JP2006276497A - 光半導体素子の製造方法 - Google Patents

光半導体素子の製造方法 Download PDF

Info

Publication number
JP2006276497A
JP2006276497A JP2005096278A JP2005096278A JP2006276497A JP 2006276497 A JP2006276497 A JP 2006276497A JP 2005096278 A JP2005096278 A JP 2005096278A JP 2005096278 A JP2005096278 A JP 2005096278A JP 2006276497 A JP2006276497 A JP 2006276497A
Authority
JP
Japan
Prior art keywords
layer
semi
optical
insulating
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096278A
Other languages
English (en)
Inventor
Takayuki Yamamoto
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005096278A priority Critical patent/JP2006276497A/ja
Publication of JP2006276497A publication Critical patent/JP2006276497A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有し、微細パターンを有する光半導体素子を提供する。
【解決手段】 第1の導電型を有する第1の半導体層を含む第1の層上に、光導波路層を含む第2の層を形成する第1の工程と、前記第2の層上に半絶縁性半導体層を含む第3の層を形成する第2の工程と、第2の導電型の不純物を前記半絶縁性半導体層に拡散させて、当該半絶縁性半導体層の一部を、第2の導電型を有する第2の半導体層とする第3の工程と、前記第3の工程の後で前記第3の層、前記第2の層、および前記1の層をエッチングしてメサ構造を形成する第4の工程と、前記メサ構造上に前記第2の半導体層と接する金属配線を形成する第5の工程と、を有することを特徴とする光半導体素子の製造方法。
【選択図】 図7

Description

本発明は、光ファイバ通信などで用いられる光半導体素子の製造方法に関し、特には光導波路上に電極を形成した領域が複数存在する半導体光変調器をはじめとする光半導体素子の製造方法に関する。
光ファイバ通信の発展に伴う素子の高機能化の要求と集積技術の進展により、変調器集積レーザをはじめとして光導波路上に複数の電極を有する光半導体素子の重要性が増してきている。また、光導波路に対して電圧を印加することで伝搬する光を変調する半導体光変調器において、所望のインピーダンスを得て高速動作を実現するために、微小に構成した光変調器を光軸方向に複数並べて、全体が1つの光変調器として動作する構造を有する光変調器も提案されている。
これらの素子において、電極を形成する領域では光導波路の上部クラッド層はドーピングにより電気電導性を有することが必要であるが、その間の領域では光導波路の上部クラッド層を介して電極を形成した領域同士が電気的に導通してしまうことを避けることが必要になる。このため、電極を形成しない領域の上部クラッド層の電気伝導度は低いことが望ましく、その領域の上部クラッド層を半絶縁性半導体で形成した構造は有効な構造の一つとなっている。
以下、微小に構成した光変調器を光軸方向に複数並べて、全体が1つの光変調器として動作する構造を有する光変調器を例としてとりあげて、より具体的に説明する。
図1は、上記の光変調器の一例である、光変調器10を、模式的に示した斜視図である(特許文献1参照)。
図1を参照すると、前記光変調器10は、光導波路に接してAuメッキ電極18bが形成されている微小光変調器10Aと光導波路と接触しないようブリッジ状にAuメッキ電極18aが形成されているギャップ領域10Bとを、光軸に対して交互に配列させた構成となっている。ギャップ領域10Bを介して隣り合う微小光変調器10Aは、Auメッキ電極(エアブリッジ)18aを介して電気的に接続されており、複数の微小光変調器10Aを用いて入射された光を電界光学効果により累積的に変調するよう構成されている。
前記光変調器10は、InP系半導体材料を用いて半絶縁性InP基板11上に構成される。半絶縁性InP基板11上にはn型InPクラッド層12が形成され、n型InPクラッド層12上にはストライプ状のノンドープ多重量子井戸(MQW)光導波路コア層13が形成されている。ノンドープMQW光導波路コア層13の両側面には、高抵抗の半絶縁性InP層14が形成される。更に、上記のように形成された半絶縁性InP層14及びこれで挟まれた領域より成るメサの両脇には、所定間隔を隔ててAuメッキ電極(グランド)19が形成される。このAuメッキ電極(グランド)19とn型InPクラッド層12とは、オーミック性コンタクトを有している。
また、図1に示す光変調器10における微小光変調器10Aとギャップ領域10Bとの層構造を、光変調器10のa−a’面,b−b’面,c−c’面それぞれの断面構造を示す図2から図4を用いて説明する。
図2に示す断面構造を参照すると、微小光変調器10Aとギャップ領域10Bとが、ノンドープMQW光導波路コア層13で構成される光軸上に交互に配列されている。
微小光変調器10Aにおいては、図3に示すように、半絶縁性InP基板11上にn型InPクラッド層12が形成され、このn型InPクラッド層12は凸状になっており、凸部分の上にノンドープMQW光導波路コア層13、その上にp型InPクラッド層15が形成されている。前記n型InPクラッド層12の凸部分、ノンドープMQW光導波路コア層13、及びp型InPクラッド層15の両側には、半絶縁性InP層14が形成され、これらが上面が平らなメサを形成する。更に、このメサの上面には、Auメッキ電極(シグナル)18bが形成される。
この構成において、電位差をAuメッキ電極18とAuメッキ電極(グランド)19との間に与えると、生じる電界の大部分が、微小光変調器10Aにおける光導波路のコア層を成すノンドープMQW光導波路コア層13に集中する。これは、ノンドープMQW光導波路コア層13が略絶縁体でありn型InPクラッド層12が導電体であると見なせるためである。
これに対し、図4に示すギャップ領域10Bにおいて、図3と同様の半絶縁性InP基板11とn型InPクラッド層12とノンドープMQW光導波路コア層13の上側に、半絶縁性InP層16が形成されており、半絶縁性InP層16とAuメッキ電極(エアブリッジ)18aとの間には空間17が形成される。ここで、半絶縁性InP層16は、n型InP層12の凸部分、及びノンドープMQW光導波路コア層13bの両側に形成された半絶縁性InP層14と実質的に一体となってメサを形成している。
このように、ギャップ領域10Bにおいて、Auメッキ電極(エアブリッジ)18aの下に空間17が形成されており、さらにノンドープMQWコア層上部に形成された層16も半絶縁性となっているため、ギャップ領域10Bにおける電気容量は、微小光変調器10Aに比較して小さな値となる。その結果、微少光変調器10Aにおける電気容量とそれよりも小さいギャップ領域10Bにおける電気容量が合わさって素子全体のインピーダンスに反映されることで、ギャップ領域10Bが存在しない場合に比較してインピーダンスを大きくすることができ、インピーダンスが所望の値、例えば50Ω(オーム)の光変調器を構成することが可能となる。
上記の光変調器では、コア層上に形成された導電性のクラッド層が、半絶縁性のクラッド層により電気的に分離された構造を有する、メサ構造を形成することが必要となる。
このようなメサ構造を形成する方法は、例えば以下の方法が提案されていた。
図5A〜図5Eには、上記の光変調器10のメサ構造を形成する場合の形成方法の第1の例を手順を追って示したものである。
まず、図5Aに示す工程において、半絶縁性InP基板11上に、n型InPクラッド層12、ノンドープMQW光導波路コア層13、およびp型InPクラッド層15を順に積層する。
次に、図5Bに示す工程において、p型InPクラッド層15のうちで、後の工程において半絶縁性InP層16を形成するための領域を、例えばシリコン酸化膜(SiO膜)などをマスクに用いてエッチングにより除去し、ノンドープMQW光導波路コア層13を一部露出させて、トレンチ部TRを形成する。
次に、図5Cに示す工程において、半絶縁性InP層16を前記ノンドープMQW光導波路コア層13上に、例えば有機金属気相成長法などを用いて選択的に成長させる。この場合、選択成長を行うために図5Bに示す工程でのエッチングの際に用いたシリコン酸化膜(SiO膜)などのマスクを残したまま成長を行うことが好ましい。
次に、p型InPクラッド層15、半絶縁性InP層16、ノンドープMQW光導波路コア層13、およびn型InPクラッド層12の一部を図5Dに示すようにエッチングしてメサ構造を形成する。
この後、図5Eに示す工程において、再び有機金金属成長法などにより、メサ構造の両側に半絶縁性InP層14を形成し、さらに当該半絶縁性InP層14をエッチングすることで、前記光変調器10のメサ構造を形成することができる(特許文献1参照)。
また、このようなメサ構造は、以下に示す第2の方法を用いて形成してもよい。
図6A〜図6Dには、上記のメサ構造を形成するための第2の例を示す。
まず、図6Aに示す工程では、半絶縁性InP基板11A上に、n型InPクラッド層12A、ノンドープMQW光導波路コア層13A、およびp型InPクラッド層15Aを順に積層する。この場合、p型InPクラッド層15Aは、上記のp型InPクラッド層15より薄く形成することが好ましい。
次に、図6Bに示す工程において、p型InPクラッド層15A、ノンドープMQW光導波路コア層13A、およびn型InPクラッド層12Aの一部を、図に示すようにエッチングしてメサ構造を形成する。
次に、当該メサ構造を覆うように、p型InPクラッド層15A、およびn型InPクラッド層12A上に、半絶縁性InP層14Aを形成する。
次に、図6Dの工程において、後の工程で電極が設置される部分に、p型の不純物を拡散させ、p型InPクラッド層15Bを形成する。このようにして、図5Eに示した構造に相当する構造を形成することができる(例えば特許文献2参照)。
このような製造工程は図1に示す上記光変調器のみに限られたものでなく、コア層上に形成された導電性のクラッド層が、半絶縁性のクラッド層により電気的に分離された構造のメサ構造を有する他の光半導体素子においても共通のものとなる。
特開2003−177369号公報 特開平2−212804号公報
しかし、上記の第1の例を用いてメサ構造を形成する場合には、図5Cに示した工程において選択成長させる半絶縁性InP層16の厚さが一様にならないという問題が生じていた。これは、部分的に再成長を行うために半絶縁性InP層16の選択成長の効果が現れ、p型InPクラッド層15との界面近傍では膜厚が厚く形成され、当該界面から離れた部分では膜厚が薄く形成されてしまうためである。また、選択成長した半絶縁性InP層16の厚さは、素子の仕様や構造によって、例えば光を分岐するためのカプラなど電極を形成しない大きな領域の存在などによって更に薄い領域が生じうる。
このため、部分的にクラッド層が薄く形成され、光導波路を光が伝播する場合の損失が大きくなってしまう問題があった。また、これを回避するために全体を厚くすると上部のp型InPクラッド層15の抵抗が増えてしまうという問題が生じた。
また、再成長した部分である半絶縁性InP層16とp型InPクラッド層15との境界には光軸方向でも小さな段差が形成され、図示していないが光軸と垂直方向ではさらに大きな段差が生じてしまう。光軸方向の小さな段差でも次のメサ形成や電極形成工程において、幅のゆらぎや電極との接続不良が生じる場合があり、さらに光軸と垂直方向の段差は後の工程において拡大していくため、フォトリソグラフィ工程で塗布するフォトレジストの厚み分布や露光時に影となる領域などが生じやすく、これらの段差の影響で製造歩留まり低下が生じる懸念があった。
また、上記の第2の例を用いた場合には、図6Dの工程においてp型の不純物を拡散させる場合に拡散する幅がコア層の幅より広くなってしまい、素子容量の低減が困難となる問題があった。この場合、半絶縁性InP層14Aの厚さ分だけ水平方向にも不純物が拡散してしまうことになる。
通常、コア上部のクラッド層の厚さは2μm程度必要なため、拡散のための開口部幅を1μmとしても、両側に2μmずつ拡散することで、水平方向(メサ構造と直交する方法)の拡散幅は5μmとなってしまう。この場合、容量が増大することで10Gb/s以上の高速動作への適用は困難となってしまう。
そこで、本発明では上記の問題を解決した、光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有する光半導体素子の製造方法を提供することを統括的課題としている。
本発明の具体的な第1の課題は、光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有する、素子容量が小さい光半導体素子の製造方法を提供することである。
本発明の具体的な第2の課題は、光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有する光半導体素子を、良好な歩留りで製造可能な製造方法を提供することである。
本発明の具体的な第3の課題は、光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有する、損失の小さい光半導体素子の製造方法を提供することである。
本発明は、上記の課題を、第1の導電型を有する第1の半導体層を含む第1の層上に、光導波路層を含む第2の層を形成する第1の工程と、前記第2の層上に半絶縁性半導体層を含む第3の層を形成する第2の工程と、第2の導電型の不純物を前記半絶縁性半導体層に拡散させて、当該半絶縁性半導体層の一部を、第2の導電型を有する第2の半導体層とする第3の工程と、前記第3の工程の後で前記第3の層、前記第2の層、および前記1の層をエッチングしてメサ構造を形成する第4の工程と、前記メサ構造上に前記第2の半導体層と接する金属配線を形成する第5の工程と、を有することを特徴とする半導体光変調器の製造方法により、解決する。
当該製造方法によれば、光導波路のコア層上に導電性のクラッド層と半絶縁性のクラッド層を有する光半導体素子を、良好な歩留りで製造することが可能となる。
また、前記エッチング後の前記第2の半導体層の幅は、前記第3の工程で形成される前記第2の半導体層の幅より小さいことを特徴とすると、微細なメサ構造となり、素子の容量を小さくすることができる。
また、前記メサ構造を埋設するように、別の半絶縁性半導体層を形成する工程をさらに有することを特徴とすると、前記メサの幅を狭くすることができ、素子の容量を小さくすることができる。
また、前記第1の導電型はn型であり、前記第2の導電型はp型であることを特徴とすると、前記第3の工程において前記半絶縁性半導体層の一部を、前記第2の導電型とすることが容易となる。
また、前記メサ構造の前記第3の層では、前記半絶縁性半導体層と前記第2の半導体層が交互に形成されていると、光変調器の電気容量を十分に小さく、かつ素子全体として十分な電界光学効果の期待できる構成とすることが可能である。
本発明によれば、光導波路のコア層上に、導電性のクラッド層と半絶縁性のクラッド層を有する光半導体素子であって、素子容量の小さい光半導体素子を製造歩留まり良く提供することが可能となる。
本発明では、コア層上に形成された導電性のクラッド層が、絶縁性(半絶縁性)のクラッド層により電気的に分離された構造を有するメサ構造を形成する場合に、従来の方法と比較した場合に、コア層上のクラッド層の段差が少なく、製造上の歩留りが良好である特徴を有し、さらに素子容量が小さい光半導体素子を製造することが可能な製造方法を提案する。
まず本発明の製造方法により形成できる光半導体素子として光変調器の構成の一例を説明し、さらに当該光変調器の製造方法について、順に説明する。
図7は、本発明の実施例1による光半導体素子の一例である光変調器100を模式的に示した斜視図である。
図7を参照すると、前記光変調器100は、InP系半導体材料を用いて形成され、高抵抗の半絶縁性InP基板101を用いて構成される。半絶縁性InP基板101上には、例えばSiが1.0×1018/cmの濃度でドーピングされたn型InPクラッド層102が形成されており、n型InPクラッド層102上にはノンドープMQW光導波路コア層103が形成される。ノンドープMQW光導波路コア層103は、例えば、膜厚が0.4μmのMQW層から成る。このMQW層は、膜厚が10nmのノンドープのInP障壁層と、膜厚が10nmのノンドープのInGaAsP井戸層で形成されており、InGaAsP井戸層の総数は20層とする。ノンドープMQW光導波路コア層103上には上部InPクラッド層が形成されており、微小光変調器100A部分では例えばZnが1.5×1018/cmの濃度にドーピングされたp型InPクラッド層105となっている。
上部クラッド層の詳細については断面図を用いて後述する。更に、ノンドープMQW光導波路コア層103の両側面には、高抵抗の半絶縁性InP層104が形成される。半絶縁性InP層104及びこれで挟まれた領域より成るメサの両脇には、所定間隔、例えばメサから10.0μm離間された領域に、Auメッキ電極(グランド)109が形成される。Auメッキ電極(グランド)109の膜厚は例えば3.0μmである。このAuメッキ電極(グランド)109とn型InPクラッド層102とは、オーミック性コンタクトを有している。
前記光変調器100は、微小光変調器100Aとギャップ領域100Bとを、光軸に対して交互に配列させた構成となっている。ここで微小光変調器100Aの光軸に沿った長さL1は、変調器の電極に印加される高周波信号の波長の4分の1よりも短くなるように形成されるとよい。
また、ギャップ領域100Bの長さL2は、個々の微小光変調器100Aの長さL1とその電気容量、及び個々のギャップ領域100Bにおける電気容量等に基づいて決定されるものである。
本実施例では一例として微小光変調器100Aの光軸に沿った長さL1を50μmとし、ギャップ領域100Bの光軸に沿った長さL2を70μmとする。また、微小光変調器100Aとギャップ領域100Bは、変調器の所望特性に応じて任意の個数配列させることが可能である。本実施例では一例として20とする。尚、図では簡便化のために一部省略して記載しているが、同じ構造の繰り返しである。
また、前記光変調器100において、ギャップ領域100Bを介して隣り合う微小光変調器100Aは、それぞれAuメッキ電極(エアブリッジ)108aを介して電気的に接続される。但しギャップ領域100Bにおける電気容量をなるべく小さくするために、ギャップ領域100B上に形成されるAuメッキ電極108が素子に接触しないようブリッジ状(Auメッキ電極(エアブリッジ)108a)に構成する。
このため、Auメッキ電極108は、微小光変調器100Aの領域において素子に接し(Auメッキ電極(シグナル)108b)、ギャップ領域100Bにおいて素子と離間されている(Auメッキ電極(エアブリッジ)108a)。
また、図7に示す光変調器100における微小光変調器100Aとギャップ領域100Bとの層構造を、光変調器100のA−A’面,B−B’面,C−C’面それぞれの断面構造を示す図8から図10を用いて説明する。
図8は、図7に示す光変調器100を図中A−A’面で切断した断面の層構造を説明するための図である。
図8に示す断面構造を参照すると、微小光変調器100Aとギャップ領域100Bとが、ノンドープMQW光導波路コア層103で構成される光軸上に交互に配列されている。また、Auメッキ電極108は、ギャップ領域10B上でエアブリッジの形状となり、メサとの間に空間107が形成される。
また、微小光変調器100AにおいてノンドープMQW光導波路コア層103の上側にはp型InPクラッド層105が形成され、p型InPクラッド層105上にAuメッキ電極(シグナル)108bが形成される。これに対し、ギャップ領域100BにおいてノンドープMQW光導波路コア層103の上側には半絶縁性InP層106が形成され、半絶縁性InP層106上に、空間107を介してAuメッキ電極(エアブリッジ)108aが形成されている。
次に、図9(B−B’断面図)及び図10(C−C’断面図)を用いて、微小光変調器100A及びギャップ領域100Bの層構造を説明する。
図9に示すように、本実施例による微小光変調器100Aは、半絶縁性InP基板101上にn型InPクラッド層102が形成される。このn型InPクラッド層102は、ノンドープMQW光導波路コア層103及と重なる領域が凸状に形成される。本実施例において、ノンドープMQW光導波路コア層103の幅は、例えば1.5μmとする。従って、n型InPクラッド層102の凸部分の幅も1.5μmとなる。
また、n型InPクラッド層102の凸部分での厚さを、例えば2.0μmとし、凸部分以外での厚さを1.4μmとする。ノンドープMQW光導波路コア層103上には膜厚2.5μmのp型InPクラッド層105が形成されている。
p型InPクラッド層105、ノンドープMQW光導波路コア層103及びn型InPクラッド層102の凸部分の両側には、高さ3.5μmのFeをドーピングした半絶縁性InP層104が形成される。更に、2つの半絶縁性InP層104とそれで挟まれた領域は例えば幅が5.5μmのメサ構造に形成されている。更に、このメサの上面には、厚さが5.0μmのAuメッキ電極(シグナル)108bが形成される。メサの両脇にはn−InPクラッド層102とオーミック性コンタクトを有するAuメッキ電極(グランド)109が形成されている。
この構成において、電位差をAuメッキ電極108とAuメッキ電極(グランド)109との間に与えると、生じる電界の大部分が、微小光変調器100Aにおける光導波路のコア層を成すノンドープMQW光導波路コア層103に集中する。これは、ノンドープMQW光導波路コア層103が略絶縁体であり、n型InPクラッド層102、及びp型InPクラッド層105が導電体であると見なせるためである。
また、図10に示すギャップ領域100Bの層構造において、半絶縁性InP基板101とn型InPクラッド層102とノンドープMQW光導波路コア層103とAuメッキ電極(グランド)109とは、図9に示すものと同様である。
但し、メサ部分において、ノンドープMQW光導波路コア層103上に形成された半絶縁性InP層106はノンドープMQW光導波路コア層103の両側に形成された半絶縁性InP層104と実質的には一体となっており、n型InP層102の凸部分及びノンドープMQW光導波路コア層103は、図10に示すように、半絶縁性InP層104及び106で囲まれるよう構成される。更に、メサ上部には、高さ6.0μmの空間107を隔てて、Auメッキ電極(エアブリッジ)108aが形成される。
このように、ギャップ領域100Bにおいて、Auメッキ電極(エアブリッジ)108aの下に空間107が形成されており、さらにノンドープMQWコア層上部に半絶縁性InP層106が形成されているため、ギャップ領域100Bにおける電気容量は、微小光変調器100Aに比較して小さな値となる。
その結果、微少光変調器100Aにおける電気容量とそれよりも小さいギャップ領域100Bにおける電気容量が合わさって素子全体のインピーダンスに反映されることで、ギャップ領域100Bが存在しない場合に比較してインピーダンスを大きくすることができ、インピーダンスが所望の値、例えば50Ω(オーム)の光変調器が構成される。
上記の光変調器では、コア層上に、導電性を有するクラッド層と、半絶縁性を有するクラッド層とが交互に形成された構造、言い換えればコア層上に形成された導電性のクラッド層が、半絶縁性のクラッド層により電気的に分離された構造を有する、メサ構造を形成することが必要となる。
そこで、本実施例では、以下の方法により、上記の光変調器を製造することを提案している。
図11A〜図11Fは、本実施例による光変調器の製造方法を、手順を追って説明する図である。ただし図中、先に説明した部分には順次同一の参照符号を付し、詳細な説明を省略する。
まず、図11Aに示す工程では、例えば、Feがドープされることで半絶縁性とされたInP基板(半絶縁性InP基板101)上に、例えば減圧有機金属気相成長法を用いて、Siドープn型InP下部クラッド層(n型InPクラッド層102)、ノンドープの無歪InGaAsP/InP多重量子井戸コア層(ノンドープMQW光導波路コア層103)、Feがドープされることで半絶縁性とされたInP層(半絶縁性InP層106)を形成する。
この場合、各層の厚さは、例えば、n型InPクラッド層102が2μm、ノンドープMQW光導波路コア層103が0.4μm(膜厚が10nmのノンドープのInP障壁層と、膜厚が10nmのInGaAsP井戸層を含み、InGaAsP井戸層の総数は20層)、半絶縁性InP層106は、2.5μmとする。
また、上記の場合、半絶縁性基板に換えて、n型基板などの導電型の基板を用いることも可能である。また、コア層は、例えば、厚膜のInGaAsP層、InGaAsP/InGaAsPの量子井戸構造で異なる厚さ、歪量の層、量子井戸構造の片側もしくは両側にInGaAsPの光ガイド層を有するようにしてもよい。また、コア層としては、AlGaInAs/AlGaInAsなどの他の材料系の量子井戸構造を用いても構わない。
また、上部の半絶縁性InP層(InP層106)のドーパントとしてはRuを用いても良いし、Co、Crやそれら複数のドーパントの組み合わせとしても構わない。また、バックグラウンド濃度の非常に低い成長装置を用いるならばアンドープ層とすることも可能である。
次に、図11Bに示す工程において、半絶縁性InP層106上に、例えばCVD法(化学気相堆積法)を用いて、例えばSiO膜(図示せず)を堆積し、さらに当該SiO膜をフォトリソグラフィ法によりパターンニング(エッチング)して、後の工程においてシグナル電極が接する領域が形成されるための領域(導電性とされる領域)のSiO膜が除去される。
例えば、長さが50μmの微小変調器を形成する場合には、導波路方向に沿った方向に46μm、導波路方向に直交する方向に20μmの領域のSiO膜(図示せず)が除去される。このSiO膜が除去される領域は、微小変調器の大きさ(長さ)に対応して変更する。
次に、このSiO膜のパターンをマスクにして、p型の不純物(ドーパント)である、例えばZnの拡散を行い、拡散領域の半絶縁性InP層を、ノンドープMQW光導波路コア層103の直上までp型の導電性を有するようにし、導電性のp型InPクラッド層105を形成する。拡散工程には、例えば拡散源となるZn化合物とInP基板を閉管中に設置して加熱する、気相拡散を用いる。拡散工程については、気相拡散に限られるものではなくZnを含む化合物を拡散領域のみに形成して加熱する固相拡散を用いても良い。当該拡散工程後に、マスクのSiO膜を除去する。
次に、図11Cに示す工程において、例えばCVD法により、p型InPクラッド層105、および半絶縁性InP層106上にSiO膜を形成し、当該SiO膜をフォトリソグラフィ法によりパターンニング(エッチング)して、メサ構造を形成するためのマスクを形成する。
次にパターニングされたSiO膜をマスクにして、例えばドライエッチングにより、p型InPクラッド層105、半絶縁性InP層106、およびノンドープMQW光導波路コア層103と、n型InPクラッド層102の一部をエッチングし、図11Cに示すメサ構造を形成する。この場合、ドライエッチングによるエッチングにおいては、エッチングガスとして、例えばエタン、酸素、水素などを用いたRIE(リアクティブイオンエッチング)法を用いてエッチングする。さらに、当該ドライエッチングの後、エッチング表面のダメージ層を例えばウェットエッチングなどで除去すると好適である。
次に、図11Dに示す工程において、上記のエッチングで用いたSiO膜のマスクを残したまま、例えば、減圧有機金属気相成長法を用いてメサ構造の両側を埋め込むように、例えばFeがドープされた半絶縁性のInP層104を形成する。この場合、Clを含有するガス、例えばモノクロロメタンを成長時に添加すると、マスクのSiO膜上へのオーバーハングを防止することができる。
次に、図11Eに示す工程において、マスクのSiO膜を除去し、さらに半絶縁性のInP層104をエッチングして図に示す構造とする。
次に、Auメッキ電極108、109を、メッキ法よりパターニングして形成する。この場合、Auメッキ電極(シグナル)108bとp型InPクラッド層105の間、Auメッキ電極109とn型InPクラッド層102の間の接触部分には、接触電極が形成されていることが好ましい。
例えば、p型電極(Auメッキ電極(シグナル)108bとp型InPクラッド層105の間)としては、AuZnを用いたアロイ電極、n型電極(Auメッキ電極109とn型InPクラッド層102の間)にはAuGeを用いたアロイ電極を形成すると、接触抵抗を低減することが可能であり、好ましい。このようにして、図7〜図10に示した光変調器100を製造することができる。
本実施例による製造方法の場合、例えば図5A〜図5Eに示した従来の方法に比べて、クラッド層に段差、または厚さの不均一が形成される問題が抑制される効果を奏する。すなわち、コア層の上層のクラッド層を形成する場合に選択成長を用いていないため、選択成長による段差や膜厚の不均一の影響を排除することが可能となっている。
例えば、クラッド層の膜厚が不均一であると、最初の成長で形成したクラッド層の厚さを光導波路として好適な値に設定すると、クラッド層の厚さが薄い領域ができてしまい光導波路を光が伝播する場合の損失が大きくなってしまう問題があった。また、薄くなる領域を必要な値にするためには、クラッド層が厚い領域の厚さを好適な値よりも厚くすることが必要で素子抵抗の増大を招くことになっていた。
本実施例では、クラッド層の膜厚の不均一がないため、全領域でクラッド層の厚さを好適な値とすることが可能となり、そのために光導波路を光が伝播する場合の損失増加や素子抵抗の増加を抑制することが可能となっている。
また段差や膜厚の不均一が少ないために素子の製造上の歩留りを良好とすることができる効果を奏する。
さらに、本実施例による製造方法では、例えば、図6A〜図6Dに示した従来の方法と比べた場合、コア層の上層の導電性のクラッド層の幅を狭く形成することが可能となる効果を奏する。例えば当該従来の方法の場合、コア層の上層の導電性のクラッド層の幅が、コア層と比べて大きくなってしまい、素子の容量が増大してしまう問題があった。
本実施例では、微細なパターン形状を有するメサ構造とすること、例えば導電性のクラッド層の幅を当該従来方法と比べて微細にすることが可能となっている。上記の製造方法の場合、例えば、最終的に形成される(図11C〜図11Fに示す)導電型のクラッド層(p型InPクラッド層105)の幅は、1.5μm程度とすることが可能であり、必要に応じてさらに小さくすることも可能である。
これは、例えば導電型のクラッド層を形成する場合の不純物の拡散の状態に依存してしまう当該従来方法と異なる点である。本実施例では、例えば図11Bに示した工程において形成する、不純物の拡散領域の幅よりも、最終的に形成される、コア層上の導電性のクラッド層の幅を小さくすることが可能である。このため、素子の容量を小さくすることが可能であり、高速度のデータ通信に対応する素子を形成することが可能となる。
また、光変調器の製造方法は、上記の方法に限定されるものではない。
例えば、図12は、本発明の実施例2による光半導体素子である光変調器の製造方法を示した図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。また、以下に説明しない工程は、実施例1の場合と同様とする。
図12に示す工程は、実施例1の場合の図11Aに示す工程に相当する。この場合、n型InPクラッド層102が、エッチングストップ層102Aを含むように形成されている。エッチングストップ層102Aは、例えばInGaAsP層よりなり、n型InP層をエッチングする場合のエッチストップ層として用いると、エッチングの制御性が良好となる。この場合、エッチングはウェットエッチングで行う事が好ましい。
本発明が適用可能な光半導体素子は上記実施例に限られるものではない。以下に他の適用可能な光半導体素子とその際の上記実施例と異なる部分の製造方法を説明する。
図13には、本発明の実施例3による光半導体素子である光変調器の微小光変調器部分の断面構造を示す。上記光変調器全体は図7と同等の構造を有しているが、微小光変調器100Aの部分の構造が実施例1と異なるものである。但し図中、先に説明した部分には同一の参照符号を付し、説明を省略する。また、以下に説明しない部分は実施例1の場合と同様の構造であり、また光変調器は実施例1の場合と同様の方法で製造することができる。
図13を参照するに、本実施例による光変調器では、まず、p型InPクラッド層105とAuメッキ電極(シグナル)108bとの間に、例えばp型InGaAsよりなるコンタクト層105Aが形成されている。当該コンタクト層が形成されることで、接続部の抵抗を下げることが可能となる。このコンタクト層は組成の異なるInGaAsPを組み合わせた多層構造としても良い。
また、ノンドープMQW光導波路コア層103の下側、即ち、ノンドープMQW光導波路コア層103とn型InPクラッド層102との間には、例えばノンドープInP層よりなる容量緩和層103Aが形成されている。この容量緩和層103Aは、微小光変調器100Aにおける単位長さあたりの電気容量が、必要以上に大きくなることを防止するために設けられるものである。
また、ノンドープMQW光導波路コア層103上には、例えば厚さが0.1μm程度の、p型の導電型の上部クラッド接続層103Bが形成されている。これにより図11Bに示したp型不純物の拡散工程において、コア層上に半絶縁性のクラッド層が残留することを抑制し、コア層上のInP層を確実にp型にする効果を奏する。また、Znの拡散フロントは当該上部クラッド接続層103Bに到達すればよいこととなり、不純物の拡散の制御性も向上する。
この点は、例えば、位相変調器のような電界印加型の素子においては、半絶縁性InP層がコア層上に残っても素子の動作にあまり大きな問題は生じないものである。一方で、例えば半導体レーザや半導体光増幅器のような電流注入形素子を集積した場合には、半絶縁性のInPがコア層(ノンドープMQW光導波路コア層103に相当)上に残った状態になることは、素子抵抗の上昇から発熱を招き望ましくないため、上記手法が特に有効となる。
また、この場合、後の拡散及び埋め込み再成長工程で最初の成長で形成したコア層直上の上部クラッド接続層103Bからコア層103へのZnの拡散が多少生じることは避けられないが、上記上部クラッド接続層103Bとして炭素ドープのAlGaInAsもしくはAlInAs層を用いた場合には、炭素は拡散が非常に小さいため後のプロセスでのコア層中へのp型ドーパントの拡散を抑制することができる。
また、上記の製造方法を、マッハツェンダ型光変調器の製造に適用した場合の例を、図14、図15に示す。
図14は、実施例1に記載の製造方法を用いて形成されたマッハツェンダ型光変調器を模式的に示した斜視図であり、図15はそのD−D’断面の一部を拡大した図である。
図14、図15を参照するに、本図に示すマッハツェンダ型光変調器200は、干渉系を構成する2本の光導波路203A,203Bと、2つのカプラC1,C2と、当該光導波路203A、203Bにそれぞれ形成された光変調器により、構成されている。
それぞれの光導波路に対して形成された光変調器は、実施例1に示した場合と、それぞれ同様の構造を有している。この場合、一方の光変調器を例にとって説明する。
例えば、半絶縁性のInP基板上には、n型の導電型であるn型InPクラッド層202が形成され、当該n型InPクラッド層202の、光導波路が延伸する方向に対応して形成される凸部形状の上には、例えば半絶縁性の、ノンドープMQW光導波路コア層203が形成されている。さらにノンドープMQW光導波路コア層203上には、p型の導電型であるp型InPクラッド層105と、半絶縁性のlnP層106が交互に形成され、実施例1の場合と同様のメサ構造を形成している。
さらに、当該凸部形状、ノンドープMQW光導波路コア層203、およびp型InPクラッド層105を囲むように、半絶縁性のlnP層204が形成されている。また、実施例1の場合のAuメッキ電極108(シグナル)に相当するAuメッキ電極208が、前記p型の導電型であるp型InPクラッド層105と接続されるように、またp型InPクラッド層105上の離間した空間にエアブリッジ上に、形成されている。
また、前記メサ構造の両側には、Auメッキ電極109(グランド)に相当するAuメッキ電極209が、n型InPクラッド層102に接続されるように形成されている。
この場合、実施例1〜実施例3に示した製造方法を適用して、上記のマッハツェンダ型光変調器を製造することが可能である。
この場合、例えば、本実施例によるlnP基板201、n型InPクラッド層202、ノンドープMQW光導波路コア層203、lnP層104、p型InPクラッド層105、およびAuメッキ電極208,209は、それぞれ実施例1に記載したlnP基板101、n型InPクラッド層102、ノンドープMQW光導波路コア層103、半絶縁性InP層104、p型InPクラッド層105、およびAuメッキ電極108,109に相当し、実施例1の場合と同様の方法で製造することが可能である。また実施例2、実施例3に記載の方法を適用することが可能であることも明らかである。
また、図16には、上記の製造方法を用いて形成することが可能な、マッハツェンダ型光変調器の他の例を示す。図16は、実施例5による光変調器300を模式的に示した斜視図である。
図16を参照するに、前記光変調器300は、半絶縁性のlnP基板301上に、n型lnP層302が形成され、当該n型lnP層302上に、干渉系を構成する2本の光導波路303A、303Bが形成された構造を有している。
当該光導波路303A,303B上は、半絶縁性のlnP層304で覆われ、当該lnP層304に周囲を囲まれるように、光導波路層303A、303B上には、複数のp型lnP層(図示せず)が形成されている。
当該p型lnP層上には、それぞれ電極308Aが接続される構造になっており、当該電極308Aは、電圧が印加される電圧印加構造体308に接続されている。この場合、複数の当該電極308Aは、前記基板lnP301に略水平であって、例えば光導波路と直交する方向に延伸した支持部308Bによって、前記電圧印加構造体308に電気的に接続されている。
また、前記前記n型lnP層302に電圧を印加するための電極309が前記n型lnP層302上に、別途形成されている。
本実施例による光変調器では、前記電極309を用いて微小変調器にバイアス電圧を印加し、前記電極308に高周波信号を印加することにより、光導波路に電圧を印加して光変調を行う事が可能な構造になっている。
上記実施例1〜5では全て光変調器をとりあげているが、本発明の製造方法は半導体光増幅器集積光変調器や変調器集積レーザ、半導体モードロックレーザ、双安定レーザなど素子容量が小さいことが求められる素子を集積した素子にも適用することが可能であり、更により一般的には表面に複数の電極が形成されている集積素子、例えば波長可変レーザや半導体光増幅器、半導体光信号処理素子などにも適用することができる。
また、上記実施例では半導体埋め込み構造の導波路で説明したが、さらには、導波路構造が埋め込み導波路でない場合にも適用することが可能である。例えば、ハイメサ構造の光導波路を採用する場合には、コア層を含むメサ構造(例えば導波路部分で幅2μm)を形成した後に、そのままパッシベーションと電極を形成する工程に入れば良いし、エッチング深さを変えて上部クラッド層のみエッチングすれば、リッジ導波路の光半導体素子となる。
また、クラッド層の導電型については、上記の実施例では、下部クラッド層がn型、上部クラッド層をp型としているが、下部クラッド層をp型、上部クラッド層をn型とすることも可能である。n型のドーパントとしては例えばSを用いることができる。この場合、Feは電子トラップとして機能するが、SをFe濃度以上に拡散すればn型の導電型となる。
但し、上記実施例のように下部クラッド層にも表面側から電極を形成する際には、下部クラッド層をn型とした方が、下部クラッド層での抵抗が小さくなる。このため、導電型は、上部クラッド層でp型、下部クラッド層でn型とすることがより好ましい。また、不純物を拡散する場合にも、上部クラッド層をp型とする場合には、n型の場合に比べて容易にp型の導電型の領域を形成することができる。
また、上記実施例ではコア層は半導体基板上に一様に形成されているが、エッチングやバットジョイント成長、選択成長等の加工工程を用いて、コア層を領域によって異なる構造とすることもできる。
また、コア層の形状によっては、選択成長の場合に基板上にコア層のない領域が存在する場合があるが、光導波路とする領域にコア層が存在すれば構わない。さらには、コア層がストライプ状に両脇を埋めこまれた状態にしてから上部に半絶縁性半導体層の形成を行うことも可能である。
また以上の例においては、光半導体素子をInP基板上に形成する場合を例にとって説明したが、これに限定されるものではない。同様の工程はGaAs基板にGaAs、AlGaAs系材料を用いて形成する場合や、または、GaInP及びAlGaInP系材料、GaNAs、GaInNAs及びGaInNAsSb系材料やGaAsSb及びAlGaInAsSb系材料からなる光半導体素子の製造方法にも適用できることは明らかであり、その他の材料系に適用することも可能である。
このように、本実施例による製造方法を適用し、様々な形状の光半導体素子を製造することが可能である。
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
(付記1) 第1の導電型を有する第1の半導体層を含む第1の層上に、光導波路層を含む第2の層を形成する第1の工程と、
前記第2の層上に半絶縁性半導体層を含む第3の層を形成する第2の工程と、
第2の導電型の不純物を前記半絶縁性半導体層に拡散させて、当該半絶縁性半導体層の一部を、第2の導電型を有する第2の半導体層とする第3の工程と、
前記第3の工程の後で前記第3の層、前記第2の層、および前記1の層をエッチングしてメサ構造を形成する第4の工程と、
前記メサ構造上に前記第2の半導体層と接する金属配線を形成する第5の工程と、を有することを特徴とする光半導体素子の製造方法。
(付記2) 前記エッチング後の前記第2の半導体層の幅は、前記第3の工程で形成される前記第2の半導体層の幅より小さいことを特徴とする付記1記載の光半導体素子の製造方法。
(付記3) 前記メサ構造を埋設するように、別の半絶縁性半導体層を形成する工程をさらに有することを特徴とする付記1または2記載の光半導体素子の製造方法。
(付記4) 前記第1の導電型はn型であり、前記第2の導電型はp型であることを特徴とする付記1乃至3のうち、いずれか1項記載の光半導体素子の製造方法。
(付記5) 前記第2の導電型の不純物は、Znであることを特徴とする付記4記載の光半導体素子の製造方法。
(付記6) 前記メサ構造の前記第3の層では、前記半絶縁性半導体層と前記第2の半導体層が交互に形成されていることを特徴とする付記1乃至5のうち、いずれか1項記載の光半導体素子の製造方法。
(付記7) 前記第1の層は、InPよりなる半導体基板上に形成されることを特徴とする付記1乃至6のうち、いずれか1項記載の光半導体素子の製造方法。
(付記8) 前記光導波路層は、InGaAsP系材料またはAlGaInAs系材料のいずれかよりなることを特徴とする付記1乃至7のうちいずれか1項記載の光半導体素子の製造方法。
(付記9) 前記第1の半導体層、および前記半絶縁性半導体層は、InPを含むことを特徴とする付記1乃至8のうち、いずれか1項記載の光半導体素子の製造方法。
(付記10) 前記光導波路層は、量子井戸構造を有することを特徴とする付記1乃至9のうち、いずれか1項記載の光半導体素子の製造方法。
(付記11) 前記第2の層は、前記光導波路層上に形成される第2の導電型の第3の半導体層を含むことを特徴とする付記1乃至10のうち、いずれか1項記載の光半導体素子の製造方法。
(付記12) 前記半絶縁性半導体層は、Fe,Ru,Co,またはCrのうち、少なくともいずれか一つを含むことを特徴とする付記1乃至11のうち、いずれか1項記載の光半導体素子の製造方法。
(付記13) 前記第3の工程では、気相拡散により前記不純物を前記半絶縁性半導体層に拡散させることを特徴とする付記1乃至12のうち、いずれか1項記載の光半導体素子の製造方法。
(付記14) 前記第1の層には、前記メサ構造を形成する場合のエッチングのストップ層が形成されていることを特徴とする付記1乃至13のうち、いずれか1項記載の、光半導体素子の製造方法。
(付記15) 前記エッチングはウェットエッチングにより行われることを特徴とする付記14記載の光半導体素子の製造方法。
従来の光変調器の構造を示す斜視図である。 図1に示す光変調器10のa−a’面の層構造を示す断面図である。 図1に示す光変調器10のb−b’面の層構造を示す断面図である。 図1に示す光変調器10のc−c’面の層構造を示す断面図である。 図1に示す光変調器の製造方法を手順を追って示した図(その1)である。 図1に示す光変調器の製造方法を手順を追って示した図(その2)である。 図1に示す光変調器の製造方法を手順を追って示した図(その3)である。 図1に示す光変調器の製造方法を手順を追って示した図(その4)である。 図1に示す光変調器の製造方法を手順を追って示した図(その5)である。 図1に示す光変調器の製造方法の別の例を手順を追って示した図(その1)である。 図1に示す光変調器の製造方法の別の例を手順を追って示した図(その1)である。 図1に示す光変調器の製造方法の別の例を手順を追って示した図(その1)である。 図1に示す光変調器の製造方法の別の例を手順を追って示した図(その1)である。 実施例1による光変調器の構造を示す斜視図である。 図7に示す光変調器10のA−A’面の層構造を示す断面図である。 図7に示す光変調器10のB−B’面の層構造を示す断面図である。 図7に示す光変調器10のC−C’面の層構造を示す断面図である。 図7に示す光変調器の製造方法を手順を追って示した図(その1)である。 図7に示す光変調器の製造方法を手順を追って示した図(その2)である。 図7に示す光変調器の製造方法を手順を追って示した図(その3)である。 図7に示す光変調器の製造方法を手順を追って示した図(その4)である。 図7に示す光変調器の製造方法を手順を追って示した図(その5)である。 図7に示す光変調器の製造方法を手順を追って示した図(その6)である。 実施例2による光変調器の製造方法を示した図である。 実施例3による光変調器の層構造を示す断面図である。 実施例4による光変調器の構造を示す斜視図である。 図14に示す光変調器10のD−D’面の層構造を示す断面図である。 実施例5による光変調器の構造を示す斜視図である。
符号の説明
10,100,200,300 光変調器
11,101,201,301 半絶縁性InP基板
12,102、202、302 n型InPクラッド層(導電性)
13,103,203,303 ノンドープMQW光導波路コア層
103A 容量緩和層
14,104、204 半絶縁性InP層
105,205 p型InPクラッド層
105A 上部クラッド接続層
16,106、206 半絶縁性InP層
17,107 空間
18,108,208 Auメッキ電極
18a,108a、208a Auメッキ電極(エアブリッジ)
18b,108b、208b Auメッキ電極(シグナル)
19,109、209 Auメッキ電極(グランド)
303A,303B 光導波路
304 半絶縁性lnP層
308A,309 電極
308B 支持部
308 電圧印加部

Claims (5)

  1. 第1の導電型を有する第1の半導体層を含む第1の層上に、光導波路層を含む第2の層を形成する第1の工程と、
    前記第2の層上に半絶縁性半導体層を含む第3の層を形成する第2の工程と、
    第2の導電型の不純物を前記半絶縁性半導体層に拡散させて、当該半絶縁性半導体層の一部を、第2の導電型を有する第2の半導体層とする第3の工程と、
    前記第3の工程の後で前記第3の層、前記第2の層、および前記1の層をエッチングしてメサ構造を形成する第4の工程と、
    前記メサ構造上に前記第2の半導体層と接する金属配線を形成する第5の工程と、を有することを特徴とする光半導体素子の製造方法。
  2. 前記エッチング後の前記第2の半導体層の幅は、前記第3の工程で形成される前記第2の半導体層の幅より小さいことを特徴とする請求項1記載の光半導体素子の製造方法。
  3. 前記メサ構造を埋設するように、別の半絶縁性半導体層を形成する工程をさらに有することを特徴とする請求項1または2記載の光半導体素子の製造方法。
  4. 前記第1の導電型はn型であり、前記第2の導電型はp型であることを特徴とする請求項1乃至3のうち、いずれか1項記載の光半導体素子の製造方法。
  5. 前記メサ構造の前記第3の層では、前記半絶縁性半導体層と前記第2の半導体層が交互に形成されていることを特徴とする請求項1乃至4のうち、いずれか1項記載の光半導体素子の製造方法。
JP2005096278A 2005-03-29 2005-03-29 光半導体素子の製造方法 Pending JP2006276497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096278A JP2006276497A (ja) 2005-03-29 2005-03-29 光半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096278A JP2006276497A (ja) 2005-03-29 2005-03-29 光半導体素子の製造方法

Publications (1)

Publication Number Publication Date
JP2006276497A true JP2006276497A (ja) 2006-10-12

Family

ID=37211320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096278A Pending JP2006276497A (ja) 2005-03-29 2005-03-29 光半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP2006276497A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111342A1 (ja) * 2007-03-09 2008-09-18 Nec Corporation 半導体光変調器
JP2009094410A (ja) * 2007-10-11 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> 半導体光集積素子及びその作製方法
JP2009124009A (ja) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
JP2009152261A (ja) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
JP2013061632A (ja) * 2011-08-23 2013-04-04 Japan Oclaro Inc 光デバイス、光モジュール、及び光デバイスの製造方法
WO2013140483A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 光変調器、光変調器モジュール及び光変調器の駆動方法
JP2013250527A (ja) * 2012-06-04 2013-12-12 Sumitomo Electric Ind Ltd 半導体マッハツェンダ変調器および半導体マッハツェンダ変調器の製造方法
JP2014186074A (ja) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> 光変調導波路
JP2015129906A (ja) * 2013-12-03 2015-07-16 日本電信電話株式会社 半導体マッハツェンダ型光変調器
JP2015212768A (ja) * 2014-05-02 2015-11-26 日本電信電話株式会社 電界吸収型変調器および集積化tw−ea−dfbレーザ
JP2017016020A (ja) * 2015-07-03 2017-01-19 富士通株式会社 光変調器および光変調器の製造方法
JP2017021210A (ja) * 2015-07-10 2017-01-26 日本電信電話株式会社 半導体光変調器及びその製造方法
JP2017163081A (ja) * 2016-03-11 2017-09-14 古河電気工業株式会社 半導体光素子、およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177369A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体光変調器、それを用いたマッハツェンダ型光変調器、及び半導体光変調器の製造方法
JP2004102160A (ja) * 2002-09-12 2004-04-02 Fujitsu Quantum Devices Ltd 光変調器及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177369A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体光変調器、それを用いたマッハツェンダ型光変調器、及び半導体光変調器の製造方法
JP2004102160A (ja) * 2002-09-12 2004-04-02 Fujitsu Quantum Devices Ltd 光変調器及びその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111342A1 (ja) * 2007-03-09 2008-09-18 Nec Corporation 半導体光変調器
US7830580B2 (en) 2007-03-09 2010-11-09 Nec Corporation Semiconductor optical modulator
JP5263718B2 (ja) * 2007-03-09 2013-08-14 日本電気株式会社 半導体光変調器
JP2009094410A (ja) * 2007-10-11 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> 半導体光集積素子及びその作製方法
JP2009124009A (ja) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
JP2009152261A (ja) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
JP2013061632A (ja) * 2011-08-23 2013-04-04 Japan Oclaro Inc 光デバイス、光モジュール、及び光デバイスの製造方法
WO2013140483A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 光変調器、光変調器モジュール及び光変調器の駆動方法
JP2013250527A (ja) * 2012-06-04 2013-12-12 Sumitomo Electric Ind Ltd 半導体マッハツェンダ変調器および半導体マッハツェンダ変調器の製造方法
US9285613B2 (en) 2012-06-04 2016-03-15 Sumitomo Electric Industries, Ltd. Semiconductor Mach-Zehnder modulator and method for manufacturing semiconductor Mach-Zehnder modulators
JP2014186074A (ja) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> 光変調導波路
JP2015129906A (ja) * 2013-12-03 2015-07-16 日本電信電話株式会社 半導体マッハツェンダ型光変調器
JP2015212768A (ja) * 2014-05-02 2015-11-26 日本電信電話株式会社 電界吸収型変調器および集積化tw−ea−dfbレーザ
JP2017016020A (ja) * 2015-07-03 2017-01-19 富士通株式会社 光変調器および光変調器の製造方法
JP2017021210A (ja) * 2015-07-10 2017-01-26 日本電信電話株式会社 半導体光変調器及びその製造方法
JP2017163081A (ja) * 2016-03-11 2017-09-14 古河電気工業株式会社 半導体光素子、およびその製造方法

Similar Documents

Publication Publication Date Title
JP2006276497A (ja) 光半導体素子の製造方法
JP2008010484A (ja) 半導体光素子及び光送信モジュール
US20150331298A1 (en) Semiconductor optical integrated device
JP2008053501A (ja) 集積光デバイスおよびその製造方法
JP2008227154A (ja) 光半導体素子の製造方法
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
JP4909159B2 (ja) 半導体導波路素子およびその作製方法ならびに半導体レーザ
US20150241648A1 (en) Semiconductor optical device and method for producing semiconductor optical device
JP4690515B2 (ja) 光変調器、半導体光素子、及びそれらの作製方法
JP5297892B2 (ja) 光半導体装置、及びその製造方法
JP6172271B2 (ja) 光半導体集積素子及びその製造方法
JP4664742B2 (ja) 半導体光装置及びその製造方法
US7288422B2 (en) Photonic integrated device using reverse-mesa structure and method for fabricating the same
JP6531525B2 (ja) 光変調器および光変調器の製造方法
JP2009054721A (ja) 半導体素子及び半導体素子の製造方法
JP2005142182A (ja) 光半導体素子およびその製造方法
KR100427581B1 (ko) 반도체 광소자의 제조방법
JP6213222B2 (ja) 光半導体装置及びその製造方法
JPH0645687A (ja) 光半導体素子の製造方法
JP2011077329A (ja) 半導体光集積素子、及びその製造方法
JP2009244648A (ja) 光変調器、その製造方法、光集積素子およびその製造方法
JP2011175216A (ja) 半導体光素子、半導体マッハツェンダー型光変調器および半導体光素子の製造方法
JP2008218549A (ja) 半導体導波路素子及び半導体レーザ及びその作製方法
JP2014135351A (ja) 半導体光素子、集積型半導体光素子およびその製造方法
US10969543B2 (en) Semiconductor integrated optical device, and method of fabricating semiconductor integrated optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018