrometer
JP4409860B2 (ja) * 2003-05-28 2010-02-03 浜松ホトニクス株式会社 光検出器を用いた分光器
EP2261742A3 (en) * 2003-06-11 2011-05-25 ASML Netherlands BV Lithographic apparatus and device manufacturing method.
US7180590B2 (en) * 2003-07-09 2007-02-20 Ibsen Photonics A/S Transmission spectrometer with improved spectral and temperature characteristics
US7041979B2 (en) * 2003-09-09 2006-05-09 The Regents Of The University Of California Compact reflective imaging spectrometer utilizing immersed gratings
US6980295B2 (en) * 2003-10-06 2005-12-27 The Regents Of The University Of California Compact catadioptric imaging spectrometer utilizing reflective grating
US20050175362A1 (en) * 2004-01-22 2005-08-11 Gordon Wilson Optical spectrometer and method
US7548311B2 (en) * 2005-04-29 2009-06-16 Ahura Corporation Method and apparatus for conducting Raman spectroscopy
WO2006016913A2 (en) * 2004-04-30 2006-02-16 Ahura Corporation Method and apparatus for conducting raman spectroscopy
US6985226B2 (en) * 2004-05-11 2006-01-10 The Regents Of The University Of California Compact imaging spectrometer utilizing an immersed grating and anamorphic mirror
US7075082B2 (en) * 2004-06-22 2006-07-11 Wilmington Infrared Technology, Inc. Compact infrared spectrometer, and methods and systems for manufacture and assembly of components used in same
JP4473665B2 (ja) 2004-07-16 2010-06-02 浜松ホトニクス株式会社 分光器
US7289209B2 (en) * 2004-07-22 2007-10-30 Eastman Kodak Company Programmable spectral imaging system
US7239386B2 (en) * 2004-08-17 2007-07-03 The Regents Of The University Of California Compact imaging spectrometer utilizing immersed gratings
US7289208B2 (en) * 2004-08-30 2007-10-30 Ahura Corporation Low profile spectrometer and Raman analyzer utilizing the same
US7199877B2 (en) * 2004-10-20 2007-04-03 Resonon Inc. Scalable imaging spectrometer
US7456957B2 (en) * 2005-08-03 2008-11-25 Carl Zeiss Meditec, Inc. Littrow spectrometer and a spectral domain optical coherence tomography system with a Littrow spectrometer
US7330258B2 (en) * 2005-05-27 2008-02-12 Innovative Technical Solutions, Inc. Spectrometer designs
US7812311B2 (en) * 2005-06-03 2010-10-12 Massachusetts Institute Of Technology Method and apparatus for two-dimensional spectroscopy
US20070019194A1 (en) * 2005-07-21 2007-01-25 Liangyao Chen Full spectral range spectrometer
US7345760B2 (en) * 2006-01-13 2008-03-18 Thermo Electron Scientific Instruments Llc Grating monochromator/spectrograph
WO2007089770A2 (en) * 2006-01-31 2007-08-09 Polychromix Corporation Hand-held ir spectrometer with a fixed grating and a diffractive mems-array
US7324196B2 (en) * 2006-04-13 2008-01-29 Neil Goldstein Spectral encoder
US7697137B2 (en) * 2006-04-28 2010-04-13 Corning Incorporated Monolithic Offner spectrometer
US7483135B2 (en) * 2006-07-14 2009-01-27 Thermo Electron Scientific Instruments, Llc Confocal spectrometer with astigmatic aperturing
EP1882916A1 (en) * 2006-07-20 2008-01-30 Interuniversitair Microelektronica Centrum Compact catadioptric spectrometer
US7701571B2 (en) * 2006-08-22 2010-04-20 Ahura Scientific Inc. Raman spectrometry assembly
US8922783B2 (en) * 2007-04-27 2014-12-30 Bodkin Design And Engineering Llc Multiband spatial heterodyne spectrometer and associated methods
JP4891840B2 (ja) * 2007-06-08 2012-03-07 浜松ホトニクス株式会社 分光モジュール
JP4891841B2 (ja) * 2007-06-08 2012-03-07 浜松ホトニクス株式会社 分光モジュール
KR20100017086A (ko) * 2007-06-08 2010-02-16 하마마츠 포토닉스 가부시키가이샤 분광 모듈
CN102519589B (zh) * 2007-06-08 2014-10-29 浜松光子学株式会社 分光器
WO2008149941A1 (ja) * 2007-06-08 2008-12-11 Hamamatsu Photonics K.K. 分光モジュール
JP4887221B2 (ja) * 2007-06-08 2012-02-29 浜松ホトニクス株式会社 分光モジュール
WO2008149930A1 (ja) * 2007-06-08 2008-12-11 Hamamatsu Photonics K.K. 分光モジュール
US7936455B2 (en) * 2007-10-05 2011-05-03 Burt Jay Beardsley Three mirror anastigmat spectrograph
US7817274B2 (en) * 2007-10-05 2010-10-19 Jingyun Zhang Compact spectrometer
US8345226B2 (en) * 2007-11-30 2013-01-01 Jingyun Zhang Spectrometers miniaturized for working with cellular phones and other portable electronic devices
JP5111163B2 (ja) * 2008-03-04 2012-12-26 浜松ホトニクス株式会社 分光器
US20090273840A1 (en) * 2008-05-02 2009-11-05 Mclaughlin Sheldon Wavelength dispersing device
JP5415060B2 (ja) * 2008-05-15 2014-02-12 浜松ホトニクス株式会社 分光モジュール
JP5205241B2 (ja) * 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光モジュール
JP5205239B2 (ja) 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光器
JP5205243B2 (ja) * 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光器
JP5207938B2 (ja) * 2008-05-15 2013-06-12 浜松ホトニクス株式会社 分光モジュール及び分光モジュールの製造方法
WO2010008483A1 (en) * 2008-06-25 2010-01-21 Bioptigen, Inc. Volume phase grating spectrometers and related methods and systems
US8422013B2 (en) * 2008-11-11 2013-04-16 Bae Systems Information And Electronic Systems Integration Inc. Optical multiplexer/demultiplexer
US8390806B1 (en) * 2009-05-21 2013-03-05 Lockheed Martin Corporation MEMS spectrometer and sensing systems therefrom
JP5780273B2 (ja) 2009-05-27 2015-09-16 セイコーエプソン株式会社 光フィルター、光フィルター装置、および分析機器
US9823127B2 (en) * 2010-01-22 2017-11-21 Duke University Systems and methods for deep spectroscopic imaging of biological samples with use of an interferometer and spectrometer
JP5335729B2 (ja) * 2010-04-01 2013-11-06 浜松ホトニクス株式会社 分光モジュール
JP5325829B2 (ja) * 2010-04-01 2013-10-23 浜松ホトニクス株式会社 分光モジュール
US9442015B2 (en) * 2010-09-03 2016-09-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona Snapshot spatial heterodyne imaging polarimetry
DE102010040768B4 (de) * 2010-09-14 2022-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spektralzerlegungsvorrichtung und Herstellung derselben
US8411268B2 (en) * 2010-10-01 2013-04-02 Raytheon Company Two material achromatic prism
US8823932B2 (en) 2011-04-04 2014-09-02 Corning Incorporated Multi field of view hyperspectral imaging device and method for using same
JP5767883B2 (ja) * 2011-07-26 2015-08-26 浜松ホトニクス株式会社 分光器
JP5910989B2 (ja) * 2012-03-09 2016-04-27 株式会社リコー 分光計測装置、画像評価装置及び画像形成装置
JP6291483B2 (ja) * 2012-05-31 2018-03-14 コーニング インコーポレイテッド 単軸光ホモジナイザーを組み込む光画像形成システム
DE102012210954B4 (de) * 2012-06-27 2022-10-20 Nico Correns Spektrometeranordnung
JP6278625B2 (ja) * 2012-07-30 2018-02-14 キヤノン株式会社 測色装置及びそれを備える画像形成装置
US20140055784A1 (en) * 2012-08-23 2014-02-27 Logos Technologies, Llc Camera system for capturing two-dimensional spatial information and hyper-spectral information
US9435689B2 (en) * 2012-10-31 2016-09-06 Corning Incorporated Hyperspectral imaging system, monolithic spectrometer and methods for manufacturing the monolithic spectrometer
WO2014143235A1 (en) * 2013-03-14 2014-09-18 Integrated Plasmonics Corporation Ambient light assisted spectroscopy
EP2857810A1 (en) * 2013-10-02 2015-04-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Monolith spectrometer
JP6251073B2 (ja) * 2014-02-05 2017-12-20 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
JP6180954B2 (ja) * 2014-02-05 2017-08-16 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
JP6177153B2 (ja) * 2014-02-05 2017-08-09 浜松ホトニクス株式会社 分光器
JP6395389B2 (ja) * 2014-02-05 2018-09-26 浜松ホトニクス株式会社 分光器
US9465991B2 (en) * 2014-08-11 2016-10-11 Microsoft Technology Licensing, Llc Determining lens characteristics
JP6113940B1 (ja) * 2015-08-04 2017-04-12 浜松ホトニクス株式会社 分光器
JP6106811B1 (ja) * 2015-08-04 2017-04-05 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
WO2017218778A1 (en) * 2016-06-15 2017-12-21 Si-Ware Systems Integrated spectral unit
JP2019527576A (ja) * 2016-07-15 2019-10-03 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc スペクトル符号化プローブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241084A (ja) * 2003-02-07 2004-08-26 Sharp Corp 光源装置および光ディスク装置
US20090262346A1 (en) * 2008-04-18 2009-10-22 Franuhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical apparatus of a stacked design, and method of producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721210B (zh) * 2017-09-05 2021-03-11 台灣超微光學股份有限公司 設變光譜儀和光譜儀整合設計與製造方法
JP2020122698A (ja) * 2019-01-30 2020-08-13 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
JP7186104B2 (ja) 2019-01-30 2022-12-08 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
JP2023027131A (ja) * 2019-01-30 2023-03-01 浜松ホトニクス株式会社 分光器
US11725986B2 (en) 2019-01-30 2023-08-15 Hamamatsu Photonics K.K. Spectroscope and spectroscope production method
JP7392090B2 (ja) 2019-01-30 2023-12-05 浜松ホトニクス株式会社 分光器

Also Published As

Publication number Publication date
KR20220070560A (ko) 2022-05-31
WO2015119094A1 (ja) 2015-08-13
US10060792B2 (en) 2018-08-28
CN109341854B (zh) 2021-05-28
US20170167917A1 (en) 2017-06-15
EP3351912B1 (en) 2024-02-21
US20180195903A1 (en) 2018-07-12
CN109341854A (zh) 2019-02-15
EP3104144A4 (en) 2017-09-27
JP6251073B2 (ja) 2017-12-20
TWI655415B (zh) 2019-04-01
KR102400968B1 (ko) 2022-05-24
CN105980820A (zh) 2016-09-28
EP3104144B1 (en) 2018-10-03
EP3351912A1 (en) 2018-07-25
KR20160118222A (ko) 2016-10-11
TW201920915A (zh) 2019-06-01
TW201534877A (zh) 2015-09-16
US10775236B2 (en) 2020-09-15
TWI724372B (zh) 2021-04-11
CN105980820B (zh) 2018-11-20
KR102506746B1 (ko) 2023-03-08
EP3104144A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6251073B2 (ja) 分光器、及び分光器の製造方法
JP6180954B2 (ja) 分光器、及び分光器の製造方法
JP6325268B2 (ja) 分光器、及び分光器の製造方法
JP6353999B1 (ja) 分光器
JP6177153B2 (ja) 分光器
JP6293967B2 (ja) 分光器、及び分光器の製造方法
JP2019144267A (ja) 分光器
JP2018105883A (ja) 分光器
JP6411693B1 (ja) 分光器
JP6383126B1 (ja) 分光器
JP6328303B2 (ja) 分光器
JP2019002941A (ja) 分光器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6251073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250