JP2014509832A - 電源制御器 - Google Patents

電源制御器 Download PDF

Info

Publication number
JP2014509832A
JP2014509832A JP2014502883A JP2014502883A JP2014509832A JP 2014509832 A JP2014509832 A JP 2014509832A JP 2014502883 A JP2014502883 A JP 2014502883A JP 2014502883 A JP2014502883 A JP 2014502883A JP 2014509832 A JP2014509832 A JP 2014509832A
Authority
JP
Japan
Prior art keywords
voltage
signal
generate
output
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014502883A
Other languages
English (en)
Other versions
JP5960246B2 (ja
Inventor
グルボ、ゼルジコ
プロディック、アレクサンダー
カロボランテ、フランセスコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2014509832A publication Critical patent/JP2014509832A/ja
Application granted granted Critical
Publication of JP5960246B2 publication Critical patent/JP5960246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

例示的な実施形態は電力制御器を対象とする。方法は、比較器出力信号を生成するために、増幅された誤差電圧と基準電圧との合計を備える合計電圧を推定電圧と比較することを含み得る。本方法はまた、比較器出力信号からゲート駆動信号を生成することと、推定電圧を生成するために、電力段に結合された信号をフィルタ処理することとを含み得る。

Description

本発明は、一般に電源に関し、より詳細には、スイッチモード電源の制御器に関係するシステム、デバイス、および方法に関する。
スイッチモード電源制御器に関しては、負荷過渡事象(load transient)からの速い回復と、出力フィルタサイズの最小化と、単純な実装とが基本的に重要である。これらの問題は、わずかなワットから数百ワットまでの電力を消費する、モバイルデバイス、コンシューマーエレクトロニクス、および多数の他のアプリケーションに供給する低電力大容量システムでは特に重要である。従来のヒステリシス実装形態では、大電流ストレス、ならびに、過度に大きいエネルギー慣性によって生じる安定性に関連した問題を受ける。さらに、時間最適な制御器は応答の改善をもたらすが、そのようなシステムの実装に必要なハードウェアは、ターゲットにされるコスト敏感なシステムに関しては過度に高価である。結果として、線形の制御法則を実装するパルス幅変調(PWM)制御器は、著しくより遅い動的応答を示し、結果として著しく大きいフィルタ処理の構成要素を必要とするにもかかわらず、主として使用されている。
電源の制御に関係する質を向上した方法、システム、およびデバイスの要求が存在する。
スイッチモード電源のブロック図。 スイッチモード電源内の従来の制御器を示す図。 スイッチモード電源内の従来の制御器を示す図。 本発明の例示的な実施形態による、制御器に結合された変換器を示す図。 本発明の例示的な実施形態による、制御器を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に結合されたバック電力段(buck power stage)に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 時間誤差を示す図。 本発明の例示的な実施形態による、制御器に結合された別の変換器を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 本発明の例示的な実施形態による、制御器のシミュレーション結果を示す図。 4ビットシフトレジスタに基づく擬似ランダムデータ生成器を示す図。 ディレイラインを示す図。 定常状態における従来の変換器に関連する波形を示す図。 従来の変換器の入力電流のスペクトルを描くプロット。 繰返し負荷過渡事象の下での従来の変換器に関連する波形を示す図。 従来の変換器の入力電流のスペクトルを描くプロット。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器の入力電流のスペクトルを描くプロット。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 本発明の例示的な実施形態による、制御器の入力電流のスペクトルを描くプロット。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 本発明の例示的な実施形態による、制御器に関連する波形を示す図。 比較器の回路図。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 本発明の例示的な実施形態による、制御器に関連するさらなる波形を示す図。 本発明の例示的な実施形態による、制御器のオンチップ実装形態のブロック図。 本発明の例示的な実施形態による、別の方法を示すフローチャート。
添付の図面と関連して以下で明らかにされる詳細な説明は、本発明の例示的な実施形態を説明することを意図し、本発明が実施され得る唯一の実施形態を表すことを意図しない。本件開示全体にわたって使用する「例示的」という用語は、「例、事例、または例示として役に立つこと」を意味し、必ずしも他の例示的な実施形態よりも好ましいまたは有利であると解釈すべきではない。詳細な説明は、本発明の例示的な実施形態の完全な理解を与える目的のための具体的な詳細を含む。本発明の例示的な実施形態はこれらの具体的な詳細なしに実施され得ることは当業者には明らかである。いくつかの事例では、ここで提示される例示的な実施形態の新規性を不明瞭にすることを避けるために、よく知られている構造およびデバイスがブロック図の形式で示される。
図1は、電力段102と制御器104とを含む従来のスイッチモード電源(SMPS:switch-mode power supply)100を図示する。当業者によって理解されるように、スイッチモード電源に関しては、負荷過渡事象からの速い回復と、出力フィルタサイズの最小化と、単純な制御器実装とが基本的に重要である。これらの問題は、モバイルデバイス、コンシューマーエレクトロニクス、およびわずかなワットから数百ワットまでの電力を消費する多数の他のアプリケーションに供給する低電力、大容量システムにおいて特に重要である。
線形比例積分(PI)または比例積分微分(PID)制御の法則を実装する、主に使用されている電圧モードパルス幅変調(PWM)制御器の代替として、過渡応答が改善された制御器を開発するための多数の解決策が提案されている。すなわち、様々なヒステリシスおよび時間最適による制御器のアーキテクチャ、実相の簡略化および負荷過渡応答時間の改善となる、が各々報告されている。ヒステリシス制御器は、少数の構成要素を用いて速い過渡応答を得るためのハードウェア効率的な解決策であることがわかっている。そのような制御器の実現には、通常、ヒステリシスによる比較器、および、場合によっては、周波数調整のための追加の回路が必要とされ、そしてそれはしきい値変化またはサンプリングレートの変化を通して行われることができる。従来のヒステリシス実装形態の主要な欠点は、半導体のスイッチとフィルタ処理構成要素との過剰設計を必要とする過度に大きい電流ストレス、ならびに、過度に大きいエネルギー慣性によって生じる安定性に関連した問題である。
さらに、一回のオンオフ・スイッチング動作における定常状態の達成(すなわち、速い回復時間)を期待して近接時間最適な制御器が提案されている。初期に、時間最適なシステムがアナログの解決策として開発され、それは2次のスイッチング面(すなわち、幾何学的な制御原理)を使用しており、そしてそれはスライディングモード制御にも関係し得る、た。スイッチング面ベースの制御器は、制御対象(すなわち、スイッチング電力変換器)の(状態値の可能な組合せに従う)1つまたは複数の状態変数のための経路を定義し、それに応じて、状態を経路に従わせる。1次のスイッチング面制御器の最も単純な例はヒステリシス制御器であり、そしてそこでは出力電圧の状態が比較器の基準値によって規定される。2次のシステムでは、出力電圧に加えて、インダクタ電流もしばしば制御される。制御されるインダクタ電流は、直接測定されるか、あるいは出力キャパシタ電流または電圧を測定することによって推定される。
2次のスイッチング面ベースの制御器は、何年も前に提案されたが、広く採用されていない。このことは、大部分は、それらの実装に必要なアルゴリズムが複雑であり、それが制御器をアナログの実現に適さないものとしており、それが低電力dc−dc変換器において優勢である、ことに起因する。低電力dc−dc変換器のデジタル制御における最近の進歩は、スイッチング面ベースの制御器のプロトタイプの開発が可能とし、ほぼ時間最適な応答となった。同進歩は、キャパシタ電荷平衡原理に基づく、時間最適な応答を得るための代替制御アルゴリズムの開発を可能とした。
さらに、提示された時間最適な制御器は、応答の改善をもたらす(すなわち、出力フィルタサイズを大幅に低減する)こととなったが、低電力dc−dcシステムでは広く採用されていない。そのようなシステムの実装に必要なハードウェアは、ターゲットにされるコストに敏感なシステムに関しては過度に高価である。結果として、図2に示されるパルス幅変調(PWM)制御器106および108と同様のPWM制御器が依然として主に使用されている。それらは著しくより遅い動的応答を示し、結果として、著しく大きいフィルタ処理構成要素(すなわち、パワーインダクタLおよび出力キャパシタC)を必要とするが、PWM制御器は、それらの実装が簡単であるためにより望ましい解決策である。
ここで説明される、本発明の様々な例示的な実施形態は、スイッチモード電源内の制御のためのシステム、デバイス、および方法に関する。本発明の実施形態は、多くの電力変換トポロジー、ならびに信号の非線形のまたはスイッチモードの増幅に適用可能であることに留意されたい。ここで説明される例示的な実施形態は、過渡応答時間を改善する(すなわち、システムダイナミクスを改善する)ハードウェアの効率的な制御解決策を提供し得る。例示的な実施形態による制御器は、電圧モードのPWMの実現またはD級増幅に必要とされるハードウェアに匹敵するかまたはそれよりも一層単純なハードウェアを用いて実装され得る。さらに、例示的な実施形態は、SMPS電磁干渉(EMI)を低減することができ、それは多数の雑音敏感アプリケーションにおいて極めて重要な特徴であり得る
図3は、本発明の例示的な実施形態による、制御器302と電力段301とを含むデバイス300を図示する。ここでは1ビット制御器と呼ばれる制御器302は、加算器304と、増幅器306と、加算器308と、比較器310と、プログラマブル・ディレイライン(delay line)ディレイライン312と、インバータ314と、低域フィルタ316とを含む。例として、低域フィルタ316は1次低域フィルタを備え得る。電力段301は、入力電圧Vbattと、インダクタLと、キャパシタCと、負荷318と、第1のトランジスタMS(すなわち、メインスイッチ(main switch))と、第2のトランジスタSR(同期整流器(synchronous rectifier))と、ゲートドライバ320および322と、出力電圧Voutとを備える。
図3に図示されるように、加算器304は、基準電圧Vrefと出力電圧Voutとの各々を受信し、それに応答して、誤差信号E(t)を出力するように構成される。増幅器306は、誤差信号E(t)を増幅するように構成され、誤差信号E(t)は、次いで加算器308によって受信される。増幅器306はデバイス301内の誤差を低減し得ることに留意されたい。誤差がアプリケーションによって許容できる場合、増幅器306は省略され得る(すなわち、利得は1に等しい)ことに留意されたい。加算器308はまた、基準電圧Vrefを受信し、それに応答して、電圧Vcmpを出力し、電圧Vcmpは比較器310の反転入力に与えられる。比較器310の非反転入力は、低域フィルタ316から出力された推定電圧Vestを受け取るように構成される。比較器310から出力された信号b(t)はプログラマブルディレイライン・ディレイライン312に与えられ、プログラマブル・ディレイラインディレイライン312の出力はインバータ314に与えられる。インバータ314は信号δ(t)を伝達するように構成され、信号δ(t)は低域フィルタ316によって受けとられる。
プログラマブルディレイライン・ディレイライン312と、インバータ314と、比較器310と、フィルタ316とは、電力段のエミュレータ313を形成し、定常状態では、フィルタ316の出力における信号(すなわち、Vest)は出力電圧Voutと実質的に同じであることに留意されたい。エミュレータ313と電力段301、この場合、2次のシステムである、との間の1つの差異は、エミュレータ313が低次のダイナミクスを有し、推定された電圧Vest、そして、結果として、所望の基準電圧Vrefでの出力電圧Voutの調整の簡略化が可能になることである。本回路のこの部分の異なる実装は、項の組合せを表す最後の等式が一貫している(すなわち、1つの項が反転した信号との比較の他の入力に加算され得る、など)限り、達成され得る。この実装形態では、推定電圧Vestは、所望の出力電圧と実質的に同様であり、それは比較器310とディレイラインディレイライン312とからなるループによってそのレベルに保たれる。基準電圧と推定器出力電圧と変換器出力電圧との異なる比は、変数を適切にスケーリングすることによって取得され得る。ディレイラインディレイライン312は、比較器がトリガするレイテンシ、結果として、ループの発振周波数(すなわち、変換器のスイッチング周波数)を決定するように構成され得る。
さらに、インバータ314から出力された信号δ(t)は、比較器310の出力b(t)と実質的に同じデューティレシオと、エミュレータ313にフィードフォワードを与える入力電圧Vbattに等しい振幅とを有することに留意されたい。例示的な一実施形態によれば、信号δ(t)の波形は、電力段301のスイッチング電圧Vswと実質的に同様である。信号δ(t)の波形は、エミュレータ313と、出力電圧Voutの擾乱の両方の影響を受け得る。定常状態では(すなわち、VoutとVrefとの間の差が実質的に0であるとき)、信号δ(t)のデューティレシオは完全にエミュレータ313によって決定される。負荷過渡事象、および出力電圧Voutの値を変化させる他の擾乱の間に、デューティレシオ信号δ(t)はまた、誤差信号E(t)の影響を受け得、それは所望の基準電圧Vrefと出力電圧Voutの実効値との間の差を表す。非0誤差が発生するとすぐに、誤差信号E(t)は増幅され、比較器の反転入力310に加算される。その結果、補償器のレイテンシ、それは従来の制御器では存在しうる、は、積分動作により、除去されることができ、信号δ(t)のデューティレシオが影響を受け、擾乱に対する実質的に瞬時の反応(すなわち、出力電圧の速い回復)が達成される。必要ではないが、ディレイラインディレイライン312は制御器302の自励発振周波数を微調整することに留意されたい。さらに、制御器302は、単極システムを備具備することができ、それは本質的に安定であることに留意されたい。当業者なら諒解するように、制御器302は、補償器を含むシステムよりも高速であり得る。
図4は、制御器352を図示すし、それは図3に示される制御器302の1つの企図された実装形態である。図4に図示されるように、制御器352は、抵抗器RfおよびキャパシタCfを備えるフィルタ(すなわち、低域フィルタ316)と、第1の増幅器354と、第2の増幅器356とを備える。制御器352はさらに、インバータ314に結合された出力を有するプログラマブル・ディレイライン312を含む。その上、出力電圧Voutと基準電圧Vrefとは第1の増幅器354に結合されることができ、インバータ314の出力は電力段(たとえば、電力段301)のゲートドライバに与えられることができる。制御器352はさらに、増幅の手段354を含むことができ、それは図示のように、あるいは他の手段で演算増幅器を用いて実装されることができ、および、増幅が必要でない場合、単に比較器356の加算入力であり得る。非限定的な例として、抵抗器Rfは1Kオーム抵抗を備え得、抵抗R2は1Mオーム抵抗を備え得、抵抗R3は100Kオーム抵抗を備え得、キャパシタCfは2nFキャパシタを備え得る。
上記で説明されたように、定常状態における制御器302の動作は、RCフィルタ316とともに電力段のエミュレータ313を形成するデジタルプログラマブルディレイライン312を備えたフィードフォワード調整発振器によって調整され得る。
デバイス300のモデル(図示せず)のシミュレーション結果、ここにおいて電力段301のインダクタLが0.3μHを備え、電力段301のキャパシタCが4.7μFを備える、が図6〜図10に示されている。図3、図4、および図5に関して、波形362はフィルタ316のキャパシタCfにおける電圧を表し、波形364は信号δ(t)を表し、波形366は入力電圧Vbattを表す。低域フィルタの出力(すなわち、Vest)、それは信号362によって示される、は、スイッチングノードにおける平均電圧(すなわち、電圧Vswt)はもちろん出力電圧Voutを近似する値を有することに留意されたい。
図6〜図9は、いくつかの様々な出力キャパシタおよび入力電圧値についての制御器302の負荷過渡応答を示し、ここにおいて入力電圧Vbattが出力電圧Voutよりもわずかに高い場合を含んでおり、インダクタスルーレートを極めて小さくしている。特に、図7は、1Aと3Aとの間の負荷の変動と、4.7μFの電力段出力キャパシタ(すなわち、キャパシタC)の値に関する、6V〜2Vバック変換器(buck converter)のシミュレーション結果を図示する。図3、図4、および図7に関して、波形368は出力電圧Voutを表し、波形370はインダクタLにおける電流を表し、波形372は信号δ(t)を表す。
図7は、0.68Aと2.68Aとの間の負荷の変動と、22μFの電力段出力キャパシタ(すなわち、キャパシタC)の値に関する、6V〜0.9Vバック変換器のシミュレーション結果を図示する。図3、図4、および図7に関して、波形374は出力電圧Voutを表し、波形376はインダクタLにおける電流を表し、波形378は信号δ(t)を表し、波形380は入力電圧Vbattを表す。図8は、2Vと1.5Vとの間のステップ入力電圧変化に関するバック変換器のシミュレーション結果を図示する。図3、図4、および図8に関して、波形382は出力電圧Voutを表し、波形384はインダクタLにおける電流を表し、波形386は信号δ(t)を表し、波形388は入力電圧Vbattを表す。図9は、3Vと6Vとの間の線形入力電圧変化に関するバック変換器のシミュレーション結果を図示する。図3、図4、および図9に関して、波形390は出力電圧Voutを表し、波形392はインダクタLにおける電流を表し、波形394は信号δ(t)を表し、波形396は入力電圧Vbattを表す。図10は、不足電圧状態を含む、0.5Vと6Vとの間の入力電圧Vbatt変動に関する0.9Vバック変換器のシミュレーション結果を図示する。図10に関して、波形398は出力電圧Voutを表し、波形400はインダクタLにおける電流を表し、波形402は信号δ(t)を表し、波形404は入力電圧Vbattを表す。
過渡事象中に、増幅器306は、比較器310の非反転入力を実質的に瞬時に変化させ、制御器302の実質的に即時の動作と、過渡事象の抑制とを引き起し得る。当業者なら諒解するように、制御器302は、単一のオンオフのスイッチング動作を通して定常状態に回復し得る。図示の過渡応答は、他のプロキシマル時間最適解決策の過渡応答に匹敵し、著しい電流オーバーシュート、それはヒステリシス実装形態では存在し得る、を有しないことに留意されたい。図8〜図10に図示されたシミュレーションの結果は、制御器302が入力電圧Vbattに関する擾乱を迅速に補償することが可能であることを実証する。これらのシミュレーションはさらに、制御器302が短期間にわたって入力電圧Vbattが出力電圧Voutを下回る不足電圧状態から回復することが可能であることを示している。
次に、電力段301内の構成要素の選択について説明する。電力段の構成要素の選択に関係する以下の説明は一例として与えられ、例示的な実施形態は任意の好適な構成要素を備え得ることに留意されたい。デバイス300に関して、電流および電圧のオーバーシュートは電力段301の物理的な制約に依存し得ることに留意されたい。したがって、電力段の構成要素の選択は、適切なシステム設計と、フィルタ処理の構成要素の全体的なサイズを最小限に抑えることと、半導体およびフィルタ構成要素に対するストレスを制限することとのために重要であり得る。この選択は、エネルギー平衡の基準に基づき、ここで最大出力電圧偏差と最大電流ストレス(すなわち、最大インダクタ電流の差異)が設計制約として取られる。この分析の初期ポイントとして、キャパシタCの最大許容電圧偏差中のエネルギー損失Ecの量が次式によって与えられ、
Figure 2014509832
ここで、vhおよびvlは、それぞれ最大および最小許容出力電圧(すなわち、出力電圧Vout)値である。
負荷過渡事象中に、インダクタLから同じ量のエネルギーを与えることによってキャパシタCでの電圧が回復され、したがって、エネルギー平衡方程式は次のようになり、
Figure 2014509832
ここで、ihおよびilは、それぞれインダクタLを通る最大電流および最小電流として定義される。
たとえば、6V〜2Vバック変換器に関して、重いから軽いへの負荷過渡事象中に2Aの最大値負荷変動と150mVのオーバーシュートに対して、インダクタLが0.3μHに等しい値を有し、キャパシタCが3.9μFに等しい値を有する場合、所与の制約に対する性能が向上し得る。
次に、フィルタ316の構成要素の選択と、制御器302のディレイライン312の伝搬時間について説明する。フィルタ構成要素の選択とディレイライン312の伝搬時間とに関係する以下の説明は一例として与えるものであり、例示的な実施形態は任意の好適な構成要素を備え得ることに留意されたい。変換器302の定常状態動作を調整するフィードバックループがエミュレータ313の周りで閉じられているので、フィードバックループのパラメータが変換器302のスイッチング周波数を規定し得ることに留意されたい。エミュレータ313の動作の分析を簡略化するために、当業者によって理解されるように、小リップル近似とシステム線形化とを適用する。変換器300のスイッチング周波数fsw=1/Tswは、図4のキャパシタCf上のリップルが次式のように無視できるほどフィルタ316のコーナー周波数(すなわち、fRC=1/(2πRCf))より著しく高い(たとえば、fsw>10fRC)と仮定する。
Figure 2014509832
そのような仮定の下で、定常状態におけるエミュレータ313の波形は、図11に示された波形で近似され得る。各スイッチング間隔は部分に分割され得、ここでT+は、フィルタ316における電圧が、信号δ(t)の低から高への遷移の後に比較器310のしきい値に達するのに必要な時間であり、Tdはディレイライン312の伝搬時間であり、T-は、フィルタ316における電圧が、信号δ(t)の高から低への遷移の後にしきい値に達するのに必要な時間間隔である。
波形を見、スイッチング間隔の両方の部分のキャパシタリップルに関する式を等しくすることによって、T+およびT-時間間隔、結果として、発振周期を以下のように計算し得る。
Figure 2014509832
Figure 2014509832
式(4)と式(5)を組み合わせることにより、T+間隔の式が与えられる。
Figure 2014509832
その上、ターンオン時間ton=DTswであり、ただし、Dは信号δのデューティレシオであり、
Figure 2014509832
ここにおいて、デバイス300のスイッチング期間Tswは以下のように定義される。
Figure 2014509832
これらの式は、重要なタイミング間隔が回路パラメータにどのように依存するかを示し、ディレイライン312の伝搬時間を変化させることによってデバイス300のスイッチング周波数が変更され得ることを証明している。
一例として、次に、最適利得の計算について説明する。デバイス300の最適利得を計算するために、時間領域の解析がエネルギー平衡の原理と組み合わせられる。これは、設計者が、過渡事象中の回復時間およびピーク/最小インダクタ電流、または、等価的に、最大出力電圧偏差を設定することを可能にする多段階の手順を備え得る。利得計算の手順は以下のように記述され得る。第1のステップにおいて、負荷過渡事象の大きさと、ピーク電流制限と、過渡事象のタイプとに基づいて、メインスイッチのオンまたはオフ時間の変動が次式のように計算され、
Figure 2014509832
ここで、ΔiLは、過渡事象中のインダクタLを通る電流の初期値とピーク/谷値との間の差であり、vLは、その期間中のインダクタLの両端間の電圧である。ピークインダクタ値は、インダクタコアの飽和が回避されるように選択され得る。
第2のステップにおいて、前に定義された時間変動を生じるために必要とされる推定器の比較器電圧Vcmp(図3および図4参照)の変化の量が計算される。この計算は、上記で説明された線形近似を採用することによって実行される。図3および図11に関して、波形406は出力電圧Voutを表し、波形408はフィルタ316における電流を表し、波形410は信号δ(t)を表す。図12を参照すると、比較器電圧の必要とされる変化(すなわち、推定器のキャパシタCfの両端間の変化)は次式のようになることに留意されたく、
Figure 2014509832
ここで、VRは抵抗R1の両端間の電圧である。式(9)と式(10)を組み合わせることによって、以下の式が得られ得る。
Figure 2014509832
式11は、ひとつのオン/オフスイッチング動作においてΔiLのインダクタ電流の変化を達成するために必要なフィルタ316のキャパシタCfの電圧の必要とされる変化を示す。別のステップでは、誤差増幅器306の利得が、キャパシタCfの電圧偏差と出力電圧Voutとの比として計算される。したがって、以下のようになり、
Figure 2014509832
ここで、Δvoutは出力電圧偏差である。図13の理想的な過渡的な電力段301、制御器302、およびRCフィルタ316の波形が観測され得る。図3および図12に関して、波形412は出力電圧Voutを表し、波形414はインダクタLを通る電流を表し、波形416は負荷318を通る電流を表し、波形418は比較器310の反転入力における電圧を表し、波形420は比較器310の非反転入力における電圧を表し、波形422は信号δ(t)を表す。
負荷変動Δiloadによる出力電圧偏差は、3つの成分、すなわち、出力キャパシタCの等価直列抵抗を通る電流による初期降下(すなわち、Resrc)と、増幅器306と比較器310との遅延された動作による降下(すなわち、Δvout1)と、電力段310の遅延された反応によって生じる偏差(すなわち、Δvout2)とを備えることがわかる。しかしながら、ここで説明されるように、キャパシタ電流が0に回復すると、抵抗Resrによって生じた電圧降下はやがて消え、最後の2つの成分のみが電荷平衡ベースの利得選択に影響を及ぼす。Δvout1は次式のように計算され得、
Figure 2014509832
ここで、Tdcmpは、増幅器306と比較器310との合成された遅延である。
第2の成分は次式のように計算され得、
Figure 2014509832
ここで、Tcnは、インダクタ電流が初期値から新しい負荷値に変化するために必要とする時間間隔である。バック変換器における軽いから重いへの負荷変動では、この時間間隔は以下のようになる。
Figure 2014509832
この間隔の終わりに、出力電圧誤差E(t)(図3および図4)は、比較器310の非反転入力と同様に最大である。この時点で、キャパシタCにおける電流は実質的に0であり、結果として、Resrcは電圧降下に影響を及ぼさないことに留意されたい。式(13)と式(14)を組み合わせることによって以下のような最大電圧降下の式が得られ得る。
Figure 2014509832
メインスイッチの早期のトリガリングを防ぐために、この誤差の増幅された値は、上記のステップ2において計算される偏差以上である必要がある。したがって、以下のようになる。
Figure 2014509832
図12の波形はまた、インダクタLのピーク電流が、負荷318を通る最大電流よりも大きいことを示しており、それはディレイライン312によって生じる、スイッチング動作Tdにおける余分の遅延の存在に帰する。この式はまた、利得Aを増加させることによって、推定器313の時定数が低減されることができ、場合によっては完全オンチップ実装が可能になることを示す。
上記で説明されたように、制御器302の動作は、出力電圧谷/ピーク点において、タイムインスタント(time instant)比較器310がトリガされるように選択される。代替的に、谷点での代わりに、利得RCf積は、トリガリングポイントにおいて最大許容電流偏差ΔiLが達せられるように選択され得る。一般に、最大電流に基づく選択は、電圧偏差を低減しないが、場合によっては、回復時間が短くなり得る。
図13は、LC定数とRCf定数との間の潜在的な不整合の影響を図示すし、ここで、パラメータの初期選択は谷点のトリガリングに基づいている。。説明を簡単にするために、負荷過渡事象に対する初期応答中に、ディレイライン312の伝搬時間が0に低減され、利得A=1であると仮定する。
図3および図13に関して、波形424は出力電圧Voutを表し、波形426は誤差電圧E(t)を表し、波形428は、負荷318を通る電流を表し、波形430は、インダクタLを通る電流を表す。図13において、Resrは出力キャパシタCの等価抵抗であり、ΔIloadは負荷ステップ値であり、mRCはRCfエミュレータ電圧誤差の勾配であり、tvpは、インダクタと負荷電流とが同じであるトリガリングポイントに達するのに必要とされる理想的な時間であり、tvp *は、谷点に達するのに必要とされる実際の推定器時間であり、Δtvpは、これらの2つの時間の間の差(すなわち、トリガリングにおける遅延/進みの値)である。
この時間不整合の結果、トリガリングポイントにおいて、インダクタ電流と負荷電流とが同じでなくなり、Δivp差が生じる。この影響は、以下の数学的解析を通して定量化される。過渡事象中の出力電圧VoutのAC値は次式によって与えられ、
Figure 2014509832
ここにおいて、出力電圧Voutに関する以下の式を得るために式(18)が計算される。
Figure 2014509832
ここにおいて、Vrefは基準dc電圧であり、vinはデバイス300の入力電圧であり、icはキャパシタ電流(−iLoad(t)−iL(t))である。
RCエミュレータ回路電圧は次式によって与えられ、
Figure 2014509832
ここにおいて、Rfはエミュレータ抵抗であり、Cfはそれのキャパシタンスである。
(19)と(20)とを等しくすることによって、トリガリングポイントに達する(すなわち、ここで出力電圧とエミュレータ電圧とが交差する)のに必要とされる時間が導出されることができ、それは以下の式で示されるとおりである。
Figure 2014509832
他方、図13を見ることによって計算される、谷点に達するのに必要とされる理想的な時間は以下のようになる。
Figure 2014509832
理想的な整合、すなわち、tvp *がtvpに等しい場合、次式によってRCf積も与えられることができ、
Figure 2014509832
所与の負荷のステップに関する理想的なRCf定数が示される。
利得が考慮に入れられる場合、この式は次式のようになる。
Figure 2014509832
上記の解析は、入力電圧Vin/Vbatt、負荷ステップ値、または出力キャパシタンスにおける変化が、準最適なRCエミュレータ応答をもたらし得ることを示す。この依存性は、20μF出力キャパシタ(すなわち、キャパシタC)と、予想される2A負荷ステップ値とを備える、5V〜1Vバック変換器に関するトリガリング時間遅延の誤差を示す図14に定量化されている。トリガリング遅延を通して誤差を表現することにより、所与の動作条件とインダクタンス値とに関して計算されるべきiL=iloadポイントにおけるトリガリングの場合と比較して電流オーバーシュートを計算することが可能になることに留意されたい。
制御器302の自然の動作は、かなりの程度まで、トリガリングポイントの極端な誤差を補償することに留意されたい。これについては、図12の波形を見ることによって説明され得る。増幅された誤差信号曲線の凸形性質により、利得および推定器電圧勾配の大きい範囲について、最適時間に近い応答が生じる。
理想的には、無損失スイッチング変換器が制御されるとき、エミュレータ波形は、スイッチング変換器の波形とほぼ同じである。しかしながら、実際には、信号δ(t)のデューティ比の同じ値に関するスイッチング損失および伝導損失により、エミュレータ313および電力段301は、わずかに異なる電圧を生成する。損失は、通常、変換器のDC出力電圧を低域フィルタのDC出力電圧よりも小さくさせ、結果として、図3の差動増幅器306の入力においてゼロではない誤差を生じる。2つの電圧の間の差は次式のようになり、
Figure 2014509832
ここにおいて、Aは差動増幅器の利得であり、Verrは誤差信号の定常状態値である。
この誤差を定量化し、動作条件に対するそれの依存性について説明するために、スイッチング構成要素の損失を含む非理想なスイッチングバック変換器のDCモデルと、フィルタ316(すなわち、理想的なDC変換器)のDCモデルとが比較され得る。電力段301とフィルタ316の両方に与えられる同じデューティ比に関して、フィルタ316は、次式だけより大きい出力電圧を生成することがわかる。
Figure 2014509832
たとえば、約100mΩのRon抵抗を有するスイッチャが使用され、増幅器利得Aが10である場合、2.5Aの出力電流(0.9V出力のための78%効率の変換器)では、電圧調整におけるオフセットは、この誤差により、約25mVである。
前に説明された調整誤差は、出力負荷電流の概算推定のためと同じく、電圧ドループ(droop)技法を通して出力キャパシタCのサイズをさらに最小限に抑えるために、利用され得る。電圧ドループ技法では、出力電圧は、すべての動作条件について一定値に保たれるとは限らない。代わりに、より重い負荷では、電圧は重いから軽い負荷過渡事象中により大きいオーバーシュートが可能になる基準よりも少し低くなるように設定される。同様に、より軽い負荷に関して、出力電圧は図12に示されるように増加される。電圧ドループ技法の利用は、ピークインダクタ電流が低減し、出力フィルタサイズをさらに最小限に抑えることもわかる。
差動増幅器(すなわち、増幅器306および加算器304)の利得を調整することによって、ここにおいて固有の電圧ドループ特徴が達成され得ることに留意されたい。さらに、差動増幅器の出力における電圧差を測定して、出力負荷値の概算推定を取得することができる。電圧ドループが適用可能でない場合に関して、半導体損失、結果として定常状態誤差の影響を最小限に抑えるために、図3のデバイス300は図15に示されるように修正され得る。
図15を参照すると、本発明の例示的な実施形態による、制御器502と、(たとえば、バック変換器の)電力段301とを含むデバイス500が図示されている。制御器502は、加算器304と、増幅器306と、加算器308と、比較器310と、プログラマブル・ディレイライン312と、インバータ314と、低域フィルタ316とを含む。
制御器302とは対照的に、制御器502のフィルタ316は、スイッチングノード505から直接供給される。これは、電力段LCフィルタとエミュレータのフィルタ316との入力に同じ電圧を与える。その結果、電圧調整に対する半導体損失の影響は除去される。vout(t)とvest(t)のdc値との間の唯一の不一致は、電力段フィルタ(すなわち、インダクタLおよびキャパシタC)の損失により生じ得、これは、一般に、半導体損失よりも著しく小さく、フィルタレスオーディオ増幅器の場合のように、無視され得る。言い換えれば、制御器502は、スイッチング電圧(すなわち、Vsw)の平均値をVestと比較する。
制御器502は、モデル(図示せず)を使用してシミュレートされ、制御器302のモデルと比較される。制御器502に関して、60mΩの等価な半導体損失と40mΩフィルタ損失とを備える変換器が使用された。シミュレーションの結果が図16および図17に示されている。図3および図16に関して、波形560は出力電圧Voutを表し、波形562はインダクタLを通る電流を表し、波形564は信号δ(t)を表す。図15および図17に関して、波形566は出力電圧Voutを表し、波形568はインダクタLを通る電流を表し、波形570は信号δ(t)を表す。提案された修正(すなわち、制御器502)は、制御器302と比較して電圧誤差を低減し、したがって、調整が著しく改善されることに留意されたい。
提示された制御器アーキテクチャは、固定周波数における変換器の動作によって生じる電磁インターフェース(EMI)の低減のための特徴の簡単な実装を可能にする。前の分析では、バック変換器のスイッチング周波数が次式のようになることが示され、
Figure 2014509832
ここにおいて、図3のデバイス300に関して、Vbattは供給電圧であり、Vrefは出力電圧基準であり、Tdはディレイラインの伝搬時間である。この式は、変換器のスイッチング周波数が、あらかじめ定義されたパターンに従ってディレイラインの伝搬時間を変化させることによって調整され得ることを示している。より重要なことに、このシステムでは、バック変換器のデューティ比はディレイラインの伝搬時間に依存せず、結果として、スイッチングレートよりも遅いかまたはそれに等しいレートである伝搬時間のどんな変化も、電圧調整を維持するために使用され得るいかなる補正動作をも必要とせず、それにより、雑音低減技法の実装が著しく簡略化される。図11に関して、すべての電流波形が直線形であるので、Tdのどんな増加も、T+およびT-間隔、結果として、変換器の全部のスイッチング期間と同じくトランジスタオンタイム、の比例増加をもたらす。
次に、例示的な実施形態による、EMI低減技法の実装について説明する。スイッチング周波数を中心とするスペクトル拡散を生じるために、図18Aに図示されている擬似ランダムデータ生成器572のような、擬似ランダムデータ生成器が利用され、したがって、元のディレイラインが、図18Bのディレイライン574に示されるように修正される。当業者なら諒解するように、データ生成器572は、各スイッチングサイクルにおいて長さ(すなわち、ディレイライン574の伝搬時間)を動的に変更するために使用される擬似ランダム数列を生成する。EMI低減システムの動作を検証するためにデータ生成器572のモデル(図示せず)が使用された。EMI低減システムの動作を検証するために使用されたデータ生成器のモデルのシミュレーション結果が図19A〜図22Bに示されている。擬似乱数生成以外の他の技法が時間遅延(すなわち、周波数)を変化させ、EMI低減を得るために使用され得ることに留意されたい。たとえば、シグマデルタ変調および他のよく知られている技法が使用され得る。
図19Aおよび図19Bは、定常状態における従来の制御器の動作を図示する。図19Aに関して、波形578は出力電圧Voutを表し、波形580はインダクタLを通る電流を表し、波形582はスイッチング周波数を表す。図19Bに関して、波形584は入力電流のスペクトルを表す。図20Aおよび図20Bは、負荷過渡周波数が125kHzに等しい繰返し負荷過渡事象の下での従来の制御器の動作を図示する。図20Aに関して、波形586は出力電圧Voutを表し、波形588はインダクタLを通る電流を表し、波形590はスイッチング周波数を表す。図20Bに関して、波形592は入力電流のスペクトルを表す。図21Aおよび図21Bは、拡散スペクトル生成器が定常状態にある、本発明の例示的な実施形態による制御器の動作を図示する。図21Aに関して、波形594は出力電圧Voutを表し、波形596はインダクタLを通る電流を表し、波形598はスイッチング周波数を表す。図21Bに関して、波形600は入力電流のスペクトルを表す。図22Aおよび図22Bは、125kHzの繰返し負荷をもつ、本発明の例示的な実施形態による拡散スペクトル生成器を備えた制御器の動作を図示する。図22Aに関して、波形602は出力電圧Voutを表し、波形604はインダクタLを通る電流を表し、波形606はスイッチング周波数を表す。図22Bに関して、波形608は入力電流のスペクトルを表す。
図19A〜図22Bに描かれた波形は、擬似ランダムデータ生成器572が大きいスペクトル成分を著しく低減し得ることを証明していることに留意されたい。変動する負荷の下で、速い制御器動作により、信号のスペクトルも影響を受けることもまたわかる。
制御器302および502の動作を検証し、実際の実装問題を分析するために、図3の制御器302と図15の制御器502とに基づいて、個別構成要素を使用して実験的プロトタイプが構築された。さらに、制御器と(インダクタおよびキャパシタなしの)電力段とはまた、0.13μmプロセスで設計された。以下のサブセクションで説明されるように、個別実装はシステムの実現可能性を証明した。同時に、個別実装が著しくスイッチング周波数を制限しおよび/またはシステムの過渡性能に影響を及ぼすことを示した。
デバイス300および500の安定した定常状態動作を確認する実験結果が図23および図24に示されている。3つの異なる入力電圧の動作が図23に示されている。図23に関して、信号610、612、および614は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および2Vの入力電圧のための負荷ステップ信号を表す。さらに、信号616、618、および620は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および3Vの入力電圧のための負荷ステップ信号を表す。その上、信号622、624、および626は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および4Vの入力電圧のための負荷ステップ信号を表す。結果は、最小遅延の場合について提示され、スイッチング周波数、遅延要素の伝搬時間、および定常状態動作条件の間の関係について記述することの妥当性を確証する。
図24は、遅延セルの伝搬時間が「オンラインで」変化するときのシステムの動作を示す。図24に関して、信号628、630、および632は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および周波数変化信号を表す。本システムは、周波数変動に基づいてEMI緩和方法の実装を可能にするスイッチング周波数を瞬時に変化させることが可能であり、ことがわかる。これは上記で説明された。
実験的プロトタイプ、これはデバイス300および500に基づき、最大スイッチング周波数(すなわち最小伝搬時間)で動作する、の動的応答試験が図25および図26に示されている。図25に関して、信号634、636、および638は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および0.0A〜0.5Aの負荷電流変動のための負荷ステップ信号を表す。さらに、信号640、642、および644は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および0.0A〜1.0Aの負荷電流変動のための負荷ステップ信号を表す。その上、信号646、648、および650は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および0.0A〜2.0Aの負荷電流変動のための負荷ステップ信号を表す。図26に関して、信号652、654、および656は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および0.5A〜0.0Aの負荷電流変動のための負荷ステップ信号を表す。さらに、信号658、660、および662は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および1.0A〜0.0Aの負荷電流変動のための負荷ステップ信号を表す。その上、信号664、666、および668は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、および2.0A〜0.0Aの負荷電流変動のための負荷ステップ信号を表す。応答は、広範囲の入力電圧値にわたって、ならびに異なる負荷過渡事象について試験した。0〜0.5Aおよび0.5A〜1Aでは、本システムは2未満のスイッチングサイクルで回復し、しかし、制御器の反応は図においてかろうじてそれと分かる、ことに気づくであろう。これらの波形は、実際に、電流または過大ストレスをもたらさない極めて正確な制御器の動作を確証している。これについては、次式のように、制御器が電流を所与の負荷ステップ値だけ増加させるのに必要な理想的なton時間を計算することによって説明され得る。
Figure 2014509832
所与の動作条件について、実験回路において、必要とされる時間tonは、60ns(5V入力および0.5A電流ステップのための)から170ns(3V入力および1A電流ステップのための)までの間で変動し、すべての場合においてデューティレシオ値の小さい増加に対応する。
重いから軽いへの大きな負荷過渡事象では、予想される電圧偏差よりも大きい電圧偏差を引き起こすシミュレートされた応答と実際の応答との間の著しい差が存在する。この差は、過渡事象中の出力電圧波形のズームされたバージョンを示す図27を見ることによって説明され得る。図27に関して、信号670、672、および674は、それぞれ、出力電圧Vout、スイッチングノード電圧Vsw、ならびに5Vの入力電圧および1Vの出力電圧のための負荷ステップ信号を表す。出力電圧偏差に対する制御器の反応は約250nsだけ遅延されていることがわかる。この時間は、構成要素遅延(ゲートドライバ(約90ns)、FPGA(約80ns)、オペアンプ(約20ns)、比較器(約10ns)+PCBの寄生遅延)の総寄与に対応する。
これらの遅延により、制御器が反応することができる前に出力電圧が35mV超だけ降下することがわかる。遅延した検出の後に、制御器反応(たとえば、所与の動作状態のための2A電流増加に対応する、比の値の約300ns増加)が起こり、それは遅延なしの場合は近接した時間最適応答に対応したであろう。等しいインダクタ電流および負荷電流を生じる、制御器の初期反応の後に、図11に描かれたように、ディレイラインによって再び引き起こされる250ns toff時間が続く。前に説明された遅延は、実験的なセットアップの個別実装に起因し得る。
潜在的なオンチップ制御器の実装形態の性能を試験し、遅延が低減され得ることを示すために、シミュレーションはケイデンス(cadence)セットアップに基づいて実行された。演算増幅器を除くすべてのシステム構成要素は、IBM0.13μmプロセスを使用して設計された。それらは、電力段およびゲートドライバ、プログラマブル・カレントスターブド・ディレイ(current starved delay)セル、およびレールツーレール(rail−to−rail)バッファ/インバータおよび図28の比較器310を含む。シミュレーションでは、演算増幅器は抽象Verilog Aブロックである。設計システムのスイッチング周波数は2.5MHzである。エミュレータのLPフィルタのために構成要素の以下の値、すなわち、C=200pFおよびRf=4KΩが使用された。
図29および図30は、図3に描かれたデバイス300(すなわち、低域フィルタの信号がレールツーレールインバータによって与えられる制御器)の動特性を示す。図29は軽いから重いへの負荷過渡応答を図示し、図34は重いから軽いへの過渡応答を図示する。図29に関して、信号676、678、680、および682は、それぞれ、負荷ステップ電流、インダクタLを通る電流、信号δ(t)、および出力電圧Voutを表す。図30に関して、信号684、686、688、および690は、それぞれ、負荷ステップ電流、インダクタLを通る電流、信号δ(t)、および出力電圧Voutを表す。この場合、システム性能を高速化するために、初期過渡事象が検出されると、ディレイラインは一時的にバイパスされる。
図31および図32は、図17に描かれたデバイス500の動特性を示す。図35は軽から重への負荷過渡応答を図示し、図32は重から軽への過渡応答を図示する。図35に関して、信号692、694、696、および698は、それぞれ、負荷ステップ電流、インダクタLを通る電流、信号δ(t)、および出力電圧Voutを表す。図32に関して、信号700、702、704、および706は、それぞれ、負荷ステップ電流、インダクタLを通る電流、信号δ(t)、および出力電圧Voutを表す。この場合も、制御器反応時間を最小限に抑えるために、初期過渡事象が検出されるとディレイラインは一時的にバイパスされる。
図33は、制御器302および502の可能なオンチップ実装形態の簡略ブロック図を図示する。前に説明された要素に加えて、制御器302/502は、その追加のデジタルの特徴の可能な利用と修正を可能にする追加のブロックおよび/または入力を含み得る。より詳細には、インバータ710は、過渡状態中のエミュレータフィルタと、電圧ドループベースの制御または/および電流推定の可能な実装形態とに入力を与えるために使用されるレールツーレールインバータ(図3および図15参照)である。ディレイライン714は、EMI低減技法および外部クロック信号との同期の実装を可能にする、プログラマブル・カレントスターブドセルまたは何らかの他のプログラマブル・ディレイ構造である。EMI712は、EMIを最小限に抑えるためにスペクトル拡散信号を生成するための随意のブロックである。「同期」は、外部同期クロックのための入力を備える。「ssc」は、EMI712の調整のための入力を備える。「バイパス」は、システム反応における遅延を最小限に抑えて過渡応答を改善する、ディレイラインをバイパスするための入力を備える。上記で説明されたように、ディレイラインをバイパスすることにより、過渡事象中の過渡応答が改善される。比較器716は、図3および図15の比較器である。増幅器718は、図3および図15の演算増幅器である。出力「load_est」は、誤差信号の状態、結果として、定常状態における負荷推定を監視するために使用され得る出力である。「Vref」および「vout」は、増幅器718の2つの入力である。エミュレータフィルタ720は、エミュレータフィルタの完全なRCf回路の一部である。「Cf」は、追加のフィルタ処理キャパシタを接続するためのピンを備える。フィルタ入力選択722は、回路中の状態に基づいてフィルタのための入力を選択するように構成される。定常状態では、誤差を最小限に抑えるために、フィルタは変換器(図15)のスイッチングノードから供給され得る。過渡事象中に、フィルタは、遅延を最小限に抑えるためにインバータ(図3)によって駆動され得る。「sel」は、フィルタ入力を選択するための制御信号を備える。「Vsw」は、スイッチングノードから来る信号のための入力を備える。
本発明の例示的な実施形態はオーディオ電力増幅器を用いて実装され得ることに留意されたい。一例として、基準電圧Vref(図3および図15参照)が電力増幅器のオーディオ信号を備え得る。
図34は、1つまたは複数の例示的な実施形態による、方法990を示すフローチャートである。方法990は、(番号992が示す)電力段からの電圧出力と基準電圧との間の差を備える誤差電圧を増幅することを含み得る。方法990は、さらに、(番号994が示す)比較器出力信号を生成するために、増幅された誤差電圧と基準電圧との合計を具備する合計電圧を推定電圧と比較することを含み得る。さらに、方法990は、(番号996が示す)比較器出力信号からゲート駆動信号を生成することを含み得る。さらに、方法990は、(番号998が示す)推定電圧を生成するために、電力段に結合された信号をフィルタ処理することを含み得る。
情報および信号は多種多様な技術および技法のいずれかを使用して表され得ることを、当業者は理解されよう。たとえば、上記の説明全体にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁界または磁性粒子、光場または光学粒子、あるいはそれらの任意の組合せによって表され得る。
さらに、ここで開示される例示的な実施形態に関連して説明された様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装され得ることを、当業者は諒解されよう。ハードウェアとソフトウェアのこの互換性を明確に示すために、様々な例示的な構成要素、ブロック、モジュール、回路、およびステップは、上記では概してそれらの機能に関して説明された。そのような機能がハードウェアとして実装されるか、ソフトウェアとして実装されるかは、特定のアプリケーションおよび全体的なシステムに課される設計制約に依存する。当業者は、説明された機能を特定のアプリケーションごとに様々な方法で実装し得るが、そのような実装の決定は、本発明の例示的な実施形態の範囲からの逸脱を生じるものと解釈されるべきではない。
ここで開示される例示的な実施形態に関連して説明された様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいはここで説明された機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成として実装され得る。
ここで開示される例示的な実施形態に関連して説明された方法またはアルゴリズムのステップは、ハードウェアで直接実施されるか、プロセッサによって実行されるソフトウェアモジュールで実施されるか、またはその2つの組合せで実施され得る。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読取り専用メモリ(ROM)、電気的プログラマブルROM(EPROM)、電気的消去可能プログラマブルROM(EEPROM)、レジスタ、ハードディスク、リムーバブルディスク、CD−ROM、または当技術分野で知られている任意の他の形態の記憶媒体中に常駐し得る。例示的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、記憶媒体に情報を書き込むことができるように、プロセッサに結合される。代替として、記憶媒体はプロセッサに一体化され得る。プロセッサおよび記憶媒体はASIC中に常駐し得る。ASICはユーザ端末中に常駐し得る。代替として、プロセッサおよび記憶媒体は、ユーザ端末中に個別構成要素として常駐し得る。
1つまたは複数の例示的な実施形態では、説明された機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、1つまたは複数の命令またはコードとしてコンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体を介して送信され得る。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を可能にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD−ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用され得、コンピュータによってアクセスされ得る、任意の他の媒体を備えることができる。また、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。ここで使用されるディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびブルーレイ(登録商標)ディスク(disc)を含み、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、データをレーザで光学的に再生する。上記の組合せもコンピュータ可読媒体の範囲内に含まれるべきである。
開示される例示的な実施形態の前述の説明は、当業者が本発明を実施または使用できるようにするために提供される。これらの例示的な実施形態への様々な修正は当業者には容易に明らかであり、ここで定義された一般原理は、本発明の趣旨または範囲から逸脱することなく他の実施形態に適用され得る。したがって、本発明は、ここで示される例示的な実施形態に限定されることを意図せず、ここで開示される原理および新規の特徴と一致する最も広い範囲を与えられるべきある。

Claims (28)

  1. 方法であって、
    比較器出力信号を生成するために、誤差電圧と基準電圧との合計を具備する合計電圧を推定電圧と比較することと、
    前記比較器出力信号からゲート駆動信号を生成することと、および
    前記推定電圧を生成するために、電力段に結合された信号をフィルタ処理することと
    を具備する、上記方法。
  2. 請求項1の方法において、前記誤差電圧を増幅することをさらに具備し、
    前記誤差電圧は前記電力段からの電圧出力と前記基準電圧との間の差を具備する、
    上記方法。
  3. 請求項1の方法において、前記ゲート駆動信号を生成するために前記比較器出力信号を反転させること、
    をさらに具備する。
  4. 請求項1に記載の方法において、前記信号を前記フィルタ処理することが、前記推定電圧を生成するために前記ゲート駆動信号をフィルタ処理すること、
    を具備する。
  5. 請求項1に記載の方法において、前記信号を前記フィルタ処理することが、前記推定電圧を生成するために、前記電力段のスイッチングノードに結合された信号をフィルタ処理すること、
    を具備する。
  6. 請求項1に記載の方法において、前記合計電圧を生成するために前記誤差電圧と前記基準電圧とを合計すること、
    をさらに具備する。
  7. 請求項1に記載の方法において、前記誤差電圧を生成するために前記電力段からの電圧出力と前記基準電圧とを合計すること、
    をさらに具備する。
  8. 請求項1に記載の方法において、前記ゲート駆動信号を生成するために前記比較器出力信号を遅延させること、
    をさらに具備する。
  9. 請求項1に記載の方法において、前記信号を前記フィルタ処理することが、低域フィルタを用いて前記信号をフィルタ処理すること、
    を具備する。
  10. 請求項2に記載の方法において、誤差電圧を前記増幅することが、電力段からの電圧出力と時間変動する信号との間の差を備える誤差電圧を増幅すること、
    を具備する。
  11. 請求項1に記載の方法において、合計電圧を前記比較することが、前記比較器出力信号を生成するために、前記誤差電圧と時間変動する電圧との合計を備える前記合計電圧を前記推定電圧と比較すること、
    を具備する。
  12. 電力変換器であって、
    電力段の出力電圧を受信するように構成された制御器を具備し、前記制御器が、
    推定電圧、および基準電圧と誤差電圧との合計を備える合計電圧を受信し、比較器電圧信号を出力するための比較器と、および
    前記推定電圧を生成するために、構成され前記電力段に結合されたフィルタと、
    を具備する、
    上記電力変換器。
  13. 請求項12に記載の電力変換器において、前記比較器に結合された出力を有しおよび前記誤差電圧を増幅するように構成された増幅器をさらに具備し、
    前記誤差電圧は前記出力電圧と前記基準電圧との間の差を具備する、
    上記電力変換器。
  14. 請求項12に記載の電力変換器において、前記比較器の出力に結合された入力と、インバータの入力に結合された出力とを有するプログラマブル・ディレイラインをさらに具備する。
  15. 請求項12に記載の電力変換器において、前記ゲート駆動信号を生成するために前記比較器の出力に結合されたインバータをさらに具備する。
  16. 請求項12に記載の電力変換器において、前記フィルタが低域RCフィルタを具備する。
  17. 請求項12に記載の電力変換器において、前記制御器が、前記誤差電圧を生成するために前記出力電圧と前記基準電圧とを合計するための加算器をさらに具備する。
  18. 請求項12に記載の電力変換器において、前記制御器が、前記合計電圧を生成するために前記誤差電圧と前記基準電圧とを合計するための加算器をさらに具備する。
  19. 請求項12に記載の電力変換器において、前記フィルタが、前記比較器によって生成されたゲート駆動信号に結合された入力を有する。
  20. 請求項12に記載の電力変換器において、前記フィルタが、前記電力段のスイッチングノードに結合された入力を有する。
  21. 請求項12に記載の電力変換器において、前記基準電圧が時間変動する信号を具備する。
  22. 請求項12に記載の電力変換器において、前記制御器が前記電力段の1次エミュレータを具備し、前記電力段が2次電力段を具備する。
  23. 請求項12に記載の電力変換器において、前記1次エミュレータが低域RCフィルタを備具備する。
  24. デバイスであって、
    比較器出力信号を生成するために、誤差電圧と基準電圧との合計を具備する電圧を推定電圧と比較するための手段と、
    前記比較器出力信号からゲート駆動信号を生成するための手段と、
    前記推定電圧を生成するために、電力段に結合された信号をフィルタ処理するための手段と、
    を具備する、上記デバイス。
  25. 請求項24に記載のデバイスにおいて、前記誤差電圧を増幅するための手段をさらに具備し、
    前記誤差電圧が、前記電力段からの電圧出力と前記基準電圧との間の差を具備する、
    上記デバイス。
  26. 請求項24に記載のデバイスにおいて、前記推定電圧を生成するために、前記ゲート駆動信号をフィルタ処理するための手段をさらに具備する。
  27. 請求項24に記載のデバイスにおいて、前記推定電圧を生成するために、前記電力段のスイッチングノードに結合された信号をフィルタ処理するための手段をさらに具備する。
  28. 請求項24に記載のデバイスにおいて、増幅された誤差電圧と前記基準電圧との合計を具備する前記電圧を推定電圧と比較するための前記手段が、前記比較器出力を生成するために、増幅された誤差電圧と時間変動する電圧との合計を備える電圧を推定電圧と比較するための手段を具備する。
JP2014502883A 2011-04-01 2012-03-30 電源制御器 Active JP5960246B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/078,798 US9252661B2 (en) 2011-04-01 2011-04-01 Methods and devices for power supply control
US13/078,798 2011-04-01
PCT/US2012/031715 WO2012135778A2 (en) 2011-04-01 2012-03-30 Power supply controller

Publications (2)

Publication Number Publication Date
JP2014509832A true JP2014509832A (ja) 2014-04-21
JP5960246B2 JP5960246B2 (ja) 2016-08-02

Family

ID=46028138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502883A Active JP5960246B2 (ja) 2011-04-01 2012-03-30 電源制御器

Country Status (6)

Country Link
US (2) US9252661B2 (ja)
EP (1) EP2695288B1 (ja)
JP (1) JP5960246B2 (ja)
KR (1) KR101555419B1 (ja)
CN (1) CN103460581B (ja)
WO (1) WO2012135778A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763671B (zh) * 2016-05-27 2022-05-11 美商高通公司 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007128B2 (en) * 2010-11-01 2015-04-14 Newlans, Inc. Method and apparatus for power amplifier linearization
US8970252B2 (en) 2010-11-08 2015-03-03 Newlans, Inc. Field programmable analog array
US8710963B2 (en) 2011-03-14 2014-04-29 Infineon Technologies Ag Receiver and transmitter receiver system
US9252661B2 (en) 2011-04-01 2016-02-02 Qualcomm Inc. Methods and devices for power supply control
US8970192B2 (en) * 2011-05-20 2015-03-03 Analog Devices, Inc. Buck converter with comparator output signal modification circuit
US9148709B2 (en) 2011-08-03 2015-09-29 Infineon Technologies Ag Sensor interface with variable control coefficients
US8994526B2 (en) 2011-08-18 2015-03-31 Infineon Technologies Ag Sensor interface making use of virtual resistor techniques
US9588532B2 (en) * 2012-03-26 2017-03-07 Infineon Technologies Americas Corp. Voltage regulator having an emulated ripple generator
US8849520B2 (en) 2012-03-26 2014-09-30 Infineon Technologies Ag Sensor interface transceiver
US9407240B2 (en) 2012-09-05 2016-08-02 Spero Devices, Inc. Bi-quad calibration
EP2728725B1 (en) * 2012-10-30 2017-08-02 Dialog Semiconductor GmbH Hysteretic power converter with current shaping
US10698430B2 (en) * 2012-12-19 2020-06-30 Intel Corporation Method and apparatus of current balancing for multiple phase power converter
US9276479B2 (en) * 2013-01-22 2016-03-01 Power Integrations, Inc. Receive circuit for use in a power converter
US8806416B1 (en) 2013-02-28 2014-08-12 Qualcomm Incorporated Method and circuit to implement a static low power retention state
US10698432B2 (en) * 2013-03-13 2020-06-30 Intel Corporation Dual loop digital low drop regulator and current sharing control apparatus for distributable voltage regulators
US9590501B2 (en) * 2013-04-25 2017-03-07 Fairchild Semiconductor Corporation Fast load transient response power supply system using dynamic reference generation
US9292409B2 (en) 2013-06-03 2016-03-22 Infineon Technologies Ag Sensor interfaces
CN105531905B (zh) 2013-08-06 2021-08-27 基岩自动化平台公司 智能电力系统
CN104035462B (zh) * 2014-05-30 2016-09-28 华为技术有限公司 一种电源控制方法及设备
JP2015228761A (ja) * 2014-06-02 2015-12-17 富士通株式会社 電源装置および情報処理装置
US9698672B2 (en) * 2014-06-16 2017-07-04 City University Of Hong Kong Input filter for a power electronic system
US9748781B2 (en) 2014-06-24 2017-08-29 Intersil Americas LLC Voltage converters and methods for use therewith
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
ITUB20150319A1 (it) 2015-05-13 2016-11-13 St Microelectronics Srl Convertitore di corrente con controllo della corrente sul lato dell'avvolgimento primario e compensazione del ritardo di propagazione
US10673339B2 (en) * 2015-07-23 2020-06-02 Texas Instruments Incorporated Hysteretic control for transformer based power converters
US9929651B2 (en) * 2015-11-18 2018-03-27 Microsemi Corporation Converter with hysteretic control
US10193442B2 (en) 2016-02-09 2019-01-29 Faraday Semi, LLC Chip embedded power converters
US10003259B2 (en) * 2016-04-09 2018-06-19 Skyworks Solutions, Inc. Voltage converter and control method thereof
JP6774884B2 (ja) * 2017-01-27 2020-10-28 富士通株式会社 電源装置及び電源装置の制御方法
US10840806B2 (en) * 2017-05-25 2020-11-17 Dialog Semiconductor (Uk) Limited Preventing sub-harmonic oscillation with clock delay compensation, in a DC-DC switching converter
US10404168B2 (en) * 2017-06-26 2019-09-03 Active-Semi (Bvi), Inc. Power converter control apparatus and method
CN107959415B (zh) * 2017-12-08 2020-05-22 重庆科技学院 Dc-dc变换器延迟控制电路
US10298247B1 (en) * 2018-03-13 2019-05-21 Cirrus Logic, Inc. Modulators
US10504848B1 (en) 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator
WO2020214857A1 (en) 2019-04-17 2020-10-22 Faraday Semi, Inc. Electrical devices and methods of manufacture
US11387732B2 (en) 2019-09-12 2022-07-12 Cirrus Logic, Inc. Efficient use of energy in a switching power converter
US11469661B2 (en) 2019-10-25 2022-10-11 Cirrus Logic, Inc. Multiphase inductive boost converter with multiple operational phases
US11258395B2 (en) * 2020-04-09 2022-02-22 Microchip Technology Incorporated Near constant delay comparator for closed-loop system
US11658559B2 (en) 2020-05-20 2023-05-23 Cirrus Logic, Inc. Minimizing voltage droop in a power converter
CN115668721B (zh) * 2020-05-20 2023-08-15 思睿逻辑国际半导体有限公司 功率转换器中的电流的随机化
US11953531B2 (en) 2020-05-20 2024-04-09 Cirrus Logic Inc. Sense resistor and method for forming same
CN111756238B (zh) * 2020-07-02 2024-03-08 扬州大学 一种受扰直流降压变换器系统的新型建模及复合抗干扰控制方法
US11522460B2 (en) 2020-07-24 2022-12-06 Cirrus Logic, Inc. Optimizing the control of a hysteretic power converter at low duty cycles
US11063516B1 (en) 2020-07-29 2021-07-13 Faraday Semi, Inc. Power converters with bootstrap
US11735942B2 (en) 2020-07-29 2023-08-22 Cirrus Logic Inc. Maintaining operation within a stable region of a power curve of a power converter
US11522440B2 (en) 2020-07-29 2022-12-06 Cirrus Logic, Inc. Use of shared feedback among two or more reactive schemes
US11183849B1 (en) 2020-07-29 2021-11-23 Cirrus Logic, Inc. Control of power converter based on dynamic constraint factors
US11870348B1 (en) * 2020-08-28 2024-01-09 Empower Semiconductor, Inc. High speed, low quiescent current comparator
US11843317B2 (en) 2021-08-25 2023-12-12 Cirrus Logic Inc. Pseudo-bypass mode for power converters
US11990839B2 (en) 2022-06-21 2024-05-21 Faraday Semi, Inc. Power converters with large duty cycles
CN116760417B (zh) * 2023-08-21 2024-01-02 北京紫光芯能科技有限公司 比较器、用于比较器的控制方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299978A (ja) * 1999-02-12 2000-10-24 Analog Devices Inc <Adi> 電圧レギュレータの負荷過渡応答を改善し出力コンデンサ・サイズを最小化する方法および装置
JP2002016451A (ja) * 2000-06-28 2002-01-18 Canon Inc オーディオ増幅装置
JP2004110282A (ja) * 2002-09-17 2004-04-08 Shindengen Electric Mfg Co Ltd スイッチング電源
JP2005184870A (ja) * 2003-12-16 2005-07-07 Hitachi Ltd 電源装置及びそれを用いたハードディスク装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160388A (en) * 1997-12-30 2000-12-12 Texas Instruments Incorporated Sensing of current in a synchronous-buck power stage
US5982160A (en) 1998-12-24 1999-11-09 Harris Corporation DC-to-DC converter with inductor current sensing and related methods
US6518738B1 (en) * 2000-03-29 2003-02-11 Semiconductor Components Industries, Llc Switching regulator control circuit with proactive transient response
US6396250B1 (en) * 2000-08-31 2002-05-28 Texas Instruments Incorporated Control method to reduce body diode conduction and reverse recovery losses
GB2376357B (en) * 2001-06-09 2005-05-04 3D Instr Ltd Power converter and method for power conversion
US6861826B2 (en) * 2003-03-31 2005-03-01 Texas Instruments Incorporated Timing circuit for synchronous DC/DC control to reduce synchronous rectifier body diode conduction
JP3717492B2 (ja) * 2003-04-16 2005-11-16 ローム株式会社 電源装置
US6972974B2 (en) * 2003-08-29 2005-12-06 Micrel, Inc. Compensator to achieve constant bandwidth in a switching regulator
US20050237042A1 (en) 2004-04-21 2005-10-27 Matsushita Electric Industrial Co., Ltd. Switching power supply circuit and semiconductor device integrating the same
JP2007028830A (ja) * 2005-07-19 2007-02-01 Mitsumi Electric Co Ltd スイッチング電源およびその制御方法
CN101356719B (zh) * 2005-08-23 2012-06-27 联发科技股份有限公司 对电压切换调节器中在控制回路间切换时的转换行为的改进
TWI313958B (en) * 2006-03-22 2009-08-21 Anpec Electronics Corp Switching regulator capable of compensating output errors
US7576527B1 (en) * 2006-07-20 2009-08-18 Marvell International Ltd. Low power DC-DC converter with improved load regulation
US7716001B2 (en) 2006-11-15 2010-05-11 Qualcomm Incorporated Delay line calibration
US8487600B2 (en) * 2007-04-10 2013-07-16 Aleksandar Prodic Continuous-time digital controller for high-frequency DC-DC converters
US7902800B2 (en) * 2007-07-13 2011-03-08 Chil Semiconductor Corporation Adaptive power supply and related circuitry
US8476890B2 (en) * 2008-02-05 2013-07-02 Qualcomm Incorporated Circuits and methods for controlling a switching regulator based on a derived input current
TW201007418A (en) * 2008-08-07 2010-02-16 Richtek Technology Corp Constant-on-time (COT) power converter and method for controlling same
US8299764B2 (en) * 2009-04-24 2012-10-30 Intersil Americas Inc. System and method for determining output voltage level information from phase voltage for switched mode regulator controllers
EP2290784A3 (en) * 2009-07-02 2012-12-19 STMicroelectronics Srl Analogic MPPT circuit for photovoltaic power generation plant
US8395367B2 (en) * 2009-08-05 2013-03-12 Upi Semiconductor Corporation DC-DC converter with a constant on-time pulse width modulation controller
ES2335963A1 (es) 2009-11-16 2010-04-06 Universidad Politecnica De Madrid Sistema de control para fuentes de alimentacion conmutadoras con rapida respuesta dinamica.
US9252661B2 (en) 2011-04-01 2016-02-02 Qualcomm Inc. Methods and devices for power supply control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299978A (ja) * 1999-02-12 2000-10-24 Analog Devices Inc <Adi> 電圧レギュレータの負荷過渡応答を改善し出力コンデンサ・サイズを最小化する方法および装置
JP2002016451A (ja) * 2000-06-28 2002-01-18 Canon Inc オーディオ増幅装置
JP2004110282A (ja) * 2002-09-17 2004-04-08 Shindengen Electric Mfg Co Ltd スイッチング電源
JP2005184870A (ja) * 2003-12-16 2005-07-07 Hitachi Ltd 電源装置及びそれを用いたハードディスク装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763671B (zh) * 2016-05-27 2022-05-11 美商高通公司 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統

Also Published As

Publication number Publication date
KR101555419B1 (ko) 2015-09-23
CN103460581B (zh) 2016-11-23
US20120249093A1 (en) 2012-10-04
US20170222553A1 (en) 2017-08-03
US10256724B2 (en) 2019-04-09
WO2012135778A2 (en) 2012-10-04
CN103460581A (zh) 2013-12-18
JP5960246B2 (ja) 2016-08-02
EP2695288A2 (en) 2014-02-12
US9252661B2 (en) 2016-02-02
WO2012135778A3 (en) 2013-03-21
EP2695288B1 (en) 2020-10-21
KR20130135997A (ko) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5960246B2 (ja) 電源制御器
JP4931530B2 (ja) 電力コンバータ
US7764054B1 (en) Voltage regulator with current-mode dual-edge width modulation and non-linear control
EP3503393B1 (en) System and method for generating a ripple voltage for a ripple based constant-on-time dc-dc converter
TWI452810B (zh) 電源轉換器的混合式補償電路及方法
US20180191333A1 (en) Multi-phase control for pulse width modulation power converters
US9941792B2 (en) DC offset correction for inductor current ripple based, constant-on-time DC-DC converters
JP2014506776A (ja) 無損失インダクタ電流検出を行う双方向コンバータ用ヒステリシス電流モードコントローラ
US9342086B2 (en) Current mode control modulator with combined control signals and improved dynamic range
TW201618454A (zh) 多級放大器
JP2015536634A (ja) ブーストコンバータ制御
Huang et al. A four-phase buck converter with capacitor-current-sensor calibration for load-transient-response optimization that reduces undershoot/overshoot and shortens settling time to near their theoretical limits
TW201439703A (zh) 開關調節器電路及方法
US20170288537A1 (en) Reduction of frequency variation for ripple based, constant-on-time dc-dc converters
US20150077080A1 (en) Time signal generator and time signal generating method
JP2013046496A (ja) 制御回路、電源装置及び電源の制御方法
US8970192B2 (en) Buck converter with comparator output signal modification circuit
KR101359136B1 (ko) 변화에 둔감한 최대전력점추적을 이용한 열 에너지 하베스팅 제어 장치 및 방법
JP2018516524A (ja) 改善されたトラッキング
US10630275B2 (en) Constant-on-time pulse generator circuit for a DC-DC converter
Liu et al. Small-signal analysis and design of constant on-time controlled buck converters with duty-cycle-independent quality factors
US20120293145A1 (en) Buck converter
Tseng et al. Fast transient voltage-mode buck regulator applying ramp signal with a variable DC-offset scheme
Shetty A quick and simplified approach for understanding the dynamics of the SEPIC converter for low voltage applications: Simulation study
JP5928184B2 (ja) 電源装置、制御回路、電子機器及び電源の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5960246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250