JP2015050909A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2015050909A
JP2015050909A JP2013183332A JP2013183332A JP2015050909A JP 2015050909 A JP2015050909 A JP 2015050909A JP 2013183332 A JP2013183332 A JP 2013183332A JP 2013183332 A JP2013183332 A JP 2013183332A JP 2015050909 A JP2015050909 A JP 2015050909A
Authority
JP
Japan
Prior art keywords
phase
duty
phase shift
pwm signal
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013183332A
Other languages
English (en)
Inventor
真充 ▲濱崎▼
真充 ▲濱崎▼
Masamitsu Hamazaki
中村 健信
Takenobu Nakamura
健信 中村
真一 鞍谷
Shinichi Kuratani
真一 鞍谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Mobility Corp
Original Assignee
Omron Automotive Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Automotive Electronics Co Ltd filed Critical Omron Automotive Electronics Co Ltd
Priority to JP2013183332A priority Critical patent/JP2015050909A/ja
Priority to CN201410445982.5A priority patent/CN104426436A/zh
Priority to DE102014217585.2A priority patent/DE102014217585A1/de
Priority to US14/477,467 priority patent/US9337755B2/en
Publication of JP2015050909A publication Critical patent/JP2015050909A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】PWM信号のデューティの変化に起因する騒音を低減したモータ制御装置を提供する。【解決手段】モータ制御装置は、モータ6を駆動するインバータ回路2と、電流検出用の単一のシャント抵抗Rsと、PWM信号のデューティを算出するデューティ算出部12と、PWM信号を生成しインバータ回路2へ出力するPWM信号生成部13と、所定の相のPWM信号の位相をシフトさせる位相移動部16と、位相移動部16による位相シフトの可否を判定する位相移動可否判定部17とを備える。位相移動可否判定部17は、デューティ算出部12で算出されたすべての相のデューティが継続して50%付近にあれば、位相移動不可と判定して、PWM信号の位相シフト状態を維持する。【選択図】図2

Description

本発明は、PWM(Pulse Width Modulation:パルス幅変調)方式によりモータを制御するモータ制御装置に関し、特に、単一の電流検出手段を用いて各相の電流を検出するモータ制御装置に関する。
例えば、車両の電動パワーステアリング装置においては、ハンドルの操舵トルクに応じた操舵補助力をステアリング機構に与えるために、3相ブラシレスモータなどの電動式モータが設けられる。このモータの回転を制御する装置として、PWM方式を用いたモータ制御装置が知られている(特許文献1〜9参照)。
一般に、PWM方式のモータ制御装置は、PWM信号に基づいてモータを駆動するインバータ回路と、このインバータ回路の動作を制御する制御部と、モータ電流を検出する電流検出回路とを備えている。インバータ回路は、上下一対のアームを相の数だけ有しており、各組の上アームと下アームにそれぞれスイッチング素子が設けられる。電流検出回路は、インバータ回路に流れる各相のモータ電流を検出する電流検出抵抗(以下「シャント抵抗」という。)を含む。制御部は、モータに流すべき電流の目標値と、シャント抵抗で検出された電流の値との偏差に基づき、インバータ回路の各スイッチング素子ごとに、所定のデューティを持ったPWM信号を生成し、これをインバータ回路へ出力する。インバータ回路の各スイッチング素子は、このPWM信号によりオン・オフ動作を行う。これにより、電源からインバータ回路を通ってモータへ電流が流れ、モータが回転する。
ところで、モータ電流を検出するシャント抵抗を、インバータ回路の各相の下アームにそれぞれ設けた場合は、モータに流れる各相の電流を実測値として検出することができる。しかしながら、この場合は、相の数だけシャント抵抗が必要であり、回路構成が複雑となる。そこで、単一のシャント抵抗を用いて各相の電流を検出することが、従来より行われている(特許文献1〜5参照)。この方式を、以下「シングルシャント方式」と呼ぶ。シングルシャント方式では、シャント抵抗に流れる2相の電流を検出し、それらの検出値を用いて、残りの1相の電流を演算により求める(詳細は後述)。
図6は、シングルシャント方式によるモータ制御装置の一例を示している。モータ制御装置200は、電源回路5とモータ6との間に設けられており、インバータ回路2、電流検出回路3、および制御部20を備えている。モータ6は、例えば車両の電動パワーステアリング装置に用いられる3相ブラシレスモータである。このモータ6の回転角度を検出するために、レゾルバなどの角度検出器7が設けられている。電源回路5は、直流電源、整流回路、および平滑回路などから構成される。
インバータ回路2は、上下一対のアームがA相、B相、C相に対応して3組設けられた3相ブリッジから構成されている。A相の上アームa1と下アームa2は、それぞれスイッチング素子Q1、Q2を有している。B相の上アームa3と下アームa4は、それぞれスイッチング素子Q3、Q4を有している。C相の上アームa5と下アームa6は、それぞれスイッチング素子Q5、Q6を有している。これらのスイッチング素子Q1〜Q6は、例えばFET(電界効果トランジスタ)からなる。以下、各相の上アームのスイッチング素子を「上段スイッチング素子」、各相の下アームのスイッチング素子を「下段スイッチング素子」という。
モータ6に流れる電流を検出するための電流検出回路3は、シャント抵抗Rsと増幅回路31から構成される。シャント抵抗Rsは、インバータ回路2とグランドGとの間に接続されている。増幅回路31は、シャント抵抗Rsの両端の電圧を増幅し、制御部20へ出力する。制御部20は、増幅回路31より与えられる電圧から算出した検出電流値と、トルクセンサ(図示省略)より与えられる操舵トルクから算出した目標電流値との偏差に基づいて、各相のPWM信号のデューティを算出する。そして、このデューティに基づいて生成した各相のPWM信号(PWM1〜PWM6)を、インバータ回路2へ出力する。インバータ回路2のスイッチング素子Q1〜Q6は、これらのPWM信号によりオン・オフ動作を行う。これによって、電源回路5からインバータ回路2を通ってモータ6へ電流が流れ、モータ6が回転する。そして、PWM信号のデューティと位相に応じたスイッチング素子Q1〜Q6のオン・オフのパターンに従って、モータ6に流れる電流の大きさや方向が制御される。
図7〜図10は、シングルシャント方式によるモータ電流検出の原理を説明する図である。図7に示すように、鋸歯状のキャリア信号に基づいて、A相、B相、C相のデューティに応じた各相のPWM信号が生成される。PWM信号の生成方法については、よく知られているので、ここでは説明を省略する。以下、デューティが最大の相を「最大相」、デューティが最小の相を「最小相」、デューティ中間の相を「中間相」という。図7では、A相が最大相、B相が最小相、C相が中間相となっている。
なお、図7の各相のPWM信号は、各相の上段スイッチング素子に与えられるPWM信号(図6のPWM1、PWM3、PWM5)を表している。後述の各図においても同様である。各相の下段スイッチング素子に与えられるPWM信号(図6のPWM2、PWM4、PWM6)は、図7の各相のPWM信号をほぼ反転したものとなる。図7に示されているPWM周期は、キャリア信号の立下りから次の立下りまでの期間であり、5つのPWM周期によって1つの制御周期が構成される。1PWM周期は、例えば50μsである。この場合、1制御周期は250μsとなる。また、図7に示されている斜線部分は、シャント抵抗Rsに流れる電流を検出するための電流検出区間を示している。この電流検出区間は、各制御周期の最後のPWM周期において、中間相(C相)および最小相(B相)の各PWM信号が立ち上がるまでの所定区間として設定されている。
図8は、図7の一点鎖線で囲んだ部分を拡大し、これにシャント抵抗Rsに流れる電流(シャント電流)の波形を加えた図である。図8において、W1はA相電流を検出する電流検出区間であり、W2はB相電流を検出する電流検出区間である。
電流検出区間W1では、A相PWM信号が「H」(High)、B相PWM信号が「L」(Low)、C相PWM信号が「L」となっている。このため、図9に示すように、上段スイッチング素子Q1、Q3、Q5がそれぞれON、OFF、OFFで、下段スイッチング素子Q2、Q4、Q6がそれぞれOFF、ON、ONとなる。その結果、図9の破線矢印で示す電流経路が形成され、シャント抵抗Rsには、A相電流Iが流れる。このA相電流Iによってシャント抵抗Rsの両端に生じる電圧が、増幅回路31(図6)を介して制御部20に入力され、制御部20においてA/D変換(アナログ−デジタル変換)されることで、A相電流の電流値Iが検出される。
電流検出区間W2では、A相PWM信号が「H」、B相PWM信号が「L」、C相PWM信号が「H」となっている。このため、図10に示すように、上段スイッチング素子Q1、Q3、Q5がそれぞれON、OFF、ONで、下段スイッチング素子Q2、Q4、Q6がそれぞれOFF、ON、OFFとなる。その結果、図10の破線矢印で示す電流経路が形成され、シャント抵抗Rsには、逆極性のB相電流−Iが流れる。このB相電流−Iによってシャント抵抗Rsの両端に生じる電圧が、増幅回路31(図6)を介して制御部20に入力され、制御部20においてA/D変換されることで、B相電流の電流値Iが検出される。
A相電流の電流値Iと、B相電流の電流値Iとが検出されると、C相電流の電流値Iは、IとIとを用いて、演算により求めることができる。すなわち、キルヒホッフの法則により、各相の電流値I、I、Iの間には、I+I+I=0の関係があるので、C相電流の電流値Iは、I=−(I+I)として算出することができる。
このようなシングルシャント方式によるモータ制御装置200において、シャント抵抗Rsで検出された電流が制御部20で正常にA/D変換されるためには、同じ大きさの電流が一定期間(例えば2μs以上)連続してシャント抵抗Rsに流れなければならない。しかるに、PWM信号の各相のデューティの大小関係によっては、一つの相と他の相との間で、インバータ回路2のスイッチング素子Q1〜Q6がオン・オフするタイミングの間隔が、非常に短くなる場合がある。このときは、電流検出に必要な電流がシャント抵抗Rsに流れないため、2相の電流検出ができなくなり、残りの1相の電流の算出も不可能となる。
そこで、一つの相と他の相との間における、スイッチング素子のオン・オフのタイミングの間隔が閾値より短い場合は、PWM信号の位相をシフトさせる方法が知られている(特許文献1、9参照)。例えば、図7では、最大相であるA相のPWM信号に対して、中間相であるC相のPWM信号の位相は、遅れ方向にシフトしている。また、最小相であるB相のPWM信号の位相は、中間相であるC相のPWM信号の位相よりもさらに遅れ方向にシフトしている。このような位相シフトにより、一つの相と他の相との間で、スイッチング素子のオン・オフのタイミングの間隔が大きくなり、シャント抵抗Rsには電流検出に必要な時間だけ電流が流れる。その結果、十分な電流検出区間W1、W2が確保されるので、モータ6に流れる2相の電流を正確に検出することができる。
しかしながら、PWM信号の位相をシフトさせた結果、モータ電流が急激に変動することに伴って、モータで電流リップルに基づく騒音が発生するという問題がある。このような騒音の発生を防止する技術が、特許文献2〜4に開示されている。特許文献2では、PWM信号のデューティの大小関係により分類される複数のパターンに従って位相をシフトさせる場合に、デューティの大小関係が変化する点を境として隣り合う隣接パターン間で、デューティにヒステリシス特性を持たせている。特許文献3では、電流検出手段による電流検出が不可と判定された場合に、1制御周期内における所定相のPWM信号の位相を、すべてのPWM周期において同じ量だけシフトさせるようにしている。特許文献4では、1制御周期内において、位相シフト量をゼロから徐々に大きくし、またはゼロに向けて徐々に小さくしてゆくことで、PWM信号の位相を徐々にシフトさせるようにしている。
特開2010−279141号公報 特許第4833186号公報 特許第4884355号公報 特許第4884356号公報 特開2007−112416号公報 特開平10−155278号公報 特表2005−531270号公報 特開2001−95279号公報 米国特許第6735537号明細書
上述したモータ制御装置において、デューティの演算結果によっては、各相のPWM信号のデューティが、すべて50%付近となる場合がある。例えば、電動パワーステアリング装置では、ハンドルを切っていない状態(中立状態)において、各相のPWM信号のデューティが50%となる。
図11は、各相のデューティが50%付近にある場合の、モータ回転角度とデューティとの関係を示している。A相、B相、C相の各デューティは、いずれも50%を中心として、49%〜51%の範囲(50%±1%)で変化する。A相、B相、C相のデューティの大小関係は、60°間隔で入れ替わり、この大小関係は、#1〜#6の6つのパターンに分類することができる。各パターンと最大相、中間相、最小相との関係を、図12に示す。
図11のように、A相、B相、C相の各デューティが50%付近で変化していると、デューティが僅かに変化しただけで、パターンの遷移が生じる。例えば、現在のパターンをパターン#2とし、A相、B相、C相のそれぞれのデューティD、D、Dが、D=50.8%、D=50.1%、D=49.3%であるとする(D>D>D)。このとき、各相のPWM信号の位相シフト状態は、図13(a)のようになっている。なお、図13の各図では、各相の1PWM周期分のPWM信号が示されている。
この状態から、各相のデューティD、D、Dが、D=50.9%、D=49.2%、D=50.0%に変化したとすると、B相とC相のデューティの大小関係が入れ替わり、パターンは、パターン#2からパターン#3へ変化する(D>D>D)。このときの各相のデューティの変化量ΔD、ΔD、ΔDは、ΔD=0.1%、ΔD=−0.9%、ΔD=0.7%である。また、B相とC相のデューティの大小関係が入れ替わることで、各相のPWM信号の位相シフト状態は、図13(b)のように変化する。
また、パターン#2の状態から、各相のデューティD、D、Dが、D=49.8%、D=49.3%、D=50.9%に変化したとすると、A相とB相とC相のデューティの大小関係が入れ替わり、パターンは、パターン#2からパターン#4へ変化する(D>D>D)。このときの各相のデューティの変化量ΔD、ΔD、ΔDは、ΔD=−1.0%、ΔD=−0.8%、ΔD=1.6%である。また、A相とB相とC相のデューティの大小関係が入れ替わることで、各相のPWM信号の位相シフト状態は、図13(c)のように変化する。
以下同様にして、各相のデューティD、D、Dが僅かに変化することで、1つのパターンから他のすべてのパターンへの遷移が起こりうる。そして、この遷移に伴って、各相のPWM信号の位相シフト状態が、図13の(a)〜(f)間で変化し、位相シフト状態が頻繁に切り替わる。この切り替わりの周波数が、可聴周波数領域に含まれると、インバータ回路またはモータから騒音が発生するという問題がある。
一方、図14に示すように、各相のデューティが、いずれも50%を中心として、48%〜52%の範囲(50%±2%)で変化する場合は、デューティの僅かな変化によるパターン遷移の発生頻度が、図11の場合に比べて低くなる。例えば、現在のパターンをパターン#2とし、各相のデューティが50%±1%以内で変化した場合を考えると、パターン#2から遷移するパターンは、パターン#2に隣接するパターン#1およびパターン#3の2つだけとなる。パターン#3への遷移は、B相とC相のデューティの大小関係が入れ替わる場合であり、パターン#1への遷移は、A相とB相のデューティの大小関係が入れ替わる場合である。したがって、各相のPWM信号の位相シフト状態も、図13の(a)、(b)、(f)間で変化するのみとなる。
以上のことから、図11のように、各相のデューティが50%付近で変化している場合に、デューティの僅かな変化に伴って発生する騒音をどのように防止するかが重要となる。
本発明の課題は、このような騒音を低減したモータ制御装置を提供することにある。
本発明に係るモータ制御装置は、上下一対のアームが相数に対応して複数組設けられ、各相の上アームと下アームにそれぞれスイッチング素子を有し、各スイッチング素子のオン・オフに基づいてモータを駆動するインバータ回路と、このインバータ回路を通って流れるモータの電流を検出するための単一の電流検出手段と、この電流検出手段により検出された電流の電流値と目標電流値との偏差に基づき、各スイッチング素子をオン・オフさせるためのPWM信号のデューティを算出するデューティ算出手段と、このデューティ算出手段で算出されたデューティに基づいて、PWM信号を生成し、当該PWM信号を各スイッチング素子へ出力するPWM信号生成手段と、デューティ算出手段で算出されたデューティの大きさを比較し、その比較結果に基づいて、所定の相のPWM信号の位相をシフトさせる位相移動手段と、この位相移動手段による位相のシフト状態を維持する位相状態維持手段とを備えている。位相状態維持手段は、デューティ算出手段で算出されたすべての相のデューティが継続して50%である場合に、位相移動手段による位相のシフト状態を維持する。
このようにすると、各相のデューティが継続して50%の場合には、PWM信号の位相シフトが行なわれず、一旦シフトした位相状態が維持されるので、デューティが僅かに変化してもパターンの遷移が起こらない。このため、PWM信号の位相シフト状態が頻繁に切り替わることがなくなり、切り替わりの周波数が可聴周波数領域に含まれることによる騒音の発生を抑制することができる。
本発明において、位相状態維持手段は、デューティ算出手段で算出されたすべての相のデューティが、継続して、50%を含み上限が50%+αで下限が50%−βである所定値未満の範囲内にある場合に、位相移動手段による位相のシフト状態を維持するようにしてもよい。この場合、α=β=1%とし、所定値未満の範囲を51%〜49%としてもよい。
本発明において、位相状態維持手段は、各相のPWM信号の立ち上がりのタイミングが、電流検出手段による電流検出が可能な時間だけずれた状態で、位相移動手段による位相のシフト状態を維持するようにしてもよい。
本発明において、位相状態維持手段は、デューティ算出手段で算出された各相のデューティの最大値と最小値との差が、継続して所定値未満である場合に、位相移動手段による位相のシフト状態を維持するようにしてもよい。
本発明において、位相状態維持手段に代えて、デューティ算出手段で算出されたすべての相のデューティが継続して50%である場合に、位相移動手段により位相をシフトさせる頻度を減らす位相移動頻度低減手段を設けてもよい。
本発明において、位相状態維持手段に代えて、デューティ算出手段で算出された各相のデューティの最大値と最小値との差が、継続して所定値未満である場合に、位相移動手段により位相をシフトさせる頻度を減らす位相移動頻度低減手段を設けてもよい。
本発明によれば、PWM信号のデューティの変化に起因する騒音を低減したモータ制御装置を提供することができる。
本発明の実施形態に係るモータ制御装置の回路図である。 CPUの各部の相互関係を示したブロック図である。 モータ回転角度とデューティとの関係を示した図である。 図3のパターン#2における位相シフト状態を示した図である。 位相シフト処理の手順を示すフローチャートである。 シングルシャント方式によるモータ制御装置の一例を示した回路図である。 キャリア信号と各相のPWM信号を示したタイミングチャートである。 図7の一点鎖線で囲んだ部分の拡大図である。 電流検出区間W1におけるインバータ回路の電流経路を示した図である。 電流検出区間W2におけるインバータ回路の電流経路を示した図である。 モータ回転角度とデューティとの関係を示した図である。 図11の各パターンと最大相、中間相、最小相との関係を示したテーブルである。 各パターンに対応したPWM信号を示した図である。 モータ回転角度とデューティとの関係を示した図である。
以下、本発明の実施形態につき、図面を参照しながら説明する。図面では、同一の部分または対応する部分に、同一の符号を付してある。
まず、図1を参照して、モータ制御装置の構成について説明する。モータ制御装置100は、電源回路5とモータ6との間に設けられており、インバータ回路2、電流検出回路3、および制御部10を備えている。モータ6は、例えば車両の電動パワーステアリング装置に用いられる3相ブラシレスモータである。このモータ6の回転角度を検出するために、レゾルバなどの角度検出器7が設けられている。図1のモータ制御装置100の構成は、図6のモータ制御装置200の構成と基本的に同じであるが、制御部10の機能が、図6の制御部20の機能と異なっている(詳細は後述)。
制御部10は、CPU1とメモリ4とを備えている。CPU1は、キャリア信号生成部11、デューティ算出部12、PWM信号生成部13、デューティ比較部14、位相シフト量算出部15、位相移動部16、および位相移動可否判定部17を有している。メモリ4は、ROMやRAMなどを含む。インバータ回路2、電流検出回路3、および電源回路5は、図6で示したものと同じであるので、これらについての説明は省略する。
図2は、CPU1の各部11〜17の相互関係を示したブロック図である。実際には、これらの各部11〜17の機能は、ソフトウェアによって実現される。
キャリア信号生成部11は、図7で示したような鋸歯状のキャリア信号を生成する。デューティ算出部12は、電流検出回路3で検出されたモータ電流の電流値と、トルクセンサ(図示省略)より与えられる操舵トルクから算出した目標電流値との偏差、および、角度検出器7より与えられるモータ6の回転角度に基づいて、各相のPWM信号のデューティを算出する。PWM信号生成部13は、キャリア信号生成部11で生成されたキャリア信号と、デューティ算出部12で算出されたデューティとに基づいて、各相のPWM信号(図1のPWM1〜PWM6)を生成し、これらのPWM信号を位相移動部16を介してインバータ回路2へ出力する。
デューティ比較部14は、デューティ算出部12で算出された各相のデューティを比較し、デューティが最大の最大相、デューティが最小の最小相、およびデューティが中間の中間相を決定する。すなわち、各相のデューティを大きさによって順位付けする。位相シフト量算出部15は、デューティ比較部14での順位付け結果に基づいて、位相シフト量を算出する。位相移動部16は、位相シフト量算出部15で算出された位相シフト量に基づいて、PWM信号生成部13で生成された所定の相のPWM信号の位相をシフトさせる。位相移動可否判定部17は、デューティ算出部12で算出された各相のデューティに基づいて、位相移動部16による位相シフトの可否を判定する。
以上の構成において、シャント抵抗Rsは、本発明における「電流検出手段」の一例である。デューティ算出部12は、本発明における「デューティ算出手段」の一例である。PWM信号生成部13は、本発明における「PWM信号生成手段」の一例である。デューティ比較部14、位相シフト量算出部15、および位相移動部16は、本発明における「位相移動手段」の一例である。位相移動可否判定部17は、本発明における「位相状態維持手段」の一例である。
次に、上述したモータ制御装置100における位相シフト処理について説明する。図2において、デューティ算出部12で算出された各相のデューティは、デューティ比較部14で比較され、順位付けされる。この順位付け結果に基づいて、位相シフト量算出部15で位相シフト量が算出される。この位相シフト量に基づき、位相移動部16において、所定相のPWM信号の位相シフトが行われる。ここまでは、従来の動作と同じである。一方、位相移動可否判定部17は、デューティ算出部12で算出されたA相、B相、C相の各デューティを監視する。そして、すべての相のデューティが、継続して図3に示したZの範囲内にある場合、位相移動可否判定部17は、位相シフトが不可であると判定し、その後、位相移動部16に対し、現在の位相シフト状態を維持するための位相状態維持信号を出力する。これにより、位相移動部16ではPWM信号の位相シフトが行われず、現在の位相シフト状態が維持される。すなわち、すべての相のデューティが、継続して図3のZの範囲内にある間は、一旦シフトさせた位相を、さらにシフトさせることなく、そのまま維持する。
ここで、Zは、50%を含み上限が50%+αで下限が50%−βである所定値未満の範囲である。αとβは、同じ値であってもよいし、異なる値であってもよい。また、αとβは0%も含む。αとβが共に0%の場合は、A相、B相、C相のすべての相のデューティが50%である場合のみ、位相シフト状態が維持される。図3の例では、α=β=1%であって、Z=51%〜49%となっている。したがって、A相、B相、C相のすべての相のデューティが51%〜49%の範囲内にあれば、位相シフト状態が維持される。
このように、本実施形態では、各相のデューティが50%の場合、または、各相のデューティが50%を含む所定範囲Z内にある場合は、位相シフト状態が維持される。このため、たとえデューティが50%付近で僅かに変化したとしても、パターンの遷移が起こらない。したがって、PWM信号の位相シフト状態が頻繁に切り替わることがなくなるので、切り替わりの周波数が可聴周波数領域に含まれることによるインバータ回路2やモータ6の騒音を低減することができる。
ところで、上記のように位相シフト状態が維持されることで、現在のパターンにおける各相間の位相関係が維持される。例えば、現在のパターンがパターン#2であれば、図4に示した位相関係が維持される。図4は、図13(a)と同じものである。この場合、A相、B相、C相の各PWM信号の立ち上がりのタイミングが、シャント抵抗Rsによる電流検出が可能な時間だけずれている。したがって、十分な電流検出区間W1、W2を確保することができるので、位相シフトの行われない状態がその後も継続したとしても、モータ電流の検出に支障は生じない。
図5は、上述した位相シフト処理において、CPU1が実行する処理を表したフローチャートである。このフローチャートの一連の手順は、1制御周期ごとに繰り返し実行される。
ステップS1では、1つ前の制御周期において検出された各相の電流値等に基づいて、デューティ算出部12で、A相、B相、C相の各デューティを算出する。
ステップS2では、位相移動可否判定部17により、位相シフトの可否が判定される。詳しくは、位相移動可否判定部17は、ステップS1で算出された各相のデューティが、継続してすべて図3の所定範囲Z内にあるか否かを判定する。前回の判定において、各相のデューティの一部または全部が所定範囲Z内にないと判定され、今回の判定において、各相のデューティの全部が所定範囲Z内にあると判定された場合(ステップS2;NO)は、全デューティが継続して所定範囲Z内にないので、位相移動可と判断して、ステップS3へ進む。これにより、後述するように、電流検出ができるようになる。また、前回の判定において、各相のデューティの全部が所定範囲Z内にあると判定され、今回の判定においても、各相のデューティの全部が所定範囲Z内にあると判定された場合(ステップS2;YES)は、全デューティが継続して所定範囲Z内にあるので、位相移動不可と判断して、ステップS3およびS4を実行することなく、ステップS5へ移行する。このとき、すでに位相はシフトされており、このシフト状態が維持されるので、電流を検出することができる。なお、前回の判定結果が、各相のデューティの一部または全部が所定範囲Z内にないという判定であれば(ステップS2;NO)、今回の判定結果にかかわらず位相移動可と判断して、ステップS3へ進む。
ステップS3では、デューティ比較部14で、ステップS1で算出された各相のデューティの大きさを比較して、デューティの順位付けを行う。すなわち、最大相、中間相、最小相を決定する。
ステップS4では、ステップS3での順位付けの結果から、位相シフト量算出部15で、最大相、中間相、最小相の位相シフト量を算出する。
ステップS5では、ステップS1で算出されたデューティと、ステップS4で算出された位相シフト量とに基づいて、PWM信号生成部13でPWM信号を生成する。
ステップS6では、電流検出区間W1、W2において、シャント抵抗Rsに流れる最大相と最小相の電流の値を検出する。
ステップS7では、ステップS6で検出した2相の電流値を用いて、残りの中間相の電流値を演算により求める。
本発明では、以上述べた以外にも種々の実施形態を採用することができる。例えば、前記の実施形態では、図3におけるαとβを共に1%とし、所定範囲Zを51%〜49%とした。しかし、これは一例であって、αとβは、モータ6の特性に応じて、任意の値(例えば0.5%)に設定することができる。なお、αとβの範囲は、2%>α≧0%、2%>β≧0%であるのが好ましい。
また、前記の実施形態では、位相移動可否判定部17を設け、この位相移動可否判定部17から位相移動部16へ位相状態維持信号を出力することにより、位相のシフト状態を維持したが、本発明はこれに限定されない。例えば、デューティ比較部14で各相のデューティを比較した結果、各相のデューティがすべて所定範囲Z内にあれば、位相シフト量算出部15が位相移動部16へ位相シフト量を出力しないようにしてもよい。このようにしても、位相移動部16で位相シフトが行われず、位相シフト状態を維持することができる。この場合は、位相移動可否判定部17は不要となり、デューティ比較部14と位相シフト量算出部15が、本発明における「位相状態維持手段」を構成する。
また、前記の実施形態では、位相移動部16により、直接、PWM信号の位相をシフトさせたが、各相ごとに生成したキャリア信号の位相をシフトさせることで、結果的にPWM信号の位相をシフトさせてもよい。この場合は、図2において、キャリア信号生成部11とPWM信号生成部13との間に、位相移動部16を設ければよい。
また、位相シフトにあたって、図7の例では、最大相を基準として、中間相と最小相を電流検出可能な所定量だけシフトさせているが、本発明はこれに限定されない。例えば、特許文献1にも記載されているように、中間相を基準として、最大相と最小相を電流検出可能な所定量だけシフトさせてもよいし、最小相を基準として、最大相と中間相を電流検出可能な所定量だけシフトさせてもよい。
また、前記の実施形態では、各相のデューティのすべてが継続して所定範囲Z内にあれば、位相移動不可と判断し、位相シフト状態を維持したが、本発明はこれに限定されない。例えば、各相のデューティのすべてが継続して所定範囲Z内にある場合は、各相のデューティの一部または全部が所定範囲Z内にない場合に比べ、位相をシフトさせる頻度を減らすようにしてもよい。例えば、通常時は、デューティの演算の度に、位相のシフト量を算出するが、各相のデューティのすべてが継続して所定範囲Z内にある場合は、デューティを2回演算する度に、1回だけ位相シフト量を演算するようにしてもよい。
また、上記の方法に代えて、デューティ算出部12で算出された各相のデューティの最大値と最小値との差が、継続して所定値Z’未満である場合に、位相シフト状態を維持するようにしてもよい。あるいは、デューティ算出部12で算出された各相のデューティの最大値と最小値との差が、継続して所定値Z’未満である場合に、前記と同様に位相をシフトさせる頻度を減らすようにしてもよい。
また、前記の実施形態では、3相モータの制御装置について述べたが、本発明は、3相モータに限らず、4相以上の多相モータの制御装置にも適用することができる。この場合、インバータ回路2においては、上下一対のアームが相数に応じて複数組設けられる。
また、前記の実施形態では、インバータ回路2のスイッチング素子Q1〜Q6としてFETを例に挙げたが、IGBT(絶縁ゲート型バイポーラモードトランジスタ)のような他のスイッチング素子を使用してもよい。
また、前記の実施形態では、モータ6としてブラシレスモータを例に挙げたが、本発明はこれ以外のモータを制御する場合にも適用することができる。
さらに、前記の実施形態では、車両の電動パワーステアリング装置に用いられるモータ制御装置を例に挙げたが、本発明はこれ以外の装置に用いられるモータ制御装置にも適用することができる。
1 CPU
2 インバータ回路
3 電流検出回路
6 モータ
10 制御部
12 デューティ算出部(デューティ算出手段)
13 PWM信号生成部(PWM信号生成手段)
14 デューティ比較部(位相移動手段)
15 位相シフト量算出部(位相移動手段)
16 位相移動部(位相移動手段)
17 位相移動可否判定部(位相状態維持手段)
100 モータ制御装置
a1、a3、a5 上アーム
a2、a4、a6 下アーム
Q1〜Q6 スイッチング素子
Rs シャント抵抗(電流検出手段)

Claims (7)

  1. 上下一対のアームが相数に対応して複数組設けられ、各相の上アームと下アームにそれぞれスイッチング素子を有し、各スイッチング素子のオン・オフに基づいてモータを駆動するインバータ回路と、
    前記インバータ回路を通って流れる前記モータの電流を検出するための単一の電流検出手段と、
    前記電流検出手段により検出された電流の電流値と目標電流値との偏差に基づき、前記各スイッチング素子をオン・オフさせるためのPWM信号のデューティを算出するデューティ算出手段と、
    前記デューティ算出手段で算出されたデューティに基づいて、前記PWM信号を生成し、当該PWM信号を前記各スイッチング素子へ出力するPWM信号生成手段と、
    前記デューティ算出手段で算出されたデューティの大きさを比較し、その比較結果に基づいて、所定の相のPWM信号の位相をシフトさせる位相移動手段と、を備えたモータ制御装置において、
    前記位相移動手段による位相のシフト状態を維持する位相状態維持手段をさらに備え、
    前記位相状態維持手段は、前記デューティ算出手段で算出されたすべての相のデューティが継続して50%である場合に、前記位相移動手段による位相のシフト状態を維持する、ことを特徴とするモータ制御装置。
  2. 請求項1に記載のモータ制御装置において、
    前記位相状態維持手段は、前記デューティ算出手段で算出されたすべての相のデューティが、継続して、50%を含み上限が50%+αで下限が50%−βである所定値未満の範囲内にある場合に、前記位相移動手段による位相のシフト状態を維持する、ことを特徴とするモータ制御装置。
  3. 請求項2に記載のモータ制御装置において、
    前記αおよび前記βは、α=β=1%であって、前記所定値未満の範囲が51%〜49%である、ことを特徴とするモータ制御装置。
  4. 請求項1ないし請求項3のいずれかに記載のモータ制御装置において、
    前記位相状態維持手段は、各相のPWM信号の立ち上がりのタイミングが、前記電流検出手段による電流検出が可能な時間だけずれた状態で、前記位相移動手段による位相のシフト状態を維持する、ことを特徴とするモータ制御装置。
  5. 請求項1に記載のモータ制御装置において、
    前記位相状態維持手段は、前記デューティ算出手段で算出された各相のデューティの最大値と最小値との差が、継続して所定値未満である場合に、前記位相移動手段による位相のシフト状態を維持する、ことを特徴とするモータ制御装置。
  6. 請求項1に記載のモータ制御装置において、
    前記位相状態維持手段に代えて、
    前記デューティ算出手段で算出されたすべての相のデューティが継続して50%である場合に、前記位相移動手段により位相をシフトさせる頻度を減らす位相移動頻度低減手段を備えた、ことを特徴とするモータ制御装置。
  7. 請求項1に記載のモータ制御装置において、
    前記位相状態維持手段に代えて、
    前記デューティ算出手段で算出された各相のデューティの最大値と最小値との差が、継続して所定値未満である場合に、前記位相移動手段により位相をシフトさせる頻度を減らす位相移動頻度低減手段を備えた、ことを特徴とするモータ制御装置。
JP2013183332A 2013-09-04 2013-09-04 モータ制御装置 Pending JP2015050909A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013183332A JP2015050909A (ja) 2013-09-04 2013-09-04 モータ制御装置
CN201410445982.5A CN104426436A (zh) 2013-09-04 2014-09-03 电机控制装置
DE102014217585.2A DE102014217585A1 (de) 2013-09-04 2014-09-03 Motorsteuerungsvorrichtung
US14/477,467 US9337755B2 (en) 2013-09-04 2014-09-04 Motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183332A JP2015050909A (ja) 2013-09-04 2013-09-04 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2015050909A true JP2015050909A (ja) 2015-03-16

Family

ID=52470785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183332A Pending JP2015050909A (ja) 2013-09-04 2013-09-04 モータ制御装置

Country Status (4)

Country Link
US (1) US9337755B2 (ja)
JP (1) JP2015050909A (ja)
CN (1) CN104426436A (ja)
DE (1) DE102014217585A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155391B (zh) * 2014-12-19 2019-11-12 日本精工株式会社 电动机控制装置及使用了该电动机控制装置的电动助力转向装置
CN105375838B (zh) * 2015-11-12 2018-02-06 珠海格力节能环保制冷技术研究中心有限公司 电机相位的控制电路和方法
JP6629056B2 (ja) * 2015-12-02 2020-01-15 株式会社ミツバ モータ駆動装置及びモータ駆動装置の制御方法
KR20170067934A (ko) * 2015-12-08 2017-06-19 현대자동차주식회사 모터 제어 장치
JP6583000B2 (ja) * 2016-01-07 2019-10-02 株式会社デンソー 回転電機の制御装置
JP6750386B2 (ja) * 2016-08-12 2020-09-02 株式会社デンソー 回転電機の故障検出装置
JP6723197B2 (ja) * 2017-05-31 2020-07-15 ミネベアミツミ株式会社 モータ駆動制御装置及びモータの駆動制御方法
DE102018200085A1 (de) 2018-01-04 2019-07-04 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Synchronmaschine
US10581351B2 (en) * 2018-01-24 2020-03-03 Texas Instruments Incorporated Method to reduce the commutation loss in a motor inverter
US10693454B2 (en) * 2018-05-24 2020-06-23 Infineon Technologies Austria Ag Signals for the control of power devices
CN111525868B (zh) * 2020-05-09 2021-09-24 苏俊 一种三相逆变器移相方法和系统以及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531270A (ja) * 2002-06-07 2005-10-13 ティーアールダブリュー・リミテッド 空間ベクトル技法を使用する単一電流センサによるモータ駆動制御
JP2007112416A (ja) * 2005-09-22 2007-05-10 Jtekt Corp 車両用操舵装置
JP2010279141A (ja) * 2009-05-28 2010-12-09 Omron Automotive Electronics Co Ltd 電動機制御装置
JP2012070591A (ja) * 2010-09-27 2012-04-05 Toshiba Corp モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752111B1 (fr) 1996-07-30 1998-10-30 Texas Instruments France Procede et dispositif de commande d'onduleurs
US5874818A (en) * 1997-06-11 1999-02-23 Agile Systems, Inc. Method and apparatus for sensing load current in a motor controller
GB9920988D0 (en) 1999-09-07 1999-11-10 Trw Lucas Varity Electric Motor control
US6735537B2 (en) 2002-03-15 2004-05-11 Motorola, Inc. Procedure for measuring the current in each phase of a three-phase device via single current sensor
JP4884355B2 (ja) 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
JP4884356B2 (ja) 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
JP4833186B2 (ja) 2007-11-27 2011-12-07 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
US8358098B2 (en) * 2009-08-10 2013-01-22 Emerson Climate Technologies, Inc. System and method for power factor correction
CN103210577A (zh) * 2010-11-10 2013-07-17 国产电机株式会社 旋转电机的控制装置
JP5848070B2 (ja) * 2010-12-27 2016-01-27 アスモ株式会社 ブラシレスモータ制御装置、及びブラシレスモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531270A (ja) * 2002-06-07 2005-10-13 ティーアールダブリュー・リミテッド 空間ベクトル技法を使用する単一電流センサによるモータ駆動制御
JP2007112416A (ja) * 2005-09-22 2007-05-10 Jtekt Corp 車両用操舵装置
JP2010279141A (ja) * 2009-05-28 2010-12-09 Omron Automotive Electronics Co Ltd 電動機制御装置
JP2012070591A (ja) * 2010-09-27 2012-04-05 Toshiba Corp モータ制御装置

Also Published As

Publication number Publication date
US20150061555A1 (en) 2015-03-05
US9337755B2 (en) 2016-05-10
CN104426436A (zh) 2015-03-18
DE102014217585A1 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
JP2015050909A (ja) モータ制御装置
JP4884356B2 (ja) 多相電動機の制御装置
JP4884355B2 (ja) 多相電動機の制御装置
JP5252475B2 (ja) 多相電動機の制御装置
JP6099148B2 (ja) モータ制御装置
US8816612B2 (en) Controller for multi-phase rotary device
JP5398356B2 (ja) 電動機制御装置
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP5655975B1 (ja) 多相モータの制御装置及びそれを用いた電動パワーステアリング装置
US20200382042A1 (en) Current detection device and electric power steering device
JP4833186B2 (ja) 多相電動機の制御装置
JP6132306B2 (ja) モータ制御装置
JP2019080465A (ja) 電流検出装置
JP2009124782A (ja) 多相電動モータ制御装置
JP6127895B2 (ja) モータ制御装置及びモータ制御方法
JP5252476B2 (ja) 多相電動機の制御装置
JP2009118681A (ja) 多相電動機の制御装置
JP5611181B2 (ja) モータ制御装置
JP6139394B2 (ja) モータ制御装置
JP6232579B2 (ja) モータ駆動装置
JP7107252B2 (ja) 電力変換装置
JP2020115719A (ja) 電力制御方法、及び、電力制御装置
JP2015130714A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228