JP2015052571A - 歪検知装置及びその製造方法 - Google Patents

歪検知装置及びその製造方法 Download PDF

Info

Publication number
JP2015052571A
JP2015052571A JP2013186705A JP2013186705A JP2015052571A JP 2015052571 A JP2015052571 A JP 2015052571A JP 2013186705 A JP2013186705 A JP 2013186705A JP 2013186705 A JP2013186705 A JP 2013186705A JP 2015052571 A JP2015052571 A JP 2015052571A
Authority
JP
Japan
Prior art keywords
lid
substrate
detection
effect element
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186705A
Other languages
English (en)
Other versions
JP6263356B2 (ja
Inventor
佑策 浅野
Yusaku Asano
佑策 浅野
樋口 和人
Kazuto Higuchi
和人 樋口
宮城 武史
Takeshi Miyagi
武史 宮城
祥弘 東
Yoshihiro Higashi
祥弘 東
通子 原
Michiko Hara
通子 原
福澤 英明
Hideaki Fukuzawa
英明 福澤
雅之 紀伊
Masayuki Kii
雅之 紀伊
栄蔵 藤澤
Eizo Fujisawa
栄蔵 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013186705A priority Critical patent/JP6263356B2/ja
Priority to US14/203,868 priority patent/US9000547B2/en
Publication of JP2015052571A publication Critical patent/JP2015052571A/ja
Application granted granted Critical
Publication of JP6263356B2 publication Critical patent/JP6263356B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means

Abstract

【課題】磁気シールド特性に優れた製品を生産性高く提供することができる歪検知装置及びその製造方法を提供すること。
【解決手段】実施形態に係る歪検知装置は、基板と、蓋部と、枠部と、検知部と、を含む。基板は、第1面を有する。蓋部は、第1面の上に設けられる。枠部は、基板と蓋部との間に設けられ、磁性体を含み、非導通性である。検知部は、基板と蓋部との間であって枠部の内側に設けられ、磁気抵抗効果素子を有する。検知部は、固体部と、磁気抵抗効果素子が設けられた可動部と、を有する。磁気抵抗効果素子は、磁化の向きが第1面に沿った方向に固定された固定層と、磁化の向きが固定されていない自由層と、を有する。
【選択図】図1

Description

本発明の実施形態は、歪検知装置及びその製造方法に関する。
情報、通信機器等の電子機器の軽薄短小化に伴い、配線基板への部品実装密度が高まっている。このため、電子機器では、電子部品間の電磁干渉(EMI:Electro Magnetic Interferenc)の防止が重要な課題となっている。電子機器には、磁気抵抗効果素子を用いた歪検知装置が実装されているものがある。この歪検知装置では、外部磁場の存在が磁気抵抗効果素子の特性に影響を与えやすい。歪検知装置の電磁場対策としては、部品表面を金属ケースで囲う手法や、導電メッキなどの導電体で覆うシールディングなどの手法が用いられる。歪検知装置においては、磁気シールド特性に優れた製品を生産性高く提供することが望ましい。
米国特許第6781231号明細書
本発明の実施形態は、磁気シールド特性に優れた製品を生産性高く提供することができる歪検知装置及びその製造方法を提供する。
実施形態に係る歪検知装置は、基板と、蓋部と、枠部と、検知部と、を含む。基板は、第1面を有する。蓋部は、第1面の上に設けられる。枠部は、基板と蓋部との間に設けられ、磁性体を含み、非導通性である。検知部は、基板と蓋部との間であって枠部の内側に設けられ、磁気抵抗効果素子を有する。
図1(a)及び(b)は、第1の実施形態に係る歪検知装置の構成を例示する模式図である。 図2(a)〜(c)は、磁気抵抗効果素子を例示する模式図である。 図3(a)〜(d)は、応力による磁化の向きの変化を例示する模式図である。 図4は、応力と電気抵抗の値との関係を例示する図である。 図5(a)及び(b)は、歪検知装置の製造方法を例示する模式的断面図である。 図6(a)及び(b)は、歪検知装置の製造方法を例示する模式的断面図である。 図7(a)及び(b)は、歪検知装置の製造方法を例示する模式的断面図である。 図8は、第3の実施形態に係る歪検知装置を例示する模式的断面図である。 図9(a)及び(b)は、歪検知装置の製造方法を例示する模式的断面図である。 図10(a)及び(b)は、歪検知装置の製造方法を例示する模式的断面図である。 図11は、電子機器を例示する模式的斜視図である。
以下、本発明の実施形態を図に基づき説明する。以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(第1の実施形態)
図1(a)及び(b)は、第1の実施形態に係る歪検知装置の構成を例示する模式図である。
図1(a)には、歪検知装置110の模式的断面図が表される。図1(b)には、図1(a)に示すA−A線の模式的平面図が表される。
図2(a)〜(c)は、磁気抵抗効果素子を例示する模式図である。
図1(a)に表したように、歪検知装置110は、基板10と、蓋部20と、枠部30と、検知部40と、を含む。
基板10は、第1面10aと、第2面10bと、を有する。第2面10bは、第1面10aとは反対側の面である。本実施形態では、第1面10aと直交する方向をZ方向、Z方向と直交する方向の1つをX方向、Z方向及びX方向と直交する方向をY方向とする。また、Z方向において、第2面10bから第1面10aに向かう方向を上(上側)、その反対を下(下側)とする。
基板10には、例えば絶縁性材料(ガラスエポキシ等)が用いられる。基板10の厚さは、例えば300マイクロメートル(μm)である。基板10の第1面10aには、第1配線11が設けられる。基板10の第2面10bには、第2配線12が設けられる。さらに、基板10には、ビア配線13が設けられる。ビア配線13は、第1面10aと第2面10bとの間に設けられる。ビア配線13は、第1配線11と第2配線12とを接続する。図1(b)に表したように、Z方向にみた基板10の外形は、例えば矩形である。
蓋部20は、基板10の第1面10aの上に設けられる。蓋部20には、例えば樹脂が用いられる。蓋部20には、金属を用いてもよい。歪検知装置110の軽量化等の観点から、蓋部20には樹脂を用いることが望ましい。蓋部20には、貫通孔20hが設けられていてもよい。
枠部30は、基板10と蓋部20との間に設けられる。枠部30は、基板10の第1面10aの上に設けられ、基板10と蓋部20との間に介在する。枠部30は、例えば、検知部40の外側を囲むように設けられる。本実施形態において、枠部30の内側とは、基板10、蓋部20及び枠部30で囲まれる領域(空間)のことをいう。
枠部30は、磁性体31を含み非導通性を有する。枠部30は、樹脂部32と磁性体31とを含む。樹脂部32には、例えばエポキシ樹脂が用いられる。磁性体31は例えば磁性体粉末である。磁性体31は、母材である樹脂部32の中に混入される。枠部30は、例えば磁性体ペーストを硬化させたものである。
磁性体31の一例としては、ニッケル(Ni)、銅(Cu)及び亜鉛(Zn)を含むの合金(Ni−Cu−Zn系合金)が挙げられる。磁性体31の粒子の形状は、例えば球形及び不定形である。磁性体31の固有抵抗は、例えば10オームメートル(Ω・m)である。
枠部30として磁性体ペーストを用いる場合、磁性体ペーストの粘度は、例えば100(パスカル秒)Pa・S以上400Ps・S以下である。磁性体ペーストの効果温度は、例えば150度(℃)以下である。磁性体ペーストのガラス転位点Tgは、150℃以上である。磁性体ペーストの弾性率は、例えば5(ギガパスカル)GPa以上30GPa以下である。磁性体ペーストの線膨張係数α1は、例えば5ppm/℃以上30ppm/以下である。
枠部30は、第1面10aの第1配線11の上に設けられていてもよい。枠部30は非導通性を有するため、第1配線11と接して設けられていてもよい。図1(b)に表したように、Z方向にみて枠部30は第1配線11と重なっていてもよい。これにより、枠部30を第1配線11の外側に設ける場合に比べて歪検知装置110の全体の大きさが小型化する。
検知部40は、基板10と蓋部20との間であって、枠部30の内側に設けられる。検知部40は、磁気抵抗効果素子41を有する。検知部40は、例えば半導体基板40sを有する。半導体基板40sには、例えばシリコン基板やSOI(Silicon On Insulator)基板が用いられる。磁気抵抗効果素子41は、半導体基板40sに形成される。磁気抵抗効果素子41は、半導体基板40sの上に実装されていてもよい。
検知部40は、第1配線11とバンプ電極50を介して電気的及び機械的に接続される。バンプ電極50の厚さは、例えば100μmである。検知部40のパッド電極(図示せず)は、第1配線11及びビア配線13を介して第2配線12と導通する。バンプ電極50の周りには、補強用の樹脂51が設けられていてもよい。検知部40と基板10の第1面10aとの間には、バンプ電極50の高さとほぼ等しい高さを有する空間S1が設けられる。
検知部40は、固定部45と、可動部46と、を有する。図1(a)に表したように、固定部45は、検知部40のうち厚さの厚い部分である。可動部46は、検知部40のうち厚さの薄い部分(固定部45の厚さよりも薄い部分)である。可動部46は、例えばダイアフラムである。なお、可動部46は、ダイヤフラム以外にも、可動梁であってもよい。
図1(b)に表したように、可動部46は、検知部40の中央部分に設けられる。可動部46のZ方向にみた形状は、例えば円形である。可動部46は、例えば半導体基板40sの中央部分をエッチングして薄膜化した部分である。可動部46の厚さは、例えば50ナノメートル(nm)以上1μm以下、より好ましくは、100nm以上500nm以下である。半導体基板40sの薄膜化されていない部分は、固定部45である。バンプ電極50は、検知部40の固定部45に接続される。
蓋部20と検知部40との間には、支持部60が設けられていてもよい。支持部60は、検知部40の固定部45と蓋部20との間に設けられる。支持部60の高さによって蓋部20と検知部40との間隔が安定する。
可動部46と基板10の第1面10aとの間には、空間S1が設けられる。また、可動部46と蓋部20との間には、空間S2が設けられる。可動部46は、空間S1と空間S2との間で撓むように上下に可動する。
磁気抵抗効果素子41は、可動部46に設けられる。図2(a)〜(c)に表したように、磁気抵抗効果素子41は、固定層411と、自由層412と、を有する。固定層411と、自由層412との間には、中間層413が設けられる。
固定層411は、磁化の向き固定された層である。磁化の向きは、基板10の第1面10aに沿った方向(例えば、X方向)に固定される。固定層411は、磁性層である。自由層412は、磁化の向きが固定されていない層である。自由層412は、磁性層である。固定層411と自由層412との間に介在する中間層413は、非磁性層である。
磁気抵抗効果素子41においては、磁気抵抗効果素子41に加わる応力により基づいて、逆磁歪効果によるMR効果が発現する。MR効果は、磁性体の磁化の変化によって積層膜の電気抵抗の値が変化する現象である。磁気抵抗効果素子41では、自由層412の磁化の向きの変化によって、固定層411と自由層412との間を流れる電流の量が変化する。
歪検知装置110では、枠部30が外部磁界を遮蔽する磁気シールドの効果を発揮する。歪検知装置110では、金属ケースを用いることなく枠部30によって外部磁界を遮蔽する。したがって、金属ケースを用いる場合に比べて歪検知装置110が軽量化される。
次に、磁気抵抗効果素子41の電気抵抗の値の変化を、図2(a)〜(c)に沿って説明する。
図2(a)には、磁気抵抗効果素子41に応力を印加していない状態が表される。この例では、固定層411の磁化の向きD1に対して、自由層412の磁化の向きD2が180度相違している。この場合、磁気抵抗効果素子41の固定層411から自由層412に向けて流れる電流はi0である。
図2(b)には、磁気抵抗効果素子41に引っ張りの応力T1を印加した状態が表される。磁気抵抗効果素子41に応力T1が印加されると、自由層412の磁化の向きD2がD2aに変化する。磁化の向きD2aは、固定層411の磁化の向きD1に対して180度−θ1相違している。この場合、磁気抵抗効果素子41の固定層411から自由層412に向けて流れる電流はi1である。電流i1の量は、電流i0の量よりも多い。すなわち、磁気抵抗効果素子41の電気抵抗の値が低下する。
図2(c)には、磁気抵抗効果素子41に引っ張りの応力T2を印加した状態が表される。応力T2は、応力T2よりも大きい。磁気抵抗効果素子41に応力T2が印加されると、自由層412の磁化の向きD2がD2bに変化する。磁化の向きD2bは、固定層411の磁化の向きD1に対して180度−θ2相違している。θ2は、θ1よりも大きい。この場合、磁気抵抗効果素子41の固定層411から自由層412に向けて流れる電流はi2である。電流i2の量は、電流i0の量及び電流i1の量よりも多い。すなわち、磁気抵抗効果素子41の電気抵抗の値がさらに低下する。
このように、磁気抵抗効果素子41は、印加される応力によって電気抵抗の値が変化する。図2(a)〜(c)では、磁気抵抗効果素子41に応力が印加されていない状態から、引っ張り応力T1及びT2が印加された状態を例示している。磁気抵抗効果素子41に圧縮応力を印加した場合には、自由層412の磁化の向きの変化の方向が、引っ張り応力を印加した場合とは反対になる。
磁気抵抗効果素子41には、必要に応じてバイアス磁界を与えてもよい。バイアス磁界を与えることで、磁気抵抗効果素子41に応力が印加されていない状態での自由層412の磁化の向きD2が規定される。例えば、磁気抵抗効果素子41の電気抵抗の値を、圧縮応力から引っ張り応力にかけて増加または減少させたい場合、バイアス磁界によって自由層412の磁化の向きD2(応力が印加されていないときの磁化の向き)を、磁気抵抗効果素子41の電気抵抗の値の変動範囲の中心付近になるように規定する。
図3(a)〜(d)は、応力による磁化の向きの変化を例示する模式図である。
図3(a)及び(b)には、磁気抵抗効果素子41に引っ張りの応力T10を印加した状態を表している。図3(a)には、Y方向にみた検知部40の模式的断面図が表される。図3(b)には、Z方向にみた磁気抵抗効果素子41の模式的平面図が表される。なお、図3(b)では、説明を分かりやすくするため、固定層411に対して自由層412の位置をずらして表示している。
図3(c)及び(d)には、磁気抵抗効果素子41に圧縮の応力P10を印加した状態を表している。図3(c)には、Y方向にみた検知部40の模式的断面図が表される。図3(d)には、Z方向にみた磁気抵抗効果素子41の模式的平面図が表される。なお、図3(d)では、説明を分かりやすくするため、固定層411に対して自由層412の位置をずらして表示している。
図3(a)及び(c)に表したように、磁気抵抗効果素子41は、検知部40の可動部46に設けられる。磁気抵抗効果素子41に印加される応力の方向(引っ張りまたは圧縮)は、可動部46の反りの方向によって変化する。
例えば、図3(a)に表したように、可動部46の中央部分が下側に凸となるように反った場合、磁気抵抗効果素子41には引っ張りの応力T10が印加される。図3(b)に表したように、磁気抵抗効果素子41に引っ張り応力T10が印加されると、自由層412の磁化の向きがD21になる。磁気抵抗効果素子41に応力が印加されていない状態では、自由層412の磁化の向きはD20である。磁化の向きD20は、固定層411の磁化の向きD1に対して例えばXY平面に沿って例えば135度回転している。
この状態で磁気抵抗効果素子41に引っ張り応力T10が印加されると、自由層412の磁化の向きは、D20からD21に変化する。磁化の向きD21は、固定層411の磁化の向きD1に対して例えばXY平面に沿って90度回転している。すなわち、自由層412の磁化の向きは、引っ張り応力T10の印加によって固定層411の磁化の向きD1に近づくように回転する。
これにより、磁気抵抗効果素子41の電気抵抗の値は、引っ張り応力T10の印加前から印加後にかけて減少する。したがって、磁気抵抗効果素子41の固定層411から自由層412に向けて流れる電流は、引っ張り応力T10の印加前から印加後にかけて増加する。
例えば、図3(c)に表したように、可動部46の中央部分が上側に凸となるように反った場合、磁気抵抗効果素子41には圧縮応力P10が印加される。図3(d)に表したように、磁気抵抗効果素子41に圧縮応力P10が印加されると、自由層412の磁化の向きは、D20からD22に変化する。
磁化の向きD22は、固定層411の磁化の向きD1に対して例えばXY平面に沿って180度回転している。すなわち、自由層412の磁化の向きは、圧縮応力P10の印加によって固定層411の磁化の向きD1から離れるように回転する。
これにより、磁気抵抗効果素子41の電気抵抗の値は、圧縮応力P10の印加前から印加後にかけて増加する。したがって、磁気抵抗効果素子41の固定層411から自由層412に向けて流れる電流は、圧縮応力P10の印加前から印加後にかけて減少する。
図4は、応力と電気抵抗の値との関係を例示する図である。
図4の横軸には、磁気抵抗効果素子41に印加される応力が表される。図4の横軸において、「0」は応力が印加されていない状態を表し、「−」は引っ張り応力、「+」は圧縮応力を表す。図4の縦軸には、磁気抵抗効果素子41の電気抵抗の値が表される。
図4に表したように、磁気抵抗効果素子41に印加される引っ張り応力が増加すると、磁気抵抗効果素子41の電気抵抗の値が低下する。一方、磁気抵抗効果素子41に印加される圧縮応力が増加すると、磁気抵抗効果素子41の電気抵抗の値が増加する。応力が印加されていない状態での磁気抵抗効果素子41の電気抵抗の値は、自由層412に与えられるバイアス磁界によって適宜設定される。本実施形態では、磁気抵抗効果素子41に印加される引っ張り応力から圧縮応力にかけて磁気抵抗効果素子41の電気抵抗の値が一方向に増加する。
歪検知装置110では、このような特性を有する磁気抵抗効果素子41が検知部40の可動部46に設けられる。したがって、可動部46の振動により磁気抵抗効果素子41に印加される応力によって、磁気抵抗効果素子41の電気抵抗の値が変化する。この電気抵抗の値の変化によって磁気抵抗効果素子41を流れる電流の値が変化する。したがって、磁気抵抗効果素子41を流れる電流の変化によって歪が検知される。
磁気抵抗効果素子41は、外部磁界による影響を受けやすい。歪検知装置110では、枠部30に磁性体31が含まれる。したがって、枠部30の内側に検知部40(磁気抵抗効果素子41)を設けることで、磁気抵抗効果素子41に対する外部磁界の影響が抑制される。
なお、本実施形態では、磁気抵抗効果素子41の自由層412の磁化の方向が第1面10a(XY平面)に沿って変化する。この場合、少なくとも、検知部40の側方を囲むように磁気シールドを設ければよい。歪検知装置110では、検知部40の側方を囲むように設けられた枠部30に磁気シールド効果を持たせることで、磁気抵抗効果素子41に対する外部磁界の影響が十分に抑制される。
また、枠部30は、非導通性を有する。このため、枠部30を第1配線11と接するように設けてもよい。ここで、導通性を有する枠部を用いた場合、第1配線11と離間した位置に枠部を設けるための領域を第1配線11よりも外側に設ける必要がある。本実施形態のように、枠部30が非導通性を有することで、枠部30を第1配線11の上に設けることができる。したがって、歪検知装置110の全体の大きさが縮小化される。
また、歪検知装置110では、樹脂性の枠部30によって磁気シールド効果を得るため、金属ケースによって検知部40の周囲を覆う必要がない。これにより、歪検知装置110では、金属ケースを用いる場合に比べて軽量化される。さらに、軽量化によって耐落下衝撃性に優れた歪検知装置110が提供される。
(第2の実施形態)
次に、第2の実施形態に係る歪検知装置の製造方法を説明する。
図5(a)〜図7(b)は、歪検知装置の製造方法を例示する模式的断面図である。
先ず、図5(a)に表したように、蓋材料200を用意する。本実施形態では、1つの蓋材料200から複数の蓋部20が形成される。蓋材料200には、各蓋部20の位置に対応して貫通孔20h及び支持部60が設けられる。蓋材料200には、例えば樹脂が用いられる。蓋材料200には、金属を用いてもよい。本実施形態では、蓋材料200として樹脂を用いる場合を例とする。
次に、図5(b)に表したように、基板材料100を用意する。本実施形態では、1つの基板材料100から複数の基板10が形成される。基板材料100には、各基板10の位置に対応して第1配線11、第2配線12及びビア配線13が形成される。基板材料100には、例えば絶縁性材料(ガラスエポキシ等)が用いられる。
次に、基板材料100の各基板10の位置に対応してペースト状の樹脂51を塗布する。樹脂51は、第1配線11の上に設けられる。
次に、図6(a)に表したように、基板材料100の上に検知部40を実装する。検知部40は、基板材料100の各基板10の位置に対応して実装される。検知部40は、バンプ電極50を介して第1配線11と電気的及び機械的に接続される。バンプ電極50は、先に塗布した樹脂51内に埋め込まれる。樹脂51は、検知部40と基板材料100との間に介在して、バンプ電極50の第1配線11との接合を補強する役目を果たす。
次に、図6(b)に表したように、検知部40の周囲に枠部30を設ける。枠部30の第1面10aからの高さは、検知部40の第1面10aからの高さよりも高い。枠部30は、第1配線11の上に設けられてもよい。枠部30には、磁性体ペーストが用いられる。磁性体ペーストは、母材である樹脂部32の中に磁性体31を混入したものである。磁性体ペーストは、例えば印刷によって塗布される。
次に、図7(a)に表したように、枠部30の上に蓋材料200を搭載する。蓋材料200を枠部30の上に搭載する際、枠部30は未硬化の状態である。未硬化の枠部30の上に蓋材料200を搭載すると、枠部30は蓋材料200によって押しつぶされる。蓋材料200は枠部30を押しつぶしながら検知部40に接近する。そして、蓋材料200の下に設けられた支持部60が検知部40に当接すると、蓋材料200の位置が決まる。
蓋材料200を搭載した後は、枠部30及び樹脂51を硬化する。例えば、所定の温度に加熱することで、枠部30及び樹脂51を硬化させる。
次に、図7(b)に表したように、蓋材料200、枠部30及び基板材料100を切断する。蓋材料200、枠部30及び基板材料100は、枠部30のほぼ中央の位置でZ方向に切断される。分割された蓋材料200は蓋部20になる。分割された基板材料100は基板10になる。これにより、複数の歪検知装置110が完成する。このようにして製造された歪検知装置110では、蓋部20の側面が、枠部30の側面及び基板10の側面と同一平面上に設けられる。
このような製造方法では、基板材料100、蓋材料200及び枠部30を切断することで、複数の歪検知装置110が一括して形成される。この製造方法では、検知部の上に個別に金属ケースを被せる場合に比べて生産性高く複数の歪検知装置110が製造される。
(第3の実施形態)
次に、第3の実施形態に係る歪検知装置を説明する。
図8は、第3の実施形態に係る歪検知装置を例示する模式的断面図である。
図8に表したように、第3の実施形態に係る歪検知装置120では、枠部30が蓋部20と一体的に設けられている。図8に表した例では、支持部60も蓋部20と一体的に設けられている。
歪検知装置120において、蓋部20及び枠部30は、磁性体31を含み非道通性を有する。例えば、歪検知装置120の蓋部20及び枠部30は、歪検知装置110の枠部30と同じ材料によって形成される。蓋部20及び枠部30は、樹脂部32と磁性体31とを含む。蓋部20及び枠部30は、例えば磁性体ペーストを硬化させたものである。歪検知装置120では、支持部60も、蓋部20及び枠部30と同じ材料で形成してもよい。
歪検知装置120では、枠部30によって磁気シールド効果が得られるとともに、蓋部20によっても磁気シールド効果が得られる。すなわち、歪検知装置120では、枠部30によって磁気抵抗効果素子41の側方の磁気シールドを行う。また、歪検知装置120では、蓋部20によって磁気抵抗効果素子41の上方の磁気シールドを行う。歪検知装置120では、側方及び上方から磁気抵抗効果素子41に向かう外部磁界を効果的に遮蔽する。
このような歪検知装置120では、枠部30とともに蓋部20も磁性体31を有する樹脂で構成されるため、側方及び上方からの外部磁界の遮蔽効果が高まる。また、金属ケースを用いる場合に比べて歪検知装置120の軽量化が達成される。さらに、軽量化によって耐落下衝撃性に優れた歪検知装置120が提供される。
(第4の実施形態)
次に、第4の実施形態に係る歪検知装置の製造方法を説明する。
図9(a)〜図10(b)は、歪検知装置の製造方法を例示する模式的断面図である。
先ず、図9(a)に表したように、蓋材料250を用意する。本実施形態では、1つの蓋材料250から複数の蓋部20が形成される。蓋材料250には、各蓋部20の位置に対応して、枠部30、貫通孔20h及び支持部60が設けられる。すなわち、蓋材料250には、枠部30及び支持部60が一体的に形成されている。蓋材料250には、磁性体31を含む樹脂が用いられる。蓋材料250は、磁性体ペーストを硬化させたものである。
次に、図9(b)に表したように、基板材料100を用意する。本実施形態では、1つの基板材料100から複数の基板10が形成される。基板材料100には、各基板10の位置に対応して第1配線11、第2配線12及びビア配線13が形成される。基板材料100には、例えば絶縁性材料(ガラスエポキシ等)が用いられる。
次に、基板材料100の各基板10の位置に対応してペースト状の樹脂51を塗布する。樹脂51は、第1配線11の上に設けられる。
次に、基板材料100の上に検知部40を実装する。検知部40は、基板材料100の各基板10の位置に対応して実装される。検知部40は、バンプ電極50を介して第1配線11と電気的及び機械的に接続される。バンプ電極50は、先に塗布した樹脂51内に埋め込まれる。樹脂51は、検知部40と基板材料100との間に介在して、バンプ電極50の第1配線11との接合を補強する役目を果たす。
次に、図10(a)に表したように、基板材料100の上に蓋材料250を搭載する。蓋材料200を基板材料100の上に搭載する際、枠部30と基板材料100との間に未硬化の磁性体ペーストを塗布しておく。蓋材料250の下に設けられた支持部60が検知部40に当接すると、蓋材料250の位置が決まる。
蓋材料250を搭載した後は、枠部30と基板材料100との間に塗布した磁性体ペースト及び樹脂51を硬化する。例えば、所定の温度に加熱することで、磁性体ペースト及び樹脂51を硬化させる。
次に、図10(b)に表したように、蓋材料250、枠部30及び基板材料100を切断する。蓋材料250、枠部30及び基板材料100は、枠部30のほぼ中央の位置でZ方向に切断される。分割された蓋材料250は蓋部20になる。分割された基板材料100は基板10になる。これにより、複数の歪検知装置120が完成する。このようにして製造された歪検知装置120では、蓋部20の側面が、枠部30の側面及び基板10の側面と同一平面上に設けられる。
このような製造方法では、基板材料100、蓋材料250及び枠部30を切断することで、複数の歪検知装置120が一括して形成される。この製造方法では、検知部の上に個別に金属ケースを被せる場合に比べて生産性高く複数の歪検知装置120が製造される。
上記説明した歪検知装置110及び120は、例えばマイクの検知部分に用いられる。歪検知装置110及び120がマイクの検知部分として用いられる場合、貫通孔20hは音孔である。
図11は、電子機器を例示する模式的斜視図である。
図11に表したように、歪検知装置110及び120は、種々の電子機器500に用いられる。電子機器500は、筐体510と、筐体510内に設けられたプリント配線板520と、を有する。電子機器500は、表示部530を備えていてもよい。表示部530には、タッチパネル等の入力部535が設けられていてもよい。歪検知装置110及び120は、例えばプリント配線板520に実装される。
電子機器500としては、携帯電話、携帯端末、パーソナルコンピュータ、音声レコーダ、ビデオカメラ、デジタルカメラ、テレビジョンなどが挙げられる。電子機器500に歪検知装置110及び120を適用すれば、電子機器500の小型、軽量化が達成される。
以上説明したように、実施形態に係る歪検知装置及びその製造方法によれば、磁気シールド特性に優れた製品を生産性高く提供することができる。
なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…基板、10a…第1面、10b…第2面、11…第1配線、12…第2配線、13…ビア配線、20…蓋部、20h…貫通孔、30…枠部、31…磁性体、32…樹脂部、40…検知部、40s…半導体基板、41…磁気抵抗効果素子、45…固定部、46…可動部、50…バンプ電極、51…樹脂、60…支持部、100…基板材料、110,120…歪検知装置、200…蓋材料、250…蓋材料、411…固定層、412…自由層、413…中間層

Claims (10)

  1. 第1面を有する基板と、
    前記第1面の上に設けられた蓋部と、
    前記基板と前記蓋部との間に設けられ、磁性体を含み非導通性の枠部と、
    前記基板と前記蓋部との間であって前記枠部の内側に設けられ、磁気抵抗効果素子を有する検知部と、
    を備えた歪検知装置。
  2. 前記検知部は、
    固体部と、
    前記磁気抵抗効果素子が設けられた可動部と、を有する請求項1記載の歪検知装置。
  3. 前記磁気抵抗効果素子は、
    磁化の向きが前記第1面に沿った方向に固定された固定層と、
    磁化の向きが固定されていない自由層と、を有する請求項1または2に記載の歪検知装置。
  4. 前記蓋部と前記検知部との間に設けられ、前記蓋部及び前記検知部とそれぞれ接する支持部をさらに備えた請求項1〜3のいずれか1つに記載の歪検知装置。
  5. 前記枠部は、前記磁性体を含む樹脂部を有する請求項1〜4のいずれか1つに記載の歪検知装置。
  6. 前記蓋部の側面は、前記枠部の側面及び前記基板の側面と同一平面上に設けられた請求項1〜5のいずれか1つに記載の歪検知装置。
  7. 前記第1面に沿って設けられた第1配線と、
    前記検知部と前記第1配線との間に設けられたバンプ電極と、
    をさらに備えた請求項1〜6のいずれか1つに記載の歪検知装置。
  8. 第1面を有する基板材料を用意する工程と、
    前記磁気抵抗効果素子を有する検知部を用意する工程と、
    前記第1面の上に前記検知部を実装する工程と、
    前記第1面の上において前記検知部の周りを囲むように、磁性体を含み非導通性のペースト材を塗布する工程と、
    前記検知部の上に、前記ペースト材を介して蓋材料を搭載する工程と、
    前記ペースト材を硬化させて枠部を形成する工程と、
    前記第1面と直交する方向に、前記蓋材料、前記枠部及び前記基板材料を切断する工程と、
    を備えた歪検知装置の製造方法。
  9. 前記蓋材料を搭載する工程は、前記蓋材料と前記検知部との間に設けられた支持部を介して前記蓋材料を搭載することを含む請求項8記載の歪検知装置の製造方法。
  10. 前記検知部を用意する工程は、複数の前記検知部を用意することを含み、
    前記ペースト材を塗布する工程は、前記複数の検知部のそれぞれの周りを囲むように前記ペースト材を塗布することを含む請求項9記載の歪検知装置の製造方法。
JP2013186705A 2013-09-09 2013-09-09 歪検知装置及びその製造方法 Active JP6263356B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013186705A JP6263356B2 (ja) 2013-09-09 2013-09-09 歪検知装置及びその製造方法
US14/203,868 US9000547B2 (en) 2013-09-09 2014-03-11 Strain sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186705A JP6263356B2 (ja) 2013-09-09 2013-09-09 歪検知装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017239161A Division JP2018040816A (ja) 2017-12-14 2017-12-14 センサ

Publications (2)

Publication Number Publication Date
JP2015052571A true JP2015052571A (ja) 2015-03-19
JP6263356B2 JP6263356B2 (ja) 2018-01-17

Family

ID=52624762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186705A Active JP6263356B2 (ja) 2013-09-09 2013-09-09 歪検知装置及びその製造方法

Country Status (2)

Country Link
US (1) US9000547B2 (ja)
JP (1) JP6263356B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082435B2 (en) 2014-07-02 2018-09-25 Kabushiki Kaisha Toshiba Pressure sensor
JP2020027050A (ja) * 2018-08-13 2020-02-20 株式会社東芝 センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150300324A1 (en) * 2014-04-18 2015-10-22 Ashish Bhimrao Kharkar Electromagnetic shielding of a strain gauge in a wind power installation
US9726587B2 (en) * 2015-01-30 2017-08-08 Stmicroelectronics S.R.L. Tensile stress measurement device with attachment plates and related methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154478U (ja) * 1982-04-07 1983-10-15 シャープ株式会社 磁気センサ−
JPH03156985A (ja) * 1989-11-15 1991-07-04 Matsushita Electric Ind Co Ltd 振動加速度センサ
JPH0961456A (ja) * 1995-08-29 1997-03-07 Murata Mfg Co Ltd 半導体装置
JP2001235485A (ja) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp 加速度センサ
JP2003037312A (ja) * 2001-07-23 2003-02-07 Matsushita Electric Ind Co Ltd 応力センサー
WO2006098339A1 (ja) * 2005-03-16 2006-09-21 Yamaha Corporation 半導体装置、半導体装置の製造方法、および蓋体フレーム
JP2007043327A (ja) * 2005-08-01 2007-02-15 Star Micronics Co Ltd コンデンサマイクロホン
JP2009038053A (ja) * 2007-07-31 2009-02-19 Fuji Electric Device Technology Co Ltd 半導体センサ装置
WO2011046090A1 (ja) * 2009-10-13 2011-04-21 日本電気株式会社 磁性体装置
JP2012127977A (ja) * 2005-06-30 2012-07-05 Nissan Motor Co Ltd 応力センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515352B1 (en) * 2000-09-25 2003-02-04 Micron Technology, Inc. Shielding arrangement to protect a circuit from stray magnetic fields
US6781231B2 (en) 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
US7723128B2 (en) * 2008-02-18 2010-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ formed capping layer in MTJ devices
JP5235964B2 (ja) * 2010-09-30 2013-07-10 株式会社東芝 歪検知素子、歪検知素子装置、および血圧センサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154478U (ja) * 1982-04-07 1983-10-15 シャープ株式会社 磁気センサ−
JPH03156985A (ja) * 1989-11-15 1991-07-04 Matsushita Electric Ind Co Ltd 振動加速度センサ
JPH0961456A (ja) * 1995-08-29 1997-03-07 Murata Mfg Co Ltd 半導体装置
JP2001235485A (ja) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp 加速度センサ
JP2003037312A (ja) * 2001-07-23 2003-02-07 Matsushita Electric Ind Co Ltd 応力センサー
WO2006098339A1 (ja) * 2005-03-16 2006-09-21 Yamaha Corporation 半導体装置、半導体装置の製造方法、および蓋体フレーム
JP2012127977A (ja) * 2005-06-30 2012-07-05 Nissan Motor Co Ltd 応力センサ
JP2007043327A (ja) * 2005-08-01 2007-02-15 Star Micronics Co Ltd コンデンサマイクロホン
JP2009038053A (ja) * 2007-07-31 2009-02-19 Fuji Electric Device Technology Co Ltd 半導体センサ装置
WO2011046090A1 (ja) * 2009-10-13 2011-04-21 日本電気株式会社 磁性体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082435B2 (en) 2014-07-02 2018-09-25 Kabushiki Kaisha Toshiba Pressure sensor
JP2020027050A (ja) * 2018-08-13 2020-02-20 株式会社東芝 センサ

Also Published As

Publication number Publication date
JP6263356B2 (ja) 2018-01-17
US20150069540A1 (en) 2015-03-12
US9000547B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
US11367552B2 (en) Inductor component
JP6394719B2 (ja) 電子回路パッケージ
JP6815807B2 (ja) 表面実装型のコイル部品
JP2019075478A (ja) インダクタ部品
JP6263356B2 (ja) 歪検知装置及びその製造方法
TWI605564B (zh) 封裝結構及其製法
US10438901B1 (en) Integrated circuit package comprising an enhanced electromagnetic shield
JP5891585B2 (ja) 半導体装置及び配線基板
JP6716867B2 (ja) コイル部品およびその製造方法
JP2013105756A (ja) 基板内蔵用電子部品および部品内蔵型基板
JP2021503718A (ja) 磁性層を有する基板対応インダクタ
JP7078016B2 (ja) インダクタ部品
JPWO2020071493A1 (ja) モジュール
US10149417B2 (en) Magnetism suppressing sheet and manufacturing method thereof
JP6477262B2 (ja) コイル部品
JP2018040816A (ja) センサ
US10568194B2 (en) Common mode filter
US10512163B2 (en) Electronic component mounting board
JP2021061369A (ja) インダクタ部品
CN111081696A (zh) 半导体封装和制造半导体封装的方法
US11264161B2 (en) Coil electronic component
US20210027933A1 (en) Coil electronic component
KR20160010640A (ko) 공통 모드 필터 및 그 제조 방법
TW202008556A (zh) 包含增強電磁屏蔽之積體電路封裝
KR20150083340A (ko) 공통 모드 필터 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6263356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151