WO2019069359A1 - 半導体光集積素子 - Google Patents

半導体光集積素子 Download PDF

Info

Publication number
WO2019069359A1
WO2019069359A1 PCT/JP2017/035920 JP2017035920W WO2019069359A1 WO 2019069359 A1 WO2019069359 A1 WO 2019069359A1 JP 2017035920 W JP2017035920 W JP 2017035920W WO 2019069359 A1 WO2019069359 A1 WO 2019069359A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photodiode
sectional
cutting
cross
Prior art date
Application number
PCT/JP2017/035920
Other languages
English (en)
French (fr)
Inventor
啓資 松本
佳道 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780095438.4A priority Critical patent/CN111164475B/zh
Priority to JP2018512441A priority patent/JP6414365B1/ja
Priority to US16/614,345 priority patent/US11211768B2/en
Priority to PCT/JP2017/035920 priority patent/WO2019069359A1/ja
Publication of WO2019069359A1 publication Critical patent/WO2019069359A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2226Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semiconductors with a specific doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers

Definitions

  • the present invention relates to a semiconductor optical integrated device.
  • Patent Document 1 discloses a semiconductor laser in which a semiconductor laser portion and a modulator portion are provided along an optical waveguide.
  • An optical monitor unit is provided at a part of the optical waveguide.
  • the optical waveguide, the semiconductor laser, the modulator unit and the light monitoring unit are provided on a semiconductor substrate. Further, since the modulator unit, the light monitoring unit and the semiconductor laser unit are all configured for the same optical waveguide, the cathode is common.
  • the cathode electrode is provided on the back surface of the semiconductor substrate.
  • the cathode electrode which is a common terminal is a ground.
  • a photodiode When using a semiconductor laser as a light source of an optical communication system, a photodiode is generally required to monitor the light output of the semiconductor laser.
  • a semiconductor laser When a semiconductor laser is mounted on a module or the like, a photodiode of another chip may be disposed behind the semiconductor laser.
  • the use of another chip photodiode may increase the manufacturing cost and the number of steps due to assembly.
  • the space for arranging the photodiode may increase the module capacitance.
  • Patent Document 1 an example in which a photodiode is integrated on the same substrate as a semiconductor laser has been reported.
  • n-type InP is used as a semiconductor substrate.
  • the polarity of the electrode on the upper surface side of the photodiode which is the monitor portion is the anode.
  • the cathode is a ground
  • the voltage applied to the electrode on the upper surface side of the photodiode is negative.
  • a module configuration there is a case where it is desired to connect a positive polarity power source to the electrode on the upper surface side of the photodiode. In such a case, problems may occur in the configuration of Patent Document 1.
  • a structure is conceivable in which a photodiode is formed on a semi-insulating InP substrate, and the anode and the cathode of the photodiode are formed on the upper surface side of the photodiode.
  • the laser and the modulator integrated on the semi-insulating InP substrate are also provided with electrodes of both polarities on the top side. Therefore, there is a problem that the number of electrode terminals is increased as compared with the case of using a conductive substrate.
  • reverse bias may be applied to the photodiode and the laser. It may be necessary to electrically separate the photodiode and the laser in order to suppress the deterioration of the characteristics due to the reactive current generated at this time.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a semiconductor optical integrated device in which the degree of freedom of the polarity of the power supply connected to the photodiode is improved and the characteristics can be improved.
  • a semiconductor optical integrated device comprises a conductive substrate, a laser provided on the conductive substrate, a semi-insulating semiconductor layer provided on the conductive substrate, and the semi-insulating semiconductor layer. And a waveguide provided on the conductive substrate for guiding the output light of the laser to the photodiode, the anode of the photodiode, and the cathode of the photodiode Is extracted from the upper surface side of the photodiode, and the waveguide and the photodiode are separated by the semi-insulating semiconductor layer.
  • the conductive substrate and the photodiode are electrically separated by the semi-insulating semiconductor layer. Therefore, both the anode and the cathode can be extracted from the top surface side of the photodiode. Therefore, the degree of freedom of the polarity of the power supply connected to the photodiode is improved. Furthermore, the reactive current can be suppressed by the waveguide and the photodiode being separated by the semi-insulating semiconductor layer. Therefore, the characteristics can be improved.
  • FIG. 1 is a plan view of a semiconductor optical integrated device according to a first embodiment.
  • FIG. 2 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 1 along a straight line I-II.
  • FIG. 7 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 1 along a III-IV straight line.
  • FIG. 7 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 1 along a V-VI straight line.
  • FIG. 7 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 1 along a line VII-VIII.
  • FIG. 7 is a plan view illustrating the method of manufacturing the semiconductor integrated optical device according to the first embodiment.
  • FIG. 7 is a cross-sectional view obtained by cutting FIG.
  • FIG. 5 is a plan view showing the state in which the diffraction grating is formed in the first embodiment.
  • FIG. 9 is a cross-sectional view obtained by cutting FIG. 8 along a line I-II.
  • FIG. 5 is a plan view showing a state in which a cladding layer is formed in the first embodiment.
  • FIG. 11 is a cross-sectional view obtained by cutting FIG. 10 along a straight line I-II.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer constituting the laser in Embodiment 1 is etched.
  • FIG. 13 is a cross-sectional view obtained by cutting FIG. 12 along a straight line I-II.
  • FIG. 5 is a plan view showing a state in which the semiconductor layer constituting the modulator in Embodiment 1 is grown.
  • FIG. 15 is a cross-sectional view obtained by cutting FIG. 14 along a straight line I-II.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer constituting the modulator in Embodiment 1 is etched.
  • FIG. 17 is a cross-sectional view obtained by cutting FIG. 16 along a straight line I-II.
  • FIG. 17 is a cross-sectional view obtained by cutting FIG. 16 along a III-IV straight line.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer forming the waveguide in Embodiment 1 is grown.
  • FIG. 20 is a cross-sectional view obtained by cutting FIG.
  • FIG. 19 is a straight line I-II.
  • FIG. 20 is a cross-sectional view obtained by cutting FIG. 19 along a III-IV straight line.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer forming the waveguide in Embodiment 1 is etched.
  • FIG. 23 is a cross-sectional view obtained by cutting FIG. 22 along a straight line I-II.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer and the semi-insulating semiconductor layer 50 that constitute the photodiode in Embodiment 1 are grown.
  • FIG. 25 is a cross-sectional view obtained by cutting FIG. 24 along a line I-II.
  • FIG. 7 is a plan view showing a state in which the semiconductor layer constituting the photodiode in Embodiment 1 is etched.
  • FIG. 27 is a cross-sectional view obtained by cutting FIG. 26 along a straight line I-II.
  • FIG. 27 is a cross-sectional view obtained by cutting FIG. 26 along a III-IV straight line.
  • FIG. 27 is a cross-sectional view obtained by cutting FIG. 26 along a V-VI straight line.
  • FIG. 6 is a plan view showing a state in which embedded growth has been performed in the first embodiment.
  • FIG. 31 is a cross-sectional view obtained by cutting FIG. 30 along a straight line I-II.
  • FIG. 31 is a cross-sectional view obtained by cutting FIG. 30 along a III-IV straight line.
  • FIG. 31 is a cross-sectional view obtained by cutting FIG. 30 along a V-VI straight line.
  • FIG. 7 is a plan view showing a state in which the contact layer is grown in the first embodiment.
  • FIG. 35 is a cross-sectional view obtained by cutting FIG. 34 along a straight line I-II.
  • FIG. 35 is a cross-sectional view obtained by cutting FIG. 34 along a III-IV straight line.
  • FIG. 35 is a cross-sectional view obtained by cutting FIG. 34 along a V-VI straight line.
  • FIG. 7 is a plan view showing a state in which the contact layer is etched in the first embodiment.
  • FIG. 39 is a cross-sectional view obtained by cutting FIG. 38 along a straight line I-II.
  • FIG. 39 is a cross-sectional view obtained by cutting FIG. 38 along a III-IV straight line.
  • FIG. 39 is a cross-sectional view obtained by cutting FIG. 38 along a V-VI straight line.
  • FIG. 6 is a plan view showing a state in which a mesa is formed in the first embodiment.
  • FIG. 42 is a cross-sectional view obtained by cutting FIG. 42 along a straight line I-II.
  • FIG. 42 is a cross-sectional view obtained by cutting FIG. 42 along a III-IV straight line.
  • FIG. 42 is a cross-sectional view obtained by cutting FIG. 42 along a V-VI straight line.
  • FIG. 42 is a cross-sectional view obtained by cutting FIG. 42 along a VII-VIII straight line.
  • FIG. 42 is a cross-sectional view obtained by cutting FIG. 42 along a VII-VIII straight line.
  • FIG. 10 is a plan view showing a state in which a contact hole is formed in a photodiode formation portion in Embodiment 1.
  • FIG. 47 is a cross-sectional view obtained by cutting FIG. 47 along a straight line I-II.
  • FIG. 47 is a cross-sectional view obtained by cutting FIG. 47 along a III-IV straight line.
  • FIG. 47 is a cross-sectional view obtained by cutting FIG. 47 along a V-VI straight line.
  • FIG. 47 is a cross-sectional view obtained by cutting FIG. 47 along a VII-VIII straight line.
  • FIG. 10 is a plan view showing a state in which an opening is formed in the insulating film in Embodiment 1;
  • FIG. 52 is a cross-sectional view obtained by cutting FIG.
  • FIG. 52 is a cross-sectional view obtained by cutting FIG. 52 along a straight line I-II.
  • FIG. 52 is a cross-sectional view obtained by cutting FIG. 52 along a III-IV straight line.
  • FIG. 52 is a cross-sectional view obtained by cutting FIG. 52 along a V-VI straight line.
  • FIG. 52 is a cross-sectional view obtained by cutting FIG. 52 along a VII-VIII straight line. It is a top view of the semiconductor optical integrated device concerning a comparative example.
  • FIG. 58 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 57 along the I-II straight line.
  • FIG. 58 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 57 along a III-IV straight line.
  • FIG. 58 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 57 along the V-VI straight line.
  • FIG. 58 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 57 along a VII-VIII straight line. It is a top view which shows the state to which the semiconductor layer which comprises a photodiode by the comparative example was grown.
  • FIG. 62 is a cross-sectional view obtained by cutting FIG. 62 along an I-II straight line. It is a top view which shows the state which etched the semiconductor layer which comprises a photodiode by a comparative example.
  • FIG. 65 is a cross-sectional view obtained by cutting FIG. 64 along a straight line I-II.
  • FIG. 65 is a cross-sectional view obtained by cutting FIG. 64 along a III-IV straight line.
  • FIG. 65 is a cross-sectional view obtained by cutting FIG. 64 along a V-VI straight line. It is a top view which shows the state which embedded growth was performed by the comparative example.
  • FIG. 68 is a cross-sectional view obtained by cutting FIG. 68 along a straight line I-II.
  • FIG. 68 is a cross-sectional view obtained by cutting FIG. 68 along a III-IV straight line.
  • FIG. 68 is a cross-sectional view obtained by cutting FIG. 68 along a V-VI straight line. It is a top view which shows the state to which the contact layer was grown by the comparative example.
  • FIG. 73 is a cross-sectional view obtained by cutting FIG. 72 along a straight line I-II.
  • FIG. 73 is a cross-sectional view obtained by cutting FIG. 72 along a III-IV straight line.
  • FIG. 73 is a cross-sectional view obtained by cutting FIG. 72 along a V-VI straight line. It is a top view which shows the state which etched the contact layer by the comparative example.
  • FIG. 76 is a cross-sectional view obtained by cutting FIG. 76 along an I-II straight line.
  • FIG. 76 is a cross-sectional view obtained by cutting FIG. 76 along a III-IV straight line.
  • FIG. 76 is a cross-sectional view obtained by cutting FIG. 76 along a V-VI straight line.
  • FIG. 80 is a cross-sectional view obtained by cutting FIG. 80 along a II-II straight line.
  • FIG. 80 is a cross-sectional view obtained by cutting FIG. 80 along a III-IV straight line.
  • FIG. 80 is a cross-sectional view obtained by cutting FIG. 80 along a V-VI straight line.
  • FIG. 80 is a cross-sectional view obtained by cutting FIG. 80 along a VII-VIII straight line.
  • FIG. 86 is a cross-sectional view obtained by cutting FIG. 85 along a straight line I-II.
  • FIG. 86 is a cross-sectional view obtained by cutting FIG. 85 along a III-IV straight line.
  • FIG. 85 is a cross-sectional view obtained by cutting FIG. 85 along a V-VI straight line.
  • FIG. 85 is a cross-sectional view obtained by cutting FIG. 85 along a VII-VIII straight line.
  • FIG. 7 is a plan view of a semiconductor optical integrated device according to a second embodiment.
  • FIG. 91 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 90 along the I-II straight line.
  • FIG. 91 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 90 along a III-IV straight line.
  • FIG. 91 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG.
  • FIG. 91 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 90 along a VII-VIII straight line.
  • FIG. 21 is a plan view showing a state in which the semiconductor layer and the semi-insulating semiconductor layer constituting the photodiode in Embodiment 2 are grown.
  • FIG. 95 is a cross-sectional view obtained by cutting FIG. 95 along a straight line I-II.
  • FIG. 21 is a plan view showing a state in which the semiconductor layer constituting the photodiode in Embodiment 2 is etched.
  • FIG. 98 is a cross-sectional view obtained by cutting FIG. 97 along a straight line I-II.
  • FIG. 98 is a cross-sectional view obtained by cutting FIG. 97 along a III-IV straight line.
  • FIG. 97 is a cross-sectional view obtained by cutting FIG. 97 along a V-VI straight line.
  • FIG. 16 is a plan view showing the state in which embedded growth has been performed in the second embodiment.
  • FIG. 101 is a cross-sectional view obtained by cutting FIG. 101 along a straight line I-II.
  • FIG. 101 is a cross-sectional view obtained by cutting FIG. 101 along a III-IV straight line.
  • FIG. 101 is a cross-sectional view obtained by cutting FIG. 101 along a V-VI straight line.
  • FIG. 16 is a plan view showing a state in which the contact layer is grown in the second embodiment.
  • FIG. 105 is a cross-sectional view obtained by cutting FIG. 105 along a straight line I-II.
  • FIG. 105 is a cross-sectional view obtained by cutting FIG. 105 along a III-IV straight line.
  • FIG. 105 is a cross-sectional view obtained by cutting FIG. 105 along a V-VI straight line.
  • FIG. 16 is a plan view showing a state in which the contact layer is etched in the second embodiment.
  • FIG. 109 is a cross-sectional view obtained by cutting FIG. 109 along a straight line I-II.
  • FIG. 109 is a cross-sectional view obtained by cutting FIG. 109 along a III-IV straight line.
  • FIG. 109 is a cross-sectional view obtained by cutting FIG.
  • FIG. 21 is a plan view showing a state in which a mesa is formed in a second embodiment.
  • FIG. 114 is a cross-sectional view obtained by cutting FIG. 113 along a straight line I-II.
  • FIG. 114 is a cross-sectional view obtained by cutting FIG. 113 along a III-IV straight line.
  • FIG. 114 is a cross-sectional view obtained by cutting FIG. 113 along a V-VI straight line.
  • FIG. 114 is a cross-sectional view obtained by cutting FIG. 113 along a VII-VIII straight line.
  • FIG. 21 is a plan view showing a state in which a contact hole is formed in a photodiode formation portion in Embodiment 2.
  • FIG. 21 is a plan view showing a state in which a contact hole is formed in a photodiode formation portion in Embodiment 2.
  • FIG. 21 is a plan view showing a state in which a contact hole is formed in a photodio
  • FIG. 118 is a cross-sectional view obtained by cutting FIG. 118 along a II-II straight line.
  • FIG. 118 is a cross-sectional view obtained by cutting FIG. 118 along a III-IV straight line.
  • FIG. 118 is a cross-sectional view obtained by cutting FIG. 118 along a V-VI straight line.
  • FIG. 118 is a cross-sectional view obtained by cutting FIG. 118 along a VII-VIII straight line.
  • FIG. 21 is a plan view showing a state in which an opening is formed in the insulating film in Embodiment 2;
  • FIG. 123 is a cross-sectional view obtained by cutting FIG. 123 along a straight line I-II.
  • FIG. 123 is a cross-sectional view obtained by cutting FIG.
  • FIG. 123 is a cross-sectional view obtained by cutting FIG. 123 along a V-VI straight line.
  • FIG. 123 is a cross-sectional view obtained by cutting FIG. 123 along a VII-VIII straight line.
  • FIG. 1 is a plan view of a semiconductor optical integrated device 100 according to the first embodiment.
  • the semiconductor optical integrated device 100 includes a conductive substrate.
  • a laser 10 is provided on the conductive substrate.
  • the laser 10 is a semiconductor laser.
  • the modulator 11 and the photodiode 12 are provided on the conductive substrate.
  • the laser 10, the modulator 11, and the photodiode 12 are integrated on the conductive substrate.
  • the conductive substrates are further provided with waveguides 13a, 13b and 13c.
  • the waveguide 13 a connects the output of the laser 10 and the input of the modulator 11.
  • the waveguide 13 b connects the output of the modulator 11 and the output of the semiconductor optical integrated device 100.
  • the waveguide 13 c is provided between the output of the laser 10 and the light receiving surface of the photodiode 12. The waveguide 13 c guides the output light of the laser 10 to the photodiode 12.
  • a directional coupler 14 is provided at the end of the waveguide 13 c on the laser 10 side.
  • the directional coupler 14 is formed by bringing the waveguide 13 cc close to the waveguide 13 a so that a part of the output light of the laser 10 can be taken out to the waveguide 13 c.
  • the distance between the directional coupler 14 and the waveguide 13a is several ⁇ m.
  • a groove 15 is provided around the laser 10, the modulator 11, the photodiode 12 and the waveguides 13a, 13b and 13c.
  • Electrodes 87 are provided on the upper surface side of the laser 10, the upper surface side of the modulator 11, and the upper surface side of the photodiode 12.
  • the electrode 87 is a contact electrode.
  • the portion of the electrode 87 provided on the upper surface side of the photodiode 12 is an anode 87 a and a cathode 87 b of the photodiode 12.
  • An insulating film 81 is provided on the top surface of the semiconductor optical integrated device 100 except for the electrode 87.
  • the shapes of the laser 10, the modulator 11, the photodiode 12 and the waveguides 13a, 13b and 13c provided below the insulating film 81 are shown for the sake of convenience.
  • FIG. 2 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 100 of FIG. 1 along a straight line I-II.
  • FIG. 2 is a cross-sectional view of the laser 10.
  • the conductive substrate 21 is formed of, for example, conductive InP. In the present embodiment, the conductive substrate 21 is formed of n-InP.
  • An active layer 23 is provided on the conductive substrate 21.
  • a cladding layer 27 is provided on the active layer 23.
  • the cladding layer 27 is formed of p-InP. In FIG. 1, for convenience, some layers constituting the laser 10 are omitted.
  • Buried growth layers are provided on both sides of the active layer 23 and the cladding layer 27.
  • the buried growth layer includes a p-InP layer 61, an n-InP layer 62 provided on the p-InP layer 61, and a p-InP layer 63 provided on the n-InP layer 62.
  • a contact layer is provided on the cladding layer 27 and the p-InP layer 63.
  • the contact layer includes a cladding layer 71 and a p-InGaAs layer 72 provided on the cladding layer 71.
  • the cladding layer 71 is formed of p-InP.
  • Grooves 15 are provided on both sides of the laser 10.
  • the groove 15 is provided from the upper surface side of the laser 10 to the conductive substrate 21.
  • An insulating film 81 is provided on the upper surface of the contact layer.
  • the insulating film 81 extends along the groove 15.
  • the insulating film 81 is provided with an opening 84 for exposing the p-InGaAs layer 72.
  • An electrode 87 is provided on the insulating film 81. The electrode 87 fills the opening 84 and contacts the p-InGaAs layer 72.
  • the laser 10 has an electrode 90 on the back surface of the conductive substrate 21.
  • the back surface is the surface of the conductive substrate 21 opposite to the side where the photodiode 12 is provided.
  • FIG. 3 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 100 of FIG. 1 along the III-IV straight line.
  • FIG. 3 is a cross-sectional view of the modulator 11.
  • a modulator absorbing layer 29 is provided on the conductive substrate 21.
  • a cladding layer 30 is provided on the modulator absorption layer 29.
  • the cladding layer 30 is formed of p-InP. Similar to the laser 10, buried growth layers are provided on both sides of the modulator absorption layer 29 and the cladding layer 30.
  • a contact layer is provided on the cladding layer 30 and the p-InP layer 63.
  • Grooves 15 are provided on both sides of the modulator 11.
  • the groove 15 is provided from the upper surface side of the modulator 11 to the conductive substrate 21.
  • An insulating film 81 is provided on the upper surface of the contact layer.
  • the insulating film 81 extends along the groove 15.
  • the insulating film 81 is provided with an opening 85 for exposing the p-InGaAs layer 72.
  • An electrode 87 is provided on the insulating film 81. The electrode 87 fills the opening 85 and is in contact with the p-InGaAs layer 72.
  • FIG. 4 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 100 of FIG. 1 along the V-VI straight line.
  • FIG. 4 is a cross-sectional view of the photodiode 12.
  • a semi-insulating semiconductor layer 50 is provided on the conductive substrate 21.
  • the photodiode 12 is provided on the semi-insulating semiconductor layer 50.
  • the semi-insulating semiconductor layer 50 is formed of, for example, InP doped with Fe.
  • the semi-insulating semiconductor layer 50 has higher resistance than InP because Fe captures electrons.
  • the semi-insulating semiconductor layer 50 may be formed of Ru or InP doped with Ti. In this case, the semi-insulating semiconductor layer 50 has a high resistance because Ru or Ti captures holes.
  • a contact layer 51 is provided on the semi-insulating semiconductor layer 50.
  • the contact layer 51 is formed of n-InGaAsP.
  • a cladding layer 52 is provided on the contact layer 51.
  • the cladding layer 52 is formed of n-InP.
  • a light absorbing layer 53 is provided on the cladding layer 52.
  • the light absorption layer 53 is formed of i-InGaAsP.
  • a cladding layer 54 is provided on the light absorption layer 53.
  • the cladding layer 54 is formed of p-InP.
  • the photodiode 12 has an n-InP cladding layer, an i-InGaAsP light absorbing layer, and a p-InP cladding layer in order from the conductive substrate 21 side.
  • a contact layer is provided on the cladding layer 54.
  • the contact layer includes a cladding layer 71 and a p-InGaAs layer 72 provided on the cladding layer 71.
  • a contact hole 80 extending from the upper surface of the cladding layer 71 to the contact layer 51 is formed. The contact layer 51 is exposed by the contact hole 80.
  • Grooves 15 are provided on both sides of the photodiode 12.
  • the groove 15 extends from the upper surface side of the photodiode 12 to the conductive substrate 21.
  • An insulating film 81 is provided on the upper surfaces of the cladding layer 71 and the p-InGaAs layer 72.
  • the insulating film 81 extends along the groove 15 and the contact hole 80.
  • the insulating film 81 is provided with an opening 83 for exposing the p-InGaAs layer 72.
  • the insulating film 81 is provided with an opening 82 for exposing the contact layer 51.
  • An anode 87 a and a cathode 87 b are provided on the insulating film 81.
  • the anode 87 a fills the opening 83 and contacts the p-InGaAs layer 72.
  • the cathode 87 b fills the opening 82 and contacts the contact layer 51.
  • the anode 87 a of the photodiode 12 and the cathode 87 b of the photodiode 12 are drawn out from the upper surface side of the photodiode 12.
  • the upper surface of the photodiode 12 is the surface opposite to the side in contact with the semi-insulating semiconductor layer 50 of the photodiode 12.
  • FIG. 5 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 100 of FIG. 1 along the line VII-VIII.
  • FIG. 5 is a cross-sectional view of a connection portion between the photodiode 12 and the waveguide 13c.
  • the waveguide 13 c is provided on the conductive substrate 21.
  • the transparent waveguide layer 41 is provided on the conductive substrate 21.
  • the transparent waveguide layer 41 is formed of i-InGaAsP.
  • a cladding layer 42 is provided on the transparent waveguide layer 41.
  • the cladding layer 42 is formed of p-InP.
  • the structure of the waveguides 13a and 13b is the same as that of the waveguide 13c.
  • the semi-insulating semiconductor layer 50, the contact layer 51 and the cladding layer 52 extend along the end face 43 of the waveguide 13c.
  • the end face 43 is an exit end face of the waveguide 13 c and faces the light receiving surface 19 of the photodiode 12.
  • the semi-insulating semiconductor layer 50 is continuously formed from the upper surface of the conductive substrate 21 to the end surface 43.
  • the waveguide 13 c and the photodiode 12 are separated by the semi-insulating semiconductor layer 50.
  • the semi-insulating semiconductor layer 50 is semi-insulating, and electrically separates the waveguide 13 c and the photodiode 12. Furthermore, the semi-insulating semiconductor layer 50 transmits the output light of the laser 10 to the photodiode 12.
  • a cladding layer 71 is provided on the cladding layer 42 and the cladding layer 54.
  • An insulating film 81 is provided on the cladding layer 71.
  • the output light emitted from the laser 10 is guided to the modulator 11 by the waveguide 13a. Further, a part of the output light of the laser 10 is branched by the directional coupler 14 and guided to the photodiode 12 by the waveguide 13 c. By bringing the waveguide 13c close to the waveguide 13a, light is gradually coupled, and a part of output light can be extracted to the waveguide 13c. As a result, the output light of the laser 10 is monitored by the photodiode 12. The output light of the laser 10 is all input to the modulator 11 when the photodiode 12 is not integrated.
  • the amount of absorption of light is changed by the electric field applied in the reverse direction to MQW (Multi Quantum Well).
  • MQW Multi Quantum Well
  • the output light is transmitted through the modulator 11.
  • an electric field is applied to the modulator 11, the output light does not pass through the modulator 11. Thereby, the output light of the laser 10 can be modulated.
  • the output light from the modulator 11 is guided to the output of the semiconductor optical integrated device 100 by the waveguide 13 b.
  • the light guided to the photodiode 12 is absorbed by the light absorption layer 53.
  • photocurrent flows in the circuit connected to the photodiode 12.
  • a voltage is applied to the photodiode 12 in the opposite direction to the laser 10.
  • the amount of photocurrent is detected as the amount of light received by the photodiode 12.
  • the semiconductor optical integrated device 100 the amount of photocurrent of the photodiode 12 when the target light output can be obtained is examined. By adjusting the injection current to the laser 10 so that the amount of photocurrent is obtained, the light output can be maintained to coincide with the target value.
  • the semiconductor optical integrated device 100 is used, for example, as a light source in an optical communication system.
  • FIG. 6 is a plan view for explaining the method of manufacturing the semiconductor optical integrated device 100 of the first embodiment.
  • FIG. 7 is a cross-sectional view obtained by cutting FIG. 6 along a line I-II.
  • an active layer is formed.
  • the cladding layer 22, the active layer 23, the cladding layer 24, the diffraction grating layer 25, and the cap layer 26 are formed on the conductive substrate 21 in this order from the bottom.
  • the cladding layer 22 is formed of n-InP.
  • the cladding layer 24 is formed of p-InP.
  • the cap layer 26 is formed of p-InP.
  • the cladding layer 22, the active layer 23, the cladding layer 24, the diffraction grating layer 25, and the cap layer 26 are provided on the entire top surface of the conductive substrate 21.
  • the cladding layer 22, the active layer 23, the cladding layer 24, the diffraction grating layer 25, and the cap layer 26 are formed by crystal growth.
  • FIG. 8 is a plan view showing the state in which the diffraction grating is formed in the first embodiment.
  • FIG. 9 is a cross-sectional view obtained by cutting FIG. 8 along the line I-II.
  • the diffraction grating is formed by periodically etching the diffraction grating layer 25 and the cap layer 26.
  • FIG. 10 is a plan view showing a state in which the cladding layer 27 is formed in the first embodiment.
  • FIG. 11 is a cross-sectional view obtained by cutting FIG. 10 along the line I-II.
  • the cladding layer 27 is provided on the cap layer 26.
  • the cladding layer 27 is formed by crystal growth.
  • the cladding layer 27 embeds the diffraction grating layer 25.
  • the cladding layer 27 covers the side and top surfaces of the cap layer 26.
  • the position of the diffraction grating layer 25 is indicated by a broken line for the sake of convenience.
  • FIG. 12 is a plan view showing a state in which the semiconductor layer constituting the laser 10 in the first embodiment is etched.
  • FIG. 13 is a cross-sectional view obtained by cutting FIG. 12 along a straight line I-II.
  • the insulating film 28 is formed on the cladding layer 27.
  • the insulating film 28 is provided on the laser forming portion 10a.
  • the laser forming portion 10 a indicates a region on the conductive substrate 21 in which the laser 10 is formed.
  • the active layer 23, the cladding layer 24, the diffraction grating layer 25, the cap layer 26, and the cladding layer 27 are etched using the insulating film 28 as a mask. Thereby, the semiconductor layers other than the laser forming portion 10a are etched.
  • the cap layer 26 may be omitted for convenience.
  • FIG. 14 is a plan view showing a state in which the semiconductor layer constituting the modulator 11 in Embodiment 1 is grown.
  • FIG. 15 is a cross-sectional view obtained by cutting FIG. 14 along a line I-II.
  • the modulator absorption layer 29 and the cladding layer 30 are formed on the cladding layer 22 in this order from the bottom.
  • the modulator absorption layer 29 and the cladding layer 30 are formed by selective growth using the insulating film 28 as a mask.
  • the modulator absorption layer 29 and the cladding layer 30 are formed to surround the laser forming portion 10a.
  • FIG. 16 is a plan view showing a state in which the semiconductor layer constituting the modulator 11 in the first embodiment is etched.
  • FIG. 17 is a cross-sectional view obtained by cutting FIG. 16 along a line I-II.
  • FIG. 18 is a cross-sectional view obtained by cutting FIG. 16 along a III-IV straight line.
  • the insulating film 28 a is formed on the cladding layer 27 and the cladding layer 30.
  • the insulating film 28a is provided on the laser forming portion 10a and on the modulator forming portion 11a.
  • the modulator forming portion 11 a indicates a region where the modulator 11 is formed on the conductive substrate 21.
  • the modulator absorption layer 29 and the cladding layer 30 are etched using the insulating film 28a as a mask.
  • the semiconductor layers other than the laser forming portion 10a and the modulator forming portion 11a are etched.
  • the diffraction grating layer 25, the cladding layer 24, and the cladding layer 22 may be omitted for convenience.
  • FIG. 19 is a plan view showing a state in which the semiconductor layers constituting the waveguides 13a, 13b and 13c in the first embodiment are grown.
  • FIG. 20 is a cross-sectional view obtained by cutting FIG. 19 along the line I-II.
  • FIG. 21 is a cross-sectional view obtained by cutting FIG. 19 along a III-IV straight line.
  • the transparent waveguide layer 41 and the cladding layer 42 are formed by selective growth using the insulating film 28 a as a mask.
  • the transparent waveguide layer 41 and the cladding layer 42 are formed to surround the laser forming portion 10 a and the modulator forming portion 11 a.
  • FIG. 22 is a plan view showing a state in which the semiconductor layers constituting the waveguides 13a, 13b and 13c in the first embodiment are etched.
  • FIG. 23 is a cross-sectional view obtained by cutting FIG. 22 along the line I-II.
  • the insulating film 28 b is formed on the cladding layers 27, 30, 42.
  • the insulating film 28b is provided in a region where the laser forming portion 10a, the modulator forming portion 11a, and the waveguides 13a, 13b, and 13c are formed.
  • the transparent waveguide layer 41 and the cladding layer 42 are etched using the insulating film 28b as a mask.
  • FIG. 24 is a plan view showing a state in which the semiconductor layer constituting the photodiode 12 and the semi-insulating semiconductor layer 50 are grown in the first embodiment.
  • FIG. 25 is a cross-sectional view obtained by cutting FIG. 24 along the line I-II.
  • the semi-insulating semiconductor layer 50, the contact layer 51, the cladding layer 52, the light absorption layer 53 and the cladding layer 54 are formed by selective growth using the insulating film 28b as a mask.
  • the semi-insulating semiconductor layer 50, the contact layer 51, the cladding layer 52, the light absorbing layer 53, and the cladding layer 54 are formed to surround the portion covered with the insulating film 28b.
  • the semi-insulating semiconductor layer 50 is formed not only on the upper surface of the conductive substrate 21 but also on the side surface formed by etching the semiconductor layer constituting the waveguide 13c.
  • the side surface formed by the etching of the semiconductor layer constituting the waveguide 13 c includes the end surface 43. Since the semi-insulating semiconductor layer 50, the contact layer 51, and the cladding layer 52 are also provided on the side surface of the waveguide 13c, they are exposed on the surface of the semiconductor layer constituting the photodiode 12. In FIG. 24, for convenience, portions exposed to the surfaces of the semi-insulating semiconductor layer 50, the contact layer 51, and the cladding layer 52 are omitted.
  • FIG. 26 is a plan view showing a state in which the semiconductor layer constituting the photodiode 12 in Embodiment 1 is etched.
  • FIG. 27 is a cross-sectional view obtained by cutting FIG. 26 along a line I-II.
  • FIG. 28 is a cross-sectional view obtained by cutting FIG. 26 along a III-IV straight line.
  • FIG. 29 is a cross-sectional view obtained by cutting FIG. 26 along the V-VI straight line.
  • the insulating film 28 c is formed on the cladding layers 27, 30, 42, 54.
  • the insulating film 28c is provided in the laser formation portion 10a, the modulator formation portion 11a, the regions for forming the waveguides 13a, 13b, 13c, and the photodiode formation portion 12a.
  • the photodiode forming portion 12 a indicates a region where the photodiode 12 is formed on the conductive substrate 21.
  • dry etching is performed halfway through the semi-insulating semiconductor layer 50 using the insulating film 28c as a mask.
  • waveguides 13a, 13b and 13c of a ridge structure are formed.
  • the directional coupler 14 is formed between the laser forming portion 10a and the modulator forming portion 11a.
  • the directional coupler 14 is a part of the waveguide 13c.
  • FIG. 30 is a plan view showing the state in which the embedded growth is performed in the first embodiment.
  • FIG. 31 is a cross-sectional view obtained by cutting FIG. 30 along a line I-II.
  • FIG. 32 is a cross-sectional view obtained by cutting FIG. 30 along a III-IV straight line.
  • FIG. 33 is a cross-sectional view obtained by cutting FIG. 30 along the V-VI straight line.
  • a buried growth layer composed of the p-InP layer 61, the n-InP layer 62, and the p-InP layer 63 is formed.
  • the buried growth layer is provided to surround the laser forming unit 10a, the modulator forming unit 11a, the waveguides 13a, 13b and 13c, and the photodiode forming unit 12a.
  • the side surfaces of the waveguides 13a, 13b, 13c are covered with the buried growth layer.
  • the side surfaces of the semiconductor layer forming the laser 10, the semiconductor layer forming the modulator 11, and the semiconductor layer forming the photodiode 12 are covered with the buried growth layer.
  • the buried growth layer is formed by buried growth.
  • FIG. 34 is a plan view showing the state in which the contact layer is grown in the first embodiment.
  • FIG. 35 is a cross-sectional view obtained by cutting FIG. 34 along a line I-II.
  • FIG. 36 is a cross-sectional view obtained by cutting FIG. 34 along a III-IV straight line.
  • FIG. 37 is a cross-sectional view obtained by cutting FIG. 34 along the V-VI straight line.
  • the insulating film 28c is removed.
  • a contact layer is crystal-grown on the entire surface of the conductive substrate 21.
  • FIG. 34 the positions of the laser forming unit 10a, the modulator forming unit 11a, the waveguides 13a, 13b and 13c, and the photodiode forming unit 12a are shown for the sake of convenience.
  • FIG. 38 is a plan view showing a state in which the contact layer is etched in the first embodiment.
  • FIG. 39 is a cross-sectional view obtained by cutting FIG. 38 along a line I-II.
  • FIG. 40 is a cross-sectional view obtained by cutting FIG. 38 along a III-IV straight line.
  • FIG. 41 is a cross-sectional view obtained by cutting FIG. 38 along the V-VI straight line.
  • the p-InGaAs layer 72 is etched so as to leave a portion of the p-InGaAs layer 72 disposed immediately below the electrode. As a result, the p-InGaAs layer 72 is left on the laser forming portion 10a, the modulator forming portion 10b and the photodiode forming portion 12a.
  • the p-InGaAs layer 72 on the photodiode forming portion 12a is provided at a position corresponding to the anode 87a.
  • FIG. 38 the positions of the laser forming unit 10a, the modulator forming unit 11a, the photodiode forming unit 12a, and the waveguides 13a, 13b, and 13c are illustrated for the sake of convenience.
  • FIG. 42 is a plan view showing the state in which the mesa is formed in the first embodiment.
  • FIG. 43 is a cross-sectional view obtained by cutting FIG. 42 along a line I-II.
  • FIG. 44 is a cross-sectional view obtained by cutting FIG. 42 along a III-IV straight line.
  • FIG. 45 is a cross-sectional view obtained by cutting FIG. 42 along the V-VI straight line.
  • FIG. 46 is a cross-sectional view obtained by cutting FIG. 42 along line VII-VIII.
  • the grooves 15 are formed on both sides of the laser forming portion 10a, on both sides of the modulator forming portion 11a, and on both sides of the waveguides 13a, 13b and 13c. Further, the groove 15 is formed so as to surround the photodiode forming portion 12 a except for the connection portion with the waveguide 13 c.
  • the grooves 15 are formed by etching. The etching is performed to a depth where the semi-insulating semiconductor layer 50 is removed. Thus, a mesa structure is formed in the laser forming unit 10a, the modulator forming unit 11a, the waveguides 13a, 13b, and 13c, and the photodiode forming unit 12a.
  • FIG. 47 is a plan view showing a state in which the contact hole 80 is formed in the photodiode forming portion 12a in the first embodiment.
  • FIG. 48 is a cross-sectional view obtained by cutting FIG. 47 along line I-II.
  • FIG. 49 is a cross-sectional view obtained by cutting FIG. 47 along a III-IV straight line.
  • FIG. 50 is a cross-sectional view obtained by cutting FIG. 47 along the V-VI straight line.
  • FIG. 51 is a cross-sectional view obtained by cutting FIG. 47 along line VII-VIII.
  • the contact hole 80 is provided next to the p-InGaAs layer 72 of the photodiode forming portion 12a.
  • the contact hole 80 extends in parallel with the p-InGaAs layer 72.
  • the longitudinal direction in plan view of the contact hole 80 and the p-InGaAs layer 72 of the photodiode forming portion 12 a extends in the incident direction of light to the photodiode 12.
  • the contact hole 80 is provided to form an n-type electrode which becomes the cathode 87 b of the photodiode 12.
  • the contact hole 80 is formed to a depth reaching the contact layer 51 from the upper surface of the cladding layer 71.
  • the insulating film 81 is formed on the entire surface of the conductive substrate 21.
  • the insulating film 81 covers the side and bottom of the groove 15 and the side and bottom of the contact hole 80.
  • FIG. 52 is a plan view showing a state in which the openings 82 to 85 are formed in the insulating film 81 in the first embodiment.
  • FIG. 53 is a cross-sectional view obtained by cutting FIG. 52 along a line I-II.
  • FIG. 54 is a cross-sectional view obtained by cutting FIG. 52 along a III-IV straight line.
  • FIG. 55 is a cross-sectional view obtained by cutting FIG. 52 along the V-VI straight line.
  • FIG. 56 is a cross-sectional view obtained by cutting FIG. 52 along the line VII-VIII.
  • the openings 82 to 85 are formed at positions corresponding to the positions directly below the electrode 87.
  • the opening 82 is formed to expose the contact layer 51 at the bottom of the contact hole 80.
  • the opening 83 is formed to expose the p-InGaAs layer 72 in the photodiode forming portion 12a.
  • the opening 84 is formed to expose the p-InGaAs layer 72 in the laser forming portion 10a.
  • the opening 85 is formed to expose the p-InGaAs layer 72 in the modulator forming portion 11a.
  • the electrode 87 is formed on the insulating film 81. As shown in FIGS. 1 to 5, the electrode 87 is provided so as to fill the opening 84 in the laser forming portion 10a and to contact the p-InGaAs layer 72. The electrode 87 on the laser forming portion 10 a extends along the groove 15 and extends to the opposite side of the laser forming portion 10 a with the groove 15 interposed therebetween. The electrode 87 is provided so as to fill the opening 85 in the modulator forming portion 11 a and to be in contact with the p-InGaAs layer 72.
  • the anode 87 a is provided to fill the opening 83 in the photodiode forming portion 12 a and to be in contact with the p-InGaAs layer 72.
  • the cathode 87 b is provided so as to fill the opening 82 in the photodiode forming portion 12 a and to be in contact with the contact layer 51.
  • the cathode 87 b extends upward along the side surface of the contact hole 80.
  • the cathode 87 b is drawn to the side opposite to the anode 87 a across the contact hole 80 on the upper surface side of the photodiode 12.
  • the anode 87a and the cathode 87b are formed of the same material.
  • the backside process is performed.
  • the back surface side of the conductive substrate 21 is polished until the thickness of the conductive substrate 21 becomes about 100 ⁇ m thick.
  • the entire back surface of the wafer is polished.
  • an electrode 90 is formed on the back surface of the conductive substrate 21.
  • the semiconductor optical integrated device 100 shown in FIGS. 1 to 5 is formed.
  • the cap layer 26, the diffraction grating layer 25, the cladding layer 24, the cladding layer 22, the embedded growth layer and the like are omitted.
  • FIG. 57 is a plan view of a semiconductor optical integrated device 200 according to a comparative example.
  • the structure of the photodiode 212 is different from that of the photodiode 12 according to the first embodiment. Only the anode 87 a is provided on the top surface side of the photodiode 212.
  • FIG. 58 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 200 of FIG. 57 along the I-II straight line.
  • the structure of the laser 10 is the same as that of the first embodiment.
  • FIG. 59 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 200 of FIG. 57 along the III-IV straight line.
  • the structure of the modulator 11 is the same as that of the first embodiment.
  • 60 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 200 of FIG. 57 along the V-VI straight line. 60 is a cross-sectional view of the photodiode 212.
  • FIG. The semiconductor optical integrated device 200 according to the comparative example does not include the semi-insulating semiconductor layer 50.
  • the photodiode 12 is provided directly on the conductive substrate 21.
  • the cladding layer 52, the light absorption layer 53, and the cladding layer 54 are provided in this order from the bottom.
  • the cladding layer 71 and the p-InGaAs layer 72 are provided in this order from the bottom on the cladding layer 54. Further, the contact hole 80 is not provided in the photodiode 212.
  • An insulating film 81 is provided on the cladding layer 71 and the p-InGaAs layer 72.
  • the insulating film 81 extends along the groove 15.
  • the insulating film 81 is provided with an opening 83 for exposing the p-InGaAs layer 72. Further, the opening 82 is not provided in the insulating film 81.
  • An anode 87 a is provided on the insulating film 81.
  • the anode 87 a fills the opening 83 and contacts the p-InGaAs layer 72.
  • the cathode of the photodiode 212 is an electrode 90 provided on the back surface of the conductive substrate 21.
  • the cathode of the laser 10 and the cathode of the photodiode 212 are common.
  • the potential of the electrode 90 which is the cathode is, for example, the ground.
  • FIG. 61 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 200 of FIG. 57 along the line VII-VIII.
  • FIG. 61 is a cross-sectional view of the connection portion between the photodiode 212 and the waveguide 13c.
  • the structures of the waveguides 13a, 13b and 13c are the same as in the first embodiment.
  • the cladding layer 52 extends along the end face 43 of the waveguide 13c.
  • the semi-insulating semiconductor layer 50 is not provided. For this reason, the waveguide 13c and the photodiode 212 are not electrically separated.
  • the manufacturing method of the semiconductor optical integrated device 200 is the same as that of the first embodiment up to the step of etching the semiconductor layers constituting the waveguides 13a, 13b and 13c shown in FIGS.
  • a semiconductor layer constituting the photodiode 212 is formed.
  • the semiconductor layers constituting the photodiode 212 are the cladding layer 52, the light absorption layer 53, and the cladding layer 54.
  • FIG. 62 is a plan view showing a state in which the semiconductor layer constituting the photodiode 212 in the comparative example is grown.
  • FIG. 63 is a cross-sectional view obtained by cutting FIG. 62 along a line I-II.
  • the cladding layer 52, the light absorption layer 53, and the cladding layer 54 are formed by selective growth using the insulating film 28b as a mask.
  • FIG. 64 is a plan view showing a state in which the semiconductor layer constituting the photodiode 212 in the comparative example is etched.
  • FIG. 65 is a cross-sectional view obtained by cutting FIG. 64 along a line I-II.
  • 66 is a cross-sectional view obtained by cutting FIG. 64 along a III-IV straight line.
  • FIG. 67 is a cross-sectional view obtained by cutting FIG. 64 along the V-VI straight line.
  • the insulating film 28c is provided in the regions for forming the laser forming portion 10a, the modulator forming portion 11a, the waveguides 13a, 13b, and 13c, and the photodiode forming portion 212a.
  • the photodiode forming portion 212 a indicates a region where the photodiode 212 is formed on the conductive substrate 21.
  • dry etching is performed using the insulating film 28c as a mask until the conductive substrate 21 is exposed. Thereby, waveguides 13a, 13b and 13c are formed.
  • FIG. 68 is a plan view showing the state in which the embedded growth has been performed in the comparative example.
  • FIG. 69 is a cross-sectional view obtained by cutting FIG. 68 along a line I-II.
  • FIG. 70 is a cross-sectional view obtained by cutting FIG. 68 along a III-IV straight line.
  • FIG. 71 is a cross-sectional view obtained by cutting FIG. 68 along the V-VI straight line.
  • a buried growth layer formed of the p-InP layer 61, the n-InP layer 62, and the p-InP layer 63 is formed.
  • the contact layer includes a cladding layer 71 and a p-InGaAs layer 72.
  • FIG. 72 is a plan view showing a state in which the contact layer is grown in the comparative example.
  • FIG. 73 is a cross-sectional view obtained by cutting FIG. 72 along a line I-II.
  • FIG. 74 is a cross-sectional view obtained by cutting FIG. 72 along a III-IV straight line.
  • FIG. 75 is a cross-sectional view obtained by cutting FIG. 72 along the V-VI straight line.
  • the contact layer is crystal-grown on the entire surface of the conductive substrate 21.
  • FIG. 76 is a plan view showing a state in which the contact layer is etched in the comparative example.
  • FIG. 77 is a cross-sectional view obtained by cutting FIG. 76 along a line I-II.
  • FIG. 78 is a cross-sectional view obtained by cutting FIG. 76 along a III-IV straight line.
  • FIG. 79 is a cross-sectional view obtained by cutting FIG. 76 along the V-VI straight line.
  • the p-InGaAs layer 72 is etched so as to leave the p-InGaAs layer 72 on the laser forming portion 10a, the modulator forming portion 10b and the photodiode forming portion 212a.
  • FIG. 80 is a plan view showing a state in which a mesa is formed in the comparative example.
  • FIG. 81 is a cross-sectional view obtained by cutting FIG. 80 along a line I-II.
  • FIG. 82 is a cross-sectional view obtained by cutting FIG. 80 along a III-IV straight line.
  • FIG. 83 is a cross-sectional view obtained by cutting FIG. 80 along the V-VI straight line.
  • FIG. 84 is a cross-sectional view obtained by cutting FIG. 80 along line VII-VIII.
  • the grooves 15 are formed on both sides of the laser forming portion 10a, on both sides of the modulator forming portion 11a, and on both sides of the waveguides 13a, 13b and 13c. Further, the groove 15 is formed so as to surround the photodiode forming portion 212 a except for the connection portion with the waveguide 13 c. The groove 15 is formed by etching to a depth where the conductive substrate 21 is exposed.
  • FIG. 85 is a plan view showing a state in which the openings 84, 85, 283 are formed in the insulating film 81 in the comparative example.
  • FIG. 86 is a cross-sectional view obtained by cutting FIG. 85 along a line I-II.
  • FIG. 87 is a cross-sectional view obtained by cutting FIG. 85 along a III-IV straight line.
  • FIG. 88 is a cross-sectional view obtained by cutting FIG. 85 along a V-VI straight line.
  • FIG. 89 is a cross-sectional view obtained by cutting FIG. 85 along line VII-VIII.
  • the opening 283 is formed to expose the p-InGaAs layer 72 in the photodiode forming portion 212a.
  • the openings 84 and 85 are respectively formed in the laser forming portion 10 a and the modulator forming portion 11 a as in the first embodiment.
  • the electrode 87 is formed on the insulating film 81.
  • the structure of the electrode 87 provided in the laser forming unit 10 a and the modulator forming unit 11 a is the same as that of the first embodiment.
  • the anode 87 a is provided so as to fill the opening 283 and to contact the p-InGaAs layer 72.
  • the backside process is the same as that of the first embodiment. From the above, the semiconductor optical integrated device 200 shown in FIGS. 57 to 61 is formed.
  • the electrode 90 on the back surface of the conductive substrate 21 serves as a common cathode of the laser 10 and the photodiode 212.
  • the electrode 90 on the upper surface side of the photodiode 212 has a negative potential. Therefore, the user can not select the polarity of the power supply of the photodiode 212.
  • the laser 10 and the photodiode 212 are not electrically separated. Therefore, a reactive current may flow between the laser 10 and the photodiode 212, and the characteristics of the semiconductor optical integrated device 200 may be degraded.
  • the conductive substrate 21 and the photodiode 12 are electrically separated by the semi-insulating semiconductor layer 50. Therefore, both the anode 87 a and the cathode 87 b can be extracted from the upper surface side of the photodiode 12. Therefore, the degree of freedom of the polarity of the power supply connected to the photodiode 12 is improved.
  • the waveguide 13 c and the photodiode 12 are electrically separated by the semi-insulating semiconductor layer 50.
  • the photodiode 12 is electrically separated from the conductive substrate 21 by the semi-insulating semiconductor layer 50. That is, the photodiode 12 is electrically separated from the laser 10 and the modulator 11 by the semi-insulating semiconductor layer 50 serving as a separation resistor.
  • the anode 87 a and the cathode 87 b are sufficiently isolated from the laser 10 and the modulator 11, the reactive current can be suppressed from flowing between the laser 10 or the modulator 11 and the photodiode 12. Therefore, the characteristics of the semiconductor optical integrated device 100 can be improved.
  • the light receiving surface 19 of the photodiode 12 and the end surface 43 of the waveguide 13c are connected by a semiconductor layer.
  • the semiconductor layers are the semi-insulating semiconductor layer 50, the contact layer 51 and the cladding layer 52. Thereby, sufficient monitor light can be secured for the photodiode 12 to function.
  • the back electrode 90 can be used as the cathode of the laser 10 and the modulator 11. Therefore, the number of electrode terminals drawn from the upper surface side of the substrate can be reduced as compared to the case where a semi-insulating substrate is used. Further, as for the laser 10 and the modulator 11, as in the case of the conventional semiconductor optical integrated device using the conductive substrate 21, a driving method using the electrode 90 on the back surface can be adopted.
  • the directional coupler 14 can be provided so as to be adjacent to an arbitrary position of the waveguide provided in the semiconductor optical integrated device 100. Therefore, the degree of freedom of the position of the photodiode 12 can be improved.
  • the photodiode 12 is provided in front of the laser 10.
  • the photodiode 12 may be provided at another position on the conductive substrate 21 as long as it can receive the output light of the laser 10.
  • the photodiode 12 may be provided behind the laser 10.
  • the photodiode 12 may receive the light emitted to the rear side of the laser 10.
  • the photodiode 12 may receive all the light emitted to the rear side of the laser 10.
  • the photodiode 12 may be provided between the laser 10 and the modulator 11. That is, the photodiode 12 may be an in-line photodiode.
  • the structures of the laser 10, the modulator 11, the photodiode 12, and the waveguides 13a, 13b, and 13c are not limited to those shown in the present embodiment.
  • any laser and modulator provided on the conductive substrate 21 can be employed.
  • any photodiode 12 any photodiode electrically separated from the conductive substrate 21 by the semi-insulating semiconductor layer 50 can be adopted.
  • the contact layer 51 and the cladding layer 52 may not extend along the end face 43 of the waveguide 13c.
  • the modulator 11 may not be provided.
  • the present embodiment can be applied to any semiconductor optical integrated device in which a laser and a photodiode are provided on the conductive substrate 21.
  • the semiconductor optical integrated devices according to the following embodiments have many points in common with the first embodiment, and therefore, the differences with the first embodiment will be mainly described.
  • FIG. 90 is a plan view of the semiconductor optical integrated device 300 according to the second embodiment.
  • the semiconductor optical integrated device 300 differs from the first embodiment in the structure of the photodiode 312.
  • the other structure is the same as that of the first embodiment.
  • FIG. 91 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 300 of FIG. 90 along the I-II straight line.
  • FIG. 92 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 300 of FIG. 90 along the III-IV straight line.
  • the structures of the laser 10 and the modulator 11 are the same as in the first embodiment.
  • FIG. 93 is a cross-sectional view obtained by cutting the semiconductor optical integrated device of FIG. 90 along the V-VI straight line.
  • FIG. 93 is a cross-sectional view of the photodiode 312.
  • the semi-insulating semiconductor layer 50 is provided on the conductive substrate 21.
  • the photodiode 312 is provided on the semi-insulating semiconductor layer 50.
  • a contact layer 351 is provided on the semi-insulating semiconductor layer 50.
  • the contact layer 351 is formed of p-InGaAsP.
  • a cladding layer 352 is provided on the contact layer 351.
  • the cladding layer 352 is formed of p-InP.
  • a light absorbing layer 353 is provided on the cladding layer 352.
  • the light absorption layer 353 is formed of i-InGaAsP.
  • a cladding layer 354 is provided on the light absorption layer 353.
  • the cladding layer 354 is formed of n-InP.
  • a contact layer 355 is provided on the cladding layer 354.
  • the contact layer 355 is formed of n-InGaAsP.
  • the photodiode 312 has a p-InP cladding layer, an i-InGaAsP light absorption layer, and an n-InP cladding layer in order from the conductive substrate 21 side.
  • a contact hole 380 extending from the top surface of the contact layer 355 to the contact layer 351 is formed.
  • the contact layer 351 is exposed by the contact hole 380.
  • Grooves 15 are provided on both sides of the photodiode 312.
  • the groove 15 extends from the upper surface side of the photodiode 312 to the conductive substrate 21.
  • An insulating film 81 is provided on the top surface of the contact layer 355.
  • the insulating film 81 extends along the groove 15 and the contact hole 380.
  • the insulating film 81 is provided with an opening 383 for exposing the contact layer 355.
  • the insulating film 81 is provided with an opening 382 for exposing the contact layer 351.
  • An anode 87 a and a cathode 87 b are provided on the insulating film 81.
  • the anode 87 a fills the opening 383 and contacts the contact layer 355.
  • the cathode 87 b fills the opening 382 and contacts the contact layer 351.
  • the anode 87 a of the photodiode 312 and the cathode 87 b of the photodiode 312 are drawn out from the upper surface side of the photodiode 312.
  • FIG. 94 is a cross-sectional view obtained by cutting the semiconductor optical integrated device 300 of FIG. 90 along the line VII-VIII.
  • FIG. 94 is a cross-sectional view of the connection portion between the photodiode 312 and the waveguide 13c.
  • the structures of the waveguides 13a, 13b and 13c are the same as in the first embodiment.
  • the semi-insulating semiconductor layer 50, the contact layer 351, and the cladding layer 352 extend along the end face 43 of the waveguide 13c.
  • the end face 43 faces the light receiving surface 319 of the photodiode 12.
  • the waveguide 13 c and the photodiode 12 are separated by the semi-insulating semiconductor layer 50.
  • An insulating film 81 is provided on the cladding layer 42 and the contact layer 355.
  • the manufacturing method of the semiconductor optical integrated device 300 is the same as that of the first embodiment up to the step of etching the semiconductor layers constituting the waveguides 13a, 13b and 13c shown in FIGS.
  • FIG. 95 is a plan view showing a state in which the semiconductor layer and the semi-insulating semiconductor layer constituting the photodiode 312 in Embodiment 2 are grown.
  • FIG. 96 is a cross-sectional view obtained by cutting FIG. 95 along a line I-II.
  • the semi-insulating semiconductor layer 50, the contact layer 351, the cladding layer 352, the light absorption layer 353, the cladding layer 354 and the contact layer 355 are formed by selective growth using the insulating film 28b as a mask. These semiconductor layers are formed to surround the portion covered by the insulating film 28b.
  • the semi-insulating semiconductor layer 50 is formed not only on the upper surface of the conductive substrate 21 but also on the side surface formed by etching the semiconductor layer constituting the waveguide 13 c.
  • the side surface formed by the etching of the semiconductor layer constituting the waveguide 13 c includes the end surface 43.
  • FIG. 97 is a plan view showing a state in which the semiconductor layer constituting the photodiode 312 in Embodiment 2 is etched.
  • FIG. 98 is a cross-sectional view obtained by cutting FIG. 97 along a line I-II.
  • FIG. 99 is a cross-sectional view obtained by cutting FIG. 97 along a III-IV straight line.
  • FIG. 100 is a cross-sectional view obtained by cutting FIG. 97 along the V-VI straight line.
  • the insulating film 28 c is formed on the cladding layers 27, 30, 42 and the contact layer 355.
  • the insulating film 28b is provided in the laser formation portion 10a, the modulator formation portion 11a, the regions for forming the waveguides 13a, 13b, 13c, and the photodiode formation portion 312a.
  • the photodiode forming portion 312 a indicates a region where the photodiode 312 is formed on the conductive substrate 21.
  • dry etching is performed halfway through the semi-insulating semiconductor layer 50 using the insulating film 28c as a mask. Thereby, waveguides 13a, 13b and 13c are formed. Also, the directional coupler 14 is formed.
  • FIG. 101 is a plan view showing the state in which the embedded growth is performed in the second embodiment.
  • FIG. 102 is a cross-sectional view obtained by cutting FIG. 101 along a line I-II.
  • FIG. 103 is a cross-sectional view obtained by cutting FIG. 101 along a III-IV straight line.
  • FIG. 104 is a cross-sectional view obtained by cutting FIG. 101 along a V-VI straight line.
  • the structure of the buried growth layer is the same as that of the first embodiment.
  • the side surfaces of the waveguides 13a, 13b, 13c are covered with the buried growth layer. Further, the side surfaces of the semiconductor layer constituting the laser 10, the semiconductor layer constituting the modulator 11, and the semiconductor layer constituting the photodiode 312 are covered with the buried growth layer.
  • FIG. 105 is a plan view showing a state in which the contact layer is grown in the second embodiment.
  • FIG. 106 is a cross-sectional view obtained by cutting FIG. 105 along a line I-II.
  • FIG. 107 is a cross-sectional view obtained by cutting FIG. 105 along a III-IV straight line.
  • FIG. 108 is a cross-sectional view obtained by cutting FIG. 105 along the V-VI straight line.
  • the insulating film 28c is removed.
  • a contact layer is crystal-grown on the entire surface of the conductive substrate 21.
  • FIG. 109 is a plan view showing a state in which the contact layer is etched in the second embodiment.
  • FIG. 110 is a cross-sectional view obtained by cutting FIG. 109 along the line I-II.
  • FIG. 111 is a cross-sectional view obtained by cutting FIG. 109 along a III-IV straight line.
  • FIG. 112 is a cross-sectional view obtained by cutting FIG. 109 along the V-VI straight line.
  • the p-InGaAs layer 72 is etched so as to leave a portion of the p-InGaAs layer 72 disposed immediately below the electrode.
  • the cladding layer 71 and the p-InGaAs layer 72 are all removed.
  • the p-InGaAs layer 72 is left on the laser forming portion 10a and the modulator forming portion 10b.
  • FIG. 113 is a plan view showing a state in which a mesa is formed in the second embodiment.
  • FIG. 114 is a cross-sectional view obtained by cutting FIG. 113 along a line I-II.
  • FIG. 115 is a cross-sectional view obtained by cutting FIG. 113 along a III-IV straight line.
  • FIG. 116 is a cross-sectional view obtained by cutting FIG. 113 along the V-VI straight line.
  • FIG. 117 is a cross-sectional view obtained by cutting FIG. 113 along line VII-VIII.
  • grooves 15 are formed on both sides of the laser forming portion 10a, on both sides of the modulator forming portion 11a, and on both sides of the waveguides 13a, 13b and 13c. Further, the groove 15 is formed so as to surround the photodiode formation portion 312a except for the connection portion with the waveguide 13c.
  • FIG. 118 is a plan view showing a state in which the contact hole 380 is formed in the photodiode forming portion 312a in the second embodiment.
  • FIG. 119 is a cross-sectional view obtained by cutting FIG. 118 along line I-II.
  • FIG. 120 is a cross-sectional view obtained by cutting FIG. 118 along a III-IV straight line.
  • FIG. 121 is a cross-sectional view obtained by cutting FIG. 118 along the V-VI straight line.
  • FIG. 122 is a cross-sectional view obtained by cutting FIG. 118 along line VII-VIII.
  • the contact hole 380 extends in a longitudinal direction in a light incident direction to the photodiode 312 in plan view.
  • the contact hole 380 is formed from the top surface of the contact layer 355 to a depth reaching the contact layer 351.
  • the insulating film 81 is formed on the entire surface of the conductive substrate 21.
  • the insulating film 81 covers the side and bottom of the groove 15 and the side and bottom of the contact hole 380.
  • FIG. 123 is a plan view showing a state in which the openings 84, 85, 382, 383 are formed in the insulating film 81 in the second embodiment.
  • FIG. 124 is a cross-sectional view obtained by cutting FIG. 123 along a line I-II.
  • FIG. 125 is a cross-sectional view obtained by cutting FIG. 123 along a III-IV straight line.
  • FIG. 126 is a cross-sectional view obtained by cutting FIG. 123 along the V-VI straight line.
  • FIG. 127 is a cross-sectional view obtained by cutting FIG. 123 along line VII-VIII.
  • the opening 382 is formed to expose the contact layer 351 at the bottom of the contact hole 380.
  • the opening 383 is formed to expose the contact layer 355 in the photodiode formation portion 312a.
  • the structure of the openings 84 and 85 is the same as that of the first embodiment.
  • the electrode 87 is formed on the insulating film 81.
  • the structure of the electrode 87 in the laser forming portion 10a and the modulator forming portion 11a is the same as that of the first embodiment.
  • the anode 87 a is provided so as to fill the opening 383 in the photodiode formation portion 312 a and to be in contact with the contact layer 355.
  • the cathode 87 b is provided so as to fill the opening 382 in the photodiode formation portion 312 a and to be in contact with the contact layer 351.
  • the backside process is the same as that of the first embodiment. From the above, the semiconductor optical integrated device 300 shown in FIGS. 90 to 94 is formed. Also in the second embodiment, the same effect as that of the first embodiment can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本願の発明に係る半導体光集積素子は、導電性基板と、導電性基板に設けられたレーザと、導電性基板の上に設けられた半絶縁性半導体層と、半絶縁性半導体層の上に設けられたフォトダイオードと、導電性基板の上に設けられ、レーザの出力光をフォトダイオードに導く導波路と、を備え、フォトダイオードのアノードと、フォトダイオードのカソードは、フォトダイオードの上面側から引き出され、導波路とフォトダイオードとは、半絶縁性半導体層で分離されている。

Description

半導体光集積素子
 この発明は、半導体光集積素子に関する。
 特許文献1には、光導波路に沿って半導体レーザ部と変調器部が設けられた半導体レーザが開示されている。光導波路の一部には、光モニタ部が設けられている。光導波路、半導体レーザ、変調器部および光モニタ部は半導体基板に設けられている。また、変調器部、光モニタ部および半導体レーザ部はいずれも同一の光導波路に対して構成されているため、カソードが共通となる。カソード電極は半導体基板の裏面に設けられる。共通端子であるカソード電極はグランドとなる。
日本特開平11-186661号公報
 光通信システムの光源として半導体レーザを用いる場合、一般に、半導体レーザの光出力をモニタするフォトダイオードが必要とされる。モジュール等に半導体レーザを実装する場合、半導体レーザの後方に別チップのフォトダイオードを配置することがある。しかし、別チップのフォトダイオードを使用することにより、製造コストの増加およびアセンブリによる工程数の増加が生じる可能性がある。また、フォトダイオードを配置するスペースによりモジュール容量が大きくなる可能性がある。
 そこで、特許文献1のように、半導体レーザと同一基板にフォトダイオードを集積化する例が報告されている。特許文献1では、半導体基板としてn型InPを用いている。このとき、モニタ部であるフォトダイオードの上面側の電極の極性はアノードとなる。カソードがグランドの場合、フォトダイオードの上面側の電極に印加する電圧は負となる。ここで、モジュールの構成として、フォトダイオードの上面側の電極に、正の極性の電源を接続したい場合がある。このような場合、特許文献1の構成では不都合が生じる可能性がある。
 これに対し、半絶縁性InP基板上にフォトダイオードを形成し、フォトダイオードの上面側にフォトダイオードのアノードとカソードとを形成する構造が考えられる。この場合、半絶縁性InP基板上に集積されたレーザおよび変調器も、上面側に両方の極性の電極が設けられるものと考えられる。従って、導電性基板を用いた場合と比較して、電極端子が増加するという課題がある。
 また、フォトダイオードとレーザをモノリシック集積した半導体装置では、フォトダイオードとレーザに逆バイアスが印加されることがある。このとき生じる無効電流による特性の低下を抑制するために、フォトダイオードとレーザとを電気的に分離することが必要とされる場合がある。
 本発明は上述の問題を解決するためになされたものであり、その目的は、フォトダイオードに接続する電源の極性の自由度が向上し、特性を向上できる半導体光集積素子を得ることである。
 本願の発明に係る半導体光集積素子は、導電性基板と、該導電性基板に設けられたレーザと、該導電性基板の上に設けられた半絶縁性半導体層と、該半絶縁性半導体層の上に設けられたフォトダイオードと、該導電性基板の上に設けられ、該レーザの出力光を該フォトダイオードに導く導波路と、を備え、該フォトダイオードのアノードと、該フォトダイオードのカソードは、該フォトダイオードの上面側から引き出され、該導波路と該フォトダイオードとは、該半絶縁性半導体層で分離されている。
 本願の発明に係る半導体光集積素子では、導電性基板とフォトダイオードとが半絶縁性半導体層により電気的に分離される。このため、フォトダイオードの上面側からアノードとカソードの両方を引き出せる。従って、フォトダイオードに接続する電源の極性の自由度が向上する。さらに、導波路とフォトダイオードとが、半絶縁性半導体層で分離されることで、無効電流を抑制できる。従って、特性を向上できる。
実施の形態1に係る半導体光集積素子の平面図である。 図1の半導体光集積素子をI-II直線に沿って切断することで得られる断面図である。 図1の半導体光集積素子をIII-IV直線に沿って切断することで得られる断面図である。 図1の半導体光集積素子をV-VI直線に沿って切断することで得られる断面図である。 図1の半導体光集積素子をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態1の半導体光集積素子の製造方法を説明する平面図である。 図6をI-II直線に沿って切断することで得られる断面図である。 実施の形態1で回折格子を形成した状態を示す平面図である。 図8をI-II直線に沿って切断することで得られる断面図である。 実施の形態1でクラッド層を形成した状態を示す平面図である。 図10をI-II直線に沿って切断することで得られる断面図である。 実施の形態1でレーザを構成する半導体層をエッチングした状態を示す平面図である。 図12をI-II直線に沿って切断することで得られる断面図である。 実施の形態1で変調器を構成する半導体層を成長させた状態を示す平面図である。 図14をI-II直線に沿って切断することで得られる断面図である。 実施の形態1で変調器を構成する半導体層をエッチングした状態を示す平面図である。 図16をI-II直線に沿って切断することで得られる断面図である。 図16をIII-IV直線に沿って切断することで得られる断面図である。 実施の形態1で導波路を構成する半導体層を成長させた状態を示す平面図である。 図19をI-II直線に沿って切断することで得られる断面図である。 図19をIII-IV直線に沿って切断することで得られる断面図である。 実施の形態1で導波路を構成する半導体層をエッチングした状態を示す平面図である。 図22をI-II直線に沿って切断することで得られる断面図である。 実施の形態1でフォトダイオードを構成する半導体層と半絶縁性半導体層50とを成長させた状態を示す平面図である。 図24をI-II直線に沿って切断することで得られる断面図である。 実施の形態1でフォトダイオードを構成する半導体層をエッチングした状態を示す平面図である。 図26をI-II直線に沿って切断することで得られる断面図である。 図26をIII-IV直線に沿って切断することで得られる断面図である。 図26をV-VI直線に沿って切断することで得られる断面図である。 実施の形態1で埋め込み成長を行った状態を示す平面図である。 図30をI-II直線に沿って切断することで得られる断面図である。 図30をIII-IV直線に沿って切断することで得られる断面図である。 図30をV-VI直線に沿って切断することで得られる断面図である。 実施の形態1でコンタクト層を成長させた状態を示す平面図である。 図34をI-II直線に沿って切断することで得られる断面図である。 図34をIII-IV直線に沿って切断することで得られる断面図である。 図34をV-VI直線に沿って切断することで得られる断面図である。 実施の形態1でコンタクト層をエッチングした状態を示す平面図である。 図38をI-II直線に沿って切断することで得られる断面図である。 図38をIII-IV直線に沿って切断することで得られる断面図である。 図38をV-VI直線に沿って切断することで得られる断面図である。 実施の形態1でメサを形成した状態を示す平面図である。 図42をI-II直線に沿って切断することで得られる断面図である。 図42をIII-IV直線に沿って切断することで得られる断面図である。 図42をV-VI直線に沿って切断することで得られる断面図である。 図42をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態1でフォトダイオード形成部にコンタクトホールを形成した状態を示す平面図である。 図47をI-II直線に沿って切断することで得られる断面図である。 図47をIII-IV直線に沿って切断することで得られる断面図である。 図47をV-VI直線に沿って切断することで得られる断面図である。 図47をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態1で絶縁膜に開口を形成した状態を示す平面図である。 図52をI-II直線に沿って切断することで得られる断面図である。 図52をIII-IV直線に沿って切断することで得られる断面図である。 図52をV-VI直線に沿って切断することで得られる断面図である。 図52をVII-VIII直線に沿って切断することで得られる断面図である。 比較例に係る半導体光集積素子の平面図である。 図57の半導体光集積素子をI-II直線に沿って切断することで得られる断面図である。 図57の半導体光集積素子をIII-IV直線に沿って切断することで得られる断面図である。 図57の半導体光集積素子をV-VI直線に沿って切断することで得られる断面図である。 図57の半導体光集積素子をVII-VIII直線に沿って切断することで得られる断面図である。 比較例でフォトダイオードを構成する半導体層を成長させた状態を示す平面図である。 図62をI-II直線に沿って切断することで得られる断面図である。 比較例でフォトダイオードを構成する半導体層をエッチングした状態を示す平面図である。 図64をI-II直線に沿って切断することで得られる断面図である。 図64をIII-IV直線に沿って切断することで得られる断面図である。 図64をV-VI直線に沿って切断することで得られる断面図である。 比較例で埋め込み成長を行った状態を示す平面図である。 図68をI-II直線に沿って切断することで得られる断面図である。 図68をIII-IV直線に沿って切断することで得られる断面図である。 図68をV-VI直線に沿って切断することで得られる断面図である。 比較例でコンタクト層を成長させた状態を示す平面図である。 図72をI-II直線に沿って切断することで得られる断面図である。 図72をIII-IV直線に沿って切断することで得られる断面図である。 図72をV-VI直線に沿って切断することで得られる断面図である。 比較例でコンタクト層をエッチングした状態を示す平面図である。 図76をI-II直線に沿って切断することで得られる断面図である。 図76をIII-IV直線に沿って切断することで得られる断面図である。 図76をV-VI直線に沿って切断することで得られる断面図である。 比較例でメサを形成した状態を示す平面図である。 図80をI-II直線に沿って切断することで得られる断面図である。 図80をIII-IV直線に沿って切断することで得られる断面図である。 図80をV-VI直線に沿って切断することで得られる断面図である。 図80をVII-VIII直線に沿って切断することで得られる断面図である。 比較例で絶縁膜に開口を形成した状態を示す平面図である。 図85をI-II直線に沿って切断することで得られる断面図である。 図85をIII-IV直線に沿って切断することで得られる断面図である。 図85をV-VI直線に沿って切断することで得られる断面図である。 図85をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態2に係る半導体光集積素子の平面図である。 図90の半導体光集積素子をI-II直線に沿って切断することで得られる断面図である。 図90の半導体光集積素子をIII-IV直線に沿って切断することで得られる断面図である。 図90の半導体光集積素子をV-VI直線に沿って切断することで得られる断面図である。 図90の半導体光集積素子をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態2でフォトダイオードを構成する半導体層と半絶縁性半導体層とを成長させた状態を示す平面図である。 図95をI-II直線に沿って切断することで得られる断面図である。 実施の形態2でフォトダイオードを構成する半導体層をエッチングした状態を示す平面図である。 図97をI-II直線に沿って切断することで得られる断面図である。 図97をIII-IV直線に沿って切断することで得られる断面図である。 図97をV-VI直線に沿って切断することで得られる断面図である。 実施の形態2で埋め込み成長を行った状態を示す平面図である。 図101をI-II直線に沿って切断することで得られる断面図である。 図101をIII-IV直線に沿って切断することで得られる断面図である。 図101をV-VI直線に沿って切断することで得られる断面図である。 実施の形態2でコンタクト層を成長させた状態を示す平面図である。 図105をI-II直線に沿って切断することで得られる断面図である。 図105をIII-IV直線に沿って切断することで得られる断面図である。 図105をV-VI直線に沿って切断することで得られる断面図である。 実施の形態2でコンタクト層をエッチングした状態を示す平面図である。 図109をI-II直線に沿って切断することで得られる断面図である。 図109をIII-IV直線に沿って切断することで得られる断面図である。 図109をV-VI直線に沿って切断することで得られる断面図である。 実施の形態2でメサを形成した状態を示す平面図である。 図113をI-II直線に沿って切断することで得られる断面図である。 図113をIII-IV直線に沿って切断することで得られる断面図である。 図113をV-VI直線に沿って切断することで得られる断面図である。 図113をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態2でフォトダイオード形成部にコンタクトホールを形成した状態を示す平面図である。 図118をI-II直線に沿って切断することで得られる断面図である。 図118をIII-IV直線に沿って切断することで得られる断面図である。 図118をV-VI直線に沿って切断することで得られる断面図である。 図118をVII-VIII直線に沿って切断することで得られる断面図である。 実施の形態2で絶縁膜に開口を形成した状態を示す平面図である。 図123をI-II直線に沿って切断することで得られる断面図である。 図123をIII-IV直線に沿って切断することで得られる断面図である。 図123をV-VI直線に沿って切断することで得られる断面図である。 図123をVII-VIII直線に沿って切断することで得られる断面図である。
 本発明の実施の形態に係る半導体光集積素子について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、実施の形態1に係る半導体光集積素子100の平面図である。半導体光集積素子100は、導電性基板を備える。導電性基板にはレーザ10が設けられている。レーザ10は半導体レーザである。また、導電性基板には、変調器11とフォトダイオード12が設けられる。導電性基板には、レーザ10と変調器11とフォトダイオード12とが集積されている。
 導電性基板にはさらに導波路13a、13b、13cが設けられる。導波路13aは、レーザ10の出力と変調器11の入力を接続する。導波路13bは、変調器11の出力と半導体光集積素子100の出力を接続する。導波路13cは、レーザ10の出力とフォトダイオード12の受光面との間に設けられる。導波路13cは、レーザ10の出力光をフォトダイオード12に導く。
 導波路13cのレーザ10側の端部には、方向性結合器14が設けられる。方向性結合器14は、レーザ10の出力光の一部を導波路13cに取り出せるように、導波路13ccを導波路13aに近接させることで形成される。方向性結合器14と導波路13aとの距離は数μmである。
 レーザ10、変調器11、フォトダイオード12および導波路13a、13b、13cの周囲には溝15が設けられている。レーザ10の上面側、変調器11の上面側およびフォトダイオード12の上面側には、電極87が設けられている。電極87はコンタクト電極である。電極87のうちフォトダイオード12の上面側に設けられた部分は、フォトダイオード12のアノード87aとカソード87bである。
 半導体光集積素子100の上面のうち電極87以外の部分には、絶縁膜81が設けられる。なお、図1では絶縁膜81の下に設けられたレーザ10、変調器11、フォトダイオード12および導波路13a、13b、13cの形状が、便宜上表されている。
 図2は、図1の半導体光集積素子100をI-II直線に沿って切断することで得られる断面図である。図2はレーザ10の断面図である。導電性基板21は例えば、導電性のInPから形成される。本実施の形態では、導電性基板21はn-InPから形成される。導電性基板21の上には活性層23が設けられる。活性層23の上にはクラッド層27が設けられる。クラッド層27はp-InPから形成される。なお、図1では便宜上、レーザ10を構成する一部の層が省略されている。
 活性層23とクラッド層27の両側には、埋め込み成長層が設けられる。埋め込み成長層は、p-InP層61と、p-InP層61の上に設けられたn-InP層62と、n-InP層62の上に設けられたp-InP層63とを備える。
 クラッド層27とp-InP層63の上には、コンタクト層が設けられる。コンタクト層は、クラッド層71と、クラッド層71の上に設けられたp-InGaAs層72とを備える。クラッド層71はp-InPから形成される。
 レーザ10の両側には溝15が設けられる。溝15はレーザ10の上面側から導電性基板21まで設けられる。コンタクト層の上面には絶縁膜81が設けられる。絶縁膜81は溝15に沿って伸びる。絶縁膜81にはp-InGaAs層72を露出させる開口84が設けられる。絶縁膜81の上には電極87が設けられる。電極87は開口84を埋め込み、p-InGaAs層72と接触する。
 レーザ10は、導電性基板21の裏面に電極90を有する。ここで、裏面は、導電性基板21のフォトダイオード12が設けられた側と反対側の面である。
 図3は、図1の半導体光集積素子100をIII-IV直線に沿って切断することで得られる断面図である。図3は変調器11の断面図である。導電性基板21の上には、変調器吸収層29が設けられる。変調器吸収層29の上には、クラッド層30が設けられる。クラッド層30は、p-InPから形成される。レーザ10と同様に、変調器吸収層29とクラッド層30の両側には、埋め込み成長層が設けられる。
 レーザ10と同様に、クラッド層30とp-InP層63の上には、コンタクト層が設けられる。変調器11の両側には溝15が設けられる。溝15は変調器11の上面側から導電性基板21まで設けられる。コンタクト層の上面には絶縁膜81が設けられる。絶縁膜81は溝15に沿って伸びる。絶縁膜81にはp-InGaAs層72を露出させる開口85が設けられる。絶縁膜81の上には電極87が設けられる。電極87は開口85を埋め込み、p-InGaAs層72と接触する。
 図4は、図1の半導体光集積素子100をV-VI直線に沿って切断することで得られる断面図である。図4は、フォトダイオード12の断面図である。導電性基板21の上には半絶縁性半導体層50が設けられる。フォトダイオード12は半絶縁性半導体層50の上に設けられている。
 半絶縁性半導体層50は、例えばFeがドープされたInPから形成される。半絶縁性半導体層50は、Feが電子を捕獲することでInPよりも高抵抗となる。これに限らず、半絶縁性半導体層50は、RuまたはTiをドープしたInPで形成されても良い。この場合、RuまたはTiが正孔を捕獲することで、半絶縁性半導体層50は高抵抗となる。
 半絶縁性半導体層50の上には、コンタクト層51が設けられる。コンタクト層51はn-InGaAsPから形成される。コンタクト層51の上にはクラッド層52が設けられる。クラッド層52はn-InPから形成される。クラッド層52の上には光吸収層53が設けられる。光吸収層53はi-InGaAsPから形成される。光吸収層53の上にはクラッド層54が設けられる。クラッド層54はp-InPから形成される。このように、フォトダイオード12は、導電性基板21側から順に、n-InPクラッド層とi-InGaAsP光吸収層とp-InPクラッド層とを有する。
 クラッド層54の上には、コンタクト層が設けられる。コンタクト層は、クラッド層71と、クラッド層71の上に設けられたp-InGaAs層72とを備える。フォトダイオード12には、クラッド層71の上面からコンタクト層51に至るコンタクトホール80が形成される。コンタクトホール80によりコンタクト層51が露出する。
 フォトダイオード12の両側には溝15が設けられる。溝15はフォトダイオード12の上面側から導電性基板21まで伸びる。クラッド層71およびp-InGaAs層72の上面には絶縁膜81が設けられる。絶縁膜81は溝15およびコンタクトホール80に沿って伸びる。絶縁膜81にはp-InGaAs層72を露出させる開口83が設けられる。さらに、コンタクトホール80の底面において、絶縁膜81にはコンタクト層51を露出させる開口82が設けられる。
 絶縁膜81の上にはアノード87aとカソード87bが設けられる。アノード87aは開口83を埋め込み、p-InGaAs層72と接触する。カソード87bは開口82を埋め込み、コンタクト層51と接触する。フォトダイオード12のアノード87aと、フォトダイオード12のカソード87bは、フォトダイオード12の上面側から引き出される。ここで、フォトダイオード12の上面は、フォトダイオード12の半絶縁性半導体層50と接触する側と反対側の面である。
 図5は、図1の半導体光集積素子100をVII-VIII直線に沿って切断することで得られる断面図である。図5は、フォトダイオード12と導波路13cとの接続部の断面図である。導波路13cは、導電性基板21の上に設けられる。導波路13cにおいて、導電性基板21の上には、透明導波路層41が設けられる。透明導波路層41はi-InGaAsPから形成される。透明導波路層41の上にはクラッド層42が設けられる。クラッド層42はp-InPから形成される。導波路13a、13bの構造は、導波路13cと同様である。
 半絶縁性半導体層50、コンタクト層51およびクラッド層52は、導波路13cの端面43に沿って伸びる。端面43は導波路13cの出射端面であり、フォトダイオード12の受光面19に面している。半絶縁性半導体層50は、導電性基板21の上面から端面43まで連続して形成されている。導波路13cとフォトダイオード12とは、半絶縁性半導体層50で分離されている。
 ここで、半絶縁性半導体層50は半絶縁性であり、導波路13cとフォトダイオード12とを電気的に分離する。さらに、半絶縁性半導体層50はレーザ10の出力光をフォトダイオード12に透過させる。
 クラッド層42とクラッド層54の上には、クラッド層71が設けられる。クラッド層71の上には絶縁膜81が設けられる。
 次に、半導体光集積素子100の動作を説明する。レーザ10から出射された出力光は導波路13aによって変調器11に導かれる。また、レーザ10の出力光の一部は、方向性結合器14によって分岐され、導波路13cによってフォトダイオード12に導かれる。導波路13aに導波路13cを近づけることで、徐々に光が結合し、出力光の一部を導波路13cに取り出せる。この結果、レーザ10の出力光はフォトダイオード12でモニタされる。レーザ10の出力光は、フォトダイオード12を集積化していない場合、全て変調器11に入力される。
 変調器11では、MQW(Multi Quantum Well)に逆方向に印加される電界により光の吸収量が変化する。変調器11に電界が印加されていない時は変調器11を出力光が透過する。変調器11に電界が印加されている時は、変調器11を出力光が透過しない。これによりレーザ10の出力光を変調できる。変調器11からの出力光は、導波路13bによって半導体光集積素子100の出力に導かれる。
 フォトダイオード12に導かれた光は光吸収層53で吸収される。この結果、フォトダイオード12に接続した回路に光電流が流れる。なお、フォトダイオード12には、レーザ10とは逆方向に電圧が印加される。光電流の量がフォトダイオード12で受光した光の量として検出される。半導体光集積素子100の初期動作時に、目標とする光出力が得られる場合のフォトダイオード12の光電流の量を調べておく。この光電流の量になるようにレーザ10への注入電流を調整すると、光出力を目標値と一致するように維持できる。半導体光集積素子100は、例えば光通信システムにおいて光源として用いられる。
 次に、本実施の形態の半導体光集積素子100の製造方法を説明する。図6は、実施の形態1の半導体光集積素子100の製造方法を説明する平面図である。図7は、図6をI-II直線に沿って切断することで得られる断面図である。まず、活性層を形成する。ここでは、導電性基板21の上にクラッド層22、活性層23、クラッド層24、回折格子層25、キャップ層26を下からこの順で形成する。
 クラッド層22は、n-InPから形成される。クラッド層24はp-InPから形成される。キャップ層26はp-InPから形成される。クラッド層22、活性層23、クラッド層24、回折格子層25、キャップ層26は導電性基板21の上面の全面に設けられる。クラッド層22、活性層23、クラッド層24、回折格子層25、キャップ層26は結晶成長により形成される。
 次に回折格子を形成する。図8は、実施の形態1で回折格子を形成した状態を示す平面図である。図9は、図8をI-II直線に沿って切断することで得られる断面図である。回折格子は、回折格子層25、キャップ層26を周期的にエッチングすることで形成する。
 次に、クラッド層27を形成する。図10は、実施の形態1でクラッド層27を形成した状態を示す平面図である。図11は、図10をI-II直線に沿って切断することで得られる断面図である。クラッド層27は、キャップ層26の上に設けられる。クラッド層27は結晶成長により形成される。クラッド層27は回折格子層25を埋め込む。クラッド層27はキャップ層26の側面および上面を覆う。なお、図10では回折格子層25の位置が、便宜上破線で示されている。
 次に、レーザ10を構成する半導体層をエッチングする。ここでレーザ10を構成する半導体層は、クラッド層22、活性層23、クラッド層24、回折格子層25、キャップ層26である。図12は、実施の形態1でレーザ10を構成する半導体層をエッチングした状態を示す平面図である。図13は、図12をI-II直線に沿って切断することで得られる断面図である。
 まず、クラッド層27の上に絶縁膜28を形成する。絶縁膜28はレーザ形成部10aの上に設けられる。ここで、レーザ形成部10aは、導電性基板21上のレーザ10が形成される領域を示す。次に、絶縁膜28をマスクとして活性層23、クラッド層24、回折格子層25、キャップ層26、クラッド層27をエッチングする。これにより、レーザ形成部10a以外の半導体層がエッチングされる。なお、図12以降の図では、便宜上、キャップ層26は省略されることがある。
 次に、変調器11を構成する半導体層を成長させる。変調器11を構成する半導体層は、変調器吸収層29とクラッド層30である。図14は、実施の形態1で変調器11を構成する半導体層を成長させた状態を示す平面図である。図15は、図14をI-II直線に沿って切断することで得られる断面図である。ここでは、クラッド層22の上に変調器吸収層29、クラッド層30を下からこの順で形成する。変調器吸収層29、クラッド層30は、絶縁膜28をマスクとして、選択成長により形成する。変調器吸収層29、クラッド層30は、レーザ形成部10aを取り囲むように形成される。
 次に、変調器11を構成する半導体層をエッチングする。図16は、実施の形態1で変調器11を構成する半導体層をエッチングした状態を示す平面図である。図17は、図16をI-II直線に沿って切断することで得られる断面図である。図18は、図16をIII-IV直線に沿って切断することで得られる断面図である。
 ここでは、まず、クラッド層27およびクラッド層30の上に絶縁膜28aを形成する。絶縁膜28aはレーザ形成部10aの上と、変調器形成部11aの上に設けられる。ここで、変調器形成部11aは、導電性基板21上の変調器11が形成される領域を示す。次に、絶縁膜28aをマスクとして変調器吸収層29およびクラッド層30をエッチングする。これにより、レーザ形成部10aと変調器形成部11a以外の半導体層がエッチングされる。なお、図17以降の図では、便宜上、回折格子層25、クラッド層24、クラッド層22が省略されることがある。
 次に、導波路13a、13b、13cを構成する半導体層を形成する。導波路13a、13b、13cを構成する半導体層は、透明導波路層41とクラッド層42である。図19は、実施の形態1で導波路13a、13b、13cを構成する半導体層を成長させた状態を示す平面図である。図20は、図19をI-II直線に沿って切断することで得られる断面図である。図21は、図19をIII-IV直線に沿って切断することで得られる断面図である。
 透明導波路層41とクラッド層42は、絶縁膜28aをマスクとして、選択成長により形成する。透明導波路層41とクラッド層42は、レーザ形成部10aおよび変調器形成部11aを取り囲むように形成される。
 導波路13a、13b、13cを構成する半導体層をエッチングする。図22は、実施の形態1で導波路13a、13b、13cを構成する半導体層をエッチングした状態を示す平面図である。図23は、図22をI-II直線に沿って切断することで得られる断面図である。ここでは、まず、クラッド層27、30、42の上に絶縁膜28bを形成する。絶縁膜28bはレーザ形成部10aと、変調器形成部11aと、導波路13a、13b、13cを形成する領域に設けられる。次に、絶縁膜28bをマスクとして透明導波路層41とクラッド層42とをエッチングする。
 次に、フォトダイオード12を構成する半導体層と半絶縁性半導体層50とを形成する。フォトダイオード12を構成する半導体層は、コンタクト層51、クラッド層52、光吸収層53およびクラッド層54である。図24は、実施の形態1でフォトダイオード12を構成する半導体層と半絶縁性半導体層50とを成長させた状態を示す平面図である。図25は、図24をI-II直線に沿って切断することで得られる断面図である。
 半絶縁性半導体層50、コンタクト層51、クラッド層52、光吸収層53およびクラッド層54は、絶縁膜28bをマスクとして、選択成長により形成する。半絶縁性半導体層50、コンタクト層51、クラッド層52、光吸収層53およびクラッド層54は、絶縁膜28bで覆われた部分を取り囲むように形成される。
 なお、図25に示されるように、半絶縁性半導体層50は導電性基板21の上面だけではなく、導波路13cを構成する半導体層のエッチングにより形成された側面にも形成される。導波路13cを構成する半導体層のエッチングにより形成された側面は、端面43を含む。半絶縁性半導体層50、コンタクト層51、クラッド層52は導波路13cの側面にも設けられるため、フォトダイオード12を構成する半導体層の表面に露出する。図24において、便宜上、半絶縁性半導体層50、コンタクト層51、クラッド層52の表面に露出した部分は省略されている。
 次に、フォトダイオード12を構成する半導体層をエッチングする。図26は、実施の形態1でフォトダイオード12を構成する半導体層をエッチングした状態を示す平面図である。図27は、図26をI-II直線に沿って切断することで得られる断面図である。図28は、図26をIII-IV直線に沿って切断することで得られる断面図である。図29は、図26をV-VI直線に沿って切断することで得られる断面図である。
 まず、クラッド層27、30、42、54の上に絶縁膜28cを形成する。絶縁膜28cはレーザ形成部10aと、変調器形成部11aと、導波路13a、13b、13cを形成する領域と、フォトダイオード形成部12aに設けられる。フォトダイオード形成部12aは導電性基板21上のフォトダイオード12が形成される領域を示す。次に、絶縁膜28cをマスクとして半絶縁性半導体層50の途中までドライエッチングを行う。
 これにより、リッジ構造の導波路13a、13b、13cが形成される。また、レーザ形成部10aと変調器形成部11aの間に方向性結合器14が形成される。方向性結合器14は導波路13cの一部である。
 次に、埋め込み成長を行う。図30は、実施の形態1で埋め込み成長を行った状態を示す平面図である。図31は、図30をI-II直線に沿って切断することで得られる断面図である。図32は、図30をIII-IV直線に沿って切断することで得られる断面図である。図33は、図30をV-VI直線に沿って切断することで得られる断面図である。
 ここでは、p-InP層61とn-InP層62とp-InP層63から構成される埋め込み成長層を形成する。埋め込み成長層は、レーザ形成部10a、変調器形成部11a、導波路13a、13b、13c、フォトダイオード形成部12aを取り囲むように設けられる。導波路13a、13b、13cの側面は、埋め込み成長層に覆われる。また、レーザ10を構成する半導体層、変調器11を構成する半導体層およびフォトダイオード12を構成する半導体層の側面は、埋め込み成長層に覆われる。埋め込み成長層は埋め込み成長により形成される。
 次に、コンタクト層を形成する。コンタクト層は、クラッド層71とp-InGaAs層72とを含む。図34は、実施の形態1でコンタクト層を成長させた状態を示す平面図である。図35は、図34をI-II直線に沿って切断することで得られる断面図である。図36は、図34をIII-IV直線に沿って切断することで得られる断面図である。図37は、図34をV-VI直線に沿って切断することで得られる断面図である。
 まず、絶縁膜28cを除去する。次に、導電性基板21上の全面に、コンタクト層を結晶成長させる。なお、図34において、レーザ形成部10a、変調器形成部11a、導波路13a、13b、13c、フォトダイオード形成部12aの位置が便宜上示されている。
 次に、コンタクト層をエッチングする。図38は、実施の形態1でコンタクト層をエッチングした状態を示す平面図である。図39は、図38をI-II直線に沿って切断することで得られる断面図である。図40は、図38をIII-IV直線に沿って切断することで得られる断面図である。図41は、図38をV-VI直線に沿って切断することで得られる断面図である。
 ここでは、p-InGaAs層72のうち電極の直下に配置される部分を残すように、p-InGaAs層72をエッチングする。この結果、レーザ形成部10a、変調器形成部10bおよびフォトダイオード形成部12aの上にp-InGaAs層72が残される。フォトダイオード形成部12aの上のp-InGaAs層72は、アノード87aに対応する位置に設けられる。なお、図38では、レーザ形成部10a、変調器形成部11a、フォトダイオード形成部12a、導波路13a、13b、13cの位置が便宜上示されている。
 次に、メサを形成する。図42は、実施の形態1でメサを形成した状態を示す平面図である。図43は、図42をI-II直線に沿って切断することで得られる断面図である。図44は、図42をIII-IV直線に沿って切断することで得られる断面図である。図45は、図42をV-VI直線に沿って切断することで得られる断面図である。図46は、図42をVII-VIII直線に沿って切断することで得られる断面図である。
 ここでは、レーザ形成部10aの両側、変調器形成部11aの両側および導波路13a、13b、13cの両側に溝15が形成される。また、導波路13cとの接続部を除いて、フォトダイオード形成部12aを取り囲むように溝15が形成される。溝15はエッチングにより形成される。エッチングは半絶縁性半導体層50が除去される深さまで実施される。これにより、レーザ形成部10a、変調器形成部11a、導波路13a、13b、13cおよびフォトダイオード形成部12aにメサ構造が形成される。
 次に、コンタクトホール80を形成する。図47は、実施の形態1でフォトダイオード形成部12aにコンタクトホール80を形成した状態を示す平面図である。図48は、図47をI-II直線に沿って切断することで得られる断面図である。図49は、図47をIII-IV直線に沿って切断することで得られる断面図である。図50は、図47をV-VI直線に沿って切断することで得られる断面図である。図51は、図47をVII-VIII直線に沿って切断することで得られる断面図である。
 ここでは、コンタクトホール80は、フォトダイオード形成部12aのp-InGaAs層72の隣に設けられる。平面視において、コンタクトホール80はp-InGaAs層72と平行に伸びる。コンタクトホール80とフォトダイオード形成部12aのp-InGaAs層72とは、平面視での長手方向がフォトダイオード12への光の入射方向に伸びる。コンタクトホール80は、フォトダイオード12のカソード87bとなるn型の電極を形成するために設けられる。コンタクトホール80は、クラッド層71の上面からコンタクト層51に達する深さまで形成される。
 次に、導電性基板21上の全面に絶縁膜81を形成する。絶縁膜81は、溝15の側面および底面と、コンタクトホール80の側面および底面とを覆う。
 次に、絶縁膜81に開口82~85を形成する。図52は、実施の形態1で絶縁膜81に開口82~85を形成した状態を示す平面図である。図53は、図52をI-II直線に沿って切断することで得られる断面図である。図54は、図52をIII-IV直線に沿って切断することで得られる断面図である。図55は、図52をV-VI直線に沿って切断することで得られる断面図である。図56は、図52をVII-VIII直線に沿って切断することで得られる断面図である。
 開口82~85は電極87の直下に該当する位置に形成される。開口82は、コンタクトホール80の底面において、コンタクト層51を露出させるように形成される。開口83は、フォトダイオード形成部12aでp-InGaAs層72を露出させるように形成される。開口84は、レーザ形成部10aにおいて、p-InGaAs層72を露出させるように形成される。開口85は、変調器形成部11aにおいて、p-InGaAs層72を露出させるように形成される。
 次に、絶縁膜81の上に電極87を形成する。図1~5に示されるように、電極87は、レーザ形成部10aにおいて開口84を埋め込み、p-InGaAs層72を接触するように設けられる。レーザ形成部10a上の電極87は、溝15に沿って伸び、溝15を挟んでレーザ形成部10aの反対側まで伸びる。また、電極87は、変調器形成部11aにおいて開口85を埋め込み、p-InGaAs層72と接触するように設けられる。
 アノード87aは、フォトダイオード形成部12aにおいて開口83を埋め込み、p-InGaAs層72と接触するように設けられる。カソード87bは、フォトダイオード形成部12aにおいて開口82を埋め込み、コンタクト層51と接触するように設けられる。カソード87bは、コンタクトホール80の側面に沿って上方に向かって伸びる。カソード87bは、フォトダイオード12の上面側においてコンタクトホール80を挟んでアノード87aと反対側に引き出される。アノード87a、カソード87bは、同じ材料から形成される。
 次に、裏面工程を実施する。まず、導電性基板21の裏面側を導電性基板21の厚さが100μm厚程度になるまで研磨する。ここでは、ウエハ裏面の全体を研磨する。次に、図2に示されるように、導電性基板21の裏面に電極90を形成する。以上から、図1~5に示される半導体光集積素子100が形成される。図1~5では、便宜上、キャップ層26、回折格子層25、クラッド層24、クラッド層22、埋め込み成長層等が省略されている。
 次に、本実施の形態の比較例について説明する。図57は、比較例に係る半導体光集積素子200の平面図である。比較例に係る半導体光集積素子200では、フォトダイオード212の構造が実施の形態1に係るフォトダイオード12と異なる。フォトダイオード212の上面側には、アノード87aのみが設けられている。
 図58は、図57の半導体光集積素子200をI-II直線に沿って切断することで得られる断面図である。半導体光集積素子200において、レーザ10の構造は実施の形態1と同じである。図59は、図57の半導体光集積素子200をIII-IV直線に沿って切断することで得られる断面図である。半導体光集積素子200において、変調器11の構造は実施の形態1と同じである。
 図60は、図57の半導体光集積素子200をV-VI直線に沿って切断することで得られる断面図である。図60は、フォトダイオード212の断面図である。比較例に係る半導体光集積素子200は、半絶縁性半導体層50を備えない。フォトダイオード12は導電性基板21の上に直接設けられている。
 導電性基板21の上には、クラッド層52、光吸収層53、クラッド層54が下からこの順で設けられる。クラッド層54の上には、クラッド層71とp-InGaAs層72とが下からこの順で設けられる。また、フォトダイオード212には、コンタクトホール80が設けられない。
 クラッド層71とp-InGaAs層72の上には絶縁膜81が設けられる。絶縁膜81は溝15に沿って伸びる。絶縁膜81にはp-InGaAs層72を露出させる開口83が設けられる。また、絶縁膜81には開口82が設けられない。絶縁膜81の上にはアノード87aが設けられる。アノード87aは開口83を埋め込み、p-InGaAs層72と接触する。フォトダイオード212のカソードは、導電性基板21の裏面に設けられた電極90である。
 半導体光集積素子200では、レーザ10のカソードとフォトダイオード212のカソードは共通である。カソードである電極90の電位は、例えばグランドとなる。
 図61は、図57の半導体光集積素子200をVII-VIII直線に沿って切断することで得られる断面図である。図61は、フォトダイオード212と導波路13cとの接続部の断面図である。導波路13a、13b、13cの構造は実施の形態1と同じである。比較例では、クラッド層52が導波路13cの端面43に沿って伸びる。比較例では、半絶縁性半導体層50が設けられない。このため、導波路13cとフォトダイオード212とは電気的に分離されていない。
 次に、比較例に係る半導体光集積素子200の製造方法を説明する。半導体光集積素子200の製造方法は、図22、図23に示した導波路13a、13b、13cを構成する半導体層をエッチングする工程までは、実施の形態1と同じである。次に、フォトダイオード212を構成する半導体層を形成する。フォトダイオード212を構成する半導体層は、クラッド層52、光吸収層53、クラッド層54である。
 図62は、比較例でフォトダイオード212を構成する半導体層を成長させた状態を示す平面図である。図63は、図62をI-II直線に沿って切断することで得られる断面図である。クラッド層52、光吸収層53およびクラッド層54は、絶縁膜28bをマスクとして、選択成長により形成する。
 次に、フォトダイオード212を構成する半導体層をエッチングする。図64は、比較例でフォトダイオード212を構成する半導体層をエッチングした状態を示す平面図である。図65は、図64をI-II直線に沿って切断することで得られる断面図である。図66は、図64をIII-IV直線に沿って切断することで得られる断面図である。図67は、図64をV-VI直線に沿って切断することで得られる断面図である。
 まず、レーザ形成部10aと、変調器形成部11aと、導波路13a、13b、13cを形成する領域と、フォトダイオード形成部212aに絶縁膜28cを設ける。フォトダイオード形成部212aは導電性基板21上のフォトダイオード212が形成される領域を示す。次に、絶縁膜28cをマスクとして導電性基板21が露出するまでドライエッチングを行う。これにより、導波路13a、13b、13cが形成される。
 次に、埋め込み成長を行う。図68は、比較例で埋め込み成長を行った状態を示す平面図である。図69は、図68をI-II直線に沿って切断することで得られる断面図である。図70は、図68をIII-IV直線に沿って切断することで得られる断面図である。図71は、図68をV-VI直線に沿って切断することで得られる断面図である。ここでは、実施の形態1と同様に、p-InP層61とn-InP層62とp-InP層63から構成される埋め込み成長層を形成する。
 次に、コンタクト層を形成する。コンタクト層は、クラッド層71とp-InGaAs層72とを含む。図72は、比較例でコンタクト層を成長させた状態を示す平面図である。図73は、図72をI-II直線に沿って切断することで得られる断面図である。図74は、図72をIII-IV直線に沿って切断することで得られる断面図である。図75は、図72をV-VI直線に沿って切断することで得られる断面図である。ここでは、実施の形態1と同様に、導電性基板21上の全面に、コンタクト層を結晶成長させる。
 次に、コンタクト層をエッチングする。図76は、比較例でコンタクト層をエッチングした状態を示す平面図である。図77は、図76をI-II直線に沿って切断することで得られる断面図である。図78は、図76をIII-IV直線に沿って切断することで得られる断面図である。図79は、図76をV-VI直線に沿って切断することで得られる断面図である。ここでは、レーザ形成部10a、変調器形成部10bおよびフォトダイオード形成部212aの上にp-InGaAs層72を残すように、p-InGaAs層72をエッチングする。
 次に、メサを形成する。図80は、比較例でメサを形成した状態を示す平面図である。図81は、図80をI-II直線に沿って切断することで得られる断面図である。図82は、図80をIII-IV直線に沿って切断することで得られる断面図である。図83は、図80をV-VI直線に沿って切断することで得られる断面図である。図84は、図80をVII-VIII直線に沿って切断することで得られる断面図である。
 ここでは、レーザ形成部10aの両側、変調器形成部11aの両側および導波路13a、13b、13cの両側に溝15が形成される。また、導波路13cとの接続部を除いて、フォトダイオード形成部212aを取り囲むように溝15が形成される。溝15はエッチングにより、導電性基板21が露出する深さまで形成される。
 次に、導電性基板21上の全面に絶縁膜81を形成する。次に、絶縁膜81に開口84、85、283を形成する。図85は、比較例で絶縁膜81に開口84、85、283を形成した状態を示す平面図である。図86は、図85をI-II直線に沿って切断することで得られる断面図である。図87は、図85をIII-IV直線に沿って切断することで得られる断面図である。図88は、図85をV-VI直線に沿って切断することで得られる断面図である。図89は、図85をVII-VIII直線に沿って切断することで得られる断面図である。
 開口283は、フォトダイオード形成部212aでp-InGaAs層72を露出させるように形成される。開口84、85は、実施の形態1と同様にレーザ形成部10aと変調器形成部11aにそれぞれ形成される。
 次に、絶縁膜81の上に電極87を形成する。レーザ形成部10aおよび変調器形成部11aに設けられる電極87の構造は、実施の形態1と同様である。フォトダイオード形成部212aにおいて、アノード87aは開口283を埋め込み、p-InGaAs層72を接触するように設けられる。
 次に、裏面工程を実施する。裏面工程は実施の形態1と同様である。以上から、図57~61に示される半導体光集積素子200が形成される。
 比較例に係る半導体光集積素子200では、導電性基板21の裏面の電極90が、レーザ10とフォトダイオード212の共通のカソードとなる。このとき、例えば電極90がグランド電位の場合、フォトダイオード212の上面側の電極は負の電位となる。このため、フォトダイオード212の電源の極性を使用者が選択できない。
 さらに、比較例では、レーザ10とフォトダイオード212との間が電気的に分離されていない。このため、レーザ10とフォトダイオード212との間に無効電流が流れ、半導体光集積素子200の特性が低下する可能性がある。
 これに対し本実施の形態に係る半導体光集積素子100では、導電性基板21とフォトダイオード12とが半絶縁性半導体層50により電気的に分離される。このため、フォトダイオード12の上面側からアノード87aとカソード87bの両方を引き出せる。従って、フォトダイオード12に接続する電源の極性の自由度が向上する。
 さらに、導波路13cとフォトダイオード12とは、半絶縁性半導体層50で電気的に分離されている。また、フォトダイオード12は半絶縁性半導体層50により導電性基板21と電気的に分離される。つまり、半絶縁性半導体層50が分離抵抗となることで、フォトダイオード12は、レーザ10および変調器11から電気的に分離される。本実施の形態では、アノード87aとカソード87bがレーザ10および変調器11から十分に絶縁されるため、レーザ10または変調器11とフォトダイオード12との間に無効電流が流れることを抑制できる。従って半導体光集積素子100の特性を向上できる。
 また、フォトダイオード12の受光面19と導波路13cの端面43とは、半導体層で接続されている。ここで半導体層は、半絶縁性半導体層50、コンタクト層51およびクラッド層52である。これにより、フォトダイオード12が機能するのに十分なモニタ光を確保できる。
 また、本実施の形態では導電性基板21を使用しているため、レーザ10と変調器11のカソードとして裏面の電極90を用いることができる。従って、半絶縁性基板を使用する場合と比較して、基板の上面側から引き出す電極端子の数を削減できる。また、レーザ10と変調器11については、導電性基板21を使用した従来の半導体光集積素子と同様に、裏面の電極90を使用した駆動方法を採用できる。
 また、本実施の形態では、半導体光集積素子100が備える導波路の任意の位置に隣接するように、方向性結合器14を設けることができる。このため、フォトダイオード12の位置の自由度を向上できる。
 本実施の形態では、レーザ10の前方にフォトダイオード12が設けられた。この変形例として、フォトダイオード12は、レーザ10の出力光を受光できれば、導電性基板21上の別の位置に設けられても良い。例えば、フォトダイオード12は、レーザ10の後方に設けられても良い。この場合、フォトダイオード12はレーザ10の後方側への出射光を受光しても良い。また、フォトダイオード12はレーザ10の後方側への出射光を全て受光しても良い。また、フォトダイオード12はレーザ10と変調器11との間に設けられても良い。つまり、フォトダイオード12はインラインのフォトダイオードであっても良い。
 また、レーザ10、変調器11、フォトダイオード12および導波路13a、13b、13cの構造は、本実施の形態に示したものに限らない。レーザ10および変調器11として、導電性基板21に設けられたあらゆるレーザおよび変調器を採用できる。また、フォトダイオード12として、半絶縁性半導体層50によって導電性基板21と電気的に分離されたあらゆるフォトダイオードを採用できる。例えば、コンタクト層51およびクラッド層52は、導波路13cの端面43に沿って伸びなくても良い。また、変調器11は設けられなくても良い。本実施の形態は導電性基板21にレーザとフォトダイオードとが設けられたあらゆる半導体光集積素子に適用できる。
 これらの変形は以下の実施の形態に係る半導体光集積素子について適宜応用することができる。なお、以下の実施の形態に係る半導体光集積素子については実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。
実施の形態2.
 図90は、実施の形態2に係る半導体光集積素子300の平面図である。半導体光集積素子300は、フォトダイオード312の構造が実施の形態1と異なる。その他の構造は、実施の形態1と同様である。
 図91は、図90の半導体光集積素子300をI-II直線に沿って切断することで得られる断面図である。図92は、図90の半導体光集積素子300をIII-IV直線に沿って切断することで得られる断面図である。レーザ10と変調器11の構造は実施の形態1と同様である。
 図93は、図90の半導体光集積素子をV-VI直線に沿って切断することで得られる断面図である。図93は、フォトダイオード312の断面図である。実施の形態1と同様に、導電性基板21の上には半絶縁性半導体層50が設けられる。フォトダイオード312は半絶縁性半導体層50の上に設けられている。
 半絶縁性半導体層50の上には、コンタクト層351が設けられる。コンタクト層351はp-InGaAsPから形成される。コンタクト層351の上にはクラッド層352が設けられる。クラッド層352はp-InPから形成される。クラッド層352の上には光吸収層353が設けられる。光吸収層353はi-InGaAsPから形成される。光吸収層353の上にはクラッド層354が設けられる。クラッド層354はn-InPから形成される。クラッド層354の上にはコンタクト層355が設けられる。コンタクト層355はn-InGaAsPから形成される。フォトダイオード312は、導電性基板21側から順に、p-InPクラッド層とi-InGaAsP光吸収層とn-InPクラッド層とを有する。
 フォトダイオード12には、コンタクト層355の上面からコンタクト層351に至るコンタクトホール380が形成される。コンタクトホール380によりコンタクト層351が露出する。
 フォトダイオード312の両側には溝15が設けられる。溝15はフォトダイオード312の上面側から導電性基板21まで伸びる。コンタクト層355の上面には絶縁膜81が設けられる。絶縁膜81は溝15およびコンタクトホール380に沿って伸びる。絶縁膜81にはコンタクト層355を露出させる開口383が設けられる。さらに、コンタクトホール380の底面において、絶縁膜81にはコンタクト層351を露出させる開口382が設けられる。
 絶縁膜81の上にはアノード87aとカソード87bが設けられる。アノード87aは開口383を埋め込み、コンタクト層355と接触する。カソード87bは開口382を埋め込み、コンタクト層351と接触する。フォトダイオード312のアノード87aと、フォトダイオード312のカソード87bは、フォトダイオード312の上面側から引き出される。
 図94は、図90の半導体光集積素子300をVII-VIII直線に沿って切断することで得られる断面図である。図94は、フォトダイオード312と導波路13cとの接続部の断面図である。導波路13a、13b、13cの構造は、実施の形態1と同様である。
 半絶縁性半導体層50、コンタクト層351およびクラッド層352は、導波路13cの端面43に沿って伸びる。端面43はフォトダイオード12の受光面319に面している。実施の形態1と同様に、導波路13cとフォトダイオード12とは、半絶縁性半導体層50で分離されている。クラッド層42とコンタクト層355の上には、絶縁膜81が設けられる。
 次に、半導体光集積素子300の製造方法を説明する。半導体光集積素子300の製造方法は、図22、図23に示した導波路13a、13b、13cを構成する半導体層をエッチングする工程までは、実施の形態1と同じである。
 次に、フォトダイオード312を構成する半導体層と半絶縁性半導体層50とを形成する。フォトダイオード312を構成する半導体層は、コンタクト層351、クラッド層352、光吸収層353、クラッド層354、コンタクト層355である。図95は、実施の形態2でフォトダイオード312を構成する半導体層と半絶縁性半導体層とを成長させた状態を示す平面図である。図96は、図95をI-II直線に沿って切断することで得られる断面図である。
 半絶縁性半導体層50、コンタクト層351、クラッド層352、光吸収層353、クラッド層354およびコンタクト層355は、絶縁膜28bをマスクとして、選択成長により形成する。これらの半導体層は、絶縁膜28bで覆われた部分を取り囲むように形成される。
 実施の形態1と同様に、半絶縁性半導体層50は導電性基板21の上面だけではなく、導波路13cを構成する半導体層のエッチングにより形成された側面にも形成される。導波路13cを構成する半導体層のエッチングにより形成された側面は、端面43を含む。
 次に、フォトダイオード312を構成する半導体層をエッチングする。図97は、実施の形態2でフォトダイオード312を構成する半導体層をエッチングした状態を示す平面図である。図98は、図97をI-II直線に沿って切断することで得られる断面図である。図99は、図97をIII-IV直線に沿って切断することで得られる断面図である。図100は、図97をV-VI直線に沿って切断することで得られる断面図である。
 まず、クラッド層27、30、42およびコンタクト層355の上に絶縁膜28cを形成する。絶縁膜28bはレーザ形成部10aと、変調器形成部11aと、導波路13a、13b、13cを形成する領域と、フォトダイオード形成部312aに設けられる。フォトダイオード形成部312aは導電性基板21上のフォトダイオード312が形成される領域を示す。次に、絶縁膜28cをマスクとして半絶縁性半導体層50の途中までドライエッチングを行う。これにより、導波路13a、13b、13cが形成される。また、方向性結合器14が形成される。
 次に、埋め込み成長を行う。図101は、実施の形態2で埋め込み成長を行った状態を示す平面図である。図102は、図101をI-II直線に沿って切断することで得られる断面図である。図103は、図101をIII-IV直線に沿って切断することで得られる断面図である。図104は、図101をV-VI直線に沿って切断することで得られる断面図である。埋め込み成長層の構造は実施の形態1と同様である。導波路13a、13b、13cの側面は、埋め込み成長層に覆われる。また、レーザ10を構成する半導体層、変調器11を構成する半導体層およびフォトダイオード312を構成する半導体層の側面は、埋め込み成長層に覆われる。
 次に、コンタクト層を形成する。コンタクト層は、クラッド層71とp-InGaAs層72とを含む。図105は、実施の形態2でコンタクト層を成長させた状態を示す平面図である。図106は、図105をI-II直線に沿って切断することで得られる断面図である。図107は、図105をIII-IV直線に沿って切断することで得られる断面図である。図108は、図105をV-VI直線に沿って切断することで得られる断面図である。まず、絶縁膜28cを除去する。次に、導電性基板21上の全面に、コンタクト層を結晶成長させる。
 次に、コンタクト層をエッチングする。図109は、実施の形態2でコンタクト層をエッチングした状態を示す平面図である。図110は、図109をI-II直線に沿って切断することで得られる断面図である。図111は、図109をIII-IV直線に沿って切断することで得られる断面図である。図112は、図109をV-VI直線に沿って切断することで得られる断面図である。
 ここでは、p-InGaAs層72のうち電極の直下に配置される部分を残すように、p-InGaAs層72をエッチングする。また、フォトダイオード形成部312aでは、クラッド層71とp-InGaAs層72を全て除去する。この結果、レーザ形成部10aおよび変調器形成部10bの上にp-InGaAs層72が残される。
 次に、メサを形成する。図113は、実施の形態2でメサを形成した状態を示す平面図である。図114は、図113をI-II直線に沿って切断することで得られる断面図である。図115は、図113をIII-IV直線に沿って切断することで得られる断面図である。図116は、図113をV-VI直線に沿って切断することで得られる断面図である。図117は、図113をVII-VIII直線に沿って切断することで得られる断面図である。
 実施の形態1と同様に、レーザ形成部10aの両側、変調器形成部11aの両側および導波路13a、13b、13cの両側に溝15が形成される。また、導波路13cとの接続部を除いて、フォトダイオード形成部312aを取り囲むように溝15が形成される。
 次に、コンタクトホール380を形成する。図118は、実施の形態2でフォトダイオード形成部312aにコンタクトホール380を形成した状態を示す平面図である。図119は、図118をI-II直線に沿って切断することで得られる断面図である。図120は、図118をIII-IV直線に沿って切断することで得られる断面図である。図121は、図118をV-VI直線に沿って切断することで得られる断面図である。図122は、図118をVII-VIII直線に沿って切断することで得られる断面図である。
 コンタクトホール380は、平面視において長手方向がフォトダイオード312への光の入射方向に伸びる。コンタクトホール380は、コンタクト層355の上面からコンタクト層351に達する深さまで形成される。
 次に、導電性基板21上の全面に絶縁膜81を形成する。絶縁膜81は、溝15の側面および底面と、コンタクトホール380の側面および底面とを覆う。
 次に、絶縁膜81に開口84、85、382、383を形成する。図123は、実施の形態2で絶縁膜81に開口84、85、382、383を形成した状態を示す平面図である。図124は、図123をI-II直線に沿って切断することで得られる断面図である。図125は、図123をIII-IV直線に沿って切断することで得られる断面図である。図126は、図123をV-VI直線に沿って切断することで得られる断面図である。図127は、図123をVII-VIII直線に沿って切断することで得られる断面図である。
 開口382は、コンタクトホール380の底面において、コンタクト層351を露出させるように形成される。開口383は、フォトダイオード形成部312aでコンタクト層355を露出させるように形成される。開口84、85の構造は実施の形態1と同様である。
 次に、絶縁膜81の上に電極87を形成する。図90~94に示されるように、レーザ形成部10aおよび変調器形成部11aにおいて電極87の構造は実施の形態1と同様である。アノード87aは、フォトダイオード形成部312aにおいて開口383を埋め込み、コンタクト層355と接触するように設けられる。カソード87bは、フォトダイオード形成部312aにおいて開口382を埋め込み、コンタクト層351と接触するように設けられる。
 次に、裏面工程を実施する。裏面工程は実施の形態1と同様である。以上から、図90~94に示される半導体光集積素子300が形成される。実施の形態2においても、実施の形態1と同様の効果を得ることができる。
 なお、各実施の形態で説明した技術的特徴は適宜に組み合わせて用いてもよい。
 100、300 半導体光集積素子、 10 レーザ、 12 フォトダイオード、 13a、13b、13c 導波路、 19、319 受光面、 21 導電性基板、 43 端面、 50 半絶縁性半導体層、 87a アノード、 87b カソード、 90 電極

Claims (6)

  1.  導電性基板と、
     前記導電性基板に設けられたレーザと、
     前記導電性基板の上に設けられた半絶縁性半導体層と、
     前記半絶縁性半導体層の上に設けられたフォトダイオードと、
     前記導電性基板の上に設けられ、前記レーザの出力光を前記フォトダイオードに導く導波路と、
     を備え、
     前記フォトダイオードのアノードと、前記フォトダイオードのカソードは、前記フォトダイオードの上面側から引き出され、
     前記導波路と前記フォトダイオードとは、前記半絶縁性半導体層で分離されていることを特徴とする半導体光集積素子。
  2.  前記半絶縁性半導体層は、前記導波路の前記フォトダイオードの受光面に面した端面に沿って伸びることを特徴とする請求項1に記載の半導体光集積素子。
  3.  前記レーザは、前記導電性基板の前記フォトダイオードが設けられた側と反対側の面である裏面に電極を有することを特徴とする請求項1または2に記載の半導体光集積素子。
  4.  前記導電性基板は、導電性のInPから形成され、
     前記半絶縁性半導体層は、FeがドープされたInPから形成されることを特徴とする請求項1~3の何れか1項に記載の半導体光集積素子。
  5.  前記フォトダイオードは、前記導電性基板側から順に、n-InPクラッド層とi-InGaAsP光吸収層とp-InPクラッド層とを有することを特徴とする請求項1~4の何れか1項に記載の半導体光集積素子。
  6.  前記フォトダイオードは、前記導電性基板側から順に、p-InPクラッド層とi-InGaAsP光吸収層とn-InPクラッド層とを有することを特徴とする請求項1~4の何れか1項に記載の半導体光集積素子。
PCT/JP2017/035920 2017-10-03 2017-10-03 半導体光集積素子 WO2019069359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780095438.4A CN111164475B (zh) 2017-10-03 2017-10-03 半导体光集成元件
JP2018512441A JP6414365B1 (ja) 2017-10-03 2017-10-03 半導体光集積素子
US16/614,345 US11211768B2 (en) 2017-10-03 2017-10-03 Semiconductor optical integrated device
PCT/JP2017/035920 WO2019069359A1 (ja) 2017-10-03 2017-10-03 半導体光集積素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035920 WO2019069359A1 (ja) 2017-10-03 2017-10-03 半導体光集積素子

Publications (1)

Publication Number Publication Date
WO2019069359A1 true WO2019069359A1 (ja) 2019-04-11

Family

ID=64017084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035920 WO2019069359A1 (ja) 2017-10-03 2017-10-03 半導体光集積素子

Country Status (4)

Country Link
US (1) US11211768B2 (ja)
JP (1) JP6414365B1 (ja)
CN (1) CN111164475B (ja)
WO (1) WO2019069359A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6758546B1 (ja) * 2020-01-16 2020-09-23 三菱電機株式会社 半導体光集積素子およびその製造方法
JPWO2021053711A1 (ja) * 2019-09-17 2021-03-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951003B1 (en) * 2020-02-25 2021-03-16 Inphi Corporation Light source for integrated silicon photonics
CN115296142A (zh) * 2022-08-09 2022-11-04 杭州泽达半导体有限公司 一种激光器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254380A (ja) * 1990-08-03 1992-09-09 American Teleph & Telegr Co <Att> モノリシック集積光増幅器及び光検出器
US20020131465A1 (en) * 2001-02-01 2002-09-19 Lo Yu-Hwa Integrated surface-emitting laser and modulator device
JP2008204970A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 光半導体素子
JP2013153015A (ja) * 2012-01-24 2013-08-08 Mitsubishi Electric Corp 光変調器集積光源
JP2015122440A (ja) * 2013-12-24 2015-07-02 富士通株式会社 光半導体装置及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273386A (ja) 1987-04-30 1988-11-10 Nec Corp 複合集積素子
GB2326760B (en) * 1997-06-28 2002-02-13 Mitel Semiconductor Ab Optical source with monitor
JPH11186661A (ja) 1997-12-24 1999-07-09 Hitachi Ltd 変調器付半導体レーザ
JP2000150925A (ja) 1998-11-05 2000-05-30 Furukawa Electric Co Ltd:The 導波路型集積半導体装置の作製方法
US6453105B1 (en) * 2000-10-04 2002-09-17 Agere Systems Guardian Corp Optoelectronic device with power monitoring tap
JP3991220B2 (ja) * 2001-02-28 2007-10-17 日本電気株式会社 光学回路素子の製造方法
KR100407346B1 (ko) * 2001-10-12 2003-11-28 삼성전자주식회사 모니터링 장치를 구비한 반도체 광증폭기 모듈
KR100617693B1 (ko) * 2003-08-20 2006-08-28 삼성전자주식회사 광검출기를 구비하는 반도체 광증폭 장치 및 그 제조방법
US7343061B2 (en) * 2005-11-15 2008-03-11 The Trustees Of Princeton University Integrated photonic amplifier and detector
JP4789608B2 (ja) * 2005-12-06 2011-10-12 Okiセミコンダクタ株式会社 半導体光通信素子
US8098969B2 (en) * 2009-12-08 2012-01-17 Onechip Photonics Inc. Waveguide optically pre-amplified detector with passband wavelength filtering
JP5924138B2 (ja) 2012-06-04 2016-05-25 富士通株式会社 光半導体集積回路装置及びその製造方法
US9082637B2 (en) * 2012-08-17 2015-07-14 The University Of Connecticut Optoelectronic integrated circuit
JP2014063052A (ja) * 2012-09-21 2014-04-10 Mitsubishi Electric Corp 光変調器の製造方法および光変調器
GB2507512A (en) * 2012-10-31 2014-05-07 Ibm Semiconductor device with epitaxially grown active layer adjacent a subsequently grown optically passive region

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254380A (ja) * 1990-08-03 1992-09-09 American Teleph & Telegr Co <Att> モノリシック集積光増幅器及び光検出器
US20020131465A1 (en) * 2001-02-01 2002-09-19 Lo Yu-Hwa Integrated surface-emitting laser and modulator device
JP2008204970A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 光半導体素子
JP2013153015A (ja) * 2012-01-24 2013-08-08 Mitsubishi Electric Corp 光変調器集積光源
JP2015122440A (ja) * 2013-12-24 2015-07-02 富士通株式会社 光半導体装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021053711A1 (ja) * 2019-09-17 2021-03-25
CN114365359A (zh) * 2019-09-17 2022-04-15 三菱电机株式会社 半导体激光装置
JP7229377B2 (ja) 2019-09-17 2023-02-27 三菱電機株式会社 半導体レーザ装置
JP6758546B1 (ja) * 2020-01-16 2020-09-23 三菱電機株式会社 半導体光集積素子およびその製造方法
WO2021144916A1 (ja) * 2020-01-16 2021-07-22 三菱電機株式会社 半導体光集積素子およびその製造方法

Also Published As

Publication number Publication date
JP6414365B1 (ja) 2018-10-31
US11211768B2 (en) 2021-12-28
JPWO2019069359A1 (ja) 2019-11-14
CN111164475B (zh) 2022-04-15
CN111164475A (zh) 2020-05-15
US20200274318A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5451332B2 (ja) 光半導体装置
JP4928988B2 (ja) 半導体光装置およびその製造方法
US7199441B2 (en) Optical module device driven by a single power supply
JP6414365B1 (ja) 半導体光集積素子
US9366835B2 (en) Integrated optical semiconductor device and integrated optical semiconductor device assembly
JP4789608B2 (ja) 半導体光通信素子
KR101045758B1 (ko) 반도체 광변조기
US6710378B1 (en) Semiconductor light reception device of end face light incidence type
US8488918B2 (en) Semiconductor optical device, optical transmitter module, optical transceiver module, and optical transmission equipment
JP2013222795A (ja) 変調器集積型レーザ素子
JP2009198881A (ja) 光半導体装置
EP4064469A1 (en) Semiconductor devices for emitting modulated light and methods for fabricating such devices
CN111989832B (zh) 半导体光集成元件
JP6939411B2 (ja) 半導体光素子
US6931041B2 (en) Integrated semiconductor laser device and method of manufacture thereof
JP2005116644A (ja) 半導体光電子導波路
JP2020021865A (ja) 半導体光素子及び光送受信モジュール
JP7229377B2 (ja) 半導体レーザ装置
JP4105618B2 (ja) 半導体光変調導波路
JP2006173465A (ja) 変調器集積レーザおよび光モジュール
JP2011151088A (ja) 半導体光素子、光送信モジュール、光送受信モジュール、光伝送装置、及び、それらの製造方法
JP4283079B2 (ja) 半導体光電子導波路
JP2022083951A (ja) 半導体光素子
JP2023168249A (ja) 半導体光素子
JP2011044753A (ja) 変調器集積レーザ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927871

Country of ref document: EP

Kind code of ref document: A1