JP2015069755A - 膜電極接合体の製造方法 - Google Patents

膜電極接合体の製造方法 Download PDF

Info

Publication number
JP2015069755A
JP2015069755A JP2013201367A JP2013201367A JP2015069755A JP 2015069755 A JP2015069755 A JP 2015069755A JP 2013201367 A JP2013201367 A JP 2013201367A JP 2013201367 A JP2013201367 A JP 2013201367A JP 2015069755 A JP2015069755 A JP 2015069755A
Authority
JP
Japan
Prior art keywords
gasket
ink
catalyst
affinity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201367A
Other languages
English (en)
Inventor
雄 桜田
Yu Sakurada
雄 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013201367A priority Critical patent/JP2015069755A/ja
Publication of JP2015069755A publication Critical patent/JP2015069755A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】電解質膜の露出がなく、耐久性に優れ、触媒インクのロスが少ない膜電極接合体の製造方法、及び膜電極接合体を提供する。
【解決手段】転写フィルム4上に、少なくともポリマーと架橋剤と溶媒とを含むガスケットインク3aと親和性のあるエリア8と親和性が無いエリア9とをパターン形成する。親和性のあるエリアにガスケットインクを塗布し、塗膜を形成し、形成した塗膜を硬化させ、ガスケット層3b、3cを形成する。また、親和性が無いエリアを、少なくとも触媒担持粒子と高分子電解質と溶媒を含む触媒インク2aと親和性のあるエリアに表面改質する。触媒インクをガスケット層内部の触媒インクと親和性のあるエリアに滴下し、触媒インクを濡れ広がらせて塗膜を形成し、形成した塗膜中の溶媒を除去し、触媒層2b、2cを形成する。一対の転写フィルム上に形成された触媒層とガスケット層を高分子電解質膜の両面に転写する。
【選択図】図3

Description

本発明は、固体高分子形燃料電池に用いられる膜電極接合体の製造方法に関する。
燃料電池は、水素等の燃料と空気等の酸化剤を電気化学的に反応させることにより、燃料の化学エネルギーを電気エネルギーに変換して取り出す発電方式である。この発電方式は、発電効率が高く、静粛性に優れ、大気汚染の原因となる窒素酸化物(NOx)や硫黄酸化物(SOx)、更に地球温暖化の原因となる二酸化炭素(CO2)の排出量が少ない等の利点がある。これらの利点から、燃料電池は新エネルギーとして期待されている。燃料電池の適用分野の例として、携帯電気機器の長時間電力供給、コジェネレーション用定置型発電温水供給機、燃料電池自動車等があり、用途も規模も多様である。
燃料電池の種類は、使用する電解質によって、固体高分子形、リン酸形、溶融炭酸塩形、固体酸化物形、アルカリ形等に分類され、それぞれ運転温度が大きく異なり、それに伴い発電規模や利用分野も異なる。
上述した各種の燃料電池の中で、長所の多い固体高分子形燃料電池が知られている。この固体高分子形燃料電池は、陽イオン交換膜を電解質として用いたものである。その長所として、(1)燃料電池の中でも比較的低温で動作するため室温付近で使用可能である点、(2)電解質膜の薄膜化により内部抵抗を低減できるため高出力化及びコンパクト化が可能である点に着目されている。そのため、固体高分子形燃料電池は、車載用電源や家庭用据置電源等への用途が有望視されており、近年、様々な研究開発が行われている。
固体高分子形燃料電池は、膜電極接合体(Membrane and Electrode Assembly :MEA)と呼ばれる電解質膜の両面に一対の電極触媒層を配置させた接合体を、当該電極の一方に水素を含有する燃料ガスを供給し、当該電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。この一対のセパレータ板で挟持した電池を単電池セルと呼ぶ。
固体高分子形燃料電池は、出力密度の増大と燃料電池全体のコンパクト化を目的として、単電池セルを複数積層(スタック)して用いられる。スタックする枚数は、必要な電力により異なり、一般的な携帯電気機器のポータブル電源では数枚から10枚程度、コジェネレーション用定置型電気および温水供給機では60〜90枚程度、自動車用途では250〜400枚程度である。高出力化をするためにはスタック枚数を増やすことが必要となり、単電池セルのコストが燃料電池全体のコストに大きく影響する。プロセスコストの観点から、部品数が少なく組み立てが容易な膜電極接合体構造が望まれている。
近年、膜電極接合体では、電解質膜において触媒層が形成された領域と、触媒層が形成されない領域の厚みの差によるガスの漏洩、及び電解質における触媒層が形成されない領域の集中的な劣化を防ぐため、電解質膜上の触媒層の外周縁部にガスケット層を設けた構成が良く見られる。
触媒層を凡そ設計どおりの形に形成し、かつ簡便にガスケット層付き膜電極接合体を作製するために、特許文献1、特許文献2に記載の方法が提案されている。
特許文献1では、開口部を有するマスキング部材を電解質膜上に配置して、触媒層用スラリーを電解質膜に直接塗布する方法が示されており、マスキング部材をガスケット層に積層することにより、ガスケット層付き膜電極接合体を製造している。
特許文献2では、電解質膜上に触媒層を転写させた後に、ガスケット層を触媒層外周縁部に貼合し、ガスケット層付き膜電極接合体を製造している。
特開2007−294183号公報 特開2011−65877号公報
しかしながら、特許文献1に開示された膜電極接合体の製造方法では、触媒層形成における乾燥工程で、電解質膜の収縮により触媒層とガスケット層との間に隙間が生じる。その結果、電解質膜が露出した領域において、発電に伴う劣化が加速され、耐久性が低下するという問題があった。
また、特許文献1に開示された膜電極接合体の製造方法では、触媒層形成における触媒インク塗布工程で、マスキング部材上に形成された触媒インクがロスとなる。触媒層中には、白金に代表される貴金属が触媒として存在していることから、触媒層のロスは、コスト増に繋がるという問題があった。
特許文献2に開示された膜電極接合体の製造方法では、ガスケット層を触媒層外周縁部に貼合する工程において、触媒層とガスケット層間の間隙を無くすために、高い位置決め精度が要求されるという問題があった。
本発明は、上記問題を考慮して成し遂げられたものであり、(1)電解質膜の露出がなく、(2)耐久性に優れ、(3)触媒インクのロスが少ない膜電極接合体の製造方法、及び膜電極接合体を提供することを目的とする。
上記の課題を解決するために、本発明の一態様に係る膜電極接合体の製造方法では、転写フィルム上に、少なくともポリマーと架橋剤と溶媒とを含むガスケットインクと親和性のあるガスケットインク親和性エリアと、ガスケットインクと親和性が無いガスケットインク非親和性エリアとをパターン形成する。また、転写フィルム上のガスケットインク親和性エリアにガスケットインクを塗布し、塗膜を形成し、形成した塗膜を硬化させ、ガスケット層を形成する。また、転写フィルム上のガスケットインク非親和性エリアを、少なくとも触媒担持粒子と高分子電解質と溶媒を含む触媒インクと親和性のある触媒インク親和性エリアに表面改質する。また、触媒インクをガスケット層内部の触媒インク親和性エリアに滴下し、触媒インクを濡れ広がらせて塗膜を形成し、形成した塗膜中の溶媒を除去し、触媒層を形成する。また、一対の転写フィルム上に形成された触媒層とガスケット層とを高分子電解質膜の両面に転写する。
本発明によれば、(1)電解質膜の露出がなく、(2)耐久性に優れ、(3)触媒インクのロスが少ない膜電極接合体を製造することができるようになる。
本発明の実施形態に係る膜電極接合体の理想的な構成を示す模式図である。 本発明の実施形態の理想とは異なる膜電極接合体の構成を示す模式図である。 本発明の実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するための模式図である。 本発明の実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するためのフローチャートである。
<実施形態>
以下、本発明の実施形態について添付図面を参照して詳細に説明する。
[構成]
図1は、本実施形態に係る膜電極接合体の理想的な構成を示す図である。
本実施形態に係る膜電極接合体は、高分子電解質膜1と、カソード触媒層2bと、アノード触媒層2cと、カソード側ガスケット3bと、アノード側ガスケット3cを備える。
本実施形態に係る膜電極接合体において、カソード触媒層2bとカソード側ガスケット3bの間、及びアノード触媒層2cとアノード側ガスケット3cの間の間隙はなく、高分子電解質膜1の露出はゼロである。
図2は、本実施形態の理想とは異なる膜電極接合体の構成を示す模式図である。図2(1)では、カソード触媒層2bとカソード側ガスケット3bの間、及びアノード触媒層2cとアノード側ガスケット3cの間の間隙が広く、上面図において高分子電解質膜1が露出されている。図2(2)では、触媒層カソード触媒層2bにカソード側ガスケット層が、アノード触媒層2cとアノード側ガスケット3cが重なり、上面図において触媒層2bの有効エリアが小さくなっている。
カソード触媒層2bとカソード側ガスケット3bの間、及びアノード触媒層2cとアノード側ガスケット3cの間の間隙が広く、高分子電解質膜が露出している場合、発電に伴い、露出部が加速的に劣化する。一方で、カソード触媒層2bとカソード側ガスケット3bの間、及びアノード触媒層2cとアノード側ガスケット3cが重なり合う場合、発電に寄与する触媒層の有効エリアが小さくなり、触媒層のロスが大きくなる。
カソード触媒層2bとカソード側ガスケット3bの間、及びアノード触媒層2cとアノード側ガスケット3cの間の間隙はゼロか限りなくゼロに近い値である0〜10μmであることが望ましく、上面図において高分子電解質膜1の露出が完全に無い構成が望ましい。すなわち、本実施形態に係る膜電極接合体は、図2に示すような構成にはならないようにする。
[触媒層付電解質膜の製造方法]
図3は、本実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するための模式図である。
本実施形態に係る触媒層付電解質膜の製造方法の概略は以下のとおりである。本実施形態に係る膜電極接合体の製造方法は、転写フィルム4上にガスケットインク3aと親和性がある有るエリア(ガスケットインク親和性エリア)8と親和性が無いエリア(ガスケットインク非親和性エリア)9をパターニング形成し、カソード側ガスケット層3bとアノード側ガスケット層3cをそれぞれ形成するガスケット層形成工程と、形成したガスケット層内部のガスケットインク非親和性エリアを触媒インクと親和性があるエリア(触媒インク親和性エリア)に表面改質する工程と、触媒インク親和性エリア10に触媒インクを滴下し、触媒インクを濡れ広がらせ、カソード触媒層2b、アノード触媒層2cをそれぞれ形成する触媒層形成工程と、固体高分子電解質膜1の両面に、カソード触媒層2b、アノード触媒層2c、カソード側ガスケット層3b、アノード側ガスケット層3cを転写する、転写工程の3工程から成る。
ガスケット層形成工程の概略は以下のとおりである。
まず、転写フィルム4上に、ガスケットインク3aと親和性のあるガスケットインク親和性エリア8とガスケットインク3aと親和性が無いガスケットインク非親和性エリア9とをパターン形成する工程(図3(b))を実行する。次に、転写フィルム4上のガスケットインク3aと親和性のあるガスケットインク親和性エリア8にガスケットインク3aを塗布し、塗膜を形成し、形成した塗膜中を硬化させ、溶媒を除去し、当該カソード側ガスケット層3b、アノード側ガスケット層3cをそれぞれ形成する工程(図3(c))を実行する。これにより、転写フィルム4上に枠形状のカソード側ガスケット層3b、アノード側ガスケット層3cをそれぞれ形成する。
触媒層形成工程の概略は以下のとおりである。
まず、転写フィルム4上の、ガスケット層内部のガスケットインク非親和性エリア9を触媒インクと親和性がある触媒インク親和性エリア10に表面改質する工程(図3(d))を実行する。次に、転写フィルム4上の触媒インク2aと親和性のある触媒インク親和性エリア10に触媒インク2aを滴下し、触媒インク2aを濡れ広がらせて塗膜を形成し、形成した塗膜中の溶媒を除去し、当該カソード触媒層2bとアノード触媒層2cをそれぞれ形成する工程(図3(e))を実行する。これにより、カソード側ガスケット層3bの内部にカソード触媒層2bが、アノード側ガスケット層3cの内部にアノード触媒層2cが形成された転写基材をそれぞれ形成する。
高分子電解質膜への触媒層とガスケット層の転写工程の概略は以下のとおりである。
まず、アノード触媒層2c、アノード側ガスケット層3cが形成された転写フィルム4上に高分子電解質膜1を積層し、更に、高分子電解質膜1上にカソード触媒層2b、カソード側ガスケット層2cが形成された転写フィルム4を積層し、ホットプレス工程(図3(f))を実行する。次に、転写フィルムを剥離除去し、固体高分子電解質の両面にカソー触媒層2b、カソード側ガスケット層3b、アノード触媒層2c、アノード側ガスケット層33cが形成された膜電極接合体を製造する。
[触媒層付電解質膜の製造方法の詳細]
本実施形態に係る膜電極接合体の製造方法について、より詳しく説明する。
ここでは、転写フィルム4上に、ガスケットインク3aと親和性のあるガスケットインク親和性エリア8と、ガスケットインク3aと親和性が無いガスケットインク非親和性エリア9とをパターン形成する。
まず、パターン形成の第一工程(シランカップリング剤形成工程)として、シランカップリング剤5を転写フィルム4上に形成する(図3(a))。そして、シランカップリング剤5が形成された転写フィルム4上に対して、シランカップリング剤5の低表面エネルギーの官能基により撥水化処理する。シランカップリング剤5の種類としては、ガスケットインク3aと親和性が無いものであり、且つ真空紫外光6で除去できるものであれば、特に限定されるものでは無いが、低表面エネルギーの官能基を有し、結合が真空紫外光6で分解され易いフルオロアルキルシランが望ましい。また、シランカップリング剤6の形成法は、スプレーコーティング、スピンコーティング、化学蒸着法、浸漬法等が挙げられ、特に限定されるものでは無い。
次に、パターン形成の第二工程(シランカップリング剤限定除去工程)として、第一工程で形成されたシランカップリング剤5のガスケット層形成エリアにのみ限定して、所定の形状のフォトマスク7を介して真空紫外光6を照射する(図3(b))。そして、真空紫外光6により、真空紫外光6が照射されたエリアのシランカップリング剤5を分解し、真空紫外光6が照射されたエリアの転写フィルム4上のみに対して親水化処理する。真空紫外光6の波長は、シランカップリング剤5のSi−Cの結合が切断できる波長であれば、特に限定されるものでは無いが、Si−Cの結合が切断され易いことから172nmであることが望ましい。
次に、転写フィルム4上にカソード側ガスケット層3b、アノード側ガスケット層3cをそれぞれ形成する工程として、ポリマーと架橋剤と溶媒とを含むガスケットインク3aを用意し、パターン形成された転写フィルム4上のガスケットインク親和性エリア8にガスケットインク3aを塗布し、カソード側ガスケット層3b、アノード側ガスケット層3cを形成する(図3(c))。なお、本実施形態で用いるガスケットインク3aは、ガスのシール作用を発揮できるポリマーと架橋剤がシランカップリング剤と親和性が無い溶剤(水等)で均一に混合されたものが使用できる。熱硬化性樹脂や光硬化性樹脂、シリコーンゴム、イソブチレン等の反応硬化型エラストマー等が好適に用いることができる。
このように、ガスケットインク親和性エリア8では親水性を活用してパターン形成する。ガスケットインク親和性エリア8の水接触角は、ガスケットインクが十分に濡れ広がる領域である15度以下である。
次に、パターン形成の第三工程(残存シランカップリング剤除去工程)として、真空紫外光6をカソード側ガスケット層3b、アノード側ガスケット層3cが形成された転写フィルム4の上に照射し、ガスケットインク7aと親和性が無いシランカップリング剤5により形成されたガスケットインク非親和性エリア9のシランカップリング剤5を分解・除去する(図3(d))。
次に、ガスケット層が形成されていないガスケット層内部のガスケットインク3aと親和性が無いガスケットインク非親和性エリア9を触媒インク2aと親和性の有る触媒インク親和性エリア10に表面改質する工程として、真空紫外光6を、ガスケット層内部のガスケットインク7aと親和性が無いガスケットインク非親和性エリア9に照射する。これにより、ガスケット層内部を、触媒インク2aと親和性の有るエリアに改質する。
このように、ガスケットインク非親和性エリア9では撥水性を活用してパターン形成する。ガスケットインク非親和性エリア9の水接触角は、ガスケットインクを十分にはじく領域である100度以上である。
なお、本工程は、パターン形成の第三工程において、過剰に真空紫外光6を転写フィルム4上に照射することにより、パターン形成の第三工程と兼ねることが可能である。
次に、転写フィルム4上にカソード触媒層2b、アノード触媒層2cをそれぞれ形成する工程として、触媒担持粒子と高分子電解質と溶媒とを含む触媒インク2aを用意し、ガスケット層内部の触媒インク親和性エリア10に触媒インク7aを滴下し、触媒インク2aを濡れ広がらせることにより、カソード触媒層2b、アノード触媒層2cをそれぞれ形成する(図3(e))。なお、本実施形態で用いる触媒インク2aには、白金又は白金と他の金属(例えばRu、Rh、Mo、Cr、Co、Fe等)との合金の微粒子(平均粒径は10nm以下が望ましい)が表面に担持されたカーボンブラック等の導電性炭素微粒子(平均粒径:20〜100nm程度)と、パーフルオロスルホン酸樹脂溶液等の高分子溶液とが超親水性表面を濡れ広がっていく溶剤(水等)の中で均一に混合されたインクを用いて製造されるものが使用できる。
このように、触媒インク親和性エリア10では、超親水性を活用してパターン形成する。触媒インク親和性エリア10の水接触角は、触媒インクを滴下した際にガスケット層の壁面にまで濡れ広がる領域である5度以下である。
なお、本実施形態に係る触媒層付電解質膜において、カソード触媒層2bの白金担持量は、アノード触媒層2cの白金担持量以上である。
次に、アノード触媒層2c、アノード側ガスケット層3cが形成された転写フィルム4上に高分子電解質膜1を積層する。更に、高分子電解質膜1上にカソード触媒層2b、カソード側ガスケット層2cが形成された転写フィルム4を積層した後にホットプレスを実施することにより、カソード触媒層2b、カソード側ガスケット層3b、アノード触媒層2c、カソード側ガスケット層3cを固体高分子電解質膜に転写する(図3(f))。
最後に、カソード触媒層2bと、カソード側ガスケット層3bと、高分子電解質膜1と、アノード触媒層2cと、アノード側ガスケット層3cとからなる膜電極接合体から、転写フィルム4を剥離除去することによって、本実施形態に係る膜電極接合体を製造する。
本実施形態に係る膜電極接合体の製造方法によれば、触媒層とガスケット層の間の間隙を0〜10μmと微小にすることができる。その理由は、ガスケット層を形成する際にガスケットインク3aと親和性があるガスケットインク親和性エリア8にのみ、ガスケット層を形成するため、ガスケット層形成後にガスケット層内部のエリアを触媒インク2aと親和性のある触媒インク親和性エリア10に表面改質し、触媒インク2aを触媒インク親和性エリア10に滴下し、触媒インク2aを濡れ広がらせることにより、触媒層を形成するためである。その結果、高分子電解質膜の露出を低減でき、耐久性に優れた膜電極接合体を製造することができる。
また、本実施形態に係る膜電極接合体の製造方法によれば、触媒インク2aのロスを無くすことができる。その理由は、触媒層を形成する際に、触媒インク2aと親和性がある触媒インク親和性エリア10にのみ、触媒層を滴下することにより形成するからである。その結果、製造コストの低減を図ることができる。
以上、説明したように、本実施形態に係る膜電極接合体及びその製造方法によれば、耐久性に優れ、安価に製造された膜電極接合体を提供することができる。
以下、図4を参照し、具体的な実施例により、本実施形態に係る膜電極接合体の製造方法について説明する。なお、後述する実施例は本実施形態の一実施例であり、本実施形態はこの実施例のみに限定されるものでは無い。また、本実施例に係る触媒層付電解質膜は、固体高分子形燃料電池に用いられる。
[触媒層付電解質膜の製造方法の工程順]
図4は、本実施形態に係る触媒層付電解質膜の製造方法の実施形態を工程順に説明するためのフローチャートである。
図4(a)に示すように、触媒層付電解質膜の製造方法には、転写フィルム上へのシランカップリング剤形成工程(S10)と、転写フィルム上のシランカップリング剤限定除去工程(S20)と、ガスケット層形成工程(S25)と、転写フィルム上の残存シランカップリング剤除去工程(S30)と、転写フィルム上のガスケット層内部の表面改質工程(S35)と、転写フィルム上のガスケット層内部への触媒層形成工程(S45)と、触媒層とガスケット層の高分子電解質膜への転写工程(S55)と、を有する。
図4(b)に示すように、本実施形態に係る触媒層付電解質膜の製造方法は、パターン形成工程(S100)のみに着目すると、第一工程としてのシランカップリング剤形成工程(S10)と、第二工程としてのシランカップリング剤限定除去工程(S20)と、第三工程としての残存シランカップリング剤除去工程(S30)と、の三段階に分けられる。
上述したパターン形成工程(S100)において、ガスケットインク親和性エリア8では親水性を活用し、ガスケットインク非親和性エリア9では撥水性を活用してパターン形成する。
(1)シランカップリング剤形成工程(S10)
シランカップリング剤5を転写フィルム4上の全エリアに形成する。
ここでは、図3(a)に示すように、転写フィルム4としてポリエチレンテレフタラートフィルム(以下、PETフィルム4という)を用いている。このPETフィルム4の上に波長172nmの真空紫外光6を照射し、PETフィルム4の表面にヒドロキシル基を形成した。続いて、PETフィルム4上のヒドロキシル基と加水分解されたシランカップリング剤5とを反応させるようにする。ここで、フルオロアルキル系のシランカップリング剤5であるフルオロメトキシシラン(商品名:KBM―7103、信越化学工業製)と、上述したヒドロキシル基が形成されたPETフィルム4とを160℃に加温する。それから、化学蒸着法(Chemical Vapor Deposition法 :CVD法)によりPETフィルム4上にシランカップリング剤5を形成した。
(2)シランカップリング剤限定除去工程(S20)
フォトマスク7を介してガスケットインク3aと親和性のあるガスケットインク親和性エリア8上にのみ真空紫外光6を照射することにより、触媒インク3aと親和性エリア5上に形成されたシランカップリング剤5のみを除去する。
ここでは、図3(b)に示すように、50mm四方の開口部を有するフォトマスク7を介して、波長172nmの真空紫外光6をシランカップリング剤5が形成されたPETフィルム4上に照射する。そして、シランカップリング剤5が分解されたガスケットインク3aと親和性があるガスケットインク親和性エリア8とシランカップリング剤5が残存しているガスケットインク3aと親和性が無いガスケットインク非親和性エリア9をパターン形成した。
(3)ガスケット層の形成工程(S25)
転写フィルム4上のガスケットインク親和性エリア8にガスケットインク3aを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、カソード側ガスケット層3b、アノード側ガスケット層3cを形成する。
ここでは、図3(c)に示すように、ポリマー(商品名:ULV E−20575、住友3M製)と共架橋剤トリアリルイソシアヌレート、過酸化ベンゾイルと、溶媒である水、酢酸ブチルとを混合し、ガスケットインク3aを調整した。そして、パターン形成したPETフィルム上に、ガスケットインク3aと親和性がある親和性エリア8に、調整したガスケットインク3aを塗布した。このように塗布されたガスケットインク3aによって形成された塗膜を熱硬化させ、カソード側ガスケット層3b、アノード側ガスケット層3cを形成した。尚、カソード側ガスケット層3bの厚みは12μm、アノード側ガスケット層の3cの厚みは3μmとなるよう塗布量を調節した。
なお、本実施形態に係る膜電極接合体の製造方法によれば、ガスケット層を高精度で所望の形状に形成できる。その理由は、シランカップリング剤限定除去工程(S20)において用いるフォトマスク7の精度が、ガスケット層3b、3cの形状に反映されるからである。したがって、所望の精度・形状のフォトマスク7を用いることにより、高精度で所望の形状の触媒層を形成することができる。
(4)残存シランカップリング剤除去工程(S30)
カソード側ガスケット層3b、アノード側ガスケット層3c形成後にガスケットインク3aと親和性の無いガスケットインク非親和性エリア9の残存シランカップリング剤3を除去する。
ここでは、図3(d)に示すように、ガスケット層3b、3cが形成されたPETフィルム4上に波長が172nmの真空紫外光6を照射し、ガスケット層3b、3c画形成された内部のガスケットインク3aと親和性が無いガスケットインク非親和性エリア9のシランカップリング剤5を分解・除去した。
(5)触媒インク形成エリアの表面改質工程(S35)
転写フィルム4上に真空紫外光6を照射することにより、転写フィルム4上のガスケット層内部のエリアを触媒インク2aと親和性の有る触媒インク親和性エリア10に改質する。
ここでは、上記のシランカップリング剤5を分解・除去する工程(S30)に伴い、ガスケットインク非親和性エリア9を超親水化処理し、ガスケットインク非親和性エリア9を触媒インク2aと親和性の有る触媒インク親和性エリア10へと改質した。
(6)触媒層形成工程(S45)
ガスケット層内部の触媒インク親和性エリア10に触媒インク2aを滴下し、触媒インク2aを濡れ広がらせることにより塗膜を形成し、形成された塗膜中の溶媒を除去し、カソード触媒層2b、アノード触媒層2cを形成する。
ここでは、図3(e)に示すように、白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、溶媒である水と混合した。続いて、遊星ボールミルで分散処理を行い、触媒インク7aを調整した。そして、PETフィルム4上の超親水化処理されたガスケット層内部の触媒インク親和性エリア10に、調整した触媒インク2aを、白金担持量がそれぞれ、0.30mg/cm、0.10mg/cmとなるように滴下し、触媒インク2aを濡れ広がらせた。触媒インク2aによって形成された塗膜を乾燥させて、カソード触媒層2b、アノード触媒層2cを形成した。
(7)触媒層、ガスケット層の高分子電解質膜への転写工程(S55)
アノード触媒層2c、アノード側ガスケット層3cが形成された転写フィルム4上に、高分子電解質膜1を積層する。更に、高分子電解質膜1上に、カソード触媒層2b、カソード側ガスケット層2cが形成された転写フィルム4を積層する。その後にホットプレス工程を実行し、カソード触媒層2b、カソード側ガスケット層3b、アノード触媒層2c、カソード側ガスケット層3cを固体高分子電解質膜に転写する。最後に、カソード触媒層2b、カソード側ガスケット層3b、と、高分子電解質膜1と、アノード触媒層2c、アノード側ガスケット層3cからなる膜電極接合体から、転写フィルム4を剥離除去する。
ここでは、図3(f)に示すように、アノード触媒層2c、アノード側ガスケット層3cが形成された転写フィルム4上に高分子電解質膜1を積層した。更に、高分子電解質膜1上にカソード触媒層2b、カソード側ガスケット層2cが形成された転写フィルム4を積層した。その後に、130℃、6.0×10Paの条件でホットプレスを行い、触媒層2b、2cとガスケット層3b、3cを高分子電解質膜1に転写した。最後に、カソード触媒層2b、カソード側ガスケット層3b、と、高分子電解質膜1と、アノード触媒層2c、アノード側ガスケット層3cからなる膜電極接合体から、転写フィルム4が剥離除去し、膜電極接合体とした。
[比較例1]
(ガスケット層付高分子電解質膜の準備工程)
ガスケット材3a、3bとマスク材の積層体を予め準備し、50mm四方の開口部を有するガスケット−マスク積層体を高分子電解質膜の表裏両面に貼合した。
(触媒層形成工程)
白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中
貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポ
ン社製)を、溶媒である水と混合した。続いて、遊星ボールミルで分散処理を行い、触媒
インク2aを調整した。そして、50mm四方の開口部を有するガスケット−マスク積層体が貼合された電解質膜1上に、調整した触媒インク2aを塗布した。この触媒インク2aは、白金担持量がそれぞれ0.30mg/cm、0.10mg/cmとなるようにドクターブレード法により塗布した。塗布後、塗膜を乾燥させ、マスク材をガスケット材から剥離除去し、カソード触媒層2b、カソード側ガスケット層3bとアノード触媒層2c、アノード側ガスケット層3cが高分子電解質膜1の両面にそれぞれ形成された膜電極接合体とした。
[比較例2]
(触媒層形成工程)
白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、溶媒である水と混合した。続いて、遊星ボールミルで分散処理を行い、触媒インク2aを調整した。そして、50mm四方の開口部を有するマスク材が貼合されたPETフィルム4上に、調整した触媒インク2aを塗布した。この触媒インク2aは、白金担持量がそれぞれ0.30mg/cm、0.10mg/cmとなるようにドクターブレード法により塗布した。
(触媒層の高分子電解質膜への転写工程)
PETシート上に製造された両電極触媒層を、高分子電解質溶液から製造した高分子電解質膜8の両面に正対するように配置し、130℃、6.0×10Paの条件でホットプレスを行い、触媒層付電解質膜を製造した。
(ガスケット層形成工程)
触媒層付電解質膜の両電極触媒層外周縁部に50mmの開口を有するガスケット材を貼合した。これによりカソード触媒層2b、カソード側ガスケット層3bとアノード触媒層2c、アノード側ガスケット層3cが高分子電解質膜1の両面にそれぞれ形成された膜電極接合体とした。
実施例、及び比較例1、比較例2において製造された膜電極接合体の触媒層とガスケット層間の間隙を測定した所、実施例では0〜10μm、比較例1では20〜40μm、比較例2では触媒層とガスケット層が部分的に重なり合い、−100〜100μmであった。実施例において製造された膜電極接合体の触媒層とガスケット層間の間隙が小さくなっていることを確認した。
実施例、及び比較例1、比較例2において製造された膜電極接合体の両面に、ガス拡散層(商品名:25BCH、SGL社製)をそれぞれ配置して、市販のJARI標準セルを用いてOCV耐久試験を実施した。セル温度は100℃として、燃料極に加湿水素、カソードに加湿酸素を供給した。その結果、実施例における膜電極接合体は耐久時間が25時間であったのに対し、比較例1における膜電極接合体は25時間以下であった。実施例において製造された膜電極接合体は耐久性に優れていることを確認した。
実施例、及び比較例1、比較例2の製造方法において使用した触媒インク2aの体積を調べた結果、実施例の製造方法によれば、触媒インク2aの使用量を40%削減できていることを確認した。
<まとめ>
本実施形態に係る膜電極接合体の製造方法では、転写フィルム上に、少なくともポリマーと架橋剤と溶媒とを含むガスケットインクと親和性のあるガスケットインク親和性エリアと、ガスケットインクと親和性が無いガスケットインク非親和性エリアとをパターン形成する(パターン形成工程)。また、転写フィルム上のガスケットインク親和性エリアにガスケットインクを塗布し、塗膜を形成し、形成した塗膜を硬化させ、ガスケット層を形成する(ガスケット層形成工程)。また、転写フィルム上のガスケットインク非親和性エリアを、少なくとも触媒担持粒子と高分子電解質と溶媒を含む触媒インクと親和性のある触媒インク親和性エリアに表面改質する(表面改質工程)。また、触媒インクをガスケット層内部の触媒インク親和性エリアに滴下し、触媒インクを濡れ広がらせて塗膜を形成し、形成した塗膜中の溶媒を除去し、触媒層を形成する。また、一対の転写フィルム上に形成された触媒層とガスケット層とを高分子電解質膜の両面に転写する(転写工程)。
上記のパターン形成工程は、転写フィルム上の全エリアにシランカップリング剤を形成するシランカップリング剤形成工程と、ガスケットインク親和性エリア上に形成されたシランカップリング剤のみを除去するシランカップリング剤限定除去工程と、ガスケット層形成工程によりガスケット層が形成された後に、ガスケットインク非親和性エリアの残存シランカップリング剤を除去する残存シランカップリング剤除去工程とを有する。
上記のシランカップリング剤限定除去工程では、フォトマスクを介して親和性エリア上にのみ真空紫外光を照射することにより除去する。
上記のパターン形成工程において、ガスケットインク親和性エリアでは親水性を活用し、ガスケットインク非親和性エリアでは撥水性を活用してパターン形成する。
なお、ガスケットインク親和性エリアの水接触角は15度以下である。また、ガスケットインク非親和性エリアの水接触角は100度以上である。
更に、触媒インク親和性エリアの水接触角は5度以下である。ガスケットインク親和性エリアでは、触媒インク親和性エリアの超親水性を活用してパターン形成する。
本実施形態に係る膜電極接合体は、高分子電解質膜の両面に対向して触媒層が配置されている。また、触媒層の周縁部にガスケットが配置されている。更に、触媒層とガスケットとの間の間隙は、10μm以下である。
本実施形態によれば、(1)電解質膜の露出がなく、(2)耐久性に優れ、(3)触媒インクのロスが少ない膜電極接合体の製造方法を提供することができる。
(1)電解質膜の露出を無くすことができる理由は、ガスケット層を形成する工程によりガスケットインク親和性エリアとガスケットインク非親和性エリアにパターニングされた転写フィルム上のガスケットインク親和性エリアにガスケットインクを塗布することから、所定の位置にガスケット層を形成できるためである。加えて、ガスケット層内部に触媒層を形成する工程により、ガスケット層内部のエリアを触媒インク親和性エリアに表面改質し、触媒インクを滴下し、濡れ広がらせることにより形成するためである。
(2)耐久性に優れる理由は、触媒層とガスケット層間の間隙が10μm以下となり、電解質膜の露出が抑制されることから電解質膜の破損が防げるためである。
高分子電解質膜は完全にガスを遮断(不透過状態)するものではないため、酸素や水素ガスの濃度勾配(分圧)によっては、アノード側からカソード側に向かって水素が、カソード側からアノード側に向かって酸素や窒素が、僅かながらクロスリークしている。特にアイドル停止(OCV:Open Circuit Voltage)状態では、カソードと電解質膜の界面における酸素濃度は、発電時に比べて高いため、電解質膜を介してカソード側からアノード側へ溶解拡散する酸素量も、発電時に比べて多くなる。このため、クロスリークにより酸素がカソード側からアノード側へ移行して、酸素がアノード側で水素と直接反応して、「H2+O2→H2O2」の反応が起こって、過酸化水素(H2O2)が生成する。また、水素がアノード側からカソード側へ移行して、水素がカソード側で酸素と直接反応して、同様にして過酸化水素が生成する。この過酸化水素は、電解質膜を分解して、電解質膜を化学的に劣化させることが知られている。すなわち、高分子電解質膜が露出している場合、ガスのクロスリーク量が増加し、化学的な劣化が促進される。
また、高分子電解質膜が露出している場合、水素ガスと酸素ガスの圧力差(以下差圧と呼ぶ)が異常に上昇すると、高分子電解質膜がこの差圧に耐えきれずに破膜し、両ガスが混合する事態が発生する。また、セル組時に高分子電解質膜に加わる機械的ストレスや、運転中の熱応力による構成部材の変歪等によっても高分子電解質膜が破膜する事態が発生する。
触媒層とガスケット層間の間隙が10μm以下となり、高分子電解質膜の露出が抑制される、すなわち、電解質膜の触媒層外周縁部がガスケット層に覆われることにより、高分子電解質膜の化学的な劣化、高分子電解質膜の破膜を抑制することができる。
(3)触媒インクのロスを少なくできる理由は、触媒層を形成する工程で、触媒インクと親和性がある触媒インク親和性エリアにのみ、触媒インクを滴下し、触媒インクを濡れ広がらせることにより触媒層を形成するためである。その結果、製造コストの低減を図ることができる。
このように、本実施形態によれば、触媒層とガスケット層間の間隙が10μm以下の電解質膜の露出が抑制された膜電極接合体を提供することができる。これにより、耐久性に優れた膜電極接合体を提供することができる。また、高価な触媒インクのロス無く、製造コストの低減を図った膜電極接合体の製造方法を提供することができる。
以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。
本発明によれば、電解質膜の露出がなく、耐久性に優れ、触媒インクのロスが少ない膜電極接合体、及び膜電極接合体の製造方法を提供することができる。本発明に係る膜電極接合体は、固体高分子形燃料電池、特に燃料電池自動車や家庭用燃料電池等における、固体高分子形燃料電池に用いられる単セルやスタックに好適に活用することができる。
1…高分子電解質膜
2a…触媒インク
2b…カソード触媒層
2c…アノード触媒層
3a…ガスケットインク
3b…カソード側ガスケット
3c…アノード側ガスケット
4…転写基材
5…シランカップリング剤
6…真空紫外光
7…フォトマスク
8…ガスケットインクと親和性の有るエリア(ガスケット層親和性エリア)
9…ガスケットインクと親和性の無いエリア(ガスケット層非親和性エリア)
10…触媒インクと親和性の有るエリア(触媒層親和性エリア)
11…プレス用熱盤

Claims (8)

  1. 転写フィルム上に、少なくともポリマーと架橋剤と溶媒とを含むガスケットインクと親和性のあるガスケットインク親和性エリアと、前記ガスケットインクと親和性が無いガスケットインク非親和性エリアと、をパターン形成する工程と、
    前記ガスケットインク親和性エリアにガスケットインクを塗布し、塗膜を形成し、形成した塗膜を硬化させ、前記ガスケット層を形成する工程と、
    前記ガスケットインク非親和性エリアを、少なくとも触媒担持粒子と高分子電解質と溶媒を含む触媒インクと親和性のある触媒インク親和性エリアに表面改質する工程と、
    前記触媒インクを前記ガスケット層内部の触媒インク親和性エリアに滴下し、触媒インクを濡れ広がらせて塗膜を形成し、形成した塗膜中の溶媒を除去し、前記触媒層を形成する工程と、
    一対の前記転写フィルム上に形成された前記触媒層と前記ガスケット層とを高分子電解質膜の両面に転写する工程と、
    を備える膜電極接合体の製造方法。
  2. 前記パターン形成工程は、
    前記転写フィルム上の全エリアにシランカップリング剤を形成するシランカップリング剤形成工程と、
    前記ガスケットインク親和性エリア上に形成されたシランカップリング剤を除去するシランカップリング剤限定除去工程と、
    前記ガスケット層が形成された後に、前記ガスケットインク非親和性エリアの残存シランカップリング剤を除去する残存シランカップリング剤除去工程と、
    を有することを特徴とする、請求項1に記載の膜電極接合体の製造方法。
  3. 前記シランカップリング剤限定除去工程において、フォトマスクを介して親和性エリア上にのみ真空紫外光を照射することにより除去することを特徴とする、請求項1又は2に記載の膜電極接合体の製造方法。
  4. 前記パターン形成工程において、前記ガスケットインク親和性エリアでは親水性を活用し、前記ガスケットインク非親和性エリアでは撥水性を活用してパターン形成することを特徴とする、請求項1乃至3のいずれか一項に記載の膜電極接合体の製造方法。
  5. 前記ガスケットインク親和性エリアの水接触角は15度以下であり、
    前記ガスケットインク非親和性エリアの水接触角は100度以上であることを特徴とする、請求項1乃至4のいずれか一項に記載の膜電極接合体の製造方法。
  6. 前記触媒インク親和性エリアの水接触角は5度以下であり、
    前記触媒インク親和性エリアでは超親水性を活用してパターン形成することを特徴とする、請求項1乃至5のいずれか一項に記載の膜電極接合体の製造方法。
  7. 請求項1乃至6のいずれか一項に記載の触媒層付電解質膜の製造方法を用いて製造された膜電極接合体を備える固体高分子形燃料電池。
  8. 高分子電解質膜の両面に対向して触媒層が配置され、
    前記触媒層の周縁部にガスケットが配置され、
    前記触媒層と前記ガスケットとの間の間隙が10μm以下であることを特徴とする膜電極接合体。
JP2013201367A 2013-09-27 2013-09-27 膜電極接合体の製造方法 Pending JP2015069755A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201367A JP2015069755A (ja) 2013-09-27 2013-09-27 膜電極接合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201367A JP2015069755A (ja) 2013-09-27 2013-09-27 膜電極接合体の製造方法

Publications (1)

Publication Number Publication Date
JP2015069755A true JP2015069755A (ja) 2015-04-13

Family

ID=52836246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201367A Pending JP2015069755A (ja) 2013-09-27 2013-09-27 膜電極接合体の製造方法

Country Status (1)

Country Link
JP (1) JP2015069755A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199877A (ja) * 2008-02-21 2009-09-03 Nissan Motor Co Ltd 燃料電池および燃料電池の製造方法
JP2012074314A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 膜電極接合体の製造方法、および膜電極接合体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199877A (ja) * 2008-02-21 2009-09-03 Nissan Motor Co Ltd 燃料電池および燃料電池の製造方法
JP2012074314A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 膜電極接合体の製造方法、および膜電極接合体

Similar Documents

Publication Publication Date Title
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
US8133636B2 (en) Fuel cell stack and manufacturing method of the same
JP5286887B2 (ja) 固体高分子型燃料電池用補強シート付き膜・電極接合体およびその製造方法
JP5849418B2 (ja) 膜電極接合体の製造方法
JP6439678B2 (ja) 触媒転写フィルム用基材フィルム及びその製造方法、触媒転写フィルムの製造方法、触媒層付電解質膜の製造方法
JP5838570B2 (ja) 固体高分子形燃料電池における膜電極接合体
KR101882502B1 (ko) 내구성이 향상된 연료전지의 전극-막 접합체
JP5707825B2 (ja) 固体高分子形燃料電池の膜電極接合体およびその製造方法
JP2010192392A (ja) 燃料電池用多孔膜複合体、燃料電池用電解質膜−電極−多孔膜複合体、及びこれらの製造方法
JP5870643B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP6364855B2 (ja) 膜電極接合体の製造方法
JP6686272B2 (ja) ガスケット部材、それを用いた膜電極接合体、および燃料電池
JP5838688B2 (ja) 膜電極接合体の製造方法
JP2015069755A (ja) 膜電極接合体の製造方法
JP6048015B2 (ja) 膜電極接合体の製造方法
JP6074979B2 (ja) 燃料電池用膜電極接合体の製造方法
JP2006338941A (ja) 電解質膜−電極接合体
JP2006338942A (ja) 電解質膜−電極接合体、および、燃料電池
EP2120277B1 (en) Membrane electrode assembly for fuel cell, method for making the same, and fuel cell system including the same
JP2004071324A (ja) 高分子電解質型燃料電池およびその製造方法
JP6307960B2 (ja) 固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜
JP6319940B2 (ja) 触媒層付電解質膜の製造方法
JP2011076738A (ja) 燃料電池用セパレータおよびその製造方法
KR100705553B1 (ko) 연료전지용 막전극접합체의 수소이온교환막 상에 촉매층을형성시키는 방법
JP6326862B2 (ja) 膜電極接合体、燃料電池、及び膜電極接合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703