JP2015122440A - 光半導体装置及びその製造方法 - Google Patents

光半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2015122440A
JP2015122440A JP2013265932A JP2013265932A JP2015122440A JP 2015122440 A JP2015122440 A JP 2015122440A JP 2013265932 A JP2013265932 A JP 2013265932A JP 2013265932 A JP2013265932 A JP 2013265932A JP 2015122440 A JP2015122440 A JP 2015122440A
Authority
JP
Japan
Prior art keywords
optical
layer
semiconductor device
high resistance
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013265932A
Other languages
English (en)
Other versions
JP6213222B2 (ja
Inventor
理人 植竹
Masato Uetake
理人 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013265932A priority Critical patent/JP6213222B2/ja
Publication of JP2015122440A publication Critical patent/JP2015122440A/ja
Application granted granted Critical
Publication of JP6213222B2 publication Critical patent/JP6213222B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】各光機能素子間の分離抵抗が十分に高く各光機能素子間で所望の電気的絶縁性が確保されてなる信頼性の高いモノリシック集積の光半導体装置を実現する。【解決手段】半導体基板10上に、複数の光機能素子1aを有する光機能領域1と、各光機能素子1aと接続された複数の光導波路2aを有する光導波路領域2と、各光導波路2aが接続された光結合器4aを有する受動領域4とがモノリシック集積されており、各光導波路2aは、光を導波する半導体層よりも基板側に、半導体層からなる第1の部分13と、半絶縁性半導体層からなり第1の部分13よりも電気抵抗の高い第2の部分3とが、光導波方向に沿って各々複数交互に形成される。【選択図】図1

Description

本発明は、光半導体装置及びその製造方法に関する。
近年における通信情報量の増大に伴い、それを支えるフォトニックネットワークの大容量化が進められており、高速で多チャンネルの光を送受信可能な小型の光デバイスが求められている。このような多チャネル送信器では、一般的に、レーザアレイではなく複数の半導体レーザと光結合器(光カプラ)とをそれぞれ光学部品で接続した光モジュールが用いられているところ、この構成ではモジュールサイズが大きくなり過ぎるという問題がある。そこで、少ない光学部品数でモジュールサイズを小さくすることのできる、レーザアレイと光カプラとをモノリシック集積した光集積素子が求められている。
特開2011−3627号公報 特開平10−190137号公報
しかしながら、レーザアレイと光カプラとをモノリシック集積した光集積素子には、以下のような問題がある。
レーザアレイにおいて、光機能素子である各レーザを差動駆動する場合には、各半導体レーザのチャネル間の電気的クロストークを抑える必要がある。即ち、各レーザ間の分離抵抗が十分に高くなるように電気的に絶縁されていることが求められる。ところが、レーザアレイと光カプラとのモノリシック集積では、各レーザ間において、下部クラッド層が光導波路及び光カプラを介して電気的に接続されており、電気的クロストークが大きい。
上述の電気的クロストークを抑える手法として、特許文献1では、光機能素子と光導波路の接続部にイオンインプランテーション(イオン注入)により高抵抗領域を形成することで電気的に絶縁する手法が提案されている。しかしながら、電気的な絶縁を要する部位に高抵抗領域をそれぞれ一箇所形成する構成では、当該光半導体装置に適合した十分な分離抵抗を得ることは極めて困難である。
本発明は、上記の課題に鑑みてなされたものであり、複数の光機能素子と光結合器とが半導体基板上にモノリシック集積されてなる光半導体装置であって、各光機能素子間の分離抵抗が十分に高く各光機能素子間で所望の電気的絶縁性が確保されてなる信頼性の高い光半導体装置及びその製造方法を提供することを目的とする。
光半導体装置の一態様は、半導体基板上に、複数の光機能素子と、前記各光機能素子と接続された複数の光導波路と、前記各光導波路が接続された光結合器とが一体形成されており、前記各光導波路は、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とが、光導波方向に沿って各々複数交互に形成されている。
光半導体装置の製造方法の一態様は、半導体基板上に、複数の光機能素子と、前記各光機能素子と接続された複数の光導波路と、前記各光導波路が接続された光結合器とを半導体基板上に一体形成する光半導体装置の製造方法であって、前記各光導波路を形成する際に、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とを、光導波方向に沿って各々複数交互に形成する。
上記の諸態様によれば、複数の光機能素子と光結合器とが半導体基板上に一体形成されてなる光半導体装置であって、各光機能素子間の分離抵抗が十分に高く各光機能素子間で所望の電気的絶縁性が確保されてなる信頼性の高い光半導体装置が実現する。
第1の実施形態による光半導体装置の概略構成を示す模式図である。 第1の実施形態による光半導体装置の概略構成を示す模式図である。 第1の実施形態において、1本の高抵抗部分及びその周辺を拡大して示す概略断面図である。 第1の実施形態において、高抵抗部分の数とDRレーザ間の分離抵抗との関係を示す特性図である。 第1の実施形態において、高抵抗部分により生じるステップ段差について説明するための概略断面図である。 高抵抗部分3を形成する際に用いたマスクの幅と成長膜厚比との関係を示す特性図である。 リッジ導波路構造の中央部とn型電極との間の距離とn型電極側の引き出し抵抗との関係を、DRレーザの構成と共に示す図である。 第1の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 図8に引き続き、第1の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 図9に引き続き、第1の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 図10に引き続き、第1の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 第2の実施形態による光半導体装置の概略構成を示す模式図である。 第2の実施形態において、1本の高抵抗部分及びその周辺を拡大して示す概略断面図である。 第2の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 図14に引き続き、第2の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。 図15に引き続き、第2の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。
以下、光半導体装置の諸実施形態について、図面を参照しながら詳細に説明する。
(第1の実施形態)
本実施形態では、通信用光源として用いる波長1.3μm帯の半導体レーザアレイと光カプラとをモノリシック集積した光半導体装置を例示する。
−光半導体装置の構成−
図1は、第1の実施形態による光半導体装置の概略構成を示す模式図であり、(a)が平面図、(b)が(a)中のI−I'に沿った断面図である。図2は、第1の実施形態による光半導体装置の概略構成を示す模式図であり、(a)が図1(a)中のII−II'に沿った断面図、(b)が図1(a)中のIII−III'に沿った断面図である。
この光半導体装置は、図1(a)に示すように、高抵抗のInP基板10上に、光機能領域であるDR(Distributed Reflector)レーザ領域1と、光導波路領域2と、受動領域である光カプラ+出力光導波路領域4とがモノリシック集積されて構成されている。
DRレーザ領域1は、光機能素子として半導体レーザ、ここではDRレーザ1aが複数(ここでは4本)並列形成されている。DRレーザ1aの共振器構造は、DFB(Distributed Feedback)の前後にDBR(Distributed Bragg Reflector)ミラーが集積されている。前側のDBRの長さが25μm程度、DFBの長さが125μm程度、後側のDBRの長さが100μm程度とされている。
光導波路領域2は、DRレーザ1aと接続された光導波路2aが複数並列形成されている。本実施形態では、各光導波路2aにおいて、高抵抗部分3が光導波方向に沿って等間隔に複数(ここでは8本)形成されている。
光カプラ+出力光導波路領域4は、複数の光導波路2aが合波する光カプラ4aと、光カプラ4aと接続された1本の出力光導波路4bとを備えている。
この光半導体装置では、DRレーザ領域1の各DRレーザ1aのDFBに変調電気信号を印加することで、変調された光信号が出力される。各DRレーザ1aから出力された光信号は、光導波路領域2の各光導波路2aを導波して光カプラ4aで合波され、1本の出力光導波路4bから出力される。
DRレーザ1aは、図1(b)に示すように、InP基板10上に、コア層12で前後を挟まれたMQW層11、MQW層11を下部と上部で挟持する下部クラッド層13と第1及び第2上部クラッド層16,17を備えている。更に、第2上部クラッド層17上にコンタクト層18を備えている。下部クラッド層13とMQW層11との間には、回折格子14a及びその上にスペーサ層15が形成されている。ここで、図2(a)のみに示すように、第2上部クラッド層17及びコンタクト層18がリッジ導波路構造とされている。リッジ導波路構造を覆う保護膜19が形成され、リッジ導波路構造間には保護膜19を介してBCB(ベンゾシクロブテン)20が形成されている。コンタクト層18にはp型電極21が、下部クラッド層13の露出部位にはn型電極22がそれぞれ形成されている。
DRレーザ1aでは、上記のリッジ導波路構造により、その凸形状部分の等価屈折率が周辺に比べて大きくなることにより光を導波する。リッジ導波路構造では、MQW層11がリッジ幅よりも広く存在するが、リッジ導波路構造によって制限された電流注入により、レーザ発振に寄与する活性領域が制限される。
光導波路2aは、InP基板10上に、コア層12、コア層12の下部と上部に下部クラッド層13と第1及び第2上部クラッド層16,17を備えている。下部クラッド層13とMQW層11との間には、回折格子層14及びその上にスペーサ層15が形成されている。ここで、図2(b)のみに示すように、第2上部クラッド層17がリッジ導波路構造とされており、リッジ導波路構造を覆う保護膜19が形成され、リッジ導波路構造間には保護膜19を介してBCB20が形成されている。
光導波路2aでは、上記のリッジ導波路構造により、その凸形状部分の等価屈折率が周辺に比べて大きくなることにより光を導波する。
本実施形態では、図1(a),(b)に示すように、各光導波路2aの下部クラッド層13及び回折格子層14に、光導波方向に等間隔に半絶縁性半導体層からなる複数の高抵抗部分3が挿入形成されている。各高抵抗部分3は、光導波方向に対して垂直な方向に延伸したストライプ状に形成されている。光導波路2aでは、コア層12の下方において、下部クラッド層13である第1の部分と、高抵抗部分3であり第1の部分よりも電気抵抗の高い第2の部分とが、光導波方向に沿って各々複数交互に形成されている。
光カプラ4a及び出力光導波路4bは、InP基板10上に、コア層12、コア層12の下部と上部に下部クラッド層13と第1及び第2上部クラッド層16,17を備えている。下部クラッド層13とMQW層11との間には、回折格子層14及びその上にスペーサ層15が形成されている。
上記のように構成された光半導体装置において、各構成部材は例えば以下の材料で形成される。
MQW層11は、AlGaInAs/AlGaInAsからなる多重量子井戸(MQW)構造として形成される。コア層12は、バンドギャップ波長1.18μmでInP基板10に格子整合する組成のInGaAsPで形成される。下部クラッド層13は、n型のInP(n−InP)で形成される。回折格子層14(回折格子14a)は、n−InGaAsPで形成される。スペーサ層15は、n−InPで形成される。第1上部クラッド層16は、MQW層11上に位置する部分がp−InPで、その他の部分がアンドープInP(i−InP)で形成される。第2上部クラッド層17は、p−InPで形成される。コンタクト層18は、p−InGaAsで形成される。保護膜19は、(SiN)で形成される。p型電極21は、(Ti/Pt/Au)で形成される。n型電極22は、(AuGe/Au)で形成される。
高抵抗部分3は、鉄(Fe)をドープしたInPで形成される。このFeドープInPは、電子を捕獲する機能を有する半絶縁性半導体である。高抵抗部分3は、Feの代わりにルテニウム(Ru)又はチタン(Ti)をドープしたInPで形成しても良い。RuドープInP及びTiドープInPは、正孔を捕獲する機能を有する半絶縁性半導体である。
以下、本実施形態に適用する高抵抗部分3について詳述する。
図3は、1本の高抵抗部分3及びその周辺を拡大して示す概略断面図であり、図1(b)の一部拡大に相当する。
高抵抗部分3は、例えば幅Wが20μm程度、高さHが1μm程度とされる。下部クラッド層13が例えば厚み0.8μm程度、回折格子層14が厚み0.08μm程度とされる。下部クラッド層13及び回折格子層14の高抵抗部分3との接合部付近では、高抵抗部分3を形成する際に用いたマスクからの原料拡散による選択成長効果により成長速度が速く、例えば14%程度速くなる。そのため、接合部における下部クラッド層13及び回折格子層14を合わせた厚みが1μm程度となり、高抵抗部分3の高さと略一致する。高抵抗部分3及び回折格子層14上に、厚み0.07μm程度のスペーサ層15、厚みTが0.24μm程度のコア層12、厚み0.15μm程度の第1上部クラッド層16、厚み1.5μm程度の第2上部クラッド層17が順次形成されている。
図4は、高抵抗部分の数とDRレーザ間の分離抵抗との関係を示す特性図である。
高抵抗部分が1本の場合では、分離抵抗は3kΩ程度となる。DRレーザ間の分離抵抗としては、10kΩを超えることが望ましい。本実施形態では、所期の分離抵抗を得るべく、高抵抗部分の数を調節しており、高抵抗化を要する各光導波路に高抵抗部分を例えば8本形成することにより、17kΩ程度の十分な分離抵抗が得られ、DRレーザ間で所望の電気的絶縁性が確保される。
図5は、高抵抗部分により生じるステップ段差について説明するための概略断面図であり、図1(b)の一部拡大に相当する。
本実施形態では、高抵抗部分3を形成することにより、コア層12にステップ段差が生じる。ステップ段差は、コア層12の高抵抗部分3上の部位と高抵抗部分3以外の部位との高さの差異で定義される。
コア層12の高さズレは、導波する光のモードを乱し散乱や損失の発生原因となるため、これを抑える必要がある。特に、導波する光のモードが乱れたままで光カプラに光が入力すると、4つの入力光の干渉が乱れて光カプラの出力側の導波路へ結合され難くなる。これにより、損失や波長依存性が大きくなって合波特性が悪くなる。ステップ段差は、少なくともコア層12の厚みの1/2より小さくしなければならないことは自明である。
ここで、高抵抗部分3の光導波方向の幅を変化させたパターンを用い、下部クラッド層13のn−InPを再成長した後に、下部クラッド層13について、高抵抗部分3との接合部近傍と当該接合部から十分離れた領域との成長膜厚比を調べた。図6は、高抵抗部分3を形成する際に用いたマスクの幅と成長膜厚比との関係を示す特性図である。高抵抗部分3の光導波方向の幅は、マスクの幅と同等となる。
図6のように、高抵抗部分3の幅が広くなるにつれ、マスクからの原料拡散により接合部近傍の成長速度が速くなる。そのため、選択成長効果による接合部近傍の膜厚比Aは、マスク幅をW(μm)とすると、実験データに基づく近似式より、
A=0.0001W2+0.0036W+1
で示される。再成長した下部クラッド層13の厚みをt(μm)とすると、接合部近傍の厚みは、A・tとなる(回折格子層14は、下部クラッド層13に比べて十分に薄いため、その厚みを無視する。)。高抵抗部分3の高さをH(μm)、コア層12の厚みをT(μm)として、高抵抗部分3の高さHと接合近傍の厚みを等しく(H=A・t)する。
この場合、ステップ段差をコア層12の厚みT以下にするためには、
H−t≦0.5T
の関係を満たす必要がある。即ち、
H−t=H−H/A=H(1−1/A)≦0.5T
の関係を満たす必要がある。ここから、
W≦{(10000/(1−T/2H))−9676}1/2−18 ・・・(1)
の関係式が得られる。幅Wが(1)式を満たせば、高抵抗部分3を形成しても、コア層12を導波する光の伝搬損失が十分に抑えられることになる。
本実施形態では、高抵抗部分3の高さHは1μmであり、コア層12の厚みTは0.24μmであることから、
{(10000/(1−T/2H))−9676}1/2−18≒23(μm)
である。本実施形態では、高抵抗部分3の幅は20(μm)であるため、(1)式の関係を満たす。以上より、本実施形態による光半導体装置では、高抵抗部分3を形成しても、コア層12を導波する光の伝搬損失が十分に抑えられることが判る。
続いて、DRレーザ1aの素子抵抗と下部クラッド層13との関係について調べた。図7では、(a)にDRレーザ1aの概略断面図を、(b)にリッジ導波路構造の中央部とn型電極22との間の距離とn型電極22側の引き出し抵抗との関係を表す特性図をそれぞれ示す。
従来技術である特許文献1では、電気的な絶縁を要する部位にイオン注入により高抵抗領域を形成する。この場合、高抵抗領域を形成するためにイオン注入する鉄(Fe)やルテニウム(Ru)等の元素は、一般的に1016/cm3台までの濃度しかIII族サイトに入らない。そのため、電子(正孔)濃度が1016/cm3台までのクラッド層しか高抵抗化することができず、通常の半導体レーザで使用されるような電子(正孔)濃度が1018/cm3台のクラッド層を用いることはできない。
図7(b)では、従来技術及び本実施形態によるDRレーザについて引き出し抵抗を示している。従来技術によるDRレーザでは、下部クラッド層について、そのn型電極下における厚みが0.5μmとされ、電子濃度が7.0×1016/cm3とされている。本実施形態のDRレーザでは、下部クラッド層について、同様にn型電極下における厚みが0.5μmとされ、電子濃度が5.0×1018/cm3とされている。
従来技術によるDRレーザでは、n型電極をリッジ導波路構造の中央部から3μm程度の位置まで近づけても、n型電極側の引き出し抵抗は20Ωを超える。このような半導体レーザでは動作時の素子内部の発熱が大きく、電流注入時の光出力の低下や変調周波数帯域の低下等が生じるためにレーザ特性が悪い。また、n型電極を形成する領域がリッジ導波路構造に近いため、電極形成プロセスが困難であり、作製歩留まりが悪い。
これに対して、本実施形態によるDRレーザでは、エッチング及び再成長により高抵抗部分3及び下部クラッド層13を形成することから、従来の半導体レーザと同様に電子濃度を5.0×1018/cm3とした下部クラッド層13を用いることができる。そのため、リッジ導波路構造の中央部とn型電極22との間の距離を大きくしても、n型電極22側の引き出し抵抗の増加分は小さい。電極形成プロセスを容易にするため、図7(a)のように、n型電極22をリッジ導波路構造の中央部から例えば15μm程度離しても、n型電極22側の引き出し抵抗は1Ω程度に抑えられる。
−光半導体装置の製造方法−
以下、上記の構成を有する光半導体装置の製造方法について説明する。図8〜図11は、第1の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。図8(図8(b)の下図を除く)〜図10は図1(b)に対応しており、図11は左側が図2(a)に、右側が図2(b)にそれぞれ対応している。
先ず、図8(a)に示すように、InP基板10上にFeドープInP層31を形成する。
詳細には、高抵抗のInP基板10の(100)面上に、例えばMOVPE法により、不純物としてFeがドープされた半絶縁性半導体(SI−)InPを1.0μm程度の厚みに成長する。以上により、InP基板10上にFeドープInP層31が形成される。なお、なお、SI−InPにドープする不純物として、Feの代わりにRu又はTiを用いても良い。
続いて、図8(b)に示すように、FeドープInP層31上に、高抵抗部分を形成するためのマスク32を形成する。図8(b)では、下側に平面図を、上側に平面図で破線I−I'に沿った断面図を、それぞれ示す。
詳細には、CVD法等によりFeドープInP層31上に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びウェットエッチングにより加工する。以上により、FeドープInP層31上に、高抵抗部分を形成するためのマスク32が形成される。
続いて、図8(c)に示すように、高抵抗部分3を形成する。
詳細には、マスク32を用いて、FeドープInP層31のマスク32から露出する部分をエッチングして除去する。これにより、FeドープInP層31が光導波方向と直交する方向に等間隔で延在する帯状に残り、複数の高抵抗部分3が形成される。高抵抗部分3は、例えば幅が20μm程度で80μm程度の間隔とされる。
なお、FeドープInP層31のエッチングの制御性を高めるために、FeドープInP層31の下側にエッチング停止層を形成しておき、エッチング停止層で停止するエッチャントを用いて選択的にFeドープInP層31をエッチングするようにしても良い。
続いて、図9(a)に示すように、下部クラッド層13及び回折格子層14を順次形成する。
詳細には、MOVPE法等による再成長により、InP基板10上のマスク32で覆われていない領域に、厚み0.8μm程度のn−InP、及び厚み0.08μm程度のn−InGaAsPを順次成長する。n−InPのn型不純物の濃度は、例えば5.0×1018/cm3とされる。以上により、高抵抗部分3間を埋め込むように、下部クラッド層13及び回折格子層14が形成される。
下部クラッド層13及び回折格子層14を形成する際には、マスク32からの原料拡散によりマスク32の近傍におけるn−InPの成長量が増大する。そのため、接合部の再成長層の厚みは1.0μm程度となり、再成長したn−InP及びn−InGaAsPの厚みの合計と高抵抗部位3の高さとが略一致する。なお、接合部から離れた領域の再成長したn−InP及びn−InGaAsPの厚みの合計は0.88μm程度となるため、上述したステップ段差は0.12μm程度となる。
続いて、図9(b)に示すように、回折格子14aを形成する。
詳細には、先ず、マスク32を所定のウェット処理等により除去する。その後、回折格子層14のDRレーザ領域の部分をリソグラフィー及びウェットエッチングにより加工し、回折格子14aを形成する。
続いて、図9(c)に示すように、スペーサ層15、MQW層11、及び第1上部クラッド層16を順次形成する。
詳細には、MOVPE法等による再成長により、回折格子層14(回折格子14a)上に、厚み0.07μm程度のn−InP、AlGaInAs/AlGaInAs、厚み0.15μm程度のp−InPを順次成長する。以上により、スペーサ層15、MQW層11、及び第1上部クラッド層16が形成される。
続いて、図10(a)に示すように、第1上部クラッド層16上にマスク33を形成する。
詳細には、CVD法等により第1上部クラッド層16上に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びウェットエッチングにより加工する。以上により、第1上部クラッド層16上でDRレーザ領域におけるDFBの部位を覆うマスク33が形成される。
続いて、図10(b)に示すように、MQW層11及び第1上部クラッド層16をエッチングする。
詳細には、マスク33を用いて、第1上部クラッド層16のマスク32から露出する部分及びその下部のMQW層11をエッチングして除去する。これにより、MQW層11及び第1上部クラッド層16がDRレーザ領域におけるDFBの部位のみに残存する。
続いて、図10(c)に示すように、コア層12及び第1上部クラッド層16を順次形成する。
詳細には、MOVPE法等による再成長により、スペーサ層15上のマスク33で覆われていない領域に、厚み0.24μm程度のInGaAsP及び厚み0.15μm程度のi−InPを順次成長する。以上により、MQW層11及び第1上部クラッド層16の前後の領域を埋め込むように、コア層12及び第1上部クラッド層16が形成される。
続いて、図10(d)に示すように、第2上部クラッド層17及びコンタクト層18を順次形成する。
詳細には、先ず、マスク33を所定のウェット処理等により除去する。その後、MOVPE法等により、MQW層11及びコア層12上に、厚み1.35μm程度のp−InP、及び厚み0.3μm程度のp−InGaAsを順次成長する。以上により、第2上部クラッド層17及びコンタクト層18が形成される。
続いて、図11(a)に示すように、リッジ導波路構造30を形成する。
詳細には、先ず、CVD法等によりコンタクト層18上に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びドライエッチングにより加工する。以上により、コンタクト層18上にリッジ導波路構造を形成するためのマスク34が形成される。
次に、マスク34を用いて、コンタクト層18のマスク34から露出する部分及びその下部の第2上部クラッド層17をエッチングして除去する。これにより、レーザ領域、光導波路領域、光カプラ+出力光導波路領域に、第2上部クラッド層17のリッジ導波路構造30がそれぞれ形成される。リッジ導波路構造30は、例えば2.0μm程度の幅に形成される。
なお、第2上部クラッド層17のエッチングの制御性を高めるために、第2上部クラッド層17の下側にエッチング停止層を形成しても良い。このエッチング停止層を形成しておき、コンタクト層18をエッチングした後に、第2上部クラッド層17のみを選択的にエッチングするエッチャントを用いることで、エッチング停止層により選択的に第2上部クラッド層17をエッチングする。
続いて、図11(b)に示すように、先ず、マスク34を所定のウェット処理等により除去する。その後、所定のリソグラフィー及びドライエッチングにより、コンタクト層18のDRレーザ領域におけるDFB以外の部分を除去する。保護膜19を形成した後、BCB20を形成する。下部クラッド層13のn型電極を形成する領域を表面に露出させ、下部クラッド層13のDRレーザ領域間及び光導波路領域間の不要な部分をエッチング除去する。リッジ導波路構造30のコンタクト層18上にp型電極21を形成し、表面に露出した下部クラッド層13上にn型電極22を形成する。基板研磨により素子厚を150μm程度に薄膜化した後にアレイ化し、端面膜を成膜する。
以上により、本実施形態による光半導体装置が形成される。
以上説明したように、本実施形態によれば、モノリシック集積された光半導体装置であって、高抵抗部分3の数を適宜調節することにより、DRレーザ1a間の分離抵抗が十分に高くDRレーザ1a間のクロストークが抑制される。しかも、光を導波する導波路コア層には高抵抗領域を形成しないため、導波路コア層をアンドープ半導体層のみで形成でき、高抵抗領域を複数形成しても光の導波損失を抑制できる。しかも、電子(正孔)濃度が1017/cm3台以上の下部クラッド層13を用いることができるため、DRレーザ1aの素子抵抗が低く、素子特性に優れた信頼性の高い光半導体装置が実現する。
(第2の実施形態)
本実施形態では、光半導体装置として、QPSK(Quadrature Phase Shift Keying)変調方式の復調用の光コヒーレントレシーバを例示する。
−光半導体装置の構成−
図12は、第2の実施形態による光半導体装置の概略構成を示す模式図であり、(a)が平面図、(b)が(a)中のI−I'に沿った断面図である。
この光半導体装置は、図12(a)に示すように、高抵抗のInP基板50上に、受動領域である入力光導波路領域41及び多モード干渉(MMI)領域42と、接続光導波路領域43と、光機能領域であるPD(Photodiode)領域44とがモノリシック集積されて構成されている。
入力光導波路領域41は、2本の入力光導波路41aを有している。
MMI領域42は、90°ハイブリッド光導波路であって、4×4MMI光導波路42aで構成されている。MMI光導波路42aの2番目の位置に上側の入力光導波路41aが、MMI光導波路42aの4番目の位置に下側の入力光導波路41aがそれぞれ接続されている。本実施形態では、各接続光導波路43aにおいて、高抵抗部分44が光導波方向に沿って所定の間隔で複数(ここでは4本)形成されている。
接続光導波路領域43は、MMI光導波路42aの出力1〜出力4と夫々接続された4本の接続光導波路43aを有している。
PD領域44は、4個のPD(PD1,PD2,PD3,PD4)を有している。PD1は接続光導波路43aを介してMMI光導波路42aの出力1と、PD2は接続光導波路43aを介して出力4と、PD3は接続光導波路43aを介して出力2と、PD4は接続光導波路43aを介して出力3とそれぞれ接続されている。PD1〜PD4には夫々、PDメサ構造のコンタクト層56の直上に信号電極となるp型電極57が、下部クラッド層のn−InPが表面に露出している部分にグランド電極となるn型電極58が形成されている。
この光半導体装置では、上側の入力光導波路41aにQPSKの変調信号光を、下側の入力光導波路41aにローカルオシレータ(LO)光をそれぞれ入射する。これにより、QPSK変調方式のいわゆるIチャネル信号をPD1,PD2から、Qチャネル信号をPD3,PD4からそれぞれ取り出すことができる。
入力光導波路41a、MMI光導波路42a、及び接続光導波路43aは、図12(b)に示すように、InP基板10上に、コア層51、コア層51を下部と上部で挟持する下部クラッド層52及び上部クラッド層53を備えている。
本実施形態では、図12(a),(b)に示すように、各接続光導波路43aの下部クラッド層52に、光導波方向に並ぶように半絶縁性半導体層からなる複数の高抵抗部分44が挿入形成されている。各高抵抗部分44は、光の入出力端面に平行な方向に延伸したストライプ状に形成されている。接続光導波路43aでは、コア層51の下方において、下部クラッド層52である第1の部分と、高抵抗部分44であり第1の部分よりも電気抵抗の高い第2の部分とが、光導波方向に沿って各々複数交互に形成されている。
PD1〜PD4は夫々、図12(a),(b)に示すように、p型電極57側とn型電極57側とで異なる構造とされている。
p型電極57側では、InP基板10上に、コア層51、コア層51を下部と上部で挟持する下部クラッド層52及び上部クラッド層53を備えている。ここで、コア層51及び上部クラッド層53内に、上部クラッド層54及びこれを下部と上部で挟持する吸収層55及びコンタクト層56を有するPDメサ構造が挿入形成されている。コンタクト層56上にこれと接続されたp型電極57が形成されている。
n型電極58側では、InP基板10上に下部クラッド層52を備え、下部クラッド層52の表面が露出しており、当該表面上にこれと接続されたn型電極58が形成されている。
PD1〜PD4では、p型電極57及びn型電極58に電圧を印加し、光吸収によって発生したフォトキャリアが引き出せるようになっている。
上記のように構成された光半導体装置において、各構成部材は例えば以下の材料で形成される。
コア層51は、1.5μm帯の光受信器として、例えばバンドギャップ波長1.05μmでInP基板50に格子整合する組成のInGaAsPで形成される。下部クラッド層52は、n−InPで形成される。上部クラッド層53は、i−InPで形成される。上部クラッド層54は、p−InPで形成される。吸収層55は、i−InGaAsで形成される。コンタクト層56は、p−InGaAsで形成される。p型電極57は、(Ti/Pt/Au)で形成される。n型電極58は、(AuGe/Au)で形成される。
高抵抗部分44は、鉄(Fe)をドープしたSI−InPで形成される。このFeドープInPは、Feが電子を捕獲する機能を有する半絶縁性半導体である。高抵抗部分44は、Feの代わりにルテニウム(Ru)又はチタン(Ti)をドープしたSI−InPで形成しても良い。RuドープInP又はTiドープInPは、Ru又はTiが正孔を捕獲する機能を有する半絶縁性半導体である。
以下、本実施形態に適用する高抵抗部分44について詳述する。
図13は、1本の高抵抗部分44及びその周辺を拡大して示す概略断面図であり、図12(b)の一部拡大に相当する。
高抵抗部分44は、例えば幅Wが10μm程度、高さHが1.05μm程度とされる。下部クラッド層52が例えば厚み1.0μm程度とされる。下部クラッド層52の高抵抗部分44との接合部付近では、高抵抗部分44を形成する際に用いたマスクからの原料拡散による選択成長効果により成長速度が速く、例えば4.6%程度速くなる。そのため、接合部における下部クラッド層13の厚みが1.046μm程度となり、高抵抗部分44の高さと略一致する。高抵抗部分44及び下部クラッド層52上に、厚み0.5μm程度のコア層51、厚み1.0μm程度の上部クラッド層53が順次形成されている。
本実施形態では、高抵抗部分44上に直接的にコア層51が形成されており、高抵抗部分44とコア層51との間に導電性の半導体層を有していない。そのため、高抵抗化を要する各接続光導波路に形成する高抵抗部分44の数を適宜調節する(本実施形態では4本とする)ことによりPD間で大きな分離抵抗が得られ、PD間で所望の電気的絶縁性が確保される。
本実施形態においても、第1の実施形態と同様に、高抵抗部分44の高さをH(μm)、幅をW(μm)、コア層12の厚みをT(μm)として、
W≦{(10000/(1−T/2H))−9676}1/2−18 ・・・(1)
の関係式が得られる。幅Wが(1)式を満たせば、高抵抗部分44を形成しても、コア層51を導波する光の伝搬損失が十分に抑えられることになる。本実施形態では、第1の実施形態と同様に(1)式の関係を満たす。以上より、本実施形態による光半導体装置では、高抵抗部分44を形成しても、コア層12を導波する光の伝搬損失が十分に抑えられることが判る。
−光半導体装置の製造方法−
以下、上記の構成を有する光半導体装置の製造方法について説明する。図14〜図16は、第2の実施形態による光半導体装置の製造方法を工程順に示す概略断面図である。図14〜図15は図12(b)に対応しており、図16は左側が図12(a)中のII−II'に沿った断面に、右側が図12(a)中のIII−III'に沿った断面にそれぞれ対応している。
先ず、図14(a)に示すように、InP基板50上にFeドープInP層61を形成する。
詳細には、高抵抗のInP基板50の(100)面上に、例えばMOVPE法により、不純物としてFeがドープされたSI−InPを1.05μm程度の厚みに成長する。以上により、InP基板50上にFeドープInP層61が形成される。なお、SI−InPにドープする不純物として、Feの代わりにRu又はTiを用いても良い。
続いて、図14(b)に示すように、FeドープInP層61上に、高抵抗部分を形成するためのマスク62を形成する。
詳細には、CVD法等によりFeドープInP層61上に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びウェットエッチングにより加工する。以上により、FeドープInP層31上に、高抵抗部分を形成するためのマスク32が形成される。
続いて、図14(c)に示すように、高抵抗部分44を形成する。
詳細には、マスク62を用いて、FeドープInP層61のマスク62から露出する部分をエッチングして除去する。これにより、FeドープInP層61が等間隔で延在する帯状に残り、複数の高抵抗部分44が形成される。高抵抗部分44は、例えば幅が10μm程度で140μm程度の間隔とされる。
なお、FeドープInP層61のエッチングの制御性を高めるために、FeドープInP層61の下側にエッチング停止層を形成しておき、エッチング停止層で停止するエッチャントを用いて選択的にFeドープInP層61をエッチングするようにしても良い。
続いて、図14(d)に示すように、下部クラッド層52を順次形成する。
詳細には、MOVPE法等による再成長により、InP基板50上のマスク62で覆われていない領域に、厚み1.0μm程度のn−InPを成長する。n−InPのn型不純物の濃度は、例えば5.0×1018/cm3とされる。以上により、高抵抗部分44間を埋め込むように、下部クラッド層52が形成される。
下部クラッド層52を形成する際には、マスク62からの原料拡散によりマスク62の近傍におけるn−InPの成長量が増大する。そのため、接合部の再成長層の厚みは1.046μm程度となり、再成長したn−InPの厚みと高抵抗部位44の高さとが略一致する。なお、接合部から離れた領域の再成長したn−InPの厚みの合計は1.0μm程度となるため、第1の実施形態で説明したステップ段差は0.046μm程度となる。
続いて、図15(a)に示すように、吸収層55、上部クラッド層54、及びコンタクト層56を順次形成する。
詳細には、先ず、マスク62を所定のウェット処理等により除去する。その後、MOVPE法等による再成長により、高抵抗部位44及び下部クラッド層52上に、厚み0.3μm程度のI−InGaAs、厚み0.9μm程度のp−InP、厚み0.3μm程度の
p−InGaAsを順次成長する。以上により、吸収層55、上部クラッド層54、及びコンタクト層56が形成される。
続いて、図15(b)に示すように、吸収層55、上部クラッド層54、及びコンタクト層56を加工してPD領域のみに残す。
詳細には、先ず、CVD法等によりコンタクト層56上に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びウェットエッチングにより加工する。以上により、コンタクト層56上でPD領域のみにマスク63が形成される。
次に、マスク63を用いて、コンタクト層56のマスク63から露出する部分及びその下部の上部クラッド層54及び吸収層55をエッチングして除去する。これにより、PD領域に吸収層55、上部クラッド層54、及びコンタクト層56が残存する。
続いて、図15(c)に示すように、コア層51及び上部クラッド層53を順次形成する。
詳細には、MOVPE法等による再成長により、高抵抗部位44及び下部クラッド層52上のマスク63で覆われていない領域に、厚み0.5μm程度のi−InGaAsP、及び厚み1.0μm程度のi−InPを順次成長する。以上により、メサ状の吸収層55、上部クラッド層54、及びコンタクト層56の側面を埋め込むように、コア層51及び上部クラッド層53が形成される。
続いて、図16(a)に示すように、メサ構造を形成する。なお、本図及び図16(b)では、図示の便宜上、単チャネルのメサ構造のみを示す。
詳細には、先ず、マスク63を所定のウェット処理等により除去する。その後、CVD法等により全面に絶縁膜、例えばSiO2を成膜し、SiO2をリソグラフィー及びドライエッチングにより加工する。以上により、入力光導波路領域からMMI領域、接続光導波路領域、及びPD領域に架けて覆うマスク64が形成される。
続いて、図16(b)に示すように、先ず、マスク64を所定のウェット処理等により除去する。その後、下部クラッド層13のチャネル間における不要な部分をエッチング除去する。
次に、マスク64を用いて、下部クラッド層52が露出するまでドライエッチングする。エッチング深さは、例えば1.8μm程度とする。以上により、入力光導波路領域からMMI領域、接続光導波路領域、及びPD領域に架けてメサ構造が形成され、その両側には下部クラッド層52の表面が露出する。全面に保護膜59及びポリイミド60を形成し、PD領域において、保護膜59をエッチングしてコンタクト層56の表面の一部を露出する。同様に、PD領域において、保護膜59及びポリイミド60をエッチングして下部クラッド層52の表面の一部を露出する。露出したコンタクト層56と接続するようにp型電極57を、露出した下部クラッド層52と接続するようにn型電極57をそれぞれ形成する。基板研磨により素子厚を150μm程度に薄膜化した後にアレイ化し、端面膜を成膜する。
以上説明したように、本実施形態によれば、MMI光導波路42aと複数のPDとがInP基板50上に一体形成されてなる光半導体装置であって、高抵抗部分44の数を適宜調節することにより、PD間の分離抵抗が十分に高くPD間のクロストークが抑制される。しかも、光を導波する導波路コア層には高抵抗領域を形成しないため、導波路コア層をアンドープ半導体層のみで形成できるため、高抵抗領域を複数形成しても光の導波損失を抑制でき、PDの検出感度が高い。しかも、電子(正孔)濃度が1017/cm3台以上の下部クラッド層52を用いることができるため、PDの素子抵抗が低く、素子特性に優れた信頼性の高い光半導体装置が実現する。
なお、上記した第1及び第2の実施形態では、AlGaInAsやInGaAsP、InGaAs等を材料として用いた光半導体装置の構造について説明しているが、これらに限定されるものではない。例えば、必要に応じてInAlAs,AlGaInP,InGaP,InGaAsSb等の混晶半導体を用いても良い。
また、第1の実施形態では、光機能素子として半導体レーザであるDRレーザについて説明したが、光を増幅する活性層を有している光機能素子等に適用しても第1の実施形態と同様の効果が得られる。更に、半導体レーザや光機能素子等を組み合わせてモノリシック集積した光半導体装置についても第1の実施形態と同様の効果を得ることができる。
以下、光半導体装置及びその製造方法の諸態様について、付記としてまとめて記載する。
(付記1)半導体基板上に、
複数の光機能素子と、
前記各光機能素子と接続された複数の光導波路と、
前記各光導波路が接続された光結合器と
が一体形成されており、
前記各光導波路は、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とが、光導波方向に沿って各々複数交互に形成されていることを特徴とする光半導体装置。
(付記2)前記第2の部分は、成長形成された半絶縁性半導体層からなることを特徴とする付記1に記載の光半導体装置。
(付記3)前記第2の部分は、Fe,Ru,Tiから選ばれた1種の不純物がドープされた半絶縁性半導体層からなることを特徴とする付記1又は2に記載の光半導体装置。
(付記4)前記第1の部分及び前記第2の部分上に形成されるコア層の厚みをT(μm)とし、前記第2の部分の高さをH(μm)、光導波方向の幅をW(μm)としたときに、
W≦{(10000/(1−T/2H))−9676}1/2−18
の関係を満たすことを特徴とする付記1〜3のいずれか1項に記載の光半導体装置。
(付記5)半導体基板上に、
複数の光機能素子と、
前記各光機能素子と接続された複数の光導波路と、
前記各光導波路が接続された光結合器と
を半導体基板上に一体形成する光半導体装置の製造方法であって、
前記各光導波路を形成する際に、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とを、光導波方向に沿って各々複数交互に形成することを特徴とする光半導体装置の製造方法。
(付記6)前記第2の部分は、半絶縁性半導体層を成長することで形成されることを特徴とする付記5に記載の光半導体装置の製造方法。
(付記7)前記第1の部分及び前記第2の部分を形成する工程は、
前記半導体基板の上方に、前記第2の部分の材料層を形成する工程と、
前記材料層上に、前記第2の部分となる箇所を覆うマスクを形成し、前記マスクを用いて前記材料層をエッチングして、前記第2の部分を形成する工程と、
再成長により、前記エッチングした領域を埋め込む前記第1の部分を形成する工程と
を含むことを特徴とする付記6に記載の光半導体装置の製造方法。
(付記8)前記第2の部分を、Fe,Ru,Tiから選ばれた1種の不純物がドープされた半絶縁性半導体層により形成することを特徴とする付記6又は7に記載の光半導体装置の製造方法。
(付記9)前記第1の部分及び前記第2の部分上に形成されるコア層の厚みをT(μm)とし、前記第2の部分の高さをH(μm)、光導波方向の幅をW(μm)としたときに、
W≦{(10000/(1−T/2H))−9676}1/2−18
の関係を満たすように、前記コア層及び前記第2の部分を形成することを特徴とする付記5〜8のいずれか1項に記載の光半導体装置の製造方法。
1 DRレーザ領域
1a DRレーザ
2 光導波路領域
2a 光導波路
3,44 高抵抗部分
4 光カプラ+出力光導波路領域
4a 光カプラ
4b 出力光導波路
10,50 InP基板
11 MQW層
12,51 コア層
13,52 下部クラッド層
14 回折格子層
14a 回折格子
15 スペーサ層
16 第1上部クラッド層
17 第2上部クラッド層
18,56 コンタクト層
19,59 保護膜
20 BCB
21,57 p型電極
22,58 n型電極
30 リッジ導波路構造
31,61 FeドープInP層
32,33,34,62,63,64 マスク
41 入力光導波路領域
41a 入力光導波路
42 MMI領域
42a MMI光導波路
43 接続光導波路領域
43a 接続光導波路
45 PD領域
53,54 上部クラッド層
55 吸収層
60 ポリイミド層

Claims (7)

  1. 半導体基板上に、
    複数の光機能素子と、
    前記各光機能素子と接続された複数の光導波路と、
    前記各光導波路が接続された光結合器と
    がモノリシック集積されており、
    前記各光導波路は、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とが、光導波方向に沿って各々複数交互に形成されていることを特徴とする光半導体装置。
  2. 前記第2の部分は、成長形成された半絶縁性半導体層からなることを特徴とする請求項1に記載の光半導体装置。
  3. 前記第2の部分は、Fe,Ru,Tiから選ばれた1種の不純物がドープされた半絶縁性半導体層からなることを特徴とする請求項1又は2に記載の光半導体装置。
  4. 前記第1の部分及び前記第2の部分上に形成されるコア層の厚みをT(μm)とし、前記第2の部分の高さをH(μm)、光導波方向の幅をW(μm)としたときに、
    W≦{(10000/(1−T/2H))−9676}1/2−18
    の関係を満たすことを特徴とする請求項1〜3のいずれか1項に記載の光半導体装置。
  5. 半導体基板上に、
    複数の光機能素子と、
    前記各光機能素子と接続された複数の光導波路と、
    前記各光導波路が接続された光結合器と
    を半導体基板上にモノリシック集積する光半導体装置の製造方法であって、
    前記各光導波路を形成する際に、光を導波する半導体層よりも前記半導体基板側に、第1の部分と、前記第1の部分よりも電気抵抗の高い第2の部分とを、光導波方向に沿って各々複数交互に形成することを特徴とする光半導体装置の製造方法。
  6. 前記第2の部分は、半絶縁性半導体層を成長することで形成されることを特徴とする請求項5に記載の光半導体装置の製造方法。
  7. 前記第1の部分及び前記第2の部分を形成する工程は、
    前記半導体基板の上方に、前記第2の部分の材料層を形成する工程と、
    前記材料層上に、前記第2の部分となる箇所を覆うマスクを形成し、前記マスクを用いて前記材料層をエッチングして、前記第2の部分を形成する工程と、
    再成長により、前記エッチングした領域を埋め込む前記第1の部分を形成する工程と
    を含むことを特徴とする請求項6に記載の光半導体装置の製造方法。
JP2013265932A 2013-12-24 2013-12-24 光半導体装置及びその製造方法 Expired - Fee Related JP6213222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265932A JP6213222B2 (ja) 2013-12-24 2013-12-24 光半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265932A JP6213222B2 (ja) 2013-12-24 2013-12-24 光半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015122440A true JP2015122440A (ja) 2015-07-02
JP6213222B2 JP6213222B2 (ja) 2017-10-18

Family

ID=53533811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265932A Expired - Fee Related JP6213222B2 (ja) 2013-12-24 2013-12-24 光半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP6213222B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414365B1 (ja) * 2017-10-03 2018-10-31 三菱電機株式会社 半導体光集積素子
JP6758546B1 (ja) * 2020-01-16 2020-09-23 三菱電機株式会社 半導体光集積素子およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239387A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 光集積回路
JPH04345081A (ja) * 1991-05-22 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> 半導体発光装置
JPH06505364A (ja) * 1991-02-13 1994-06-16 ザ ユニバーシティ オブ メルボルン 半導体レーザー
JP2005116644A (ja) * 2003-10-03 2005-04-28 Ntt Electornics Corp 半導体光電子導波路
JP2006173465A (ja) * 2004-12-17 2006-06-29 Opnext Japan Inc 変調器集積レーザおよび光モジュール
JP2011003627A (ja) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 差動信号駆動用レーザアレイ
JP2011187529A (ja) * 2010-03-05 2011-09-22 Fujitsu Ltd 光半導体装置、光半導体装置の製造方法及び光半導体素子
CN103236645A (zh) * 2013-01-11 2013-08-07 索尔思光电(成都)有限公司 低功耗绝缘调制电极

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239387A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 光集積回路
JPH06505364A (ja) * 1991-02-13 1994-06-16 ザ ユニバーシティ オブ メルボルン 半導体レーザー
JPH04345081A (ja) * 1991-05-22 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> 半導体発光装置
JP2005116644A (ja) * 2003-10-03 2005-04-28 Ntt Electornics Corp 半導体光電子導波路
JP2006173465A (ja) * 2004-12-17 2006-06-29 Opnext Japan Inc 変調器集積レーザおよび光モジュール
JP2011003627A (ja) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 差動信号駆動用レーザアレイ
JP2011187529A (ja) * 2010-03-05 2011-09-22 Fujitsu Ltd 光半導体装置、光半導体装置の製造方法及び光半導体素子
CN103236645A (zh) * 2013-01-11 2013-08-07 索尔思光电(成都)有限公司 低功耗绝缘调制电极

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414365B1 (ja) * 2017-10-03 2018-10-31 三菱電機株式会社 半導体光集積素子
WO2019069359A1 (ja) * 2017-10-03 2019-04-11 三菱電機株式会社 半導体光集積素子
US11211768B2 (en) 2017-10-03 2021-12-28 Mitsubishi Electric Corporation Semiconductor optical integrated device
JP6758546B1 (ja) * 2020-01-16 2020-09-23 三菱電機株式会社 半導体光集積素子およびその製造方法
WO2021144916A1 (ja) * 2020-01-16 2021-07-22 三菱電機株式会社 半導体光集積素子およびその製造方法

Also Published As

Publication number Publication date
JP6213222B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
JP5451332B2 (ja) 光半導体装置
Jiao et al. InP membrane integrated photonics research
US20130195137A1 (en) Method for electrically pumped semiconductor evanescent laser
US10763644B2 (en) Lateral current injection electro-optical device with well-separated doped III-V layers structured as photonic crystals
JP2008010484A (ja) 半導体光素子及び光送信モジュール
JP2010157691A5 (ja)
JP2006276497A (ja) 光半導体素子の製造方法
CN106532434A (zh) 叠层选区生长制作多波长光子集成发射芯片的方法
US9122003B2 (en) Semiconductor optical device
JP2019054107A (ja) 半導体光素子
JP2001091913A (ja) 変調器と変調器付き半導体レーザ装置並びにその製造方法
JP4909159B2 (ja) 半導体導波路素子およびその作製方法ならびに半導体レーザ
JP2019008179A (ja) 半導体光素子
JP4947778B2 (ja) 光半導体素子及びその製造方法
JP2000208862A (ja) 半導体光集積素子及びその製造方法
JP6213222B2 (ja) 光半導体装置及びその製造方法
US9819153B2 (en) Optical semiconductor device and manufacturing method thereof
JPWO2014188552A1 (ja) 光半導体集積素子及びその製造方法
JP5655643B2 (ja) 半導体光集積回路装置及びその製造方法
EP2403077B1 (en) A photonic device and a method of manufacturing a photonic device
JP7410276B2 (ja) 半導体光デバイス
JP2002169132A (ja) 電界吸収型光変調器およびその製造方法
JP4948469B2 (ja) 半導体光デバイス
CN108988124B (zh) 一种用于微波振荡源的单片集成隧道结激光器
JP5924138B2 (ja) 光半導体集積回路装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6213222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees