JP2015099921A - 横チャネル領域を有する接合型電界効果トランジスタセル - Google Patents

横チャネル領域を有する接合型電界効果トランジスタセル Download PDF

Info

Publication number
JP2015099921A
JP2015099921A JP2014230624A JP2014230624A JP2015099921A JP 2015099921 A JP2015099921 A JP 2015099921A JP 2014230624 A JP2014230624 A JP 2014230624A JP 2014230624 A JP2014230624 A JP 2014230624A JP 2015099921 A JP2015099921 A JP 2015099921A
Authority
JP
Japan
Prior art keywords
zone
region
conductivity type
lateral
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230624A
Other languages
English (en)
Other versions
JP6246700B2 (ja
Inventor
イェンス ペーター コンラート,
Peter Konrath Jens
イェンス ペーター コンラート,
シュルツェ, ハンス−ヨアヒム
Schulze Hans-Joachim
ハンス−ヨアヒム シュルツェ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2015099921A publication Critical patent/JP2015099921A/ja
Application granted granted Critical
Publication of JP6246700B2 publication Critical patent/JP6246700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1058Channel region of field-effect devices of field-effect transistors with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66901Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate
    • H01L29/66909Vertical transistors, e.g. tecnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

【課題】 横チャネル領域を有する接合型電界効果トランジスタセルを提供する。【解決手段】 半導体素子の接合型電界効果トランジスタセルは、垂直方向に沿って配列された、上部ゲート領域と、横チャネル領域と、埋め込みゲート領域とを含む。横チャネル領域は、第1の導電型の第1のゾーンと、第2の導電型の第2のゾーンとを含み、第1および第2のゾーンは、垂直方向に垂直な横方向に沿って交互に配置される。接合型電界効果トランジスタセルのピンチオフ電圧は、横チャネル領域の垂直拡張に依存しないか、または、横チャネル領域の垂直拡張に低度にしか依存しない。【選択図】 図1A

Description

従来のJFET(接合型電界効果トランジスタ)では、逆バイアスpn接合の空乏領域の拡張は、JFETの負荷電流が通過するチャネル領域の断面積を調節する。少数電荷キャリア蓄積効果は、とりわけ高速アプリケーションでJFETを使用できるように、JFETの動作には低度にしか影響を及ぼさない。改良された素子特性を有するJFETを提供することが望ましい。
実施形態は、接合型電界効果トランジスタセルを備える半導体素子について言及する。接合型電界効果トランジスタセルは、垂直方向に沿って配列された、上部ゲート領域と、横チャネル領域と、埋め込みゲート領域とを含む。横チャネル領域は、第1の導電型の第1のゾーンと、第2の(反対の)導電型の第2のゾーンとを含み、第1および第2のゾーンは、垂直方向に垂直な横方向に沿って交互に配置される。
別の実施形態は、接合型電界効果トランジスタについて言及する。接合型電界効果トランジスタは、垂直方向に沿って配列された、上部ゲート領域と、横チャネル領域と、埋め込みゲート領域とを含む。横チャネル領域は、第1の導電型の第1のゾーンと、第2の導電型の第2のゾーンとを含み、第1および第2のゾーンは、垂直方向に垂直な横方向に沿って交互に配置される。
さらなる実施形態は、半導体素子を製造する方法について言及する。第2の導電型の少なくとも1つの埋め込みゲート領域は、第1の導電型の第1のエピタキシャル層のプロセス表面の第1のセクションに形成される。チャネル層は、プロセス表面上に形成される。チャネル層では、第1の導電型の第1のゾーンおよびの第2の導電型の第2のゾーンはそれぞれ、チャネル層の表面からチャネル層の中に延在するように形成される。上部ゲート領域は、第1および第2のゾーンに直接隣接するように形成される。
当業者であれば、以下の発明を実施するための形態を読み進め、添付の図面を眺めると同時に、追加の特徴や利点が認識されよう。
添付の図面は、本発明のさらなる理解を提供するために含まれ、この明細書に組み込まれ、この明細書の一部を構成する。図面は、本発明の実施形態を示し、記述と共に、本発明の原理の説明に役立つ。本発明の他の実施形態および意図する利点は、以下の発明を実施するための形態を参照することによってより良く理解されるようになるため、容易に理解されよう。
1本の横軸に沿ってパターニングされた横チャネル領域および横チャネル領域の下方に埋め込まれたソース領域を提供する実施形態による、JFETセルを含む半導体素子の一部分の概略断面図である。 2本の横軸に沿ってパターニングされた横チャネル領域および横チャネル領域の下方に埋め込まれたソース領域を提供する実施形態による、JFETセルを含む半導体素子の一部分の概略断面図である。 横チャネル領域の上方のソースゾーンを提供する実施形態による、JFETセルを含む半導体素子の一部分の概略断面図である。 埋め込みゲート構造を形成した後の超接合構造を備える横チャネル領域を含むJFETセルを備える半導体素子を製造する方法の実施形態を示すための半導体基板の一部分の概略断面図である。 ソース領域を形成した後の図3Aの半導体基板部分の概略断面図である。 チャネル層を成長させた後の図3Bの半導体基板部分の概略断面図である。 超接合構造のp型ゾーンを形成した後の図3Cの半導体基板部分の概略断面図である。 超接合構造のn型ゾーンを形成した後の図3Dの半導体基板部分の概略断面図である。 上部ゲート領域を形成してソースおよび埋め込みゲート領域を露出させた後の図3Eの半導体基板部分の概略断面図である。 チャネル層を形成した後の超接合構造を備える横チャネル領域を含むJFETセルを備える半導体素子を製造する方法の別の実施形態を示すための半導体基板の一部分の概略断面図である。 チャネル層の空洞を形成した後の図4Aの半導体基板部分の概略断面図である。 上部ゲート領域およびチャネル層の超接合構造のp型ゾーンを提供した後の図4Bの半導体基板部分の概略断面図である。
以下の発明を実施するための形態では、添付の図面を参照し、添付の図面は本明細書の一部を形成し、添付の図面では、例示として、本発明を実践することができる特定の実施形態が示される。他の実施形態を利用することができ、本発明の範囲から逸脱することなく、構造的または論理的な変更を行うことができることを理解されたい。例えば、一実施形態に対して示され説明される特徴は、さらなる実施形態を生み出すため、他の実施形態上で使用することも、他の実施形態と併せて使用することもできる。本発明はそのような変更形態および変形形態を含むことが意図される。実施例は特定の言語を使用して説明されるが、同言語を添付の特許請求の範囲を制限するものと解釈してはならない。図面は、原寸に比例するものではなく、単なる例示を目的とする。別段の言明がなければ、明確にするため、異なる図面における同じ要素は、対応する参照番号で指定している。
用語「有する」、「含む(「containing」または「including」)」、「備える」および同様のものは、制限のない用語であり、同用語は、述べられる構造、要素または特徴の存在を示すが、追加の要素または特徴を除外しない。文脈上で明示される場合を除き、冠詞「a」、「an」および「the」は、単数形と同様に複数形を含むことが意図される。
用語「電気的に接続された」は、電気的に接続された要素間の永久的なオーム性の低い接続について説明し、例えば、関係がある要素間の直接接触、あるいは、金属および/または高濃度ドープ半導体を介するオーム性の低い接続が挙げられる。用語「電気的に結合された」は、例えば、第1の状態でのオーム性の低い接続および第2の状態でのオーム性の高い電気的減結合を一時的に提供するように制御可能な要素など、信号伝送のために適合された1つまたは複数の介在要素を電気的に結合された要素間に提供できることを含む。
図は、ドーピング型「n」または「p」の次に「−」または「+」を示すことによって、相対的なドーピング濃度を示す。例えば、「n」は、「n」ドーピング領域のドーピング濃度より低いドーピング濃度を意味し、「n」ドーピング領域は、「n」ドーピング領域より高いドーピング濃度を有する。相対的なドーピング濃度が同じドーピング領域は、必ずしも同じ絶対ドーピング濃度を有するわけではない。例えば、2つの異なる「n」ドーピング領域は、同じまたは異なる絶対ドーピング濃度を有し得る。
図1Aは、少なくとも1つのJFETセルTCを含む半導体素子500について言及する。半導体素子500は、多数のJFETセルTCと、ソース、ゲートおよびドレイン端子S、G、Dとを備えるJFET、あるいは、JFETセルTCのうちの1つまたは複数に加えてさらなる半導体要素を含む素子であり得る。
半導体素子500は、窒化ガリウムGaNまたは炭化ケイ素SiCなどの2.0eV以上のバンドギャップを有する単結晶半導体材料で作られている半導体本体100に基づく。例えば、単結晶半導体材料は炭化ケイ素SiCであり、例示として、2H−SiC(2HポリタイプのSiC)、4H−SiC、6H−SiCまたは15R−SiCが挙げられる。
半導体本体100は、ほぼ平面状であることも、共平面セクションによって広がる平面によって与えられることもあり得る第1の表面101と、第1の表面101に平行な主に平面状の第2の表面102とを有する。第1の表面101の法線は垂直方向を定義し、垂直方向に直交する方向は横方向である。
半導体本体100は、それぞれが第1の導電型のドリフトゾーン120およびドレイン層130を含む。ドレイン層130は、第2の表面102に直接隣接し、第2の表面102からドリフトゾーン120を分離する。ドレイン層130の平均純不純物濃度は、ドリフトゾーン120の平均純不純物濃度の少なくとも10倍を超える。ドリフトゾーン120は、エピタキシャル層で形成することができ、その結晶格子は、ドレイン層130の結晶格子と整合させて成長させる。ドリフトゾーン120は、in−situドープすることができ、第1の表面101までの距離の増加と共に徐々にまたは段階的に増加または減少する均一の不純物分布または不純物濃度を有し得る。
第1の導電型に補足的な第2の導電型の1つまたは2つの埋め込みゲート領域140は、ドリフトゾーン120(ドレイン層130とは反対側のドリフトゾーン120の側面)に直接隣接する。埋め込みゲート領域140とドリフトゾーン120との間の境界は、共平面であり、第1および第2の表面101、102に平行であり得る。
埋め込みゲート領域140は、ドリフトゾーン120を提供するエピタキシャル層へのマスキング注入によって形成されたウェルであり得、ウェルは、第1および第2の表面101、102に平行である補助平面APから、第2の表面102の方向に向けて延在する。
補助平面APに沿ったドリフトゾーン120の残りの部分は、垂直チャネル領域121を形成し、垂直チャネル領域121は、補助平面APと埋め込みゲート領域140の下方のドリフトゾーン120の主要部分との間に延在する。垂直チャネル領域121を備えるドリフトゾーン120は、成長させたエピタキシャル層の元のin−situ不純物分布を含む。
半導体本体100の上部ゲート領域150は、第2の導電型を有し、第1の表面101に直接隣接する。横チャネル領域115は、一方の上部ゲート領域150と他方の補助平面APとの間に挟まれる。上部ゲート領域150と同様に横チャネル領域115は、埋め込みゲート領域140の形成後または形成前、補助平面AP上で成長させた1つまたは複数のエピタキシャル層で形成することができる。上部ゲート領域150および横チャネル領域115は、補助平面APから突出するメサで形成することができる。
JFETセルTCは、1つまたは複数の第1の導電型のソース領域110をさらに含む。ソース領域110は、横チャネル領域115に直接隣接し、埋め込みゲート領域140の中に延在するウェルとして形成することができる。示される実施形態によれば、1つのトランジスタセルTC当たり1つのソース領域110が、トランジスタセルTCの補助平面APから埋め込みゲート領域140の中に延在する。
ソース電極310は、ソース領域110に直接隣接し、半導体本体100とのオーム抵抗接点を提供する。ソース電極310は、ソース領域110と電気的に接続され、埋め込みゲート領域140と電気的に接続して、統合ボディダイオードまたは還流ダイオード(free−wheeling diode)を提供することができる。ソース電極310は、半導体素子500のソース端子Sを形成することも、半導体素子500のソース端子Sに電気的に接続または結合することもできる。
ドレイン電極330は、ドレイン層130に直接隣接し、第2の表面102でドレイン層130とのオーム抵抗接点を提供する。ドレイン電極330は、ドレイン端子Dを提供することも、ドレイン端子Dに電気的に接続することもできる。
ゲート電極350は、上部ゲート領域150に直接隣接し、上部ゲート領域150とのオーム抵抗接点を提供する。ゲート電極350は、ゲート端子Gを形成することも、ゲート端子Gに電気的に結合または接続することもできる。
第1の表面101に平行なJFETセルTCの横断面、ならびに/あるいは、上部ゲート領域150および/または横・垂直チャネル領域115、121の横断面は、ストライプ状、円形、楕円形、多角形(例えば、角丸のまたは角丸でない六角形または長方形)であり得る。ほぼ同一の多数のJFETセルTCは、中心間の距離(ピッチ)を均一にして配列することができ、電気的に並列に配列することができる。
オン状態のJFETトランジスタセルTCでは、上部ゲート領域150での電位によって制御される負荷電流は、ソース領域110とドレイン層130との間を、横チャネル領域115では横方向に沿って、そして実質上、垂直チャネル領域121およびドリフトゾーン120では垂直方向に沿って、流れる。
上部ゲート領域150、横チャネル領域115および埋め込みゲート領域140は、この順で垂直方向に沿って配列される。
横チャネル領域115は、超接合構造(補償構造)を含み、超接合構造は、第1の導電型の第1のゾーン115aと、第2の導電型の第2のゾーン115bとを含む。第1および第2のゾーン115a、115bは、上部ゲート領域150から横チャネル領域115の中に延在し、第2のゾーン115bの垂直拡張は、横チャネル領域115の垂直拡張より小さい。
第1および第2のゾーン115a、115bは、横チャネル領域115の負荷電流方向によって与えられる第1の横方向に沿って延在し得、第1の横方向に対して傾斜している第2の横方向に沿って交互に配置され得る。実施形態によれば、第2の横方向は、第1の横方向に垂直である。第1のゾーン115aの各々は、ソース領域110と垂直チャネル領域121の両方に直接接続される。第2のゾーン115bの各々は、上部ゲート領域150に直接接続することができる。第1および第2のゾーン115a、115bは、ストライプ状であり得る。別の実施形態によれば、第1のゾーン115aまたは第2のゾーン115bは、行と列に配列することができるカラムであり得る。例えば、第2のゾーン115bは、グリッド状の第1のゾーン115aに埋め込まれたカラムであり得る。
横チャネル領域115の垂直拡張vは、200nm〜1500nm、例えば、300nm〜1000nmの範囲であり得る。第1のゾーン115aのピッチは、50nm〜50μm、例えば、100nm〜500nmの範囲であり得る。第2のゾーン115bの幅w2に対する第1のゾーン115aの幅w1の比率は、0.5〜2、例えば、1であり得る。第1のゾーン115aの平均不純物濃度は、5E15cm−3〜1E18cm−3、例えば、5E16cm−3〜1E17cm−3の範囲であり得る。
第1および第2のゾーン115a、115bの幅は、半導体材料および平均純不純物濃度に依存し、JFETセルTCがノーマリーオン型(normally−on type)であるかまたはノーマリーオフ型(normally−off type)であるか次第である。炭化ケイ素素子および約1E19cm−3のp型の第2のゾーン115bの平均純不純物濃度について言及する実施形態では、n型の第1のゾーン115aの平均純不純物濃度は、1E16cm−3〜1E18cm−3であり得る。例えば、1E16cm−3のn型の第1のゾーン115aの平均純不純物濃度に対し、第1のゾーン115aの幅w1は、ノーマリーオン素子の場合は9.5μmより大きく、ノーマリーオフ素子の場合は最大8.5μmであり得、1E18cm−3の第1のゾーン115aの平均純不純物濃度では、第1のゾーン115aの幅w1は、ノーマリーオン素子の場合は90nm以上であり、ノーマリーオフ素子の場合は最大85nmであり得る。上部および埋め込みゲート領域150、140の純不純物濃度は、p型の第2のゾーン115bとほぼ同じであり得る。
横チャネル領域115の第2のゾーン115bは、上部ゲート領域150に接続することができ、第2のゾーン115bの電位は、ゲート電位に従う。第1のゾーン115aは、ソース領域110に構造的に接続され、第1のゾーン115aの電位は、ソース電位に従う。
以下の考察に対し、第1の導電型はn型であり、第2の導電型はp型である。同様の考察が、第1の導電型がp型であり、第2の導電型がn型である実施形態に当てはまる。
JFETセルTCの導電モードでは、負荷電流は、第1のゾーン115aを通じて、ソース領域110と垂直チャネル領域121との間を流れる。従来のJFETセルでは、横チャネル領域の垂直拡張および横チャネル領域の不純物濃度は、JFETセルが導電モードから遮断モードに変化するピンチオフ電圧を設定する。横チャネル領域115の垂直拡張は、横チャネル領域が形成されるエピタキシャル層の成長率の関数である。エピタキシャル成長率は、制御が難しいことが判明しており、その結果、ウエハロットの異なるウエハから得られた素子の間のピンチオフ電圧の変動をもたらす。
横チャネル領域121の電流の流れに平行な第1および第2のゾーン115a、115bの配列を用いることで、JFETセルTCのピンチオフ電圧はもはや横チャネル領域115の垂直拡張によって定義されないが、第1および第2のゾーン115a、115bの横寸法および第1および第2のゾーン115a、115bの不純物濃度などの十分に制御可能なパラメータによって定義される。
第1および第2のゾーン115a、115bを含む超接合構造は、横チャネル領域115の垂直拡張vからJFETセルTCのピンチオフ電圧を減結合する。それに加えて、ピンチオフ電圧は、垂直拡張vの変動を受けず、通常より低いピンチオフ電圧が可能である。実施形態によれば、第1および第2のゾーン115a、115bは、ノーマリーオフJFETセルTCを提供するように定義することができる。その上、同じ遮断能力を得るため、n型の第1のゾーン115aは、超接合構造なしの比較例のn型の横チャネル領域より高い不純物濃度を有し得る。より高い不純物濃度は、オン状態の抵抗を低くし、静的損失を低減させる。
第1のゾーン115aと第2のゾーン115bとの間に延在する空乏ゾーンが、平行な第1のゾーン115aによって形成されたn型チャネルをピンチオフしない限り、JFETセルTCはオフ状態であり、ピンチオフ電圧は、第1および第2のゾーン115a、115bの寸法および不純物濃度によって設定される。
ノーマリーオフJFETに対し、ゲート電圧が印加されない場合、第1のゾーン115aの幅w1は、隣接する第1のゾーン115aと第2のゾーン115bとの間のpn接合に沿った空乏ゾーンの拡張より小さくなるように選択される。ピンチオフ電圧を下回るゲート電圧の印加は、空乏ゾーンの拡張を減少させ、平行な第1のゾーン115aによって形成されたn型チャネルを開放させる。チャネルは、ソース領域110と垂直チャネル領域121との間のオン状態の電流が流れる方向に沿った横チャネル領域115を通じる横方向の電流の流れや、垂直チャネル121とドレイン層130との間のドリフトゾーン120を通じる垂直方向の電流の流れを可能にする。
ゲート電圧が印加されない場合、第1のゾーン115aの幅w1を、隣接する第1のゾーン115aと第2のゾーン115bとの間のpn接合に沿って生じる空乏ゾーンの幅より大きく設定することにより、第1および第2のゾーン115a、115bが部分的にのみ空乏化され、ノーマリーオンJFETをもたらす。
図1Bは、第1のゾーン115aがマトリクスを形成し、第2のゾーン115bがマトリクスに埋め込まれたカラムを形成する実施形態について言及する。横チャネル領域115は、両方の横方向に沿ってパターニングされる。
図2は、上部ゲート領域150に対して配向された横チャネル領域115の側面に形成されたソース領域110を備える実施形態について言及する。ソース領域110は、横チャネル領域115を含む層または上部ゲート領域150を含む層への注入によって形成することができる。第2のゲート電極340は、埋め込みゲート領域140に直接隣接し、埋め込みゲート領域140とのオーム抵抗接点を形成することができる。第2のゲート電極340は、第2のゲート端子BGに、ソース電極310に、または、半導体素子500に組み込まれる別の電子要素に電気的に結合または接続することができる。ソース領域110は、超接合構造の後に形成することができ、超接合構造を提供するために実行される注入およびエッチングプロセスの対象ではない。さらなる詳細については、図1Aの記述を参照すること。
図3A〜3Fは、超接合構造を備える横チャネル領域を含むJFETセルTCを備える半導体素子を製造する方法について言及する。
単結晶半導体材料からの第1のエピタキシャル層120aは、エピタキシによって、単結晶台座層130a上に成長させ、第1のエピタキシャル層120aの結晶格子は、台座層130aの結晶格子と整合させて成長させる。第1のエピタキシャル層120aの単結晶半導体材料は、窒化ガリウム(GaN)または炭化ケイ素(SiC)などの2.0eV以上のバンドギャップを有し得る。実施形態によれば、単結晶半導体材料は炭化ケイ素(SiC)であり、例えば、2H−SiC、4H−SiC、6H−SiCまたは15R−SiCが挙げられる。台座層130aの半導体材料は、同じであっても、別の半導体材料であってもよい。台座層130aおよび第1のエピタキシャル層120aは、第1の導電型を有する。第1のエピタキシャル層120aは、エピタキシの間に第1の導電型の不純物でin−situドープすることができる。
示される実施形態によれば、第1の導電型はn型であり、第2の(反対の)導電型はp型である。
以下で実行される注入に対して不浸透性の材料からの第1のマスク層は、台座層130aとは反対側の第1のエピタキシャル層120aのプロセス表面101a上に堆積させることができる。プロセス表面101aの第1のセクションを露出させる開口部を備える第1の注入マスク401を得るため、第1のマスク層は、フォトリソグラフィによってパターニングされる。第1の注入マスク401を使用することで、第2の導電型の不純物は、プロセス表面101aに注入される。
図3Aは、台座層130a上に形成された第1のエピタキシャル層120aを備える半導体基板500aを示す。第1の注入マスク401は、第1のセクションを露出させ、JFETセルTCのセル領域の第1のエピタキシャル層120aの第2のセクションを被覆する。適切なアニーリングおよび拡散プロセスと組み合わせて、第1の注入は、第1の注入マスク401によって露出させたプロセス表面101aの第1のセクションから第1のエピタキシャル層120aの中に延在する第2の導電型のウェルを形成する。ウェルは、埋め込みゲート領域140を提供する。第1の注入マスク401によって被覆され、プロセス表面101aに直接隣接する第1のエピタキシャル層120aの一部分は、垂直チャネル領域121を形成する。垂直チャネル領域121は、JFETセルTCの中心にまたはJFETセルTCの縁部に沿って形成することができる。
第2の注入マスク402は、プロセス表面101a上に形成することができる。例えば、図3Aの第1の注入マスク401を取り除き、第2のマスク層を堆積させ、フォトリソグラフィによってパターニングして、第2の注入マスク402を形成することができる。別の実施形態によれば、第1の注入マスク401は、第1の注入マスク401の一部分の垂直側壁に沿って延在するスペーサ部分402aによって維持および補正することができる。例えば、第1の注入マスク401および第1の注入マスク401によって露出されたプロセス表面101aの第1のセクションを被覆する共形の第2のマスク層を堆積させることができる。共形の第2のマスク層は、第1の注入マスク401の上方およびプロセス表面101a上の第2のマスク層の水平部分を取り除く異方性エッチングによってパターニングすることができる。
JFETセルTCの1つまたは2つのソース領域110を形成するため、第2の注入マスク402の開口部を通じて第1の導電型の不純物を注入することができる。別の実施形態によれば、最初に、第2のマスク402を使用してソース領域110が形成される。次いで、埋め込みゲート領域140を形成するための第1のマスク401が、等方性のくぼみ形成によって第2のマスク402から得られる。
図3Bは、垂直チャネル領域121から離間された埋め込みゲート領域140の一部分を露出する第2の注入マスク402を示す。ソース領域110は、プロセス表面101aから埋め込みゲート領域140の中に延在するウェルとして形成される。埋め込みゲート領域140の垂直拡張は、ソース領域110の垂直拡張より大きい。
第2の注入マスク402が取り除かれ、エピタキシによって、チャネル層115xがプロセス表面101a上に形成され、チャネル層115xは、第1のエピタキシャル層120aの導電型の不純物でin−situドープすることができる。
図3Cは、図3Bのプロセス表面101aに相当する補助平面AP上に形成されたチャネル層115xを示す。チャネル層115xは、固有のものであっても、第1のエピタキシャル層120aの導電型を有するものであってもよい。チャネル層115xの露出表面は、半導体基板500aのさらなるプロセス表面を形成することも、完成された半導体素子の半導体本体の第1の表面101に相当することもあり得る。
以下では、超接合構造が、チャネル層115xに形成される。実施形態によれば、第3のマスク層をさらなるプロセス表面上または第1の表面101上に堆積させ、ドライエッチングパターニングプロセスを使用してフォトリソグラフィによってパターニングすることができる。第3のマスク層からの第3の注入マスク403の形成は、第3の注入マスク403の開口部の幅を調整するためのさらなるくぼみおよび/またはスペーサ形成プロセスを含み得る。
第2の導電型の不純物は、第3の注入マスク403の開口部を通じてチャネル層115xに注入される。注入エネルギーは、チャネル層115xの垂直拡張に関して最悪の条件下(この場合、エピタキシの制限されたプロセス制御に起因する変動を受ける)であっても、注入される不純物が確実に補助平面APに達しないように選択することができる。第2のゾーン115bの所望の垂直拡張を得るため、注入は、異なる注入エネルギーでのいくつかの注入を含むことも、最終的には適切な拡散プロセスと組み合わせて、注入された不純物のチャネリング効果を使用することもできる。
図3Dは、第1の表面101上に配置された第3の注入マスク403を示す。第3の注入マスク403の開口部は、断面I−Iで示されるように断面平面に平行に広がる。注入されたp型の不純物は、第1の表面101からチャネル層115xの中に延在する第2のゾーン115bを形成する。第2のゾーン115bは、補助平面APまで一定の距離で形成される。非注入ゾーンは、固有のものであっても、超接合構造のn型の第1のゾーン115aを形成するものであってもよい。
第4の注入マスク404は、例えば、第3の注入マスク403の第1のマスク材料とは異なる第2のマスク材料で第3の注入マスク403の開口部を充填し、第3の注入マスク403を取り除き、場合により、スペーサおよび/またはくぼみ形成プロセスによって第4の注入マスク404の開口部を調節することによって、提供することができる。第4の注入マスク404の開口部は、断面I−Iで示されるように断面平面に平行に延在する。n型の不純物は、第4の注入マスク404の開口部を通じて注入することができる。
第1のゾーン115aの所望の垂直拡張を得るため、注入は、異なる注入エネルギーでのいくつかの注入を含むことも、最終的には適切な拡散プロセスと組み合わせて、注入された不純物のチャネリング効果を使用することもできる。
図3Eは、第1の表面101上に配置された第4の注入マスク404と、n型の不純物の注入により得られた第1のゾーン115aとを示す。第1のゾーン115aは、ソースゾーン110に達し、ソースゾーン110の中に延在することができる。
他の実施形態によれば、第4の注入マスク404を使用する第2の注入を省略することができ、第1のゾーン115aは、図3Dのin−situドープされたチャネル層115xの非注入部分から形成される。
それぞれの注入マスク403または404を取り除き、JFETセルTCのセルエリア全体にわたって第2の導電型の不純物を注入して、上部ゲート領域150を形成することができる。エッチングマスクは、ソース領域110および埋め込みゲート領域140の隣接部分の一部分の垂直投影において上部ゲート領域150を露出させ、上部ゲート領域150の残りの部分を被覆するように提供することができる。異方性エッチングは、互いに直接隣接するソース領域110および埋め込みゲート領域140の一部分を露出させるエッチングマスクを使用して実行することができる。
図3Fは、上部ゲート領域150と、図3Eのチャネル層115xの一部分から形成された横チャネル領域115とを含むメサを示し、横チャネル領域115は、超接合構造を形成する反対の導電型の第1および第2のゾーン115a、115bを含む。上部ゲート、ソースおよび埋め込みゲート領域150、110、140は、露出され、オーム抵抗接点の形成に対してアクセス可能である。台座層130aは、半導体基板500aから得られた半導体素子のドレイン層を含む。第1のエピタキシャル層120aの非注入部分は、単数化された半導体素子のJFETセルTCのドリフトゾーン120および垂直チャネル領域121を形成する。
図4A〜4Cは、エッチングによって超接合構造を形成する方法に対応する。
図4Aの半導体基板500aは、図3Cの半導体基板500aに相当し、チャネル層115xの露出表面は、さらなるプロセス表面101bを形成する。
エッチングマスク430は、フォトリソグラフィによってエッチングマスク層から提供され、エッチングマスク430の開口部は、くぼみおよびスペーサ形成プロセスを使用して調節することができる。エッチングマスク430の開口部は、断面I−Iで示されるように断面平面に平行に広がる。異方性エッチングプロセスは、さらなるプロセス表面101bからチャネル層115xの中に(チャネル層115xを貫通することなく)延在する空洞を形成するため、エッチングマスク430を使用して実行される。
図4Bは、エッチングマスク430と、さらなるプロセス表面101bから補助平面APの深さより少ない深さまで延在するエッチングされた空洞とを示す。空洞間のメサは、第1のゾーン115aを形成することができる。
エッチングマスク430が取り除かれ、空洞を充填するように、さらなる半導体層(例えば、第2のエピタキシャル層)が堆積される。第2のエピタキシャル層は、第2の導電型の不純物でin−situドープされる。
図4Cは、空洞を充填し、空洞間のメサの上部に連続層を形成する第2のエピタキシャル層を示す。空洞内の第2のエピタキシャル層の一部分は、超接合構造の第2のゾーン115bを形成する。空洞外の第2のエピタキシャル層の一部分は、上部ゲート領域150の少なくとも一部分を形成することができ、上部ゲート領域150の少なくとも一部分は、さらなる注入、くぼみ形成および/またはさらなるエピタキシャル成長を使用してさらに処理することができる。プロセスは、例示として、図3Fを参照して説明されるように継続することができる。
本明細書では、特定の実施形態について示し、説明してきたが、当業者であれば、本発明の範囲から逸脱することなく、示され、説明される特定の実施形態に対して様々な代替のおよび/または均等の実装形態を代用できることが理解されよう。この出願は、本明細書で論じられる特定の実施形態のいかなる適合形態または変形形態も包含することが意図される。したがって、この発明は、特許請求の範囲およびその均等物によってのみ制限されることが意図される。
100 半導体本体
101 第1の表面
101a、101b プロセス表面
102 第2の表面
110 ソース領域
115 横チャネル領域
115a 第1のゾーン
115b 第2のゾーン
115c 第1の接続ゾーン
115d 第2の接続ゾーン
115e 第3の接続ゾーン
115x チャネル層
120 ドリフトゾーン
120a 第1のエピタキシャル層
121 垂直チャネル領域
130 ドレイン層
130a 台座層
140 埋め込みゲート領域
150 上部ゲート領域
150a 上部ゲート層
310 ソース電極
330 ドレイン電極
340 第2のゲート電極
350 ゲート電極
401 第1の注入マスク
402 第2の注入マスク
402a スペーサ部分
403 第3の注入マスク
404 第4の注入マスク
430 エッチングマスク
500 半導体素子
500a 半導体基板
710 n型不純物プロファイル
711、712、713 注入不純物プロファイル
720 注入プロファイル

Claims (19)

  1. 垂直方向に沿って配列された、上部ゲート領域と、横チャネル領域と、埋め込みゲート領域とを備える接合型電界効果トランジスタセルを備える半導体素子であって、
    前記横チャネル領域は、第1の導電型の第1のゾーンと、第2の導電型の第2のゾーンとを備え、前記第1および第2のゾーンは、前記垂直方向に垂直な横方向に沿って交互に配置される、半導体素子。
  2. 前記上部および埋め込みゲート領域は、前記第2の導電型を有し、前記第2のゾーンは、前記上部ゲート領域に直接隣接する、請求項1に記載の半導体素子。
  3. 前記第1のゾーンに直接隣接する前記第1の導電型のソース領域をさらに備える、請求項1に記載の半導体素子。
  4. 前記ソース領域は、前記横チャネル領域と前記埋め込みゲート領域との間にある、請求項3に記載の半導体素子。
  5. 前記ソース領域は、前記埋め込みゲート領域とは反対側の前記横チャネル領域の側面上にある、請求項3に記載の半導体素子。
  6. 前記第1の導電型のドリフトゾーンをさらに備え、前記ドリフトゾーンは、前記横チャネル領域および前記第1のゾーンに直接隣接する垂直チャネル領域を備える、請求項1に記載の半導体素子。
  7. 前記埋め込みゲート領域は、前記横チャネル領域と前記ドリフトゾーンとの間にある、請求項6に記載の半導体素子。
  8. 前記ドリフトゾーンに直接隣接する前記第1の導電型のドレイン層をさらに備え、前記ドリフトゾーンは、前記ドレイン層から前記横チャネル領域および前記埋め込みゲート領域を分離する、請求項6に記載の半導体素子。
  9. 前記第1および第2のゾーンは、前記横チャネル領域のオン状態の電流が流れる方向によって与えられる第1の横方向に垂直な第2の横方向に沿って交互に配置される、請求項1に記載の半導体素子。
  10. 規則的なパターンで配列された多数の前記接合型電界効果トランジスタセルをさらに備える、請求項1に記載の半導体素子。
  11. 前記第1のゾーンは第1の幅を有し、前記第2のゾーンは第2の幅を有し、
    前記第1および第2のゾーンの前記第1および第2の幅ならびに不純物濃度は、前記上部および埋め込みゲート領域に印加される外部電圧がない場合、前記第1および第2のゾーンが完全に空乏化されるように設定される、請求項1に記載の半導体素子。
  12. 前記第1のゾーンは第1の幅を有し、前記第2のゾーンは第2の幅を有し、
    前記第1および第2のゾーンの前記第1および第2の幅ならびに不純物濃度は、前記上部および埋め込みゲート領域に印加される外部電圧がない場合、前記第1および第2のゾーンが完全に空乏化されないように設定される、請求項1に記載の半導体素子。
  13. 前記第1のゾーンは、50nm〜1000nmの範囲の横方向の中心間の距離を有する、請求項1に記載の半導体素子。
  14. 前記上部ゲート領域と、前記横チャネル領域と、前記埋め込みゲート領域と、前記ドリフトゾーンと、前記ドレイン層とを備える半導体本体は、炭化ケイ素から提供される、
    請求項1に記載の半導体素子。
  15. 垂直方向に沿って配列された、上部ゲート領域と、横チャネル領域と、埋め込みゲート領域とを備える接合型電界効果トランジスタであって、
    前記横チャネル領域は、第1の導電型の第1のゾーンと、第2の導電型の第2のゾーンとを備え、前記第1および第2のゾーンは、前記垂直方向に垂直な横方向に沿って交互に配置される、接合型電界効果トランジスタ。
  16. 半導体素子を製造する方法であって、
    第1の導電型の第1のエピタキシャル層のプロセス表面の第1のセクションに、第2の導電型の少なくとも1つの埋め込みゲート領域を形成することと、
    前記プロセス表面上に、チャネル層を形成することと、
    前記チャネル層に、前記チャネル層の表面から前記少なくとも1つの埋め込みゲート領域まで下がって延在する第1の導電型の第1のゾーンおよび第2の導電型の第2のゾーンをそれぞれ形成することと、
    前記第1および第2のゾーンに直接隣接する上部ゲート領域を形成することと
    を含む、方法。
  17. 前記第1および第2のゾーンを形成することは、
    前記第1のゾーンのためのエリアを被覆し、前記第2のゾーンに割り当てられたエリアを露出させる開口部を備える第1の注入マスクを提供することと、
    前記チャネル層の中へ前記開口部を通じて前記第2の導電型の不純物を注入することと
    を含む、請求項16に記載の方法。
  18. 前記第2のゾーンのための前記エリアを被覆し、前記第1のゾーンに割り当てられた前記エリアを露出させる開口部を備える第2の注入マスクを提供することと、
    前記チャネル層の中へ前記開口部を通じて前記第1の導電型の不純物を注入することと
    をさらに含む、請求項17に記載の方法。
  19. 前記チャネル層は前記第1の導電型の不純物を含み、前記第1および第2のゾーンを形成することは、
    前記チャネル層の中に延在する空洞を形成することと、
    前記空洞を充填するため、第2の導電型のin−situドープされた層を堆積させることであって、充填された空洞は前記第2のゾーンを提供し、前記空洞間のメサは前記第1のゾーンを形成する、堆積させることと
    を含む、請求項18に記載の方法。
JP2014230624A 2013-11-18 2014-11-13 横チャネル領域を有する接合型電界効果トランジスタセル Active JP6246700B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/083,023 US9425327B2 (en) 2013-11-18 2013-11-18 Junction field effect transistor cell with lateral channel region
US14/083,023 2013-11-18

Publications (2)

Publication Number Publication Date
JP2015099921A true JP2015099921A (ja) 2015-05-28
JP6246700B2 JP6246700B2 (ja) 2017-12-13

Family

ID=53172381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230624A Active JP6246700B2 (ja) 2013-11-18 2014-11-13 横チャネル領域を有する接合型電界効果トランジスタセル

Country Status (3)

Country Link
US (1) US9425327B2 (ja)
JP (1) JP6246700B2 (ja)
DE (1) DE102014116628A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141920B (zh) * 2021-11-19 2023-08-11 厦门市三安光电科技有限公司 发光二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269518A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 電力用半導体素子及び半導体層の形成方法
JP2004063507A (ja) * 2002-07-24 2004-02-26 Sumitomo Electric Ind Ltd 縦型接合型電界効果トランジスタ、及び縦型接合型電界効果トランジスタの製造方法
JP2006514439A (ja) * 2003-03-19 2006-04-27 サイスド エレクトロニクス デヴェロプメント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 高ドープのチャネル伝導領域を持つ半導体装置とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830213B2 (ja) * 2001-05-08 2011-12-07 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US7180105B2 (en) 2004-02-09 2007-02-20 International Rectifier Corporation Normally off JFET
JP2008016747A (ja) 2006-07-10 2008-01-24 Fuji Electric Holdings Co Ltd トレンチmos型炭化珪素半導体装置およびその製造方法
US8183666B2 (en) * 2009-10-29 2012-05-22 Infineon Technologies Ag Semiconductor device including semiconductor zones and manufacturing method
US8242584B2 (en) * 2009-12-28 2012-08-14 International Business Machines Corporation Structure and method to create stress trench

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269518A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 電力用半導体素子及び半導体層の形成方法
JP2004063507A (ja) * 2002-07-24 2004-02-26 Sumitomo Electric Ind Ltd 縦型接合型電界効果トランジスタ、及び縦型接合型電界効果トランジスタの製造方法
JP2006514439A (ja) * 2003-03-19 2006-04-27 サイスド エレクトロニクス デヴェロプメント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 高ドープのチャネル伝導領域を持つ半導体装置とその製造方法

Also Published As

Publication number Publication date
US9425327B2 (en) 2016-08-23
DE102014116628A1 (de) 2015-05-21
JP6246700B2 (ja) 2017-12-13
US20150137143A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5606019B2 (ja) 電力用半導体素子およびその製造方法
US7595241B2 (en) Method for fabricating silicon carbide vertical MOSFET devices
US10153345B2 (en) Insulated gate switching device and method for manufacturing the same
JP5188037B2 (ja) 半導体装置
JP4825424B2 (ja) 電力用半導体装置
JP5002148B2 (ja) 半導体装置
US20150179764A1 (en) Semiconductor device and method for manufacturing same
KR100731141B1 (ko) 반도체소자 및 그의 제조방법
JP2008182054A (ja) 半導体装置
JPWO2017064949A1 (ja) 半導体装置および半導体装置の製造方法
JP3634848B2 (ja) 電力用半導体素子
JP2007027266A (ja) 半導体素子及びその製造方法
CN111133588B (zh) 半导体装置及其制造方法
JP6463506B2 (ja) 炭化珪素半導体装置
US9660046B2 (en) Method of manufacturing semiconductor device
JP2007019146A (ja) 半導体素子
JP3998454B2 (ja) 電力用半導体装置
KR102100863B1 (ko) SiC MOSFET 전력 반도체 소자
JP4997715B2 (ja) 半導体装置およびその製造方法
WO2013175880A1 (ja) 炭化珪素半導体装置およびその製造方法
JP5996611B2 (ja) 横チャネル領域を有する接合型電界効果トランジスタセル
JP2023110083A (ja) グリッドを製造するための方法
JP6246700B2 (ja) 横チャネル領域を有する接合型電界効果トランジスタセル
JP2020035912A (ja) 半導体装置
WO2022118976A1 (ja) 超接合半導体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170228

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250