JP2015073085A - 熱電変換装置 - Google Patents

熱電変換装置 Download PDF

Info

Publication number
JP2015073085A
JP2015073085A JP2014168649A JP2014168649A JP2015073085A JP 2015073085 A JP2015073085 A JP 2015073085A JP 2014168649 A JP2014168649 A JP 2014168649A JP 2014168649 A JP2014168649 A JP 2014168649A JP 2015073085 A JP2015073085 A JP 2015073085A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
overcoat layer
conversion device
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014168649A
Other languages
English (en)
Other versions
JP6162666B2 (ja
Inventor
林 直之
Naoyuki Hayashi
直之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014168649A priority Critical patent/JP6162666B2/ja
Publication of JP2015073085A publication Critical patent/JP2015073085A/ja
Application granted granted Critical
Publication of JP6162666B2 publication Critical patent/JP6162666B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/20Organic diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】熱電変換性能の経時劣化が抑制された熱電変換装置を提供する。
【解決手段】基板12と、基板12上に配置された、有機系熱電変換材料を含有する熱電変換層22および一対の電極18、20を有する熱電変換素子14と、熱電変換素子14を覆うように配置された、劣化防止剤および有機バインダーを含有するオーバーコート層16と、を備える。有機系熱電変換材料が、導電性ナノ炭素材料および導電性高分子からなる群から選択される少なくとも1種を含む。
【選択図】図1

Description

本発明は、熱電変換装置に係り、特に、熱電変換素子を覆うように配置されたオーバーコート層を備える熱電変換装置に関する。
熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料は、熱電発電素子やペルチェ素子のような熱電変換素子に用いられている。
このような熱電変換材料や熱電変換素子を応用した熱電発電は、熱エネルギーを直接電力に変換することができ、可動部を必要とせず、体温で作動する腕時計や僻地用電源、宇宙用電源などに用いられている。
熱電変換材料においては、軽量化やフレキシブル化への要請があり、有機材料への期待が大きく、代表的には、カーボンナノチューブなどを使用する態様が検討されている(特許文献1)。
特開2008−305831号公報
一方、近年、熱電変換素子を含む機器の性能保証のために、長期間経過した後であっても熱電変換性能が劣化しないことが求められている。
本発明者らは、特許文献1に記載されるようなカーボンナノチューブを含有する熱電変換層を備える熱電変換装置を長時間保管した後に、熱電変換装置の発電量について検討を行ったところ、大きな劣化が見られ、更なる改良が必要であることを知見した。
本発明は、上記実情に鑑みて、熱電変換性能の経時劣化が抑制された熱電変換装置を提供することを目的とする。
本発明者らは、上記課題について鋭意検討した結果、所定のオーバーコート層を設けることにより、所望の効果が得られることを見出した。
より具体的には、以下の構成により上記目的を達成することができることを見出した。
(1) 基板と、基板上に配置された、有機系熱電変換材料を含有する熱電変換層および熱電変換層上に設けられる一対の電極を有する熱電変換素子と、熱電変換素子を覆うように配置された、劣化防止剤および有機バインダーを含有するオーバーコート層と、を備える熱電変換装置。
(2) 劣化防止剤が、酸化防止剤、紫外線吸収剤、および、熱安定剤からなる群から選択される少なくとも1つである、(1)に記載の熱電変換装置。
(3) オーバーコート層の酸素透過度が40cc/m2・day・atm以下である、(1)または(2)に記載の熱電変換装置。
(4) オーバーコート層の透湿度が4000g/m2・day以下である、(1)〜(3)のいずれかに記載の熱電変換装置。
(5) オーバーコート層が、熱伝導性フィラーを含有する、(1)〜(4)のいずれかに記載の熱電変換装置。
(6) 有機系熱電変換材料が、導電性ナノ炭素材料および導電性高分子からなる群から選択される少なくとも1種を含む、(1)〜(5)のいずれかに記載の熱電変換装置。
(7) 熱電変換素子が複数直列に接続している、(1)〜(6)のいずれかに記載の熱電変換装置。
本発明によれば、熱電変換性能の経時劣化が抑制された熱電変換装置を提供することができる。
本発明の熱電変換装置の一例を示す断面図である。 本発明の熱電変換装置の他の一例を示す断面図である。 本発明の熱電変換装置の他の一例を示す断面図である。 (A)〜(D)は、図3に示す熱電変換装置の製造方法の一例を説明するための模式図である。
以下、本発明の熱電変換装置について、添付の図面に示される好適実施例を基に詳細に説明する。
本発明の熱電変換装置の特徴点の一つとしては、有機系熱電変換材料の劣化を防止する劣化防止剤を含むオーバーコート層を設けている点が挙げられる。本発明者らは、従来技術において熱電変換性能の経時劣化が進行する理由として、有機系熱電変換材料や電極材料と酸素や水との反応や、光吸収および熱分解による有機系熱電変換材料や電極材料の劣化などに起因していることを見出した。そこで、この知見に基づいて、劣化防止剤を含有するオーバーコート層を設けることにより、長期保管中に生じる上記反応や劣化を抑制することができ、結果として、熱電変換装置の経時的な性能劣化を防止することができる。
図1は、本発明の熱電変換装置の一例を模式的に示す断面図である。
図1に示す熱電変換装置10は、基板12と、熱電変換素子14と、オーバーコート層16とを備える。なお、熱電変換素子14は、一対の電極(第1の電極18および第2の電極20)と、熱電変換層22とを有する。
オーバーコート層16は、熱電変換素子14を覆うように熱電変換素子14上に配置されており、熱電変換素子14中の熱電変換層22中の有機系熱電変換材料の劣化や、電極の劣化を防止する。
なお、図1に示す熱電変換装置10は、矢印で示される方向の温度差を利用して起電力(電圧)を得る態様である。
なお、熱電変換装置10の構成は図1の態様に限定されず、他の構成であってもよい。
図2は、本発明の熱電変換装置の他の一例を模式的に示す断面図である。図2に示す熱電変換装置110は、基板112と、熱電変換素子140と、オーバーコート層116とを備える。熱電変換素子140は、第1の電極118および第2の電極120が基板112上の離間した位置にそれぞれ積層され、さらに、第1の電極118および第2の電極120を覆うように、基板112上に熱電変換層122が積層されている。なお、オーバーコート層116は、熱電変換素子140を覆うように配置されている。
ここで、図2に示す熱電変換装置110は、矢印で示される方向の温度差を利用して起電力(電圧)を得る態様である。
また、本発明においては、図3に示すように、互いに隣接する熱電変換素子14と共通の基板12を用い、一の熱電変換素子14における第2の電極20と、それと隣接する他の熱電変換素子14の第1の電極18とを電気的に接続することにより、各熱電変換素子14を直列で接続させて、熱電変換モジュール30を含む熱電変換装置210としてもよい。すなわち、熱電変換モジュール30では、隣接する熱電変換素子14において、電極を共用している(例えば、隣接する熱電変換素子14同士で、1つの電極が第1の電極と第2の電極とを兼ねている)。
なお、熱電変換装置210には、熱電変換素子14を直列で接続させて形成される熱電変換モジュール30を覆うように、オーバーコート層16が配置される。
次に、本発明の熱電変換装置を構成する各層(基板、電極、熱電変換層、オーバーコート層など)について詳述する。
<基板>
本発明の熱電変換装置が有する基板は特に限定されないが、電極の形成や熱電変換層の形成時に影響を受けにくい基板を選択することが好ましい。
このような基板としては、例えば、ガラス基板、透明セラミックス基板、金属基板、プラスチックフィルム等が挙げられ、中でも、コストや柔軟性の観点から、プラスチックフィルムが好ましい。
プラスチックフィルムの具体例としては、ポリエチレンテレフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)フィルム、ポリエチレン−2,6−フタレンジカルボキシレートフィルム、ビスフェノールAとイソおよびテレフタル酸とのポリエステルフィルム等のポリエステルフィルム;ゼオノアフィルム(日本ゼオン社製)、アートンフィルム(JSR社製)、スミライトFS1700(住友ベークライト社製)等のポリシクロオレフィンフィルム;カプトン(東レ・デュポン社製)、アピカル(カネカ社製)、ユービレックス(宇部興産社製)、ポミラン(荒川化学社製)等のポリイミドフィルム;ピュアエース(帝人化成社製)、エルメック(カネカ社製)等のポリカーボネートフィルム;スミライトFS1100(住友ベークライト社製)等のポリエーテルエーテルケトンフィルム;トレリナ(東レ社製)等のポリフェニルスルフィドフィルム;等が挙げられる。
これらのうち、入手の容易性、100℃以上の耐熱性、経済性および効果の観点から、市販のポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリカーボネートフィルム等が好ましい。
本発明においては、基板の厚さは使用目的に応じて適宜選択することができるが、例えば、プラスチックフィルムを用いた場合には、一般的には、5〜500μmのものを用いることが好ましい。
なお、基板の表面には、易接着層を有してもよい。基板の表面に易接着層を有することにより、他の層との密着性を向上できる点で好ましい。
易接着層の材料は、基板の上に形成する部材の形成材料に応じて、密着性を向上可能なものが、各種利用可能である。具体的には、ゼラチン、ポリビニルアルコール(PVA)、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が例示される。中でも、アクリル樹脂、ウレタン樹脂およびポリエステル樹脂は、好ましく例示される。
また、易接着層は、カルボジイミド架橋剤、イソシアネート架橋剤、メラミン架橋剤などの架橋剤等を含有してもよい。
さらに、必要に応じて、2層構成など、複数層の易接着層を形成してもよい。
(電極)
熱電変換装置においては、電極(第1の電極および第2の電極)に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。また、図3に示したように、熱電変換素子を配列方向に並べ、隣接する熱電変換素子同士の第1の電極と第2の電極とを連結(1枚の電極で形成)することにより、熱電変換モジュールが形成される。
電極(第1の電極および第2の電極)のサイズや厚さは、形成する熱電変換素子の大きさ等に応じて、発生した電力をロスなく確実に取り出せるサイズを、適宜、設定すればよい。
また、高い導電性が得られる点で、電極(第1の電極および第2の電極)の厚さは、50〜2000nmであるのが好ましい。
電極(第1の電極および第2の電極)の材料は特に限定されないが、その材料としては、例えば、ITO、ZnOなどの透明電極材料;銀、銅、金、アルミニウムなどの金属電極材料;CNT、グラフェンなどの炭素材料;PEDOT/PSSなどの有機材料が挙げられる。また、銀、カーボンブラックなどの導電性微粒子を分散した導電性ペースト;銀、銅、アルミニウムなどの金属ナノワイヤーを含有する導電性ペーストなどを用いて電極を形成してもよい。
(熱電変換層)
熱電変換素子が有する熱電変換層は、少なくとも有機系熱電変換材料を含有するものであれば特に限定はされない。
有機系熱電変換材料とは、熱電変換が可能な有機材料(熱電変換有機材料)であり、熱電変換装置の熱電変換特性がより優れる点で、導電性ナノ炭素材料および導電性高分子からなる群から選択される少なくとも1つを含むことが好ましい。熱電変換層には、導電性ナノ炭素材料および導電性高分子のいずれか一方のみが含まれていても、両方が含まれていてもよい。なかでも、熱電変換素子の熱電変換性能がより優れる点で、熱電変換層は少なくとも導電性ナノ炭素材料(特に、カーボンナノチューブ)を含むことが好ましい。
以後、導電性ナノ炭素材料および導電性高分子に関してそれぞれ詳述する。
(導電性ナノ炭素材料)
本発明において、熱電変換材料として利用する導電性ナノ炭素材料は特に限定はされず、従来公知のナノ炭素材料(炭素含有導電性ナノ材料)を用いることができる。
また、導電性ナノ炭素材料のサイズは、ナノサイズ(1μm未満)であれば特に限定されないが、例えば、後述するカーボンナノチューブ、カーボンナノファイバーなどについては、平均短径がナノサイズ(例えば、平均短径が500nm以下)であればよい。
上記導電性ナノ炭素材料としては、具体的には、例えば、カーボンナノチューブ(以下、「CNT」ともいう。)、カーボンナノファイバー、グラファイト、グラフェン、カーボンナノ粒子等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
これらのうち、熱電特性がより良好となる理由から、CNTであるのが好ましい。
また、CNTとしては、例えば、国際公開第2012/133314号(特許文献1)の[0017]〜[0021]段落や、特開2013−095820号公報(特許文献2)の[0018]〜[0022]段落に記載されたものを適宜採用することができる。
CNTには、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、および、複数のグラフェン・シートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性および半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。半導体性CNTと金属性CNTとを両方を用いる場合、熱電変換層中の両者の含有比率は、適宜調整することができる。また、CNTには金属などが内包されていてもよく、フラーレン等の分子が内包されたものを用いてもよい。なお、熱電変換層には、CNTの他に、カーボンナノホーン、カーボンナノコイル、カーボンナノビーズなどのナノカーボンが含まれてもよい。
本発明で用いるCNTの平均長さは特に限定されず、熱電変換層の用途に応じて適宜選択することができる。例えば、製造容易性、成膜性、導電性等の観点から、CNTの平均長さが0.01μm以上2000μm以下であることが好ましく、0.1μm以上1000μm以下であることがより好ましく、1μm以上1000μm以下であることがさらに好ましい。
本発明で用いるCNTの直径は特に限定されないが、耐久性、透明性、成膜性、導電性等の観点から、0.4nm以上100nm以下であることが好ましく、50nm以下であることがより好ましく、15nm以下であることがさらに好ましい。特に、単層CNTを用いる場合には、0.5nm以上2.2nm以下であることが好ましく、1.0nm以上2.2nm以下であることがより好ましく、1.5nm以上2.0nm以下であることがさらに好ましい。
熱電変換層中に含まれるCNTには、欠陥のあるCNTが含まれていることがある。このようなCNTの欠陥は、熱電変換層の導電性を低下させるため、低減化することが好ましい。熱電変換層中のCNTの欠陥の量は、ラマンスペクトルのG−バンドとD−バンドの比率G/Dで見積もることができる。G/D比が高いほど欠陥の量が少ないCNT材料であると推定できる。本発明においては、熱電変換層のG/D比が10以上であることが好ましく、30以上であることがより好ましい。
本発明において、熱電変換材料として利用する導電性高分子は特に限定はされず、従来公知の導電性高分子を用いることができる。
例えば、導電性高分子としては、共役系の分子構造を有する高分子化合物を用いることができる。ここで、共役系の分子構造を有する高分子とは、高分子の主鎖上の炭素−炭素結合において、一重結合と二重結合とが交互に連なる構造を有している高分子である。また、本発明で用いる導電性高分子は、必ずしも高分子量化合物である必要はなく、オリゴマー化合物であってもよい。
このような共役系高分子としては、チオフェン系化合物、ピロール系化合物、アニリン系化合物、アセチレン系化合物、p−フェニレン系化合物、p−フェニレンビニレン系化合物、p−フェニレンエチニレン系化合物、p−フルオレニレンビニレン系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、金属フタロシアニン系化合物、p−キシリレン系化合物、ビニレンスルフィド系化合物、m−フェニレン系化合物、ナフタレンビニレン系化合物、p−フェニレンオキシド系化合物、フェニレンスルフィド系化合物、フラン系化合物、セレノフェン系化合物、アゾ系化合物、金属錯体系化合物、およびこれらの化合物に置換基を導入した誘導体などをモノマーとし、これらモノマーから誘導される繰り返し単位を有する共役系高分子が挙げられる。
このような導電性高分子としては、例えば、特開2013−084947の[0011]〜[0040]段落に記載されたものを適宜採用することができる。
熱電変換層中における有機系熱電変換材料の含有量は特に制限されないが、熱電変換層の熱電変換性能がより優れる点で、熱電変換層全質量に対して、5質量%以上が好ましく、20質量%以上がより好ましい。上限は特に制限されず100質量%であるが、後述する他の任意成分が含まれる場合は、10〜40質量%の場合が多い。
熱電変換層には、上記有機系熱電変換材料以外にも、他の成分が含まれていてもよい。例えば、酸化防止剤、光安定剤、熱安定剤、可塑剤、またはドーパントが含まれていてもよい。
また、熱電変換層には、有機バインダーが含まれていてもよい。使用される有機バインダーの種類は特に制限されず、公知の樹脂バインダー(いわゆる高分子材料)が挙げられる。有機バインダーとしては、例えば、(メタ)アクリル系樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、シロキサン変性ポリイミド樹脂、ポリアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリブタジエン、ポリプロピレン、ポリスチレン、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリ酢酸ビニル、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−アクリル酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ナイロン、ブチルゴム、クロロプレンゴム等が挙げられる。
(オーバーコート層)
オーバーコート層は、熱電変換素子を覆い、熱電変換層中の材料(特に、有機系熱電変換材料)や電極材料の劣化を防止し、長期保管後においても熱電変換素子の熱電変換特性の性能劣化を防止する機能を有する。
オーバーコート層には、劣化防止剤と有機バインダーとが少なくとも含有される。以下、各成分について詳述する。
劣化防止剤は、熱電変換層中の材料(特に、有機系熱電変換材料)や電極材料の劣化を防止する機能を有する化合物であり、このような機能を有する化合物であれば特にその種類は制限されない。特に、劣化防止剤としては、酸化による劣化を抑制する酸化防止剤や、高温下での安定性を付与する熱安定剤、光安定剤(特に、紫外線による劣化を防止する紫外線吸収剤や、光を遮断する光遮断剤、有機材料が吸収した光エネルギーを受容して有機材料を安定化する消光機能を有する消光剤)、および、水分による劣化を抑制する加水分解防止剤などが使用されることが好ましく、なかでも、本発明の効果がより優れる点で、酸化防止剤、熱安定剤、および紫外線吸収剤からなる群から選択される少なくとも一つを含むことが好ましい。劣化防止剤としては、上記1種のみを使用してもよいし、2種以上を併用してもよい。本発明の効果がより優れる点で、2種以上併用することが好ましい。
酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤としては、例えば、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、トコフェロールで代表されるモノフェノール系酸化防止剤、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)で代表されるビスフェノール系酸化防止剤、1,1,3−トリス(2−メチル−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンで代表される高分子型フェノール系酸化防止剤が挙げられ、好適に用いられる。その他の酸化防止剤として、N−メチル−2−ジメチルアミノアセトヒドロキサム酸で代表されるヒドロキシルアミン系酸化防止剤、ジラウリル3,3’−チオジプロピオネートで代表される硫黄系酸化防止剤、トリフェニルホスファイト、ジ−2−エチルヘキシルリン酸エステル、1−ヒドロキシエタン−1,1−ジホスホン酸で代表されるリン系酸化防止剤が挙げられる。
熱安定剤(熱劣化防止剤)としては、高級脂肪酸の亜鉛塩とバリウム塩の組み合わせなどの金属石けんや無機酸塩類、有機スズマレエートや有機スズメルカプトなどの有機スズ化合物、フラーレン(例えば、水酸化フラーレン)が挙げられる。
紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノンで代表されるベンゾフェノン系紫外線吸収剤、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾールで代表されるベンゾトリアゾール系紫外線吸収剤、2−エチルヘキシル−2−シアノ−3,3’−ジフェニルアクリレートで代表されるシアノアクリレート系紫外線吸収剤などが挙げられる。
加水分解防止剤としては、カルボジイミド誘導体、エポキシ化合物、イソシアネート化合物、酸無水物、オキサゾリン化合物、メラミン化合物などが挙げられる。
また、他の劣化防止剤としては、ヒンダードアミン系光安定剤、アスコルビン酸、没食子酸プロピル、カテキン、シュウ酸、マロン酸、亜リン酸エステルなども挙げられる。
オーバーコート層中における劣化防止剤の含有量は特に制限されないが、熱電変換装置の性能劣化がより抑制される点から、オーバーコート層全質量に対して、1質量%以上が好ましく、3質量%以上がより好ましい。上限は特に制限されないが、オーバーコート層の成膜性や耐久性の点から、20質量%以下の場合が多い。
オーバーコート層には、有機バインダーが含まれる。有機バインダーの種類は、上記熱電変換層に含まれていてもよい有機バインダーの種類と同じである。
オーバーコート層には、上記劣化防止剤および有機バインダー以外の成分が含まれていてもよい。
例えば、オーバーコート層には、熱伝導性フィラーが含まれていてもよい。熱伝導性フィラーが含まれることにより、熱電変換装置の熱電変換効率がより向上する。
使用される熱伝導性フィラーの種類は特に制限されず、公知の熱伝導性フィラーを使用できる。なお、熱伝導性フィラーとは、25℃における熱伝導率が、好ましくは30W/(m・K)以上、より好ましくは80W/(m・K)以上、さらに好ましくは100W/(m・K)以上、特に好ましくは150W/(m・K)以上である物質からなるものである。熱伝導性フィラーとしては、絶縁性に優れることから、窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、チタン酸カルシウムなどが好適に挙げられる。
熱伝導性フィラーの形状は特に限定されず、球状、線状(繊維状)、平板状(鱗片状)、曲板状、針状等とすることができ、単粒タイプでも、顆粒タイプ(単粒の凝集品)でもよい。
熱伝導性フィラーの平均粒径は特に制限されず、好ましくは0.01〜5μm、より好ましくは0.05〜2μmである。
オーバーコート層中における熱伝導性フィラーの含有量は特に制限されないが、熱電変換効率の向上の点から、オーバーコート層全質量に対して、0.5〜30質量%が好ましく、5〜20質量%がより好ましい。
オーバーコート層の酸素透過度(酸素透過率)は特に制限されないが、熱電変換層および電極と酸素との反応がより抑制され、結果として熱電変換装置の熱電変換効率の経時劣化がより抑制される点で、200cc/m2・day・atm以下が好ましく、100cc/m2・day・atm以下がより好ましく、40cc/m2・day・atm以下がさらに好ましく、20cc/m2・day・atm以下が特に好ましい。下限は特に制限されず、0が最も好ましい。
上記酸素透過度は、測定温度25℃、湿度90%Rhの条件下で、酸素ガス透過率測定装置(装置名OX−TRAN 1/50)を用いて測定した値である。
オーバーコート層の透湿度は特に制限されないが、熱電変換層および電極と水との反応が抑制され、結果として熱電変換装置の熱電変換効率の経時劣化がより抑制される点で、4000g/m2・day以下が好ましく、2000g/m2・day以下がより好ましく、1000g/m2・day以下がさらに好ましい。下限は特に制限されず、0が最も好ましい。
上記透湿度は、40℃、90%RHの条件でJIS Z0208(カップ法)により測定される。
オーバーコート層の厚みは特に制限されないが、熱電変換性能の経時劣化の抑制と薄型化とのバランスの点で、0.005μm以上が好ましく、0.01〜10μmがより好ましく、0.1〜10μmがさらに好ましい。
(熱電変換装置の製造方法)
以下、図4を参照して、本発明の熱電変換装置210の製造方法の一例を示す。
まず、前述のような基板12を用意して、図4(A)に示すように、その表面に第1の電極18を形成する。なお、基板12の第1の電極18が形成される領域はあらかじめエッチングにより除去されている。
第1の電極の形成方法は、公知の金属膜等の形成方法が、各種、利用可能である。
具体的には、イオンプレーティング法、スパッタリング法、真空蒸着法、プラズマCVDなどのCVD法等の気相成膜法(気相堆積法)が例示される。また、上記金属を微粒子化し、バインダーと溶剤を添加した金属ペーストを固化することで、形成してもよい。
次に、図4(B)に示すように、第1の電極18上に、熱電変換層22を形成する。
熱電変換層の形成方法は、用いる有機系熱電変換材料および有機バインダーに応じた、公知の方法が利用可能である。例えば、有機系熱電変換材料を含む熱電変換層形成用組成物(ペースト)を使用する方法がある。
より具体的には、まず、有機系熱電変換材料および有機バインダーに加え、分散剤等の必要な成分を有機溶媒に添加して、超音波ホモジナイザー、メカニカルホモジナイザー、ボールミル、ジェットミル、ロールミルなど公知の方法を用いて、分散して、ペースト(インキ)を調製する。
このようにしてペーストを調製したら、ステンシル印刷、スクリーン印刷、インクジェット印刷、グラビア印刷、フレキソ印刷などの公知の印刷方法によって、電極上にペーストを印刷し、加熱等によってペーストを乾燥することで、熱電変換層を形成する。
次に、図4(C)に示すように、熱電変換層22上に、第2の電極20を形成する。なお、第2の電極20を形成する際、一の熱電変換素子14中の第2の電極20の一端を、隣接する他の熱電変換素子14中の第1の電極18と接続させ、熱電変換モジュール30を形成する。
第2の電極の形成方法としては、上述した第1の電極の形成方法が挙げられる。
次に、図4(D)に示すように、熱電変換モジュール30を覆うように、オーバーコート層16を形成する。
オーバーコート層の形成方法は特に制限されず、公知の方法が採用される。例えば、上記有機系熱電変換材料および他の任意成分を含むオーバーコート層形成用組成物を熱電変換モジュール上に塗布して、必要に応じて乾燥処理を施して、オーバーコート層を形成する方法(塗布法)や、オーバーコート層を押し出し機で熱電変換モジュール上にラミネートする方法などが挙げられる。
なお、オーバーコート層形成用組成物には、必要に応じて有機バインダーと反応する架橋剤が含まれていてもよい。架橋剤が含まれることにより、形成されるオーバーコート層がより緻密な層となり、酸素透過度および透湿度がより低下し、経時劣化がより防止される。
架橋剤としては、具体的には、フェネチルトリアルコキシシラン、アミノプロピルトリアルコキシシラン、グリシジルプロピルトリアルコキシラン、テトラアルコキシシランなどのシラン化合物(例;シランカップリング剤);トリメチロールメラミン、ジ(トリ)アミン誘導体、ジ(トリ)グリシジル誘導体、ジ(トリ)カルボン酸誘導体、ジ(トリ)アクリレート誘導体などの低分子架橋剤;ポリアリルアミン、ポリカルボジイミド、ポリカチオンなどの高分子架橋剤;などの公知の材料が例示される。
また、オーバーコート層形成用組成物には、必要に応じて溶媒が含まれてもよい。
上述した、熱電変換装置は、種々の用途に使用することができる。例えば、温泉熱発電機、太陽熱発電機、廃熱発電機等の発電機や、腕時計用電源、半導体駆動電源、小型センサー用電源などの発電用途のほか、感熱センサーや熱電対などのセンサー素子用途などが挙げられる。
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(カーボンナノチューブペーストの作製)
重合度2000のポリスチレン(関東化学製)27gに、シリカ微粒子JA−244(十条ケミカル製)3gを添加し、180℃に加温した2本ロールミルで分散することで、シリカ分散ポリスチレンを作製した。
次に、ポリオクチルチオフェン(レジオランダム、シグマアルドリッチ社製)25mgに、テトラヒドロナフタレン(関東化学製)10mlを加えて、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、間接照射)を用い、ポリチオフェン溶液を作製した。
このポリチオフェン溶液に、単層カーボンナノチューブとしてKH SWCNT HP(KH Chemicals社製、純度80%)25mgを加え、IKA Work社製メカニカルホモジナイザーT10 basic ULTRA−TURRAX(商品名)、SONICS&MATERIALS.Inc社製超音波ホモジナイザーVC−750(商品名)、テーパーマイクロチップ(プローブ径6.5mm)を使用し、出力50W、直接照射、Duty比50%にて、30℃で30分間超音波分散することで、カーボンナノチューブ分散液を作製した。
次に、非共役高分子としてPC−Z型ポリカーボネート(帝人化成株式会社製、パンライトTS−2020(商品名))1.0gと作製したシリカ分散ポリスチレン1.0gとを調製したカーボンナノチューブ分散液に添加し、50℃の温浴中にて溶解させたのち、シンキー社製自公転式攪拌装置ARE−250(商品名)で回転数2200rpm、攪拌時間15分で攪拌することで、カーボンナノチューブ分散ペースト1を作製した。
(基板の作製)
以下の手順により、ポリエチレンテレフタレート(PET)フィルムの基板を形成した。
まず、ゲルマニウム(Ge)を触媒として重縮合した固有粘度0.66のPET樹脂を含水率50ppm以下に乾燥させ、ヒーター温度を280℃以上300℃以下に設定し、押し出し機内で溶融させた。
溶融させたPET樹脂をダイ部より静電印加されたチルロール上に吐出させ、非結晶ベースを得た。得られた非結晶ベースをベース進行方向に3.3倍に延伸した後、幅方向に対して3.8倍に延伸し、厚さ188μmのPETフィルムの基板を得た。
(易接着層の形成)
上記により作製した、厚さが180μmの基板を、搬送速度105m/分で搬送しつつ、以下の手順で、基板の両面に2層の易接着層を塗布した。
まず、基板の730J/m2の条件でコロナ放電処理を行った後、下記の第1層塗布液をバーコート法により塗布した。この第1層塗布液を180℃で1分乾燥して第1層を形成した。その後、続けて、双方の第1層の上に塗布量を96.25mg/m2として下記第2層塗布液をバーコート法により塗布した後、170℃で1分乾燥した。これにより、基板の両面に第1の易接着層と第2の易接着層とを塗布したPETフィルムを得た。
(第1層塗布液)
・ポリエチレンメタクリル酸共重合体バインダー:23.3質量部
(三井デュポン(株)製、ニュクリルN410)
・コロイダルシリカ:15.4質量部
(日産化学工業(株)製、スノーテックR503)
・エポキシモノマー:221.8質量部
(ナガセケムテックス(株)製、デナコールEX614B)
・界面活性剤A:19.5質量部
(三洋化成工業(株)製、ナロアクティーCL−95の1質量%水溶液)
・界面活性剤B:7.7質量部
(日本油脂(株)製、ラピゾールA−90の1質量%水溶液)
・蒸留水:全体が1000質量部になるように添加
(第2層塗布液)
・ポリウレタンバインダー:22.8質量部
(三井化学(株)製、オレスターUD−350)
(SP値:10.0、I/O値:5.5)
・アクリルバインダー:2.6質量部
(ダイセル化学工業(株)製、EM48D)
(SP値:9.5、I/O値:2.5)
・カルボジイミド化合物:4.7質量部
(日清紡(株)製、カルボジライトV−02−L2)
・界面活性剤A:15.5質量部
(三洋化成工業(株)製、ナロアクティーCL−95の1質量%水溶液、ノニオン性)
・界面活性剤B:12.7質量部
(日本油脂(株)製、ラピゾールA−90の1質量%水溶液、アニオン性)
・微粒子A:3.5質量部
(日産化学工業(株)製、スノーテックスXL)
・微粒子B:1.6質量部
(日本アエロジル(株)製、アエロジルOX―50水分散物)
・滑り剤:1.6質量部
(中京油脂(株)製、カルバナワックス分散物セロゾール524)
・蒸留水:全体が1000質量部になるよう添加
<実施例1>
A6サイズのPETフィルム上に、エッチングにより形成した開口部6×9mmのメタルマスクを用いて、イオンプレーティング法によりクロムを100nm、次に金を200nm積層成膜することにより、電極を形成した。
次に、レーザー加工で形成した80個の開口部8×9mmを有し、かつ厚み2mmのメタルマスクを用いて、上記で調製したカーボンナノチューブ分散ペースト1を注入しスキージで平坦化した。このとき、図4(B)に示すような配置で第1の電極18上にカーボンナノチューブ分散ペースト1を印刷した。
次に、PETフィルムを80℃のホットプレート上で加熱乾燥させることで、電極上に熱電変換層を形成した。
次に、熱電変換素子80個を、銀ペースト:FA−333(藤倉化成製)を塗布することで直列に配線し、80℃のホットプレート上で1時間乾燥することで、図4(C)に示すような熱電変換モジュール30を作製した。
ポリビニルピロリドンK−30(東京化成製)4gを、純水/イソプロピロアルコール(体積比率60:40)の混合溶媒96gに溶解させた。次に、酸化防止剤としてL(+)−アスコルビン酸(関東化学製)0.2gを溶解することで、目開き70μmのPVDF製メッシュでろ過処理を行うことで、オーバーコート層形成用溶液1(オーバーコート層形成用組成物)を作製した。
次に、スプレー塗布装置STS−200(株式会社ワイディー・メカトロソリューションズ製)を用い、キャリアガスとして窒素ガスを使用して、乾燥後の膜厚が20nmになるように、オーバーコート層形成用溶液1を熱電変換モジュール上に塗布した。塗布後に、50℃のホットプレート上で加熱し、さらに真空乾燥機ADP200(ヤマト科学製)を用い、真空度0.2kPa以下、温度50℃で2時間、真空乾燥することで、実施例1の熱電変換装置を作製した。
<実施例2>
L(+)−アスコルビン酸(関東化学製)の代わりに、ジ−2−エチルヘキシルリン酸エステル(東京化成製)を用いた以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
<実施例3>
L(+)−アスコルビン酸(関東化学製)の代わりに、1−ヒドロキシエタン‐1,1−ジホスホン酸水溶液(東京化成製)を用いた以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
なお、実施例3のオーバーコート層の酸素透過度は40cc/m2・day・atm超であり、透湿度は4000g/m・day超であった。
<実施例4>
第2の劣化防止剤として、N−メチル−2−ジメチルアミノアセトヒドロキサム酸(東京化成製)0.1gをさらに添加した以外は、実施例3と同様の手順に従って、熱電変換装置を作製した。
<実施例5>
L(+)−アスコルビン酸(関東化学製)の代わりに、水酸化フラーレン(フロンティアカーボン製)を用いた以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
<実施例6>
L(+)−アスコルビン酸(関東化学製)の代わりに、D−α−トコフェロール(東京化成製)を用いた以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
<実施例7>
オーバーコート層形成用溶液1に、熱伝導フィラーとしてアルミナ粉末TM−DA(大明化学工業株式会社製)0.8gをさらに添加した以外は、実施例3と同様の手順に従って、熱電変換装置を作製した。
<実施例8>
オーバーコート層形成用溶液1に、熱伝導フィラーとして窒化アルミ粉末シェイパル(粒径1μm、トクヤマ製)0.8gをさらに添加した以外は、実施例3と同様の手順に従って、熱電変換装置を作製した。
<実施例9>
オーバーコート層形成用溶液1に、熱伝導フィラーとして窒化アルミ粉末シェイパル(粒径1μm、トクヤマ製)0.8gをさらに添加した以外は、実施例6と同様の手順に従って、熱電変換装置を作製した。
<実施例10>
オーバーコート層形成用溶液1に、架橋剤としてフェネチルトリメトキシシラン(Geltest.Inc製)0.2gをさらに添加した以外は、実施例8と同様の手順に従って、熱電変換装置を作製した。
<実施例11>
オーバーコート層形成用溶液1に、架橋剤として水溶性メラミン樹脂MX−35(株式会社三和ケミカル製)0.2gをさらに添加した以外は、実施例8と同様の手順に従って、熱電変換装置を作製した。
<実施例12>
オーバーコート層の作製方法を以下の手順(オーバーコート層の作製(その2))に変更した以外、実施例1と同様の手順に従って、熱電変換装置を作製した。
(オーバーコート層の作製(その2))
PVA217((株)クラレ製品名)0.5gに、純水71.6gとメタノール28.9gとを加えて溶解させた。得られた溶液に、さらに酸化防止剤として1−ヒドロキシエタン−1,1−ジホスホン酸水溶液(東京化成製)0.03gを加えて溶解させ、その後、メ開き70μmのPVDF製メッシュでろ過処理を行うことで、オーバーコート層形成用溶液2を作製した。
次に、スプレー塗布装置STS−200(株式会社ワイディー・メカトロソリューションズ製)を用い、キャリアガスとして窒素ガスを使用して、乾燥後の膜厚が1μmになるようにオーバーコート層形成用溶液2を熱電変換モジュール上に塗布した。塗布後に、50℃のホットプレート上で加熱し、さらに真空乾燥機ADP200(ヤマト科学製)を用い、真空度0.2kPa以下、温度50℃で2時間、真空乾燥することで、実施例12の熱電変換装置を作製した。
なお、形成したオーバーコート層の酸素透過度は18cc/m2・day・atmであり、透湿度は2400g/m2・dayであった。
<実施例13>
オーバーコート層形成用溶液2に、架橋剤として3−アミノプロピルトリメトキシシラン0.03gをさらに添加した以外には、実施例12と同様の手順に従って、熱電変換装置を作製した。
なお、形成したオーバーコート層の酸素透過度は12cc/m2・day・atmであり、透湿度は1600g/m2・dayであった。
<実施例14>
オーバーコート層形成用溶液2に、架橋剤として3−アミノプロピルトリメトキシシラン0.03gをさらに添加し、膜厚を3μmに変更した以外には、実施例12と同様の手順に従って、熱電変換装置を作製した。
なお、形成したオーバーコート層の酸素透過度は4cc/m2・day・atmであり、透湿度は560g/m2・dayであった。
<比較例1>
オーバーコート層を設けなかった以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
<比較例2>
L(+)−アスコルビン酸(関東化学製)を使用しなかった以外は、実施例1と同様の手順に従って、熱電変換装置を作製した。
<評価方法>
(保存安定性試験)
各実施例および比較例にて得られた熱電変換装置を80℃、50%RHの小型環境試験機中で100時間保管し、熱電変換装置の目視評価と発電量を評価した。
<評価基準>
[目視評価]
保存安定性試験後の熱電変換装置を目視で評価した。
A:変色なし
B:変色あり
[発電量の評価]
保存安定性試験前後の熱電変換装置の発電量を、以下の方法により測定した。
熱電変換装置の基板側を80℃のホットプレート上に設置し、熱電変換層側に水冷により10℃に冷却した銅プレートを設置した。このときに発生した開放起電圧(V)および内部抵抗(R)をデジタルマルチメーターで測定した。
測定した開放起電圧Vおよび内部抵抗Rから、発電量=V2/Rを算出した。
なお、保存安定性試験前後の熱電変換装置の発電量から、以下式で表される発電量の変化量を測定した。
(保存安定性試験後の発電量)/(保存安定性試験前の発電量)=(発電量の変化量)
(発電量の変化量(変化率))
発電量の変化量を以下の基準に沿って評価した。
AA:0.95以上1.0以下
A:0.90以上0.95未満
B:0.80以上0.90未満
C:0.70以上0.80未満
D:0.70未満
(発電量の比較)
各実施例および比較例の保存安定性試験後の熱電発電装置の発電量を、実施例1の熱電変換装置の発電量を「1.0」とした相対値として求めた。
表1に、上記評価結果をまとめて示す。
なお、表1中、「架橋剤」欄中の「1」〜「3」は以下の成分を意図する。
「1」:フェネチルトリメトキシシラン(Geltest.Inc製)
「2」:水溶性メラミン樹脂MX−35
「3」:3−アミノプロピルトリメトキシシラン
表1に示すように、本発明の熱電変換装置は、長期保存後においても発電量の劣化が少なく、熱電変換特性に優れることが確認された。
なかでも、実施例4においては、2種類の劣化防止剤を添加することで、発電量の劣化がより少なくなった。さらに、実施例7〜11においては、熱伝導性フィラーが含まれており、発電量の劣化がより少なく、発電量がより大きかった。また、実施例7〜9、および、実施例10〜11の比較から分かるように、架橋剤をさらに添加した実施例10〜11においては、発電量の劣化がより少なく、発電量がより大きかった。さらに、実施例12〜14から分かるように、酸素透過度が40cc/m2・day・atm以下(特に、20cc/m2・day・atm)の場合、発電量の劣化がより少なかった。
一方、オーバーコート層を使用していない比較例1や、劣化防止剤を用いていない比較例2では、所望の効果は得られなかった。
10,110,210 熱電変換装置
12,112 基板
14,140 熱電変換素子
16,116 オーバーコート層
18,118 第1の電極
20,120 第2の電極
22 熱電変換層
30 熱電変換モジュール

Claims (7)

  1. 基板と、
    前記基板上に配置された、有機系熱電変換材料を含有する熱電変換層および一対の電極を有する熱電変換素子と、
    前記熱電変換素子を覆うように配置された、劣化防止剤および有機バインダーを含有するオーバーコート層と、を備える熱電変換装置。
  2. 前記劣化防止剤が、酸化防止剤、紫外線吸収剤、および、熱安定剤からなる群から選択される少なくとも1つである、請求項1に記載の熱電変換装置。
  3. 前記オーバーコート層の酸素透過度が40cc/m2・day・atm以下である、請求項1または2に記載の熱電変換装置。
  4. 前記オーバーコート層の透湿度が4000g/m2・day以下である、請求項1〜3のいずれか1項に記載の熱電変換装置。
  5. 前記オーバーコート層が、熱伝導性フィラーを含有する、請求項1〜4のいずれか1項に記載の熱電変換装置。
  6. 前記有機系熱電変換材料が、導電性ナノ炭素材料および導電性高分子からなる群から選択される少なくとも1種を含む、請求項1〜5のいずれか1項に記載の熱電変換装置。
  7. 前記熱電変換素子が複数直列に接続している、請求項1〜6のいずれか1項に記載の熱電変換装置。
JP2014168649A 2013-09-04 2014-08-21 熱電変換装置 Expired - Fee Related JP6162666B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168649A JP6162666B2 (ja) 2013-09-04 2014-08-21 熱電変換装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013182956 2013-09-04
JP2013182956 2013-09-04
JP2014168649A JP6162666B2 (ja) 2013-09-04 2014-08-21 熱電変換装置

Publications (2)

Publication Number Publication Date
JP2015073085A true JP2015073085A (ja) 2015-04-16
JP6162666B2 JP6162666B2 (ja) 2017-07-12

Family

ID=52628275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168649A Expired - Fee Related JP6162666B2 (ja) 2013-09-04 2014-08-21 熱電変換装置

Country Status (3)

Country Link
JP (1) JP6162666B2 (ja)
CN (1) CN105474417B (ja)
WO (1) WO2015033797A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076720A (ja) * 2015-10-15 2017-04-20 国立研究開発法人産業技術総合研究所 熱電変換モジュールの作製方法
JP2018107405A (ja) * 2016-12-28 2018-07-05 日本精工株式会社 熱電変換素子
JP2020072180A (ja) * 2018-10-31 2020-05-07 積水化学工業株式会社 樹脂フィルムの製造方法、熱電変換フィルムの製造方法、合わせガラスの製造方法及び熱電変換合わせガラスの製造方法
JP2020113583A (ja) * 2019-01-08 2020-07-27 味の素株式会社 組成物
JP2021023075A (ja) * 2019-07-30 2021-02-18 住友理工株式会社 振動発電装置
JP2021038353A (ja) * 2019-09-05 2021-03-11 富士高分子工業株式会社 熱伝導性樹脂成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103743A (ja) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
TWI728940B (zh) * 2020-11-19 2021-05-21 欣興電子股份有限公司 封裝載板及其製作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332639A (ja) * 2002-05-13 2003-11-21 Dainippon Printing Co Ltd 熱電変換材料及び熱電変換素子
JP2007035907A (ja) * 2005-07-27 2007-02-08 Kyocera Corp 熱電モジュール
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置
JP2011159669A (ja) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd 太陽電池
JP2013065801A (ja) * 2011-08-31 2013-04-11 Jmc Kk 熱電気変換素子、熱電気変換モジュール及びそれらの製造方法
JP2013084947A (ja) * 2011-09-28 2013-05-09 Fujifilm Corp 熱電変換材料及び熱電変換素子
JP2013118166A (ja) * 2011-03-28 2013-06-13 Fujifilm Corp 導電性組成物、当該組成物を用いた導電性膜及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022224A (ja) * 1998-07-01 2000-01-21 Seiko Instruments Inc 熱電素子及びその製造方法
JP2000164942A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 熱電モジュール
TW201042789A (en) * 2009-04-02 2010-12-01 Basf Se Thermoelectric material coated with a protective layer
JP5647872B2 (ja) * 2010-01-19 2015-01-07 富士フイルム株式会社 ポリエステル樹脂組成物
JP5685037B2 (ja) * 2010-09-29 2015-03-18 株式会社カネカ 有機半導体素子の製造方法および該製造方法によって得られる有機半導体素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332639A (ja) * 2002-05-13 2003-11-21 Dainippon Printing Co Ltd 熱電変換材料及び熱電変換素子
JP2007035907A (ja) * 2005-07-27 2007-02-08 Kyocera Corp 熱電モジュール
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置
JP2011159669A (ja) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd 太陽電池
JP2013118166A (ja) * 2011-03-28 2013-06-13 Fujifilm Corp 導電性組成物、当該組成物を用いた導電性膜及びその製造方法
JP2013065801A (ja) * 2011-08-31 2013-04-11 Jmc Kk 熱電気変換素子、熱電気変換モジュール及びそれらの製造方法
JP2013084947A (ja) * 2011-09-28 2013-05-09 Fujifilm Corp 熱電変換材料及び熱電変換素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076720A (ja) * 2015-10-15 2017-04-20 国立研究開発法人産業技術総合研究所 熱電変換モジュールの作製方法
JP2018107405A (ja) * 2016-12-28 2018-07-05 日本精工株式会社 熱電変換素子
JP2020072180A (ja) * 2018-10-31 2020-05-07 積水化学工業株式会社 樹脂フィルムの製造方法、熱電変換フィルムの製造方法、合わせガラスの製造方法及び熱電変換合わせガラスの製造方法
JP7252531B2 (ja) 2018-10-31 2023-04-05 積水化学工業株式会社 樹脂フィルムの製造方法、熱電変換フィルムの製造方法、合わせガラスの製造方法及び熱電変換合わせガラスの製造方法
JP2020113583A (ja) * 2019-01-08 2020-07-27 味の素株式会社 組成物
JP7440028B2 (ja) 2019-01-08 2024-02-28 味の素株式会社 組成物
JP2021023075A (ja) * 2019-07-30 2021-02-18 住友理工株式会社 振動発電装置
JP2021038353A (ja) * 2019-09-05 2021-03-11 富士高分子工業株式会社 熱伝導性樹脂成形体

Also Published As

Publication number Publication date
CN105474417B (zh) 2018-11-23
CN105474417A (zh) 2016-04-06
WO2015033797A1 (ja) 2015-03-12
JP6162666B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6162666B2 (ja) 熱電変換装置
Tehrani et al. Laser‐induced graphene composites for printed, stretchable, and wearable electronics
Yan et al. Inkjet printing for flexible and wearable electronics
Sekitani et al. Stretchable, large‐area organic electronics
Park et al. Flexible electronics based on one‐dimensional and two‐dimensional hybrid nanomaterials
McCoul et al. Recent advances in stretchable and transparent electronic materials
Cheng et al. Stretchable thin‐film electrodes for flexible electronics with high deformability and stretchability
Liang et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes
Freeman et al. N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites
EP2682994B1 (en) Thermoelectric conversion material, and flexible thermoelectric conversion device using same
JP6110818B2 (ja) 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源
Han et al. Flexible transparent electrodes for organic light-emitting diodes
WO2014010454A1 (ja) 熱電変換素子及びこれを用いた熱電変換材料
WO2014156871A1 (ja) 熱電発電モジュール
JP2015012236A (ja) 熱電変換素子および熱電変換モジュール
JP2005150362A (ja) 高熱伝導性シートおよびその製造方法
JPWO2015190432A1 (ja) 積層体およびその製造方法
WO2016039022A1 (ja) 熱電変換素子および熱電変換モジュール
JP5931807B2 (ja) 熱電変換材料、これを用いた熱電変換素子及び熱電発電用物品、並びに熱電変換素子の製造方法
Bhadra et al. Electrical and electronic application of polymer–carbon composites
Nguyen et al. High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets
Li et al. Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes
JP2015092557A (ja) 熱電変換モジュール
Stevens et al. Thermoelectric performance improvement of polymer nanocomposites by selective thermal degradation
Azoubel et al. Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6162666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees