JP2015076512A - パターンの形成方法 - Google Patents

パターンの形成方法 Download PDF

Info

Publication number
JP2015076512A
JP2015076512A JP2013211854A JP2013211854A JP2015076512A JP 2015076512 A JP2015076512 A JP 2015076512A JP 2013211854 A JP2013211854 A JP 2013211854A JP 2013211854 A JP2013211854 A JP 2013211854A JP 2015076512 A JP2015076512 A JP 2015076512A
Authority
JP
Japan
Prior art keywords
group
hydroxy
meth
methyl
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211854A
Other languages
English (en)
Other versions
JP6099539B2 (ja
Inventor
梅川 秀喜
Hideki Umekawa
秀喜 梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2013211854A priority Critical patent/JP6099539B2/ja
Publication of JP2015076512A publication Critical patent/JP2015076512A/ja
Application granted granted Critical
Publication of JP6099539B2 publication Critical patent/JP6099539B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Polymerisation Methods In General (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 サファイア等の基板のドライエッチングにおいて、光硬化性ナノインプリント用組成物を用いた場合に塩素系ガスのエッチング耐性に優れた新規なパターン形成方法を提供する。【解決手段】 (メタ)アクリル基を有する有機珪素化合物の加水分解物と、特定の金属アルコキシドの加水分解物を含む加水分解混合物(A)、(メタ)アクリル基を有する重合性単量体(B)、並びに光重合開始剤(C)を含有する光硬化性ナノインプリント用組成物を基板上に塗布し、次いで150℃〜250℃で乾燥させ、該組成物からなる塗膜を形成する工程、パターンが形成された金型のパターン形成面と前記塗膜とを接触させ、その状態で光を照射して塗膜を硬化させる工程、前記金型を硬化した塗膜から分離して、前記金型のパターン形成面に形成されているパターンに対応するパターンを基板上に形成する工程を含むパターンの形成方法。【選択図】 なし

Description

本発明は、光硬化性ナノインプリント用組成物を用いて基板上にパターンを形成する新規なパターン形成方法に関する。
近年、半導体集積回路は、より微細化され、高精度なものが要求されているが、このような微細加工は、高精度の半導体集積回路の他にも光反射防止性付与やLED基板における光取り出し効率向上等の光学・照明用途や、2次電池、太陽電池、燃料電池等のエネルギー開発、バイオテクノロジー等、多岐の用途において、インプリント技術による微細加工が盛んに検討されている。
インプリント技術とは、基板上に形成したいパターンに対応するパターンの凹凸を有する金型を、基板表面に形成された塗膜上に型押し、剥離することにより、所望のパターンを該基板表面に転写する工程からなり、低コストで量産化が可能な微細加工技術として期待されている。
この技術を使用することによって、ナノオーダーの微細なパターンを形成することができる。インプリント技術の中でも、特に、数ナノ〜数百ナノメートル(nm)の超微細なパターンを形成する技術はナノインプリント技術と呼ばれている。
このナノインプリント技術について、その方法は、基板表面に形成する塗膜材の特性により2種類に大別される。その1つは、パターンが転写される塗膜材を加熱して塑性変形させた後、金型を押し付け、冷却して、塗膜材を硬化させることによって、パターンを転写する熱ナノインプリントの方法である。また、他の1つは、金型又は基板の少なくとも一方が光透過性であるものを使用し、基板上に塗膜材として液状の光硬化性組成物を塗布して塗膜を形成し、金型を押し付けて塗膜と接触させ、ついで、金型又は基板を介して光を照射して該塗膜材を硬化させることによって、パターンを転写する方法である。これらの中でも、光照射によりパターンを転写する光ナノインプリントの方法は、高精度のパターンを形成できるものであるため、ナノインプリント技術において広く利用されるようになっており、該方法に好適に用いられる光硬化性ナノインプリント用組成物の開発が進められている。
ナノインプリント技術は、金型にてパターンを転写し光硬化した塗膜材(以下、硬化膜とする場合もある)を元に、基板に所望のパターンを形成するものである。基板にパターンを形成するには、酸素ガス、フッ素系ガス、塩素系ガス等により、硬化膜、及び基板のドライエッチングを行う。このようなドライエッチング処理では、基板を保護するパターンニングされた硬化膜もドライエッチングされることから、基板と硬化膜とのエッチング速度比が重要となる。そのため、種々のパターンニングを行う上で、上記のガスにドライエッチングされ難い硬化膜となる光硬化性ナノインプリント用組成物の開発が数多くなされている。(以下、この特性をエッチング耐性とする場合もある)。
LED基板における光取り出し効率を向上させるために、サファイア基板表面上の凹凸加工により、素子からの光の全反射を抑制したり、サファイア基板上に積層するGaN層の結晶欠陥を低下させることが検討されている。サファイア基板表面上に凹凸加工する方法として、マスクを用いてシリカを蒸着し、シリカ蒸着パターンをマスクとしてウエットエッチング処理による方法や、フォトリソグラフィーでレジストパターンを形成し、その後、ハードマスク堆積とリフトオフによってメタルマスクを形成してドライエッチング処理を行う方法が一般的に用いられている。これらの方法で得られる基板は、Patterned Sapphire Substrates(PSS)と言われ、サファイア表面にミクロンオーダーの凹凸パターンを付与している。近年、LED光源のより一層の発光効率向上を目的として、可視光の波長以下の100〜500nm程の凹凸パターンをサファイア表面上に付与し、全反射による横方向への伝播を抑制することが検討されており、その方法として、ナノインプリントにてサファイア基板表面上に硬化膜のパターンを形成し、それをマスクとして、ドライエッチング処理でサファイア表面に凹凸パターンを付与する方法が挙げられる。
サファイアのドライエッチングに使用するガスとしては、塩素系ガスが一般的で、パターン形成に使用する光硬化性ナノインプリント用組成物の硬化膜樹脂に塩素エッチング耐性が高いことが求められる。塩素エッチング耐性の向上には、フリーの炭素源が最少にできることから芳香族化合物が有効と考えられている。芳香族系高分子を用いた熱ナノインプリントの方法が有効であるが、工程上、パターンが転写される塗膜材を加熱して塑性変形させた後、金型を押し付け、冷却して、塗膜材を硬化させることによって、パターンを転写するため、生産性に課題があった。生産性の観点から、アリール置換基を有する重合性単量体や樹脂および脂環式化合物を含む光硬化性ナノインプリント用組成物が提案されている(特許文献1〜3参照)。しかしながら、塩素エッチング耐性を向上させるためには、アリール置換基を有する重合性単量体や樹脂および脂環式化合物のような剛直な骨格を有した単量体を含むことが有効と考えられるが、より一層の塩素エッチング耐性の向上が求められている。
また、アルコキシラン類の加水分解物を含む光硬化性ナノインプリント用組成物を用いて、基板上に塗膜を形成し、光硬化させた後に120℃〜250℃で熱処理をすることで、微細なパターンを形成する技術が開示されている(特許文献4)。特許文献4に記載の発明は、塗膜を光硬化させた後に熱処理させることに特徴を有している。実施例においては、光硬化前にも、塗膜を熱処理(乾燥)させているが、その温度は110℃の一点のみが示されているだけであり、光硬化前に塗膜を特定の温度以上で乾燥させることで、エッチングガスに対する耐性が向上することを何ら予測させるものではない。
特開2009−218550号公報 特開2011−157482号公報 特開2008−246876号公報 特開2013−42124号公報
本発明の目的は、基板上に光硬化性ナノインプリント用組成物によりパターンを形成させ、その後、エッチングガスによりドライエッチングする際のエッチング耐性に優れた新規なパターンの形成方法を提供することにある。
本発明者は、光硬化性ナノインプリント用組成物を用いた場合に、塩素系ガス等のエッチング耐性に優れた新規なパターン形成方法について、種々検討を行った。その結果、(メタ)アクリル基を有する有機珪素化合物の加水分解物と、特定の金属アルコキシドの加水分解物を含む加水分解混合物(A)、(メタ)アクリル基を有する重合性単量体(B)、並びに光重合開始剤(C)を含有する光硬化性ナノインプリント用組成物を基板上に塗布し、次いで150℃〜250℃で乾燥させ、該組成物からなる塗膜を形成する工程、パターンが形成された金型のパターン形成面と前記塗膜とを接触させ、その状態で光を照射して塗膜を硬化させる工程、前記金型を硬化した塗膜から分離して、前記金型のパターン形成面に形成されているパターンに対応するパターンを基板上に形成する工程を含むことによって、光硬化性ナノインプリント用組成物を用いた場合に、エッチングガスに対するエッチング耐性、特に塩素系ガスに対するエッチング耐性に優れた新規なパターンを形成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、
(A)下記式(1)
Figure 2015076512
(式中、
は、水素原子、またはメチル基であり、
は、炭素数1〜20のアルキレン基または炭素数3〜10のシクロアルキレン基であり、
は、炭素数1〜4のアルキル基、炭素数3〜4のシクロアルキル基、または炭素数6〜12のアリール基であり、
は、炭素数1〜4のアルキル基または炭素数3〜4のシクロアルキル基であり、
lは1〜3の整数であり、mは0〜2の整数であり、kは1〜3の整数であり、
l+m+kは4であり、
、R、RおよびRがそれぞれ、複数存在する場合には、複数のR、R、RおよびRは、それぞれ、同種又は異種の基であってもよい)で示される(メタ)アクリル基を有する有機珪素化合物の加水分解物、
および
下記式(2)
Figure 2015076512
(式中、
Mは、タングステン、ジルコニウム、スズ、インジウム、アンチモン、モリブデン、ニオブ、またはハフニウムであり、
は、炭素数1〜10のアルキル基であり、同一の基であっても、異なる基であってもよく、
Mがタングステンの場合、pは6または5であり、
Mがモリブデン、ニオブの場合、pは5であり、
Mがジルコニウム、スズ、ハフニウムの場合、pは4であり、
Mがインジウム、アンチモンの場合、pは3である。)
で示される金属アルコキシドの加水分解物を含む加水分解混合物、
(B)(メタ)アクリル基を有する重合性単量体、並びに
(C)光重合開始剤
を含有する光硬化性ナノインプリント用組成物を基板上に塗布し、次いで150℃〜250℃で乾燥させ、該組成物からなる塗膜を形成する工程、
パターンが形成された金型のパターン形成面と前記塗膜とを接触させ、その状態で光を照射して塗膜を硬化させる工程、
前記金型を、硬化した塗膜から分離して、前記金型のパターン形成面に形成されているパターンに対応するパターンを基板上に形成する工程
を含むことを特徴とするパターンの形成方法である。
なお、本発明において、(メタ)アクリル基とは、メタクリル基又はアクリル基を意味する。
本発明の新規なパターンの形成方法によれば、エッチングガス、特に塩素系ガスに対するエッチング耐性に優れるパターンを得る事が出来る。本発明は、塩素系ガスでドライエッチングするサファイア基板の凹凸パターンを得る好適な手法である
本発明は、本発明で用いられる光硬化性ナノインプリント用組成物を用いた場合におけるエッチングガス、特に塩素系ガスのエッチング耐性に優れた新規なパターンを形成する方法に関するものであり、
(A)下記式(1)
Figure 2015076512
(式中、
は、水素原子、またはメチル基であり、
は、炭素数1〜20のアルキレン基または炭素数3〜10のシクロアルキレン基であり、
は、炭素数1〜4のアルキル基、炭素数3〜4のシクロアルキル基、または炭素数6〜12のアリール基であり、
は、炭素数1〜4のアルキル基または炭素数3〜4のシクロアルキル基であり、
lは1〜3の整数であり、mは0〜2の整数であり、kは1〜3の整数であり、
l+m+kは4であり、
、R、RおよびRがそれぞれ、複数存在する場合には、複数のR、R、RおよびRは、それぞれ、同種又は異種の基であってもよい)で示される(メタ)アクリル基を有する有機珪素化合物の加水分解物、
および
下記式(2)
Figure 2015076512
(式中、
Mは、タングステン、ジルコニウム、スズ、インジウム、アンチモン、モリブデン、ニオブ、またはハフニウムであり、
は、炭素数1〜10のアルキル基であり、同一の基であっても、異なる基であってもよく、
Mがタングステンの場合、pは6または5であり、
Mがモリブデン、ニオブの場合、pは5であり、
Mがジルコニウム、スズ、ハフニウムの場合、pは4であり、
Mがインジウム、アンチモンの場合、pは3である。)
で示される金属アルコキシドの加水分解物を含む加水分解混合物、
(B)(メタ)アクリル基を有する重合性単量体、並びに
(C)光重合開始剤
を含有する光硬化性ナノインプリント用組成物を基板上に塗布し、次いで150℃〜250℃で乾燥させ、該組成物からなる塗膜を形成する工程、
パターンが形成された金型のパターン形成面と前記塗膜とを接触させ、その状態で光を照射して塗膜を硬化させる工程、
前記金型を、硬化した塗膜から分離して、前記金型のパターン形成面に形成されているパターンに対応するパターンを基板上に形成する工程
を含むものである。
なお、本発明において、ナノインプリントとは、5nm以上100μm以下のパターン、更には、5nm以上500nm以下の微細なパターンを良好に形成できるものを指す。ただし、当然のことながら、本発明で用いられる光硬化性ナノインプリント用組成物は、100μmを越えるパターンの形成にも使用できる。
本発明のパターンの形成方法の特徴は、光硬化性組成物を基板上に塗布した後に、該基板上組成物を150℃〜250℃で乾燥させる点にある。このような温度で乾燥させることで、該基板上組成物の光照射後の硬化体は、塩素エッチング耐性に優れたものとなる。
この理由は以下のように推定している。すなわち、乾燥前は、基板上の組成物には、未加水分解状態のアルコキシド基が一定量残存しており、これが、塩素系ガスと反応し基板上の堆積物の原因になると考えられる。したがって、上記温度で、乾燥することで、アルコキシド基の加水分解が進行し、塩素系ガスと反応し難い状態に変化し、堆積物の発生を抑制するものと考えられる。さらに、150℃〜250℃で乾燥させた場合でも、金型でパターンを形成させる際の圧力はほとんど高くならない。これは、前記温度で乾燥させた場合に、アルコキシド基の加水分解は進行するが、重縮合までは進行し難いため、塗膜があまり硬くならないためと推察される。
以下、順を追って説明する。先ず、加水分解混合物(A)について説明する。
(加水分解混合物(A))
本発明において、加水分解混合物(A)は、前記式(1)で示される(メタ)アクリル基を有する有機珪素化合物の加水分解物、前記式(2)で示される金属アルコキシドの加水分解物を含む加水分解混合物である。該前記式(1)で示される(メタ)アクリル基を有する有機珪素化合物の加水分解物および、該前記式(2)で示される金属アルコキシドの加水分解物の加水分解の度合いは、アルコキシ基が全て加水分解されていても良く、アルコキシ基の一部分が加水分解されていても良いが、後述するように、比較的低圧力で金型により押圧可能にするために、すべて加水分解されず、部分的に未加水分解の状態で残存した状態が好ましく、縮合が高度に進行した状態よりも、むしろ適度に進んだ状態の方が好ましい。
((メタ)アクリル基を有する有機珪素化合物)
本発明においては、下記式(1)
(A)下記式(1)
Figure 2015076512
(式中、
は、水素原子、またはメチル基であり、
は、炭素数1〜20のアルキレン基または炭素数3〜10のシクロアルキレン基であり、
は、炭素数1〜4のアルキル基、炭素数3〜4のシクロアルキル基、または炭素数6〜12のアリール基であり、
は、炭素数1〜4のアルキル基または炭素数3〜4のシクロアルキル基であり、
lは1〜3の整数であり、mは0〜2の整数であり、kは1〜3の整数であり、
l+m+kは4であり、
、R、RおよびRがそれぞれ、複数存在する場合には、複数のR、R、RおよびRは、それぞれ、同種又は異種の基であってもよい)
で示される(メタ)アクリル基を有する有機珪素化合物(以下、単に「(メタ)アクリル基を有する有機珪素化合物」ともいう)の加水分解物を使用する。
この(メタ)アクリル基を有する有機珪素化合物の加水分解物を使用することにより、分散性のよい光硬化性ナノインプリント用組成物が得られ、濾過による精製が容易となり生産性が良好となる。また、光硬化により得られる硬化膜の微細な構造において、無機成分と有機成分とが比較的均質な状態で分散したものとなる(無機成分が極端に凝集したような分散状態とはならない)。その結果、均一な転写パターン、および均一な残膜を形成することができるものと推定される。
前記式(1)において、Rは水素原子あるいはメチル基である。これらの中でも水素原子のほうが、光硬化性ナノインプリント用組成物を硬化させる際の光硬化速度が速いので好ましい。
は、炭素数1〜20のアルキレン基又は炭素数3〜10のシクロアルキレン基である。具体的には、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、2,2−ジメチルプロピレン基、2−メチルブチレン基、2−メチル−2−ブチレン基、3−メチルブチレン基、3−メチル−2−ブチレン基、ペンチレン基、2−ペンチレン基、3−ペンチレン基、3−ジメチル−2−ブチレン基、3,3−ジメチルブチレン基、3,3−ジメチル−2−ブチレン基、2−エチルブチレン基、ヘキシレン基、2−ヘキシレン基、3−ヘキシレン基、2−メチルペンチレン基、2−メチル−2−ペンチレン基、2−メチル−3−ペンチレン基、3−メチルペンチレン基、3−メチル−2−ペンチレン基、3−メチル−3−ペンチレン基、4−メチルペンチレン基、4−メチル−2−ペンチレン基、2,2−ジメチル−3−ペンチレン基、2,3−ジメチル−3−ペンチレン基、2,4−ジメチル−3−ペンチレン基、4,4−ジメチル−2−ペンチレン基、3−エチル−3−ペンチレン基、ヘプチレン基、2−ヘプチレン基、3−ヘプチレン基、2−メチル−2−ヘキシレン基、2−メチル−3−ヘキシレン基、5−メチルヘキシレン基、5−メチル−2−ヘキシレン基、2−エチルヘキシレン基、6−メチル−2−ヘプチレン基、4−メチル−3−ヘプチレン基、オクチレン基、2−オクチレン基、3−オクチレン基、2−プロピルペンチレン基、2,4,4−トリメチルペンチレン基、デカオクチレン基等のアルキレン基;シクロプロピレン基、シクロブチレン基、シクロプロピルメチレン基、シクロペンチルレン基、シクロへキシレン基、シクロオクチレン基等のシクロアルキレン基が挙げられる。
これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基等の炭素数1〜4のアルキレン基、シクロプロピレン基、シクロブチレン基等の炭素数3〜4のシクロアルキレン基が好ましい。
は、炭素数1〜4のアルキル基、炭素数3〜4のシクロアルキル基又は炭素数6〜12のアリール基である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロプロピルメチル基等のシクロアルキル基;フェニル基、ベンジル基、1−ナフチル基、2−ナフチル基、o−メチルナフチル基等のアリール基を挙げることができる。中でも、メチル基、エチル基が好ましい。
は、炭素数1〜4のアルキル基又は炭素数3〜4のシクロアルキル基である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロプロピルメチル基等のシクロアルキル基が挙げられる。
この−ORで示されるアルコキシ基は、加水分解時にR由来のアルコールを生成するが、本発明で用いられる光硬化性ナノインプリント用組成物は、このアルコールを含んでいてもよい。そのため、他成分と容易に混合できるアルコールとなること、および基板上に塗膜を形成した後、容易に除去できるアルコールとなることを考慮すると、具体的には、Rは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1〜4のアルキル基であることが好ましい。
また、lは1が好ましく、mは0〜2が好ましく、kは1〜3が好ましい。ただし、l、m、およびkの合計、すなわち、l+m+kは4である。
このような(メタ)アクリル基含有珪素化合物を具体的に例示すれば、トリメトキシシリルメチレン(メタ)アクリレート、トリメトキシシリルジメチレン(メタ)アクリレート、トリメトキシシリルトリメチレン(メタ)アクリレート、トリエトキシシリルメチレン(メタ)アクリレート、トリエトキシシリルジメチレン(メタ)アクリレート、トリエトキシシリルトリメチレン(メタ)アクリレート、トリプロポキシシリルメチレン(メタ)アクリレート、トリプロポキシシリルエチレン(メタ)アクリレート、トリプロポキシシリルトリメチレン(メタ)アクリレート、トリブトキシシリルメチレン(メタ)アクリレート、トリブトキシシリルジメチレン(メタ)アクリレート、トリブトキシシリルトリメチレン(メタ)アクリレート、トリイソプロポキシシリルメチレン(メタ)アクリレート、トリイソプロポキシシリルジメチレン(メタ)アクリレート、トリイソプロポキシシリルトリメチレン(メタ)アクリレート、ジメトキシメチルシリルメチレン(メタ)アクリレート、ジメトキシメチルシリルジメチレン(メタ)アクリレート、ジメトキシメチルシリルトリメチレン(メタ)アクリレート、ジエトキシメチルシリルメチレン(メタ)アクリレート、ジエトキシメチルシリルジメチレン(メタ)アクリレート、ジエトキシメチルシリルトリメチレン(メタ)アクリレート、ジメトキシエチルシリルメチレン(メタ)アクリレート、ジメトキシエチルシリルジメチレン(メタ)アクリレート、ジメトキシエチルシリルトリメチレン(メタ)アクリレート、ジエトキシエチルシリルメチレン(メタ)アクリレート、ジエトキシエチルシリルジメチレン(メタ)アクリレート、ジエトキシエチルシリルトリメチレン(メタ)アクリレート、メトキシジメチルシリルメチレン(メタ)アクリレート、メトキシジメチルシリルジメチレン(メタ)アクリレート、メトキシジメチルシリルトリメチレン(メタ)アクリレート、エトキシジメチルシリルメチレン(メタ)アクリレート、エトキシジメチルシリルジメチレン(メタ)アクリレート、エトキシジメチルシリルトリメチレン(メタ)アクリレート、メトキシジエチルシリルメチレン(メタ)アクリレート、メトキシジエチルシリルジメチレン(メタ)アクリレート、メトキシジエチルシリルトリメチレン(メタ)アクリレート、エトキシジエチルシリルメチレン(メタ)アクリレート、エトキシジエチルシリルジメチレン(メタ)アクリレート、エトキシジエチルシリルトリメチレン(メタ)アクリレート等が挙げられる。中でも、トリメトキシシリルトリメチレン(メタ)アクリレート、トリエトキシシリルトリメチレン(メタ)アクリレートが好ましい。
(金属アルコキシド)
本発明においては、下記式(2)
Figure 2015076512
(式中、
Mは、タングステン、ジルコニウム、スズ、インジウム、アンチモン、モリブデン、ニオブ、またはハフニウムであり、
は、炭素数1〜10のアルキル基であり、同一の基であっても、異なる基であってもよく、
Mがタングステンの場合、pは6または5であり、
Mがモリブデン、ニオブの場合、pは5であり、
Mがジルコニウム、スズ、ハフニウムの場合、pは4であり、
Mがインジウム、アンチモンの場合、pは3である。)
で示される金属アルコキシド(以下、単に「金属アルコキシド」ともいう)の加水分解物を使用する。該金属アルコキシドは、単独で用いても、該金属アルコキシド同士の混合物であっても良い。
該金属アルコキシドの加水分解物を使用することで、塩素系ガス、酸素系ガス、フッ素系ガス等に対するエッチング耐性が向上し、特に塩素系ガスに対するエッチング耐性の優れた硬化膜を形成することができる。そして、金属アルコキシドの加水分解物の使用量で、塩素系ガスのドライエッチング速度を調整することもできる。
前記式(2)において、Mは、より塩素系ガスに対するエッチング耐性を高めるためにはタングステンであることが好ましい。
また、酸化タングステンアルコキシド(IV)等の酸化タングステンアルコキシドも本発明の効果を損なわない範囲内で含んでいても良い。
前記式(2)において、Rは、適度な加水分解速度という点から炭素数1〜4のアルキル基が好ましい。この−ORで示されるアルコキシ基も、上記の(メタ)アクリル基を有する有機珪素化合物等と同じく、加水分解時にR由来のアルコールを生成するが、本発明で用いられる光硬化性ナノインプリント用組成物は、このアルコールを含んでいてもよい。そのため、−ORが他成分と容易に混合できるアルコールとなること、および基板上に塗膜を形成した後、容易に除去できるアルコールとなることを考慮すると、具体的には、Rは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1〜4のアルキル基であることが好ましい。
好適な金属アルコキシドを例示すれば、ヘキサメチルタングステンアルコキシド、ヘキサエチルタングステンアルコキシド、ヘキサイソプロピルタングステンアルコキシド、ヘキサプロピルタングステンアルコキシド、ヘキサイソブチルタングステンアルコキシド、ヘキサブチルタングステンアルコキシド、ヘキサt−ブチルタングステンアルコキシド、ヘキサペンチルタングステンアルコキシド、ヘキサヘキシルタングステンアルコキシド、ヘキサヘプチルタングステンアルコキシド、ヘキサオクチルタングステンアルコキシド、ヘキサノニルタングステンアルコキシド、ヘキサデシルタングステンアルコキシド、ペンタメチルタングステンアルコキシド、ペンタエチルタングステンアルコキシド、ペンタイソプロピルタングステンアルコキシド、ペンタプロピルタングステンアルコキシド、ペンタイソブチルタングステンアルコキシド、ペンタブチルタングステンアルコキシド、ペンタペンチルタングステンアルコキシド、ペンタヘキシルタングステンアルコキシド、ペンタヘプチルタングステンアルコキシド、ペンタオクチルタングステンアルコキシド、ペンタノニルタングステンアルコキシド、ペンタデシルタングステンアルコキシド;ペンタメチルモリブデンアルコキシド、ペンタエチルモリブデンアルコキシド、ペンタイソプロピルモリブデンアルコキシド、ペンタプロピルモリブデンアルコキシド、ペンタイソブチルモリブデンアルコキシド、ペンタブチルモリブデンアルコキシド、ペンタt−ブチルモリブデンアルコキシド、ペンタペンチルモリブデンアルコキシド、ペンタヘキシルモリブデンアルコキシド、ペンタヘプチルモリブデンアルコキシド、ペンタオクチルモリブデンアルコキシド、ペンタノニルモリブデンアルコキシド、ペンタデシルモリブデンアルコキシド;ペンタメチルニオブアルコキシド、ペンタエチルニオブアルコキシド、ペンタイソプロピルニオブアルコキシド、ペンタプロピルニオブアルコキシド、ペンタイソブチルニオブアルコキシド、ペンタブチルニオブアルコキシド、ペンタt−ブチルニオブアルコキシド、ペンタペンチルニオブアルコキシド、ペンタヘキシルニオブアルコキシド、ペンタヘプチルニオブアルコキシド、ペンタオクチルニオブアルコキシド、ペンタノニルニオブアルコキシド、ペンタデシルニオブアルコキシド;テトラメチルジルコニウムアルコキシド、テトラエチルジルコニウムアルコキシド、テトライソプロピルジルコニウムアルコキシド、テトラプロピルジルコニウムアルコキシド、テトライソブチルジルコニウムアルコキシド、テトラブチルジルコニウムアルコキシド、テトラt−ブチルジルコニウムアルコキシド、テトラペンチルジルコニウムアルコキシド、テトラヘキシルジルコニウムアルコキシド、テトラヘプチルジルコニウムアルコキシド、テトラオクチルジルコニウムアルコキシド、テトラノニルジルコニウムアルコキシド、テトラデシルジルコニウムアルコキシド;テトラメチルスズアルコキシド、テトラエチルスズアルコキシド、テトライソプロピルスズアルコキシド、テトラプロピルスズアルコキシド、テトライソブチルスズアルコキシド、テトラブチルスズアルコキシド、テトラt−ブチルスズアルコキシド、テトラペンチルスズアルコキシド、テトラヘプチルスズアルコキシド、テトラヘキシスズアルコキシド、テトラヘプチルスズアルコキシド、テトラオクチルスズアルコキシド、テトラノニルスズアルコキシド、テトラデシルスズアルコキシド;テトラメチルハフニウムアルコキシド、テトラエチルハフニウムアルコキシド、テトライソプロピルハフニウムアルコキシド、テトラプロピルハフニウムアルコキシド、テトライソブチルハフニウムアルコキシド、テトラブチルハフニウムアルコキシド、テトラt−ブチルハフニウムアルコキシド、テトラペンチルハフニウムアルコキシド、テトラヘプチルハフニウムアルコキシド、テトラヘキシハフニウムアルコキシド、テトラヘプチルハフニウムアルコキシド、テトラオクチルハフニウムアルコキシド、テトラノニルハフニウムアルコキシド、テトラデシルハフニウムアルコキシド;トリメチルインジウムアルコキシド、トリエチルインジウムアルコキシド、トリイソプロピルインジウムアルコキシド、トリプロピルインジウムアルコキシド、トリイソブチルインジウムアルコキシド、トリブチルインジウムアルコキシド、トリt−ブチルインジウムアルコキシド、トリペンチルインジウムアルコキシド、トリヘキシルインジウムアルコキシド、トリヘプチルインジウムアルコキシド、トリオクチルインジウムアルコキシド、トリノニルインジウムアルコキシド、トリデシルインジウムアルコキシド;トリメチルアンチモンアルコキシド、トリエチルアンチモンアルコキシド、トリイソプロピルアンチモンアルコキシド、トリプロピルアンチモンアルコキシド、トリイソブチルアンチモンアルコキシド、トリブチルアンチモンアルコキシド、トリt−ブチルアンチモンアルコキシド、トリペンチルアンチモンアルコキシド、トリヘキシルアンチモンアルコキシド、トリヘプチルアンチモンアルコキシド、トリオクチルアンチモンアルコキシド、トリノニルアンチモンアルコキシド、トリデシルアンチモンアルコキシドが挙げられる。その中でも、ペンタエチルタングステンアルコキシド、ペンタイソプロピルタングステンアルコキシド、ペンタプロピルタングステンアルコキシド、ペンタイソブチルタングステンアルコキシド、ペンタブチルタングステンアルコキシドが好ましい。
(有機珪素化合物)
加水分解混合物(A)は、さらに、下記式(3)
Figure 2015076512
(式中、
、Rは同種又は異種の炭素数1〜4のアルキル基または水素であり、
はアリール基であり、Rはアリール基または炭素数1〜4のアルコキシ基であり、nは1〜10の整数である。)
で示される有機珪素化合物(以下、単に「有機珪素化合物」ともいう)の加水分解物をさらに含むことができる。この有機珪素化合物を使用することにより、フッ素、酸素、塩素に対するエッチング耐性を向上させることができ、特に塩素系ガスに対するエッチング耐性を効果的に向上させることができる。特に、該有機珪素化合物は、式(3)に示されているように、芳香環を有する構造である。本発明で用いられる光硬化性ナノインプリント用組成物の分散性をより向上させるためには、後述する重合性単量体(B)の中で、芳香環を有する(メタ)アクリレートと有機珪素化合物と組合せて使用することが好ましい。かかる組合せは、エッチング耐性および転写性がより向上するので好ましい。
前記式(3)において、R、Rは、水素、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基が挙げられ、中でも、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基が好ましい。−OR、−ORで示されるアルコキシ基は、加水分解時に−OR、−OR由来のアルコールを生成するが、本発明で用いられる光硬化性ナノインプリント用組成物は、このアルコールを含んでいてもよい。そのため、他成分と容易に混合できるアルコールとなること、および基板上に塗膜を形成した後、容易に除去できるアルコールとなることを考慮すると、具体的には、R、Rは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1〜4のアルキル基であることが好ましい。
、Rは、アリール基としては、炭素数6〜20のアリール基が好ましく、例えば、フェニル基、ビフェニル基、ナフチル基等を挙げることができ、中でもフェニル基が好ましい。
また、Rは、アルコキシ基としては、メチルアルコキシ基、エチルアルコキシ基、プロピルアルコキシ基、イソプロピルアルコキシ基、ブチルアルコキシ基、sec−ブチルアルコキシ基、イソブチルアルコキシ基、tert−ブチルアルコキシ基等を挙げることができる。アルコキシ基としては、中でもメチルアルコキシ基、エチルアルコキシ基、プロピルアルコキシ基、イソプロピルアルコキシ基、ブチルアルコキシ基が好ましい。このRで示されるアルコキシ基は、加水分解時にR由来のアルコールを生成するが、本発明で用いられる光硬化性ナノインプリント用組成物は、このアルコールを含んでいてもよい。そのため、他成分と容易に混合できるアルコールとなること、および基板上に塗膜を形成した後、容易に除去できるアルコールとなることを考慮すると、具体的には、メチルアルコキシ基、エチルアルコキシ基、プロピルアルコキシ基、イソプロピルアルコキシ基、ブチルアルコキシ基、sec−ブチルアルコキシ基、イソブチルアルコキシ基、tert−ブチルアルコキシ基等の炭素数1〜4のアルコキシ基であることが好ましい。該アリール基及びアルコキシ基は、アルキル基、エーテル基、グリコールエーテル基、水酸基、ハロゲン等の置換基を有していても良い。
なかでも、R、Rは共に炭素数6〜20のアリール基であることがエッチング耐性、特に塩素系ガスのエッチング耐性が良好な硬化膜を形成する点で好ましい。
また、該有機珪素化合物は、前記式(3)において、nが1〜10の整数を満足するものであれば、単一の化合物であってもよいし、nの値が異なる複数の有機珪素化合物の混合物であってもよい。単一の化合物を使用する場合、nの値は、より比較的低い圧力でのパターンの転写性や、100nm以下などの微細パターンの転写を勘案すると、1以上7以下であることが好ましい。また、複数の有機珪素化合物の混合物を使用する場合、nの平均値は、1以上10以下となることが好ましく、さらには、より比較的低い圧力でのパターンの転写性や、100nm以下などの微細パターンの転写を勘案すると、1以上7以下がより好ましい。
これら有機珪素化合物を具体的に例示すれば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジブトキシシラン、およびそれらの重縮合物が挙げられる。中でも、加水分解時に生成するアルコールが、塗膜を形成した後、容易に除去できるアルコールであることや、反応性等の理由から、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、およびそれらの重縮合物が好ましい。
(加水分解混合物(A)の製造方法)
本発明において、加水分解混合物(A)を構成する(メタ)アクリル基を有する有機珪素化合物と金属アルコキシドは、以下の配合量とすることが好ましい。つまり、加水分解混合物(A)は、下記に詳述する重合性単量体(B)100質量部に対して、(メタ)アクリル基を有する有機珪素化合物を3〜300質量部、および金属アルコキシド0.1〜150質量部含む混合物を、加水分解して得られる加水分解混合物であることが好ましい。加水分解により、アルコキシ基が全て加水分解されていても良く、一部分が部分的に加水分解された状態でも良い。加水分解に使用する水の量は、特に制限はないが、塗膜の濡れ性やより良好なナノインプリントパターン転写性を勘案すると、上記混合物の全アルコキシ基のモル数に対して、0.1倍モル以上2.0倍モル以下から好ましく選択できる。
(メタ)アクリル基を有する有機珪素化合物と金属アルコキシドの配合量が前記範囲を満足することにより、加水分解混合物の分散性の良い光硬化性ナノインプリント用組成物となり、濾過による精製が容易で生産性を向上することができる。また、比較的低圧でのナノインプリントが可能となるため、使用するモールドの寿命を長くすることもできる。加水分解混合物の分散性や比較的低圧でのナノインプリントを考慮すると、重合性単量体(B)100質量部に対して、(メタ)アクリル基を有する有機珪素化合物の使用量は、5〜250質量部であることがより好ましく、金属アルコキシドの使用量は、0.5〜100質量部であることが好ましい。さらには、(メタ)アクリル基を有する有機珪素化合物の使用量は、10〜200質量部であることが好ましく、金属アルコキシドの使用量は、1〜80質量部であることが好ましい。(メタ)アクリル基を有する有機珪素化合物の使用量は、15〜180質量部であることが特に好ましく、金属アルコキシドの使用量は、3〜50質量部であることが特に好ましい。
また、金属アルコキシドは、(メタ)アクリル基を有する有機珪素化合物100質量部に対して、0.2〜50質量部であることが好ましい。金属アルコキシドの使用量を前記範囲とすることにより、塩素系ガスによるエッチング耐性が特に改善される。そのため、金属アルコキシドの使用量は、より好ましくは1〜40質量部であり、さらに好ましくは2〜30質量部である。
本発明において、加水分解混合物(A)は、さらに、有機珪素化合物の加水分解物を含むことができる。有機珪素化合物の加水分解物を含むことで、エッチング耐性、特に塩素系ガスに対するエッチング耐性を向上させることができ、より低圧力でのナノインプリントパターン転写性を良好にすることができる。有機珪素化合物は、以下の配合量とすることが好ましい。つまり、上記混合物を、下記に詳述する重合性単量体(B)100質量部に対して、さらに、有機珪素化合物を10〜400質量部含む混合物とし、該混合物を加水分解すればよい。
加水分解混合物(A)の分散性、比較的低圧でのナノインプリント、および塩素系ガスのエッチング耐性を考慮すると、重合性単量体(B)100質量部に対して、有機珪素化合物の使用量は30〜300質量部であることが好ましい。さらには、50〜250質量部であることがより好ましく、80〜200質量部であることが特に好ましい。
また、金属アルコキシドは、有機珪素化合物の加水分解物を含ませる場合には、前記有機珪素化合物と(メタ)アクリル基を有する有機珪素化合物との合計100質量部に対して、0.2〜50質量部であることが好ましい。金属アルコキシドの使用量を前記範囲とすることにより、塩素系ガスによるエッチング耐性が特に改善される。そのため、金属アルコキシドの使用量は、より好ましくは1〜40質量部であり、さらに好ましくは2〜30質量部である。
(加水分解混合物(A)の製造方法:加水分解に使用する水、およびその量)
本発明において、加水分解混合物(A)を得るために使用する水の量は、特に制限されないが、全アルコキシド基のモル数に対して、0.1倍モル以上2.0倍モル以下の量であることが塗膜の濡れ性やより良好なナノインプリントパターン転写性の点から好ましい。
なお、全アルコキシ基のモル数とは、(メタ)アクリル基を有する有機珪素化合物の使用モル数と該(メタ)アクリル基を有する有機珪素化合物1分子中に存在するアルコキシ基の数との積と、金属アルコキシドの使用モル数と該金属アルコキシド1分子中に存在するアルコキシ基の数との積、さらに有機珪素化合物を使用する場合には、有機珪素化合物の使用モル数と該有機珪素化合物1分子中に存在するアルコキシ基の数との積を加えたものである。
水の量が、0.1倍モル未満の場合には、塗膜を形成する際に実用レベルであるものの基板への濡れ性が低下することがある。一方、2.0倍モル以上となる場合には、比較的低い圧力でのナノインプリントパターン転写性が低下し、モールドの破損等の要因となることがある。縮合の程度や比較的低圧力でのパターン形成を考慮すると、水の量は、上記混合物の全アルコキシド基のモル数に対して、好ましくは0.2倍モル以上1.5倍モル以下、さらに0.5倍モル以上1.2倍モル以下であることが好ましい。0.5倍モル以上1.2倍モル以下であれば、比較的低圧力でパターンを形成できる程度に加水分解、重縮合が適度に進行している(完全に加水分解、重縮合が進んでいない状態)と考えられる。
本発明で加水分解混合物(A)を得るために使用した水は、得られる光硬化性ナノインプリント用組成物中の加水分解混合物の加水分解反応速度を遅らせるため、加水分解混合物(A)や、本発明で用いられる光硬化性ナノインプリント用組成物を得る任意の工程で、真空乾燥、蒸留、加熱等により水を除去しても良い。その際、溶媒も同時に除去される場合は、水除去後に、適宜、必要量の溶媒を加えても良い。
本発明において、前記水には、酸が含まれてもよい。使用する酸としては、塩酸、硝酸、硫酸、リン酸、ポリリン酸等の無機酸、有機リン酸、蟻酸、酢酸、無水酢酸、クロロ酢酸、プロピオン酸、酪酸、吉草酸、クエン酸、グルコン酸、コハク酸、酒石酸、乳酸、フマル酸、リンゴ酸、イタコン酸、シュウ酸、ムチン酸、尿酸、バルビツル酸、p−トルエンスルホン酸等の有機酸、酸性陽イオン交換樹脂が挙げられる。酸を使用する場合には、特に制限されるものではないが、その使用量は、全アルコキシ基のモル数に対して、水素イオンが0.0001倍モル以上0.01倍モル以下となる量とすることが好ましい。また、この酸はそのまま使用することもできるが、酸水溶液、又は水に分散させた状態のものを使用することが好ましい。この場合、0.1〜6Nの濃度のものを使用することが好ましい。この場合、使用した水は、上記水の使用量に含まれるものとする。
前記の光硬化性ナノインプリント用組成物中の加水分解混合物の加水分解反応速度を遅らせるために、加水分解混合物(A)や、本発明で用いられる光硬化性ナノインプリント用組成物を得る任意の工程で、真空乾燥、蒸留、加熱等により水を除去する場合、同時に酸を除去しても良い。除去の容易さから、使用する酸としては、塩酸、酢酸、酸性イオン交換樹脂が好ましい。
本発明において、加水分解混合物(A)は、加水分解させる成分((メタ)アクリル基を有する有機珪素化合物、及び金属アルコキシド(有機珪素化合物を用いる場合は有機珪素化合物も含む))を、前記量の水と混合する。水と混合する方法は、特に制限されるものではないが、均一な光硬化性ナノインプリント用組成物を製造するためには、上記加水分解させる成分の混合物と、水とを混合することが好ましい。つまり、加水分解させる成分を最初に混合して混合物とした後、該混合物に水を加えて加水分解を実施することが好ましい。
また、加水分解させる成分と水との混合は、5℃以上60℃以下の温度にて実施すればよい。この際、加水分解を容易に進行させるため、希釈溶媒を使用することもできる。希釈溶媒としては、炭素数1〜4のアルコールが好ましく、特に、エタノールを使用することが好ましい。希釈溶媒の使用量は、加水分解させる成分の種類により適宜決定すればよいが、加水分解させる成分の混合物100質量部に対して、50〜400質量部であることが好ましい。
(加水分解混合物(A)の製造方法:加水分解条件)
本発明において、加水分解における反応温度は、特に制限されないが、通常は、5℃〜60℃の範囲から選択される。反応時間は、前記反応温度との兼ね合いで適宜選択すれば良く、通常は、10分〜12時間の範囲から選択される。
(加水分解混合物(A)の使用方法、物性)
上記の方法に従い、加水分解混合物(A)を準備することができる。加水分解時にアルコキシ基に由来するアルコールを生じる。本発明で用いられる光硬化性ナノインプリント用組成物は、前記加水分解混合物(A)の他に、加水分解時に副生するアルコール及び加水分解に使用した水を含むこともできる。さらには、加水分解を容易に進めるために使用した希釈溶媒を含むこともできる。
加水分解混合物(A)は、他の成分との混合のし易さ、光硬化性ナノインプリント用組成物の生産性等を考慮すると、25℃における粘度が0.1〜100mPa・secであることが好ましい。なお、この粘度の値は、音叉式粘度計:AND VIBRO VISCOMETER SV-1Aにより測定した値であり、副生したアルコール、使用した水、および希釈のために使用した希釈溶媒を含む状態で用いる場合には、これらを含んだものを測定した際の値である。
また、加水分解混合物(A)は、製造後、直に、他の成分と混合して光硬化性ナノインプリント用組成物とすることが好ましい。ただし、そうすることができない場合には、製造後、経時変化させないため、−30℃〜15℃以下の温度で保存しておくことが好ましい。この場合も、加水分解混合物(A)の粘度は、前記範囲を満足していることが好ましい。
次に、上記方法で得られた加水分解混合物(A)と併用して使用する(メタ)アクリル基を有する重合性単量体(B)について説明する。
((メタ)アクリル基を有する重合性単量体(B))
本発明において、(メタ)アクリル基を有する重合性単量体(B)(以下、単に「重合性単量体(B)」ともいう)は、特に制限されるものではなく、光重合に使用される公知の(メタ)アクリル基を有する重合性単量体を使用することができる。なお、本発明で用いられる光硬化性ナノインプリント用組成物には、(メタ)アクリル基を有する重合性単量体(B)の他に、本発明の効果を損なわない範囲で、(メタ)アクリル基以外の重合性官能基を有する重合性単量体を含んでいてもよい。この重合性単量体(B)は、前記式(1)で示される(メタ)アクリル基含有珪素化合物を含まない。好ましい化合物としては、(メタ)アクリル基を有し、分子中に珪素原子を含まない重合性単量体が挙げられる。これら重合性単量体(B)は、1分子中に1つの(メタ)アクリル基を有する単官能重合性単量体であってもよいし、1分子中に2つ以上の(メタ)アクリル基を有する多官能重合性単量体であってもよい。さらには、これら単官能重合性単量体および多官能重合性単量体を組み合わせて使用することもできる。
重合性単量体(B)の例を具体的に例示すれば、1分子中に1つの(メタ)アクリル基を有する単官能重合性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n−ラウリル(メタ)アクリレート、n−ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、長鎖アルキル(メタ)アクリレート、n−ブトキシエチル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−エチルヘキシル−ジグリコール(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、2−(2−ビニロキシエトキシ)エチル(メタ)アクリレート、グリシジル(メタ)アクリレート、メトキシエチレングリコール変性(メタ)アクリレート、エトキシエチレングリコール変性(メタ)アクリレート、プロポキシエチレングリコール変性(メタ)アクリレート、メトキシプロピレングリコール変性(メタ)アクリレート、エトキシプロピレングリコール変性(メタ)アクリレート、プロポキシプロピレングリコール変性(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンタン(メタ)アクリレート誘導体、アクリロイルモルホリン等の脂肪族アクリレート;ベンジル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエチレングリコール変性(メタ)アクリレート、フェノキシプロピレングリコール変性(メタ)アクリレート、ヒドロキシフェノキシエチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、ヒドロフェノキシキシエチレングリコール変性(メタ)アクリレート、ヒドロキシフェノキシプロピレングリコール変性(メタ)アクリレート、アルキルフェノールエチレングリコール変性(メタ)アクリレート、アルキルフェノールプロピレングリコール変性(メタ)アクリレート、下記式(4)
Figure 2015076512
(式中、
10は、水素原子、またはメチル基であり、
11は、炭素数1〜10のアルキレン基または炭素数1〜10のヒドロキシアルキレン基であり、qは1〜6の整数である。)で示される分子内にο−フェニルフェノール基を有する単量体等の芳香環を有する(メタ)アクリレート等が挙げられる。
1分子中に2つの(メタ)アクリル基を有する多官能重合性単量体(2官能重合性単量体)としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリオレフィングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート、2−ヒドロキシ−1,3−ジメタクリロキシプロパン、ジオキサングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2−メチル−1,8−オクタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、下記式(5)
Figure 2015076512
(式中、
12、R13は、それぞれ独立に水素原子、またはメチル基であり、
14、R15は、炭素数1〜10のアルキレン基、炭素数1〜10のヒドロキシアルキレン基、又は下記式(6)で表される基であり、それぞれ、同種又は異種の基であってもよい。)
Figure 2015076512
(式中
16及びR17は、エチレン基、またはプロピレン基であり、nは1〜3の整数である。)
で示されるフルオレン構造を有するジ(メタ)アクリレート等の芳香環を有するジ(メタ)アクリレートが挙げられる。
さらに、該多官能重合性単量体において、1分子中に3つ以上の(メタ)アクリレート基を有する重合性単量体としては、エトキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリアクリレートが挙げられる。
上記重合性単量体(B)の中でも、塩素系ガスのエッチング耐性を向上させることができるという点から、分子内にο−フェニルフェノール基を有する単量体、分子内にフルオレン構造を有する単量体が好ましく、前記式(4)で示される分子内にο−フェニルフェノール基を有する(メタ)アクリレート、前記式(5)で示されるフルオレン構造を有するジ(メタ)アクリレートが好ましい。
また、上記重合性単量体(B)は、使用する用途、形成するパターンの形状に応じて、単独でも良いし、複数種類のものを組み合わせて使用しても良い。
式(4)で示される分子内にο−フェニルフェノール基を有する(メタ)アクリレートについて説明する。
下記式(4)
Figure 2015076512
(式中、
10は、水素原子、またはメチル基であり、
11は、炭素数1〜10のアルキレン基または炭素数1〜10のヒドロキシアルキレン基であり、qは1〜6の整数である。)
において、R10は水素原子あるいはメチル基である。これらの中でも水素原子のほうが、光硬化性ナノインプリント用組成物を硬化させる際の光硬化速度が速いので好ましい。
11は、炭素数1〜10のアルキレン基または炭素数1〜10のヒドロキシアルキレン基である。具体的には、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、2,2−ジメチルプロピレン基、2−メチルブチレン基、2−メチル−2−ブチレン基、3−メチルブチレン基、3−メチル−2−ブチレン基、ペンチレン基、2−ペンチレン基、3−ペンチレン基、3−ジメチル−2−ブチレン基、3,3−ジメチルブチレン基、3,3−ジメチル−2−ブチレン基、2−エチルブチレン基、ヘキシレン基、2−ヘキシレン基、3−ヘキシレン基、2−メチルペンチレン基、2−メチル−2−ペンチレン基、2−メチル−3−ペンチレン基、3−メチルペンチレン基、3−メチル−2−ペンチレン基、3−メチル−3−ペンチレン基、4−メチルペンチレン基、4−メチル−2−ペンチレン基、2,2−ジメチル−3−ペンチレン基、2,3−ジメチル−3−ペンチレン基、2,4−ジメチル−3−ペンチレン基、4,4−ジメチル−2−ペンチレン基、3−エチル−3−ペンチレン基、ヘプチレン基、2−ヘプチレン基、3−ヘプチレン基、2−メチル−2−ヘキシレン基、2−メチル−3−ヘキシレン基、5−メチルヘキシレン基、5−メチル−2−ヘキシレン基、2−エチルヘキシレン基、6−メチル−2−ヘプチレン基、4−メチル−3−ヘプチレン基、オクチレン基、2−オクチレン基、3−オクチレン基、2−プロピルペンチレン基、2,4,4−トリメチルペンチレン基等のアルキレン基;1−ヒドロキシエチレン基、2−ヒドロキシエチレン基、1−ヒドロキシプロピレン基、2−ヒドロキシプロピレン基、3−ヒドロキシプロピレン基、1−ヒドロキシイソプロピレン基、2−ヒドロキシイソプロピレン基、3−ヒドロキシイソプロピレン基、1−ヒドロキシブチレン基、2−ヒドロキシブチレン基、3−ヒドロキシブチレン基、4−ヒドロキシブチレン基、1−ヒドロキシイソブチレン基、2−ヒドロキシイソブチレン基、3−ヒドロキシイソブチレン基、1−ヒドロキシsec−ブチレン基、2−ヒドロキシsec−ブチレン基、3−ヒドロキシsec−ブチレン基、4−ヒドロキシsec−ブチレン基、1−ヒドロキシ−2,2−ジメチルプロピレン基、3−ヒドロキシ−2,2−ジメチルプロピレン基、1−ヒドロキシ−2−メチルブチレン基、2−ヒドロキシ−2−メチルブチレン基、3−ヒドロキシ−2−メチルブチレン基、4−ヒドロキシ−2−メチルブチレン基、1−ヒドロキシ2−メチル−2−ブチレン基、3−ヒドロキシ2−メチル−2−ブチレン基、4−ヒドロキシ2−メチル−2−ブチレン基、1−ヒドロキシ−3−メチルブチレン基、2−ヒドロキシ−3−メチルブチレン基、3−ヒドロキシ−3−メチルブチレン基、4−ヒドロキシ−3−メチルブチレン基、1−ヒドロキシ−3−メチル−2−ブチレン基、2−ヒドロキシ−3−メチル−2−ブチレン基、3−ヒドロキシ−3−メチル−2−ブチレン基、4−ヒドロキシ−3−メチル−2−ブチレン基、1−ヒドロキシペンチレン基、2−ヒドロキシペンチレン基、3−ヒドロキシペンチレン基、4−ヒドロキシペンチレン基、5−ヒドロキシペンチレン基、1−ヒドロキシ−2−ペンチレン基、2−ヒドロキシ−2−ペンチレン基、3−ヒドロキシ−2−ペンチレン基、4−ヒドロキシ−2−ペンチレン基、5−ヒドロキシ−2−ペンチレン基、1−ヒドロキシ−3−ペンチレン基、2−ヒドロキシ−3−ペンチレン基、3−ヒドロキシ−3−ペンチレン基、4−ヒドロキシ−3−ペンチレン基、5−ヒドロキシ−3−ペンチレン基、1−ヒドロキシ−3−ジメチル−2−ブチレン基、2−ヒドロキシ−3−ジメチル−2−ブチレン基、3−ヒドロキシ−3−ジメチル−2−ブチレン基、4−ヒドロキシ−3−ジメチル−2−ブチレン基、1−ヒドロキシ−3,3−ジメチルブチレン基、2−ヒドロキシ−3,3−ジメチルブチレン基、4−ヒドロキシ−3,3−ジメチルブチレン基、1−ヒドロキシ−3,3−ジメチル−2−ブチレン基、2−ヒドロキシ−3,3−ジメチル−2−ブチレン基、4−ヒドロキシ−3,3−ジメチル−2−ブチレン基、1−ヒドロキシ−2−エチルブチレン基、2−ヒドロキシ−2−エチルブチレン基、3−ヒドロキシ−2−エチルブチレン基、4−ヒドロキシ−2−エチルブチレン基、1−ヒドロキシ−ヘキシレン基、2−ヒドロキシ−ヘキシレン基、3−ヒドロキシ−ヘキシレン基、4−ヒドロキシ−ヘキシレン基、5−ヒドロキシ−ヘキシレン基、6−ヒドロキシ−ヘキシレン基、1−ヒドロキシ−2−ヘキシレン基、2−ヒドロキシ−2−ヘキシレン基、3−ヒドロキシ−2−ヘキシレン基、4−ヒドロキシ−2−ヘキシレン基、5−ヒドロキシ−2−ヘキシレン基、6−ヒドロキシ−2−ヘキシレン基、1−ヒドロキシ−3−ヘキシレン基、2−ヒドロキシ−3−ヘキシレン基、3−ヒドロキシ−3−ヘキシレン基、4−ヒドロキシ−3−ヘキシレン基、5−ヒドロキシ−3−ヘキシレン基、6−ヒドロキシ−3−ヘキシレン基、1−ヒドロキシ−2−メチルペンチレン基、2−ヒドロキシ−2−メチルペンチレン基、3−ヒドロキシ−2−メチルペンチレン基、4−ヒドロキシ−2−メチルペンチレン基、5−ヒドロキシ−2−メチルペンチレン基、1−ヒドロキシ−2−メチル−2−ペンチレン基、2−ヒドロキシ−2−メチル−2−ペンチレン基、3−ヒドロキシ−2−メチル−2−ペンチレン基、4−ヒドロキシ−2−メチル−2−ペンチレン基、5−ヒドロキシ−2−メチル−2−ペンチレン基、1−ヒドロキシ−2−メチル−3−ペンチレン基、2−ヒドロキシ−2−メチル−3−ペンチレン基、3−ヒドロキシ−2−メチル−3−ペンチレン基、4−ヒドロキシ−2−メチル−3−ペンチレン基、5−ヒドロキシ−2−メチル−3−ペンチレン基、1−ヒドロキシ−3−メチルペンチレン基、2−ヒドロキシ−3−メチルペンチレン基、3−ヒドロキシ−3−メチルペンチレン基、4−ヒドロキシ−3−メチルペンチレン基、5−ヒドロキシ−3−メチルペンチレン基、1−ヒドロキシ−3−メチル−2−ペンチレン基、2−ヒドロキシ−3−メチル−2−ペンチレン基、3−ヒドロキシ−3−メチル−2−ペンチレン基、4−ヒドロキシ−3−メチル−2−ペンチレン基、5−ヒドロキシ−3−メチル−2−ペンチレン基、1−ヒドロキシ−3−メチル−3−ペンチレン基、2−ヒドロキシ−3−メチル−3−ペンチレン基、3−ヒドロキシ−3−メチル−3−ペンチレン基、4−ヒドロキシ−3−メチル−3−ペンチレン基、5−ヒドロキシ−3−メチル−3−ペンチレン基、1−ヒドロキシ−4−メチルペンチレン基、2−ヒドロキシ−4−メチルペンチレン基、3−ヒドロキシ−4−メチルペンチレン基、4−ヒドロキシ−4−メチルペンチレン基、5−ヒドロキシ−4−メチルペンチレン基、1−ヒドロキシ−4−メチル−2−ペンチレン基、2−ヒドロキシ−4−メチル−2−ペンチレン基、3−ヒドロキシ−4−メチル−2−ペンチレン基、4−ヒドロキシ−4−メチル−2−ペンチレン基、5−ヒドロキシ−4−メチル−2−ペンチレン基、1−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、3−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、1−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、2−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、1−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、2−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、3−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、1−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、2−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、3−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、5−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、1−ヒドロキシ−3−エチル−3−ペンチレン基、2−ヒドロキシ−3−エチル−3−ペンチレン基、4−ヒドロキシ−3−エチル−3−ペンチレン基、5−ヒドロキシ−3−エチル−3−ペンチレン基、1−ヒドロキシヘプチレン基、2−ヒドロキシヘプチレン基、3−ヒドロキシヘプチレン基、4−ヒドロキシヘプチレン基、5−ヒドロキシヘプチレン基、6−ヒドロキシヘプチレン基、7−ヒドロキシヘプチレン基、1−ヒドロキシ−2−ヘプチレン基、2−ヒドロキシ−2−ヘプチレン基、3−ヒドロキシ−2−ヘプチレン基、4−ヒドロキシ−2−ヘプチレン基、5−ヒドロキシ−2−ヘプチレン基、6−ヒドロキシ−2−ヘプチレン基、7−ヒドロキシ−2−ヘプチレン基、1−ヒドロキシ−3−ヘプチレン基、2−ヒドロキシ−3−ヘプチレン基、3−ヒドロキシ−3−ヘプチレン基、4−ヒドロキシ−3−ヘプチレン基、5−ヒドロキシ−3−ヘプチレン基、6−ヒドロキシ−3−ヘプチレン基、7−ヒドロキシ−3−ヘプチレン基、1−ヒドロキシ−2−メチル−2−ヘキシレン基、3−ヒドロキシ−2−メチル−2−ヘキシレン基、4−ヒドロキシ−2−メチル−2−ヘキシレン基、5−ヒドロキシ−2−メチル−2−ヘキシレン基、6−ヒドロキシ−2−メチル−2−ヘキシレン基、1−ヒドロキシ−2−メチル−3−ヘキシレン基、2−ヒドロキシ−2−メチル−3−ヘキシレン基、3−ヒドロキシ−2−メチル−3−ヘキシレン基、4−ヒドロキシ−2−メチル−3−ヘキシレン基、5−ヒドロキシ−2−メチル−3−ヘキシレン基、6−ヒドロキシ−2−メチル−3−ヘキシレン基、1−ヒドロキシ−5−メチルヘキシレン基、2−ヒドロキシ−5−メチルヘキシレン基、3−ヒドロキシ−5−メチルヘキシレン基、4−ヒドロキシ−5−メチルヘキシレン基、5−ヒドロキシ−5−メチルヘキシレン基、6−ヒドロキシ−5−メチルヘキシレン基、1−ヒドロキシ−5−メチル−2−ヘキシレン基、2−ヒドロキシ−5−メチル−2−ヘキシレン基、3−ヒドロキシ−5−メチル−2−ヘキシレン基、4−ヒドロキシ−5−メチル−2−ヘキシレン基、5−ヒドロキシ−5−メチル−2−ヘキシレン基、6−ヒドロキシ−5−メチル−2−ヘキシレン基、1−ヒドロキシ−2−エチルヘキシレン基、2−ヒドロキシ−2−エチルヘキシレン基、3−ヒドロキシ−2−エチルヘキシレン基、4−ヒドロキシ−2−エチルヘキシレン基、5−ヒドロキシ−2−エチルヘキシレン基、6−ヒドロキシ−2−エチルヘキシレン基、1−ヒドロキシ−6−メチル−2−ヘプチレン基、2−ヒドロキシ−6−メチル−2−ヘプチレン基、3−ヒドロキシ−6−メチル−2−ヘプチレン基、4−ヒドロキシ−6−メチル−2−ヘプチレン基、5−ヒドロキシ−6−メチル−2−ヘプチレン基、6−ヒドロキシ−6−メチル−2−ヘプチレン基、7−ヒドロキシ−6−メチル−2−ヘプチレン基、1−ヒドロキシ−4−メチル−3−ヘプチレン基、2−ヒドロキシ−4−メチル−3−ヘプチレン基、3−ヒドロキシ−4−メチル−3−ヘプチレン基、4−ヒドロキシ−4−メチル−3−ヘプチレン基、5−ヒドロキシ−4−メチル−3−ヘプチレン基、6−ヒドロキシ−4−メチル−3−ヘプチレン基、1−ヒドロキシオクチレン基、2−ヒドロキシオクチレン基、3−ヒドロキシオクチレン基、4−ヒドロキシオクチレン基、5−ヒドロキシオクチレン基、6−ヒドロキシオクチレン基、7−ヒドロキシオクチレン基、8−ヒドロキシオクチレン基、1−ヒドロキシ−2−オクチレン基、2−ヒドロキシ−2−オクチレン基、3−ヒドロキシ−2−オクチレン基、4−ヒドロキシ−2−オクチレン基、5−ヒドロキシ−2−オクチレン基、6−ヒドロキシ−2−オクチレン基、7−ヒドロキシ−2−オクチレン基、8−ヒドロキシ−2−オクチレン基、1−ヒドロキシ−3−オクチレン基、2−ヒドロキシ−3−オクチレン基、3−ヒドロキシ−3−オクチレ
ン基、4−ヒドロキシ−3−オクチレン基、5−ヒドロキシ−3−オクチレン基、6−ヒドロキシ−3−オクチレン基、7−ヒドロキシ−3−オクチレン基、8−ヒドロキシ−3−オクチレン基、1−ヒドロキシ−2−プロピルペンチレン基、2−ヒドロキシ−2−プロピルペンチレン基、3−ヒドロキシ−2−プロピルペンチレン基、4−ヒドロキシ−2−プロピルペンチレン基、5−ヒドロキシ−2−プロピルペンチレン基、1−ヒドロキシ−2,4,4−トリメチルペンチレン基、2−ヒドロキシ−2,4,4−トリメチルペンチレン基、3−ヒドロキシ−2,4,4−トリメチルペンチレン基、5−ヒドロキシ−2,4,4−トリメチルペンチレン基等のヒドロキシアルキレン基が挙げられる。
これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基等の炭素数1〜4のアルキレン基または1−ヒドロキシメチレン基、2−ヒドロキシメチレン基、1−ヒドロキシプロピレン基、2−ヒドロキシプロピレン基、3−ヒドロキシプロピレン基、1−ヒドロキシイソプロピレン基、2−ヒドロキシイソプロピレン基、3−ヒドロキシイソプロピレン基、1−ヒドロキシブチレン基、2−ヒドロキシブチレン基、3−ヒドロキシブチレン基、4−ヒドロキシブチレン基等の炭素数1〜4のヒドロキシアルキレン基が好ましい。
式(4)で示される分子内にο−フェニルフェノール基を有する(メタ)アクリレートとして、例えば、3−ο−フェニルフェノールメチル(メタ)アクリレート、3−ο−フェニルフェノールエチル(メタ)アクリレート、3−ο−フェニルフェノールプロピル(メタ)アクリレート、3−ο−フェニルフェノールブチル(メタ)アクリレート、3−ο−フェニルフェノールジエトキシ(メタ)アクリレート、3−ο−フェニルフェノールトリエトキシ(メタ)アクリレート、3−ο−フェニルフェノールテトラエトキシ(メタ)アクリレート、2−ヒドロキシ−3−ο−フェニルフェノールプロピル(メタ)アクリレート、2−ヒドロキシ−3−ο−フェニルフェノールブチル(メタ)アクリレート、3−ヒドロキシ−3−ο−フェニルフェノールプロピル(メタ)アクリレート等が挙げられる。
式(5)で示される分子内にフルオレン構造を有するジ(メタ)アクリレートについて説明する。
下記式(5)
Figure 2015076512

(式中、
12、R13は、それぞれ独立に、水素原子、またはメチル基であり、
14、R15は、炭素数1〜10のアルキレン基、炭素数1〜10のヒドロキシアルキレン基、又は下記式(6)で表される基であり、それぞれ、同種又は異種の基であってもよい。)
Figure 2015076512
(式中
16及びR17は、エチレン基、またはプロピレン基であり、nは1〜3の整数である。)
において、R12、R13はそれぞれ独立に水素原子あるいはメチル基である。これらの中でも水素原子のほうが、光硬化性ナノインプリント用組成物を硬化させる際の光硬化速度が速いので好ましい。
14、R15は、炭素数1〜10のアルキレン基、炭素数1〜10のヒドロキシアルキレン基、又は式(6)で表される基である。具体的には、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、2,2−ジメチルプロピレン基、2−メチルブチレン基、2−メチル−2−ブチレン基、3−メチルブチレン基、3−メチル−2−ブチレン基、ペンチレン基、2−ペンチレン基、3−ペンチレン基、3−ジメチル−2−ブチレン基、3,3−ジメチルブチレン基、3,3−ジメチル−2−ブチレン基、2−エチルブチレン基、ヘキシレン基、2−ヘキシレン基、3−ヘキシレン基、2−メチルペンチレン基、2−メチル−2−ペンチレン基、2−メチル−3−ペンチレン基、3−メチルペンチレン基、3−メチル−2−ペンチレン基、3−メチル−3−ペンチレン基、4−メチルペンチレン基、4−メチル−2−ペンチレン基、2,2−ジメチル−3−ペンチレン基、2,3−ジメチル−3−ペンチレン基、2,4−ジメチル−3−ペンチレン基、4,4−ジメチル−2−ペンチレン基、3−エチル−3−ペンチレン基、ヘプチレン基、2−ヘプチレン基、3−ヘプチレン基、2−メチル−2−ヘキシレン基、2−メチル−3−ヘキシレン基、5−メチルヘキシレン基、5−メチル−2−ヘキシレン基、2−エチルヘキシレン基、6−メチル−2−ヘプチレン基、4−メチル−3−ヘプチレン基、オクチレン基、2−オクチレン基、3−オクチレン基、2−プロピルペンチレン基、2,4,4−トリメチルペンチレン基等のアルキレン基;トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等のポリメチレン基、1−ヒドロキシエチレン基、2−ヒドロキシエチレン基、1−ヒドロキシプロピレン基、2−ヒドロキシプロピレン基、3−ヒドロキシプロピレン基、1−ヒドロキシイソプロピレン基、2−ヒドロキシイソプロピレン基、3−ヒドロキシイソプロピレン基、1−ヒドロキシブチレン基、2−ヒドロキシブチレン基、3−ヒドロキシブチレン基、4−ヒドロキシブチレン基、1−ヒドロキシイソブチレン基、2−ヒドロキシイソブチレン基、3−ヒドロキシイソブチレン基、1−ヒドロキシsec−ブチレン基、2−ヒドロキシsec−ブチレン基、3−ヒドロキシsec−ブチレン基、4−ヒドロキシsec−ブチレン基、1−ヒドロキシ−2,2−ジメチルプロピレン基、3−ヒドロキシ−2,2−ジメチルプロピレン基、1−ヒドロキシ−2−メチルブチレン基、2−ヒドロキシ−2−メチルブチレン基、3−ヒドロキシ−2−メチルブチレン基、4−ヒドロキシ−2−メチルブチレン基、1−ヒドロキシ2−メチル−2−ブチレン基、3−ヒドロキシ2−メチル−2−ブチレン基、4−ヒドロキシ2−メチル−2−ブチレン基、1−ヒドロキシ−3−メチルブチレン基、2−ヒドロキシ−3−メチルブチレン基、3−ヒドロキシ−3−メチルブチレン基、4−ヒドロキシ−3−メチルブチレン基、1−ヒドロキシ−3−メチル−2−ブチレン基、2−ヒドロキシ−3−メチル−2−ブチレン基、3−ヒドロキシ−3−メチル−2−ブチレン基、4−ヒドロキシ−3−メチル−2−ブチレン基、1−ヒドロキシペンチレン基、2−ヒドロキシペンチレン基、3−ヒドロキシペンチレン基、4−ヒドロキシペンチレン基、5−ヒドロキシペンチレン基、1−ヒドロキシ−2−ペンチレン基、2−ヒドロキシ−2−ペンチレン基、3−ヒドロキシ−2−ペンチレン基、4−ヒドロキシ−2−ペンチレン基、5−ヒドロキシ−2−ペンチレン基、1−ヒドロキシ−3−ペンチレン基、2−ヒドロキシ−3−ペンチレン基、3−ヒドロキシ−3−ペンチレン基、4−ヒドロキシ−3−ペンチレン基、5−ヒドロキシ−3−ペンチレン基、1−ヒドロキシ−3−ジメチル−2−ブチレン基、2−ヒドロキシ−3−ジメチル−2−ブチレン基、3−ヒドロキシ−3−ジメチル−2−ブチレン基、4−ヒドロキシ−3−ジメチル−2−ブチレン基、1−ヒドロキシ−3,3−ジメチルブチレン基、2−ヒドロキシ−3,3−ジメチルブチレン基、4−ヒドロキシ−3,3−ジメチルブチレン基、1−ヒドロキシ−3,3−ジメチル−2−ブチレン基、2−ヒドロキシ−3,3−ジメチル−2−ブチレン基、4−ヒドロキシ−3,3−ジメチル−2−ブチレン基、1−ヒドロキシ−2−エチルブチレン基、2−ヒドロキシ−2−エチルブチレン基、3−ヒドロキシ−2−エチルブチレン基、4−ヒドロキシ−2−エチルブチレン基、1−ヒドロキシ−ヘキシレン基、2−ヒドロキシ−ヘキシレン基、3−ヒドロキシ−ヘキシレン基、4−ヒドロキシ−ヘキシレン基、5−ヒドロキシ−ヘキシレン基、6−ヒドロキシ−ヘキシレン基、1−ヒドロキシ−2−ヘキシレン基、2−ヒドロキシ−2−ヘキシレン基、3−ヒドロキシ−2−ヘキシレン基、4−ヒドロキシ−2−ヘキシレン基、5−ヒドロキシ−2−ヘキシレン基、6−ヒドロキシ−2−ヘキシレン基、1−ヒドロキシ−3−ヘキシレン基、2−ヒドロキシ−3−ヘキシレン基、3−ヒドロキシ−3−ヘキシレン基、4−ヒドロキシ−3−ヘキシレン基、5−ヒドロキシ−3−ヘキシレン基、6−ヒドロキシ−3−ヘキシレン基、1−ヒドロキシ−2−メチルペンチレン基、2−ヒドロキシ−2−メチルペンチレン基、3−ヒドロキシ−2−メチルペンチレン基、4−ヒドロキシ−2−メチルペンチレン基、5−ヒドロキシ−2−メチルペンチレン基、1−ヒドロキシ−2−メチル−2−ペンチレン基、2−ヒドロキシ−2−メチル−2−ペンチレン基、3−ヒドロキシ−2−メチル−2−ペンチレン基、4−ヒドロキシ−2−メチル−2−ペンチレン基、5−ヒドロキシ−2−メチル−2−ペンチレン基、1−ヒドロキシ−2−メチル−3−ペンチレン基、2−ヒドロキシ−2−メチル−3−ペンチレン基、3−ヒドロキシ−2−メチル−3−ペンチレン基、4−ヒドロキシ−2−メチル−3−ペンチレン基、5−ヒドロキシ−2−メチル−3−ペンチレン基、1−ヒドロキシ−3−メチルペンチレン基、2−ヒドロキシ−3−メチルペンチレン基、3−ヒドロキシ−3−メチルペンチレン基、4−ヒドロキシ−3−メチルペンチレン基、5−ヒドロキシ−3−メチルペンチレン基、1−ヒドロキシ−3−メチル−2−ペンチレン基、2−ヒドロキシ−3−メチル−2−ペンチレン基、3−ヒドロキシ−3−メチル−2−ペンチレン基、4−ヒドロキシ−3−メチル−2−ペンチレン基、5−ヒドロキシ−3−メチル−2−ペンチレン基、1−ヒドロキシ−3−メチル−3−ペンチレン基、2−ヒドロキシ−3−メチル−3−ペンチレン基、3−ヒドロキシ−3−メチル−3−ペンチレン基、4−ヒドロキシ−3−メチル−3−ペンチレン基、5−ヒドロキシ−3−メチル−3−ペンチレン基、1−ヒドロキシ−4−メチルペンチレン基、2−ヒドロキシ−4−メチルペンチレン基、3−ヒドロキシ−4−メチルペンチレン基、4−ヒドロキシ−4−メチルペンチレン基、5−ヒドロキシ−4−メチルペンチレン基、1−ヒドロキシ−4−メチル−2−ペンチレン基、2−ヒドロキシ−4−メチル−2−ペンチレン基、3−ヒドロキシ−4−メチル−2−ペンチレン基、4−ヒドロキシ−4−メチル−2−ペンチレン基、5−ヒドロキシ−4−メチル−2−ペンチレン基、1−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、3−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,2−ジメチル−3−ペンチレン基、1−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、2−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,3−ジメチル−3−ペンチレン基、1−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、2−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、3−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、4−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、5−ヒドロキシ−2,4−ジメチル−3−ペンチレン基、1−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、2−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、3−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、5−ヒドロキシ−4,4−ジメチル−2−ペンチレン基、1−ヒドロキシ−3−エチル−3−ペンチレン基、2−ヒドロキシ−3−エチル−3−ペンチレン基、4−ヒドロキシ−3−エチル−3−ペンチレン基、5−ヒドロキシ−3−エチル−3−ペンチレン基、1−ヒドロキシヘプチレン基、2−ヒドロキシヘプチレン基、3−ヒドロキシヘプチレン基、4−ヒドロキシヘプチレン基、5−ヒドロキシヘプチレン基、6−ヒドロキシヘプチレン基、7−ヒドロキシヘプチレン基、1−ヒドロキシ−2−ヘプチレン基、2−ヒドロキシ−2−ヘプチレン基、3−ヒドロキシ−2−ヘプチレン基、4−ヒドロキシ−2−ヘプチレン基、5−ヒドロキシ−2−ヘプチレン基、6−ヒドロキシ−2−ヘプチレン基、7−ヒドロキシ−2−ヘプチレン基、1−ヒドロキシ−3−ヘプチレン基、2−ヒドロキシ−3−ヘプチレン基、3−ヒドロキシ−3−ヘプチレン基、4−ヒドロキシ−3−ヘプチレン基、5−ヒドロキシ−3−ヘプチレン基、6−ヒドロキシ−3−ヘプチレン基、7−ヒドロキシ−3−ヘプチレン基、1−ヒドロキシ−2−メチル−2−ヘキシレン基、3−ヒドロキシ−2−メチル−2−ヘキシレン基、4−ヒドロキシ−2−メチル−2−ヘキシレン基、5−ヒドロキシ−2−メチル−2−ヘキシレン基、6−ヒドロキシ−2−メチル−2−ヘキシレン基、1−ヒドロキシ−2−メチル−3−ヘキシレン基、2−ヒドロキシ−2−メチル−3−ヘキシレン基、3−ヒドロキシ−2−メチル−3−ヘキシレン基、4−ヒドロキシ−2−メチル−3−ヘキシレン基、5−ヒドロキシ−2−メチル−3−ヘキシレン基、6−ヒドロキシ−2−メチル−3−ヘキシレン基、1−ヒドロキシ−5−メチルヘキシレン基、2−ヒドロキシ−5−メチルヘキシレン基、3−ヒドロキシ−5−メチルヘキシレン基、4−ヒドロキシ−5−メチルヘキシレン基、5−ヒドロキシ−5−メチルヘキシレン基、6−ヒドロキシ−5−メチルヘキシレン基、1−ヒドロキシ−5−メチル−2−ヘキシレン基、2−ヒドロキシ−5−メチル−2−ヘキシレン基、3−ヒドロキシ−5−メチル−2−ヘキシレン基、4−ヒドロキシ−5−メチル−2−ヘキシレン基、5−ヒドロキシ−5−メチル−2−ヘキシレン基、6−ヒドロキシ−5−メチル−2−ヘキシレン基、1−ヒドロキシ−2−エチルヘキシレン基、2−ヒドロキシ−2−エチルヘキシレン基、3−ヒドロキシ−2−エチルヘキシレン基、4−ヒドロキシ−2−エチルヘキシレン基、5−ヒドロキシ−2−エチルヘキシレン基、6−ヒドロキシ−2−エチルヘキシレン基、1−ヒドロキシ−6−メチル−2−ヘプチレン基、2−ヒドロキシ−6−メチル−2−ヘプチレン基、3−ヒドロキシ−6−メチル−2−ヘプチレン基、4−ヒドロキシ−6−メチル−2−ヘプチレン基、5−ヒドロキシ−6−メチル−2−ヘプチレン基、6−ヒドロキシ−6−メチル−2−ヘプチレン基、7−ヒドロキシ−6−メチル−2−ヘプチレン基、1−ヒドロキシ−4−メチル−3−ヘプチレン基、2−ヒドロキシ−4−メチル−3−ヘプチレン基、3−ヒドロキシ−4−メチル−3−ヘプチレン基、4−ヒドロキシ−4−メチル−3−ヘプチレン基、5−ヒドロキシ−4−メチル−3−ヘプチレン基、6−ヒドロキシ−4−メチル−3−ヘプチレン基、1−ヒドロキシオクチレン基、2−ヒドロキシオクチレン基、3−ヒドロキシオクチレン基、4−ヒドロキシオクチレン基、5−ヒドロキシオクチレン基、6−ヒドロキシオクチレン基、7−ヒドロキシオクチレン基、8−ヒドロキシオクチレン基、1−ヒドロキシ−2−オクチレン基、2−ヒドロキシ−2−オクチレン基、3−ヒドロキシ−2−オクチレン基、4−ヒドロキシ−2−オクチレン基、5−ヒドロキシ−2−オクチレン基
、6−ヒドロキシ−2−オクチレン基、7−ヒドロキシ−2−オクチレン基、8−ヒドロキシ−2−オクチレン基、1−ヒドロキシ−3−オクチレン基、2−ヒドロキシ−3−オクチレン基、3−ヒドロキシ−3−オクチレン基、4−ヒドロキシ−3−オクチレン基、5−ヒドロキシ−3−オクチレン基、6−ヒドロキシ−3−オクチレン基、7−ヒドロキシ−3−オクチレン基、8−ヒドロキシ−3−オクチレン基、1−ヒドロキシ−2−プロピルペンチレン基、2−ヒドロキシ−2−プロピルペンチレン基、3−ヒドロキシ−2−プロピルペンチレン基、4−ヒドロキシ−2−プロピルペンチレン基、5−ヒドロキシ−2−プロピルペンチレン基、1−ヒドロキシ−2,4,4−トリメチルペンチレン基、2−ヒドロキシ−2,4,4−トリメチルペンチレン基、3−ヒドロキシ−2,4,4−トリメチルペンチレン基、5−ヒドロキシ−2,4,4−トリメチルペンチレン基等のヒドロキシアルキレン基が挙げられる。
これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基等の炭素数1〜4のアルキレン基又は、1−ヒドロキシエチレン基、2−ヒドロキシエチレン基、1−ヒドロキシプロピレン基、2−ヒドロキシプロピレン基、3−ヒドロキシプロピレン基、1−ヒドロキシイソプロピレン基、2−ヒドロキシイソプロピレン基、3−ヒドロキシイソプロピレン基、1−ヒドロキシブチレン基、2−ヒドロキシブチレン基、3−ヒドロキシブチレン基、4−ヒドロキシブチレン基、1−ヒドロキシイソブチレン基等の炭素数1〜4のヒドロキシアルキレン基、又は式(6)において、R16及びR17がエチレン基であり、かつnが1〜2の基又はR16及びR17がプロピレン基であり、かつnが1〜2の基が好ましい。
式(5)で示される分子内にフルオレン構造を有するジ(メタ)アクリレートとして、例えば、9,9−ビス[4−(2−(メタ)アクリロイルオキシメトキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシプロピルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシイソプロピルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシブチルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシヒドロキシエチルエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシヒドロキシプロピルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシヒドロキシイソプロピルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシヒドロキシブチルオキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシエチレングリコキシ)フェニル]フルオレン、9,9−ビス[4−(2−(メタ)アクリロイルオキシプロピレングリコキシ)フェニル]フルオレン等が挙げられる。
次に、光重合開始剤(C)について説明する。
(光重合開始剤(C))
本発明において、光重合開始剤(C)は特に制限されるものではなく、重合性単量体(B)を光重合できるものであれば、いかなる光重合開始剤も使用できる。
光重合開始剤としては、具体的に、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチルプロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン、フェニルグリオキシリックアシッドメチルエステル、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モリフォリン−4−イル−フェニル)ブタン−1−オン等のアセトフェノン誘導体;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6−ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6−ジクロロベンゾイルジフェニルホスフィンオキサイド、2,6−トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2−メチルベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸イソプロピルエステル、ビス−(2,6−ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス−(2,6−ジクロロベンゾイル)−2,5−ジメチルフェニルホスフィンオキサイド、ビス−(2,6−ジクロロベンゾイル)−4−プロピルフェニルホスフィンオキサイド、ビス−(2,6−ジクロロベンゾイル)−1−ナフチルホスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,5−ジメチルフェニルホスフィンオキサイド、ビス−(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス−(2,5,6−トリメチルベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体;1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)等のO−アシルオキシム誘導体;ジアセチル、アセチルベンゾイル、ベンジル、2,3−ペンタジオン、2,3−オクタジオン、4,4’−ジメトキシベンジル、4,4’−オキシベンジル、カンファーキノン、9,10−フェナンスレンキノン、アセナフテンキノン等のα−ジケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインアルキルエーテル;2,4−ジエトキシチオキサンソン、2−クロロチオキサンソン、メチルチオキサンソン等のチオキサンソン誘導体;ベンゾフェノン、p,p’−ジメチルアミノベンゾフェノン、p,p’−メトキシベンゾフェノン等のベンゾフェノン誘導体;ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム等のチタノセン誘導体が好適に使用される。
これら光重合開始剤は、1種あるいは2種以上を混合して使用される。
また、α−ジケトンを用いる場合には、第3級アミン化合物と組み合わせて用いることが好ましい。α−ジケトンと組み合わせて用いることのできる第3級アミン化合物としては、N,N−ジメチルアニリン、N,N−ジエチルアニリン、N,N−ジ−n−ブチルアニリン、N,N−ジベンジルアニリン、N,N−ジメチル−p−トルイジン、N,N−ジエチル−p−トルイジン、N,N−ジメチル−m−トルイジン、p−ブロモ−N,N−ジメチルアニリン、m−クロロ−N,N−ジメチルアニリン、p−ジメチルアミノベンズアルデヒド、p−ジメチルアミノアセトフェノン、p−ジメチルアミノ安息香酸、p−ジメチルアミノ安息香酸エチルエステル、p−ジメチルアミノ安息香酸アミルエステル、N,N−ジメチルアンスラニリックアシッドメチルエステル、N,N−ジヒドロキシエチルアニリン、N,N−ジヒドロキシエチル−p−トルイジン、p−ジメチルアミノフェネチルアルコール、p−ジメチルアミノスチルベン、N,N−ジメチル-3,5−キシリジン、4−ジメチルアミノピリジン、N,N−ジメチル−α−ナフチルアミン、N,N−ジメチル−β−ナフチルアミン、トリブチルアミン、トリプロピルアミン、トリエチルアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルヘキシルアミン、N,N−ジメチルドデシルアミン、N,N−ジメチルステアリルアミン、N,N−ジメチルアミノエチルメタクリレート、N,N−ジエチルアミノエチルメタクリレート、2,2’−(n−ブチルイミノ)ジエタノール等が挙げられる。
本発明においては、アセトフェノン誘導体、アシルホスフィンオキサイド誘導体、O−アシルオキシム誘導体、α−ジケトンを使用することが好ましい。
本発明において、上記光重合開始剤の使用量は、前記重合性単量体(B)100質量部に対して、0.1〜10質量部であることが好ましく、0.1〜5質量部であることがエッチング耐性の観点からより好ましい。
(光硬化性ナノインプリント用組成物におけるその他の添加成分)
本発明で用いられる光硬化性ナノインプリント用組成物には、本発明の効果を阻害しない範囲でその他の成分を配合することができる。
本発明で用いられる光硬化性ナノインプリント用組成物の使用に当たり、前記光硬化性ナノインプリント用組成物を基板上に塗布して使用するが、この場合、光硬化性ナノインプリント用組成物を溶媒で希釈して使用することもできる。また、本発明で用いられる光硬化性ナノインプリント用組成物を安定化させる目的、又は、その他の目的で溶媒や安定化剤やその他公知の添加剤を配合することもできる。使用される溶媒としては、本発明で用いられる光硬化性ナノインプリント用組成物が溶解する溶媒であれば、何ら制限なく使用でき、例えば、アセトニトリル、テトラヒドロフラン、トルエン、クロロホルム、酢酸エチルエステル、メチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン、エチレングリコール、エチレングリコールイソプロピルエーテル、プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチル−3−メトキシプロピオネート、エチレングリコールモノエチルエーテルアセテート、エチルラクテート、エチル−3−エトキシプロピオネート、ブチルアセテート、2−ヘプタノン、メチルイソブチルケトン、アセチルアセトン、ジアセトンアルコール、t−ブチルアルコール、ポリエチレングリコール、水、その他のアルコール類を挙げることができる。なお、水、アルコールは、新たに配合することもできるし、加水分解混合物(A)を製造した際に使用した水、副生したアルコールであってもよい。また、加水分解混合物(A)を製造する際に希釈溶媒として使用した溶媒が、上記溶媒に含まれてもよい。
溶媒を使用する場合、使用量は特に制限されず、目的の塗膜の厚みに応じて、適宜選択される。中でも、溶媒および光硬化性ナノインプリント用組成物の合計量を100質量%とすると、該溶媒の濃度が10〜99質量%となる範囲とすることが好ましい。
使用される安定化剤としては、ゾルゲル成分の安定化剤として一般的に知られているものであれば、何ら制限なく使用でき、例えば、メトキシ酢酸などのα−ヒドロキシカルボン酸アルキルエーテル;グリコール酸、乳酸、シュウ酸、マンデル酸、2−ヒドロキシイソ酪酸などのα−ヒドロキシカルボン酸;ジエタノールアミンなどのエタノールアミン類;ジアセチル、2,5−ヘキサンジオン、アセチルアセトン、メチルプロピルジケトン、ジメドンなどのジケトン類が挙げられる。安定化剤を使用する場合、使用量は特に制限されないが、ゾルゲル成分量に応じて、使用量を調整することが好ましい。
本発明で用いられる光硬化性ナノインプリント用組成物には、その他の公知の添加剤を配合することができる。具体的には、界面活性剤、重合禁止剤、反応性希釈剤等を配合することができる。界面活性剤は塗膜の均一性の点から、重合禁止剤は保存中に重合しないように安定化させるために配合される。
界面活性剤を配合する場合には、重合性単量体(B)100質量部に対して、0.0001〜1質量部、好ましくは、0.001〜0.1質量量部の割合で配合することができる。
界面活性剤としては、フッ素含有界面活性剤、シリコーン含有界面活性剤、脂肪族系界面活性剤を使用できる。中でも、光硬化性ナノインプリント用組成物がシリコンウエハー等の基板へ塗布されるものの場合、はじきを生ずることなく、組成物を均一に塗布し易い点から、脂肪族系界面活性剤を使用することがより好ましい。
界面活性剤の例としては、デシル硫酸ナトリウム、ラウリル硫酸ナトリウム等の高級アルコール硫酸エステルの金属塩類、ラウリン酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム等の脂肪族カルボン酸金属塩類、ラウリルアルコールとエチレンオキサイドとの付加物を硫酸化したラウリルエーテル硫酸エステルナトリウム等の高級アルキルエーテル硫酸エステルの金属塩類、スルホコハク酸ナトリウム等のスルホコハク酸ジエステル類、高級アルコールエチレンオキサイド付加物のリン酸エステル塩類等のアニオン性活性剤;ドデシルアンモニウムクロリド等のアルキルアミン塩類およびトリメチルドデシルアンモニウムブロミド等の4級アンモニウム塩類等のカチオン性界面活性剤;ドデシルジメチルアミンオキシド等のアルキルジメチルアミンオキシド類、ドデシルカルボキシベタイン等のアルキルカルボキシベタイン類、ドデシルスルホベタイン等のアルキルスルホベタイン類、ラウラミドプロピルアミンオキシド等のアミドアミノ酸塩等の両性イオン界面活性剤;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンジスチレン化フェニルエーテル類、ポリオキシエチレンラウリルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレントリベンジルフェニルエーテル類、脂肪酸ポリオキシエチレンラウリルエステル等の脂肪酸ポリオキシエチレンエステル類、ポリオキシエチレンソルビタンラウリルエステル等のポリオキシエチレンソルビタンエステル類等の非イオン性界面活性剤等を挙げることができる。界面活性剤は、それぞれ単独で使用できるだけでなく、必要に応じて、複数の種類を組み合わせて併用することもできる。
重合禁止剤を配合する場合には、重合性単量体(B)100質量部に対して、0.01
重合禁止剤の例としては、公知のものを挙げることができ、例えば、最も代表的なものは、ハイドロキノンモノメチルエーテル、ハイドロキノン、ブチルヒドロキシトルエン等を挙げることができる。
反応性希釈剤としては、N−ビニルピロリドン等の公知のものを挙げることができる。
反応性希釈剤の添加量は特に制限されず、金型からのパターンの形成に影響を及ぼさない範囲で適宜選択され、重合性単量体(B)100質量部に対して、通常、1〜100質量部の範囲から適宜選択される。その中でも、光硬化性ナノインプリント用組成物の低粘度化、パターンの機械的強度等を勘案すると、5〜50質量部であることが好ましい。
また、他の添加成分として、金型(パターン形成面)からの剥離性がよりよくなり、これにより、基板上に、再現性に優れた形状のパターンを形成できることから、パイパーブランチポリマーのような球状微粒子を添加することもできる。この場合、直径は1〜10nm、分子量10,000〜100,000の球状ハイパーブランチポリマーを配合することが好ましい。配合量は、重合性単量体(B)100質量部に対して0.1〜10質量部の量であることが好ましい。
本発明で用いられる光硬化性ナノインプリント用組成物は、加水分解混合物(A)、重合性単量体(B)、光重合開始剤(C)、および必要に応じて配合するその他の添加成分を混合することによって調製される。これら成分の添加順序は特に制限されるものではない。
次に、この光硬化性ナノインプリント用組成物を使用して、基板上にパターンを形成する方法について説明する。
(パターンの形成方法)
本発明のパターンの形成方法について説明する。
先ず、上記方法に従って調製した光硬化性ナノインプリント用組成物を、基材上に公知の方法に従って塗布することにより、塗膜を形成する。
該基材としては、特にその形態、材質は制限されるものではなく、基板、シート、フィルム状のものが使用できる。具体的には、シリコンウエハー、石英、ガラス、サファイア、各種金属材料、アルミナ・窒化アルミニウム・炭化珪素・窒化珪素等のセラミックス、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルム、シクロオレフィン樹脂フィルムのような公知の基板、シート、フィルムを使用することができる。なかでも、光硬化性ナノインプリント用組成物を用いた場合に、塩素エッチング耐性に優れた新規なパターンを形成できることから、塩素系ガスでドライエッチング加工することを勘案すると、シリコンウエハー、石英、ガラス、サファイア、各種金属材料、アルミナが好ましく、サファイアが特に好ましい。なお、これら基材は、本発明で用いられる光硬化性ナノインプリント用組成物よりなる硬化膜との密着性をより改善するために、表面処理を施すこともできる。
これら基材上に、スピンコート法、ディッピング法、ディスペンス法、インクジェット法、スプレーコート法、ロールtoロール法のような公知の方法により、本発明で用いられる光硬化性ナノインプリント用組成物を塗布し、乾燥することによって、塗膜を形成すればよい。塗膜の厚みは、特に制限されるものではなく、目的とする用途に応じて適宜決定すればよいが、通常0.1〜5μmであり、本発明で用いられる光硬化性ナノインプリント用組成物は、0.01〜0.1μmの厚みの塗膜の形成にも好適に適用できる。
次に、該塗膜を乾燥させる工程である。
乾燥温度は、150℃〜250℃の範囲から選択する。本発明のパターンの形成方法により基板上に形成したパターンをマスクとして、基板表面を塩素系ガスによりドライエッチング加工する際、上記温度範囲で乾燥させることにより、基板上へドライエッチング時の堆積物が生じ難く、良好な塩素系ガスのエッチング耐性を達成することができる。乾燥温度が150℃より低いと、ドライエッチング時に発生する堆積物により、基板のドライエッチング加工が進行し難くなり、結果的に良好な塩素エッチンング耐性を発揮することが出来ない。また、乾燥温度が250℃より高いと、塗膜の分解により、良好な塩素エッチング耐性を発揮することが出来ない。ドライエッチング中の堆積物発生の抑制および塗膜の良好な塩素エッチング耐性を勘案すると、乾燥温度の好ましい範囲は、155℃〜220℃であり、より好ましくは、160℃〜200℃の範囲から選択される。
薄く塗布するためは、本発明で用いられる光硬化性ナノインプリント用組成物を有機溶媒にて希釈して塗布することも可能であり、その場合は、上記の乾燥温度範囲から適宜決定すればよい。
基板上に形成した塗膜を乾燥する時間は、塗膜中に溶媒を含む場合は溶媒が揮発するに必要な時間や、塗膜自体の厚みから適宜選択されるが、塗膜が十分に乾燥することや塗膜の分解を抑えること等を勘案すると、乾燥時間の好ましい範囲は、30sec〜20minであり、より好ましくは、1min〜10minの範囲から選択される。乾燥する際の雰囲気としては、特に制限されず、大気中にて行うことができる。
なお、上記乾燥工程は、光照射し塗膜を硬化させる前に行うことが重要である。これは、塗膜を硬化させると、乾燥により、硬化膜表面から内部全体について、アルコキシド基の加水分解反応が生じにくくなるためと推察される。
次に、所望のパターンが形成されている金型のパターン形成面を、前記塗膜と接触させる。この際、金型は、光照射を介して、塗布された組成物を硬化させることにより硬化膜を形成できるように、透明な材質、例えば、石英や透明な樹脂フィルムで形成されていることが好ましい。本発明で用いられる光硬化性ナノインプリント用組成物は、金型を押し付ける際に比較的低圧でパターンを転写することができる。この際の圧力は、特に制限されるものではないが、0.01MPa〜1MPaの圧力でパターンを転写できる。なお、当然のことながら、上記圧力の上限値以上の圧力でもパターンの転写は可能である。
その後、金型のパターン形成面と塗膜とを接触させた状態のまま、光を照射して、塗膜を硬化させる。照射する光は、波長が500nm以下で、光の照射時間は、0.1〜300秒の範囲から選択される。塗膜の厚み等にもよるが、通常、1〜60秒である。
光重合時の雰囲気として、大気下でも重合可能であるが、光重合反応を促進する上で、酸素阻害の少ない雰囲気下での光重合が好ましい。例えば、窒素ガス雰囲気下、不活性ガス雰囲気下、フッ素系ガス雰囲気下、真空雰囲気下等が好ましい。
光硬化後、硬化した塗膜から金型を分離することにより、基板上に硬化した塗膜(硬化膜)によりパターンが形成された積層体が得られる。
(表面加工サファイア基板の製造方法)
本発明で用いられる光硬化性ナノインプリント用組成物は、基板への塗布後の乾燥において、乾燥温度範囲を150℃〜250℃とすることにより、形成される硬化膜が優れたエッチング耐性を示す。そのため、該硬化膜より形成されるパターンは、酸素ガス、フッ素系ガス、塩素系ガス等によるエッチング耐性が非常に良好となり、酸素ガス、フッ素系ガス、塩素系ガス等によるドライエッチングによってナノスケールの凹凸構造を有する基材を製造する際のマスクとして好適に用いることができる。特に、本発明で用いられる光硬化性ナノインプリント用組成物から得られる硬化膜は、サファイア基板を加工するための塩素系ガスに対するエッチング耐性に優れていることから、サファイア基板を表面加工する際のマスクとして用いるのに適している。なお、塩素系ガスとしては、反応性イオンエッチングに用いられる公知のガスを使用することができる。具体的には、塩素、三塩化ホウ素、四塩化炭素を挙げることができ、必要に応じて、酸素ガス、フッ素系ガス等を混合して使用することもできる。
上記したようにして得た、金型にてパターンを転写した硬化膜を表面に有する基板(硬化膜によりパターンを形成した積層体)に、硬化膜のパターンに基づくパターンを形成する方法としては、先ず、硬化膜の肉薄部分(残膜)をドライエッチングにより除去し、基板表面を出す。さらに、残膜を除去した部分の基板のドライエッチングを行う。硬化膜の肉厚部分により覆われた基板は硬化膜の肉厚部分がマスクとなり全てはドライエッチングされない。最後に残った硬化膜の肉厚部分を除去することにより、基板表面をドライエッチング加工した基板を得ることができる。硬化膜の肉厚部分の除去方法としては、ドライエッチングや、ウエットエッチングによって除去することができ、なかでもサファイア基板へのパターン形成の場合、塩素系ガスおよび/または、フッ素系ガスによるドライエッチングが好適に用いられる。
サファイア基板表面を加工することにより、LEDの光取り出し効率の向上や結晶転移の少ない均質なGaN成長やGaN層のクラック防止が期待される。
以下、本発明を実施例および比較例を掲げて説明するが、本発明はこれらの実施例に限定されるものではない。
(1)エッチング耐性の評価
(サファイア基板のドライエッチング)
サファイア基板(片鏡面、厚さ430μm、表面粗さRa≦0.1nm、面方位C面)を反応性イオンエッチング装置を用いて、以下の条件にて塩素ガスによるドライエッチングを行い、一定時間でのエッチング量(サファイア基板の減少厚み)を段差測定器で測定した。
<塩素ガスによるドライエッチング条件>
塩素ガス流量:20sccm
アンテナパワー:400W
バイアスパワー:80W
基板冷却温度:5℃
(硬化膜のドライエッチング)
得られた硬化膜でコーティングしたシリコンウエハーを、マスクで部分的に保護し、サファイア基板の塩素ガスによるドライエッチングと同じ条件にてドライエッチングを行い、一定時間での硬化膜の減少した塗膜厚みを段差測定器で測定した。
(サファイア選択比の算出)
サファイア基板のみでのサファイア基板の一定時間でのエッチング量(サファイア基板の減少厚み)と光硬化性ナノインプリント用組成物の硬化膜の一定時間での硬化膜の減少した塗膜厚みとの比(サファイア基板の一定時間でのエッチング量(サファイア基板の減少厚み)/光硬化性ナノインプリント用組成物の硬化膜の一定時間での硬化膜の減少した塗膜厚み)を算出し、これを光硬化性ナノインプリント用組成物の硬化膜のサファイア選択比とした。サファイア選択比の値が高いほど、光硬化性ナノインプリント用組成物による硬化膜はサファイア基板と比較して、塩素ガスによるドライエッチングを受け難く、サファイア基板を用いた場合における塩素エッチング耐性が良いことになる。
実施例1
(加水分解混合物(A)の製造)
エタノール6.9g、(メタ)アクリル基を有する有機珪素化合物としてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製KBM-5103)7.5g、金属アルコキシドとしてタングステン(V)エトキシド(Alfa Aesar製)0.8gとを混合し、この混合物を攪拌混合しながら、エタノール2.2g/水0.8g/2N−HCl 0.07gの2N−HCl/エタノール混合水溶液を室温下、徐々に滴下した。さらに、エタノール0.5g/水0.5gのエタノール水溶液を徐々に滴下し、室温下1時間攪拌し、(メタ)アクリル基を有する有機珪素化合物の加水分解物と金属アルコキシドの加水分解物を含む加水分解混合物(A)を得た。
(光硬化性ナノインプリント用組成物の製造)
(メタ)アクリル基を有する重合性単量体(B)として、ヒドロキシエチル化o−フェニルフェノールアクリレート(新中村化学工業(株)製、NKエステル A−LEN−10)5.0g、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学工業(株)製、NKエステル A−BPEF)5.0gを使用した。
光重合開始剤(C)として、2−ジメチルアミノ−2−(4−メチル−ベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン(BASFジャパン(株)製、IRGACURE(登録商標)379 EG)0.2gを使用した。
重合禁止剤として、ハイドロキノンモノメチルエーテル0.015g、ブチルヒドロキシトルエン0.002gを使用した。
上記(メタ)アクリル基を有する重合性単量体(B)と光重合開始剤(C)と重合禁止剤とを均一に混合し、その混合物を2.0g分取した。該混合物2.0gに、前記加水分解混合物(A)8.6gを添加し、室温で15分間攪拌後、0.2μmφ穴径のシリンジフィルターにてろ過することにより光硬化性ナノインプリント用組成物を得た。
得られた光硬化性ナノインプリント用組成物を用い、シリコンウエハー(P型、片鏡面、酸化膜なし)上に、3000rpm、30秒間でスピンコートし、大気中、160℃で2分間乾燥した後、窒素雰囲気下、365nmの光で露光量1J/cmとなるようUV照射し、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例2
実施例1で得られた光硬化性ナノインプリント用組成物を用い、シリコンウエハー(P型、片鏡面、酸化膜なし)上に、3000rpm、30秒間でスピンコートし、大気中、200℃で2分間乾燥した後、窒素雰囲気下、365nmの光で露光量1J/cmとなるようUV照射し、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例3
エタノール6.9g、(メタ)アクリル基を有する有機珪素化合物としてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製KBM-5103)7.5g、金属アルコキシドとして、85質量%ジルコニウムブトキシド(テトラブチルジルコニウムアルコキシド)の1−ブタノール溶液 0.9gとを混合し、この混合物を攪拌混合しながら、エタノール2.2g/水0.8g/2N−HCl 0.07gの2N−HCl/エタノール混合水溶液を室温下、徐々に滴下した。さらに、エタノール0.5g/水0.5gのエタノール水溶液を徐々に滴下し、室温下1時間攪拌し、(メタ)アクリル基を有する有機珪素化合物の加水分解物と金属アルコキシドの加水分解物を含む加水分解混合物(A)を得た。
得られた加水分解混合物(A)を用いた他は、実施例1と同様の操作を行い、光硬化性ナノインプリント用組成物を得、次いで、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例4
エタノール6.9g、(メタ)アクリル基を有する有機珪素化合物としてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製KBM-5103)7.5g、金属アルコキシドとして、ハフニウムブトキシド(テトラブチルハフニウムアルコキシド)0.9gとを混合し、この混合物を攪拌混合しながら、エタノール2.2g/水0.8g/2N−HCl 0.07gの2N−HCl/エタノール混合水溶液を室温下、徐々に滴下した。さらに、エタノール0.5g/水0.5gのエタノール水溶液を徐々に滴下し、室温下1時間攪拌し、(メタ)アクリル基を有する有機珪素化合物の加水分解物と金属アルコキシドの加水分解物を含む加水分解混合物(A)を得た。
得られた加水分解混合物(A)を用いた他は、実施例1と同様の操作を行い、光硬化性ナノインプリント用組成物を得、次いで、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例5
(加水分解混合物(A)の製造)
エタノール8.4g、(メタ)アクリル基を有する有機珪素化合物としてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製KBM-5103)1.5g、金属アルコキシドとしてタングステン(V)エトキシド(Alfa Aesar製)0.8g、有機珪素化合物としてジフェニルジメトキシシラン(東京化成工業(株)製)5.8gを混合し、この混合物を攪拌混合しながら、エタノール2.6g/水0.5g/2N−HCl 0.09gの2N−HCl/エタノール混合水溶液を室温下、徐々に滴下した。さらに、エタノール0.6g/水0.3gのエタノール水溶液を徐々に滴下し、室温下1時間攪拌し、(メタ)アクリル基を有する有機珪素化合物の加水分解物と金属アルコキシドの加水分解物と有機珪素化合物の加水分解物を含む加水分解混合物(A)を得た。
(光硬化性ナノインプリント用組成物の製造)
実施例1で使用したのと同じ種類、同量の重合性単量体(B)、光重合開始剤(C)、および重合禁止剤とを混合した後、同じ量の混合物(2.0g)に前記加水分解混合物(A)9.8gを添加し、室温で15分間攪拌後、0.2μmφ穴径のシリンジフィルターにてろ過することにより光硬化性ナノインプリント用組成物を得た。
得られた光硬化性ナノインプリント用組成物を用い、実施例1と同様の操作を行い、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例6
実施例5で得られた加水分解混合物(A)をエパポレーターにて、水温50℃、真空度40hPaの条件で水、HCl、アルコール等の揮発成分を除去し、揮発分量に等しい量のアセチルアセトンを添加し、エバポレーター処理をした加水分解混合物(A)を得た。
(光硬化性ナノインプリント用組成物の製造)
実施例1で使用したのと同じ種類、同量の重合性単量体(B)、光重合開始剤(C)、および重合禁止剤とを混合した後、同じ量の混合物(2.0g)に前記エバポレーター処理をした加水分解混合物(A)9.8gを添加し、室温で15分間攪拌後、0.2μmφ穴径のシリンジフィルターにてろ過することにより光硬化性ナノインプリント用組成物を得た。
得られた光硬化性ナノインプリント用組成物を用い、実施例1と同様の操作を行い、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
比較例1
実施例1で得られた光硬化性ナノインプリント用組成物を用い、シリコンウエハー(P型、片鏡面、酸化膜なし)上に、3000rpm、30秒間でスピンコートし、大気中、140℃で2分間乾燥した後、窒素雰囲気下、365nmの光で露光量1J/cmとなるようUV照射し、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。ドライエッチング時に発生した堆積物のため、硬化膜が削れず、硬化膜厚みが増えたため、サファイア選択比はマイナスとなった。
比較例2
実施例1で得られた光硬化性ナノインプリント用組成物を用い、シリコンウエハー(P型、片鏡面、酸化膜なし)上に、3000rpm、30秒間でスピンコートし、大気中、260℃で2分間乾燥した後、窒素雰囲気下、365nmの光で露光量1J/cmとなるようUV照射し、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
比較例3
実施例5で得られた光硬化性ナノインプリント用組成物を用い、シリコンウエハー(P型、片鏡面、酸化膜なし)上に、3000rpm、30秒間でスピンコートし、大気中、110℃で2分間乾燥した後、窒素雰囲気下、365nmの光で露光量1J/cmとなるようUV照射し、光硬化性ナノインプリント用組成物の硬化膜でコーティングしたシリコンウエハーを得た。エッチング耐性の評価の方法に従い、サファイア選択比を算出した。その結果を表1に示した。
実施例7
(表面加工サファイア基板の製造)
実施例6で得られた光硬化性ナノインプリント用組成物を、アセチルアセトンにて20重量%となるよう希釈した。希釈した光硬化性ナノインプリント用組成物を、サファイア基板(片鏡面、厚さ430μm、表面粗さRa≦0.1nm、面方位C面)上に、3000rpm、30秒間でスピンコートし、160℃において2分間乾燥して、光硬化性ナノインプリント用組成物の塗膜が約100nmの厚みでコーティングしたサファイア基板を得た。
直径230nm、深さ200nmのホールパターンの樹脂性モールドを用い、ミカドテクノス(株)製 真空加圧UV硬化装置(VS005−200C−UV)を用い、上記のようにして得られた光硬化性ナノインプリント用組成物の塗膜を有するサファイア基板に、圧力3MPaをかけメタルハライドランプにて光を60秒間照射して、光ナノインプリントを行った。樹脂モールドを剥離し、サファイア基板上にピラーパターンが転写したサンプルを得た。
反応性イオンエッチング装置を用いて、上記サンプルを塩素ガスによるドライエッチング条件にて、転写パターンをマスクとして、サファイア基板のドライエッチングによるサファイア基板の表面加工を行った。得られたサンプルをSEM観察したところ、サファイア基板表面がエッチングされ、ピラーパターンに表面加工できていることを確認した。
Figure 2015076512

Claims (5)

  1. (A)下記式(1)
    Figure 2015076512
    (式中、
    は、水素原子、またはメチル基であり、
    は、炭素数1〜20のアルキレン基または炭素数3〜10のシクロアルキレン基であり、
    は、炭素数1〜4のアルキル基、炭素数3〜4のシクロアルキル基、または炭素数6〜12のアリール基であり、
    は、炭素数1〜4のアルキル基または炭素数3〜4のシクロアルキル基であり、
    lは1〜3の整数であり、mは0〜2の整数であり、kは1〜3の整数であり、
    l+m+kは4であり、
    、R、RおよびRがそれぞれ、複数存在する場合には、複数のR、R、RおよびRは、それぞれ、同種又は異種の基であってもよい)で示される(メタ)アクリル基を有する有機珪素化合物の加水分解物、
    および
    下記式(2)
    Figure 2015076512
    (式中、
    Mは、タングステン、ジルコニウム、スズ、インジウム、アンチモン、モリブデン、ニオブ、またはハフニウムであり、
    は、炭素数1〜10のアルキル基であり、同一の基であっても、異なる基であってもよく、
    Mがタングステンの場合、pは6または5であり、
    Mがモリブデン、ニオブの場合、pは5であり、
    Mがジルコニウム、スズ、ハフニウムの場合、pは4であり、
    Mがインジウム、アンチモンの場合、pは3である。)
    で示される金属アルコキシドの加水分解物を含む加水分解混合物、
    (B)(メタ)アクリル基を有する重合性単量体、並びに
    (C)光重合開始剤
    を含有する光硬化性ナノインプリント用組成物を基板上に塗布し、次いで150℃〜250℃で乾燥させ、該組成物からなる塗膜を形成する工程、
    パターンが形成された金型のパターン形成面と前記塗膜とを接触させ、その状態で光を照射して塗膜を硬化させる工程、
    前記金型を、硬化した塗膜から分離して、前記金型のパターン形成面に形成されているパターンに対応するパターンを基板上に形成する工程
    を含むことを特徴とするパターンの形成方法。
  2. 前記式(2)におけるMがタングステンである、請求項1のパターンの形成方法。
  3. 前記加水分解混合物(A)が、下記式(3)
    Figure 2015076512
    (式中、
    、Rは同種又は異種の炭素数1〜4のアルキル基または水素であり、
    はアリール基であり、Rはアリール基または炭素数1〜4のアルコキシ基であり、nは1〜10の整数である。)
    で示される有機珪素化合物の加水分解物をさらに含むことを特徴とする請求項1又は2に記載のパターンの形成方法。
  4. 請求項1〜3のいずれか一項に記載のパターンの形成方法により基板上に形成したパターンをマスクとして、基板表面をエッチングガスによりドライエッチング加工することを特徴とする表面加工基板の製造方法。
  5. 基板がサファイア基板であり、エッチングガスが塩素系ガスである請求項4に記載の表面加工基板の製造方法。
JP2013211854A 2013-10-09 2013-10-09 パターンの形成方法 Expired - Fee Related JP6099539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211854A JP6099539B2 (ja) 2013-10-09 2013-10-09 パターンの形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211854A JP6099539B2 (ja) 2013-10-09 2013-10-09 パターンの形成方法

Publications (2)

Publication Number Publication Date
JP2015076512A true JP2015076512A (ja) 2015-04-20
JP6099539B2 JP6099539B2 (ja) 2017-03-22

Family

ID=53001138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211854A Expired - Fee Related JP6099539B2 (ja) 2013-10-09 2013-10-09 パターンの形成方法

Country Status (1)

Country Link
JP (1) JP6099539B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194644A1 (ja) * 2015-05-29 2016-12-08 株式会社ダイセル ナノインプリント用光硬化性組成物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136106A (ja) * 2003-10-29 2005-05-26 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2007256782A (ja) * 2006-03-24 2007-10-04 Sekisui Chem Co Ltd シリコン含有感光性組成物、これを用いた薄膜パターンの製造方法、電子機器用保護膜、トランジスタ、カラーフィルタ、有機el素子、ゲート絶縁膜及び薄膜トランジスタ
JP2008194894A (ja) * 2007-02-09 2008-08-28 Showa Denko Kk 微細パターン転写材料
JP2010113170A (ja) * 2008-11-07 2010-05-20 Fujifilm Corp 光インプリント用硬化性組成物、これを用いた硬化物およびその製造方法、ならびに液晶表示装置用部材
WO2012053543A1 (ja) * 2010-10-20 2012-04-26 株式会社トクヤマ 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2012109551A (ja) * 2010-10-20 2012-06-07 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2012204375A (ja) * 2011-03-23 2012-10-22 Waseda Univ 微細パターンを表面に有する物品の製造方法
JP2012214022A (ja) * 2011-03-28 2012-11-08 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2013042124A (ja) * 2011-07-19 2013-02-28 Tokuyama Corp 光硬化性ナノインプリント用組成物を用いたパターンの製造方法
JP2014003276A (ja) * 2012-04-02 2014-01-09 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2014003284A (ja) * 2012-05-25 2014-01-09 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2014057016A (ja) * 2012-09-14 2014-03-27 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2015012100A (ja) * 2013-06-28 2015-01-19 株式会社トクヤマ 光硬化性ナノインプリント用組成物およびパターンの形成方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136106A (ja) * 2003-10-29 2005-05-26 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2007256782A (ja) * 2006-03-24 2007-10-04 Sekisui Chem Co Ltd シリコン含有感光性組成物、これを用いた薄膜パターンの製造方法、電子機器用保護膜、トランジスタ、カラーフィルタ、有機el素子、ゲート絶縁膜及び薄膜トランジスタ
JP2008194894A (ja) * 2007-02-09 2008-08-28 Showa Denko Kk 微細パターン転写材料
JP2010113170A (ja) * 2008-11-07 2010-05-20 Fujifilm Corp 光インプリント用硬化性組成物、これを用いた硬化物およびその製造方法、ならびに液晶表示装置用部材
WO2012053543A1 (ja) * 2010-10-20 2012-04-26 株式会社トクヤマ 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2012109551A (ja) * 2010-10-20 2012-06-07 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2012204375A (ja) * 2011-03-23 2012-10-22 Waseda Univ 微細パターンを表面に有する物品の製造方法
JP2012214022A (ja) * 2011-03-28 2012-11-08 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2013042124A (ja) * 2011-07-19 2013-02-28 Tokuyama Corp 光硬化性ナノインプリント用組成物を用いたパターンの製造方法
JP2014003276A (ja) * 2012-04-02 2014-01-09 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2014003284A (ja) * 2012-05-25 2014-01-09 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2014057016A (ja) * 2012-09-14 2014-03-27 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2015012100A (ja) * 2013-06-28 2015-01-19 株式会社トクヤマ 光硬化性ナノインプリント用組成物およびパターンの形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194644A1 (ja) * 2015-05-29 2016-12-08 株式会社ダイセル ナノインプリント用光硬化性組成物
JPWO2016194644A1 (ja) * 2015-05-29 2018-03-15 株式会社ダイセル ナノインプリント用光硬化性組成物

Also Published As

Publication number Publication date
JP6099539B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5762245B2 (ja) 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
KR101597880B1 (ko) 광경화성 나노임프린트용 조성물, 상기 조성물을 이용한 패턴의 형성 방법 및 상기 조성물의 경화체를 갖는 나노임프린트용 복제 금형
JP6082237B2 (ja) テクスチャー構造を有するシリコン基板の製法
JP5975814B2 (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
KR101615795B1 (ko) 광경화성 임프린트용 조성물 및 상기 조성물을 이용한 패턴의 형성 방법
JP5804987B2 (ja) 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2014063863A (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP5968041B2 (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP2014065853A (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP6522322B2 (ja) ナノインプリント用レプリカ金型の製造方法
JP5839830B2 (ja) 有機金属錯体化合物、有機金属錯体化合物の製造方法および有機金属錯体化合物を含む光硬化性組成物
JP6073166B2 (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP6128952B2 (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP6128990B2 (ja) 光硬化性ナノインプリント用組成物およびパターンの形成方法
JP6371179B2 (ja) インプリント用組成物
JP6008628B2 (ja) 光硬化性ナノインプリント用組成物を用いたパターンの製造方法
JP6099539B2 (ja) パターンの形成方法
JP2018130716A (ja) 表面修飾可能な積層体の製法
JP2019076889A (ja) 撥水性積層体の製法
JP6452557B2 (ja) 表面修飾可能な積層体の製法
JP6158028B2 (ja) 放射線遮蔽インク
WO2018105353A1 (ja) ナノインプリント金型の製造方法
JP2019153625A (ja) 光硬化性ナノインプリント用組成物の製造方法、及び光硬化性ナノインプリント用組成物
JP2016039165A (ja) レジスト積層サファイア基板、及び該レジスト積層サファイア基板を用いた凹凸パターンを有するサファイア基板の製造方法
Song et al. Synthesis of silicon-containing materials for UV-curable imprint etch barrier solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6099539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees