TWI763671B - 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統 - Google Patents

用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統

Info

Publication number
TWI763671B
TWI763671B TW106117425A TW106117425A TWI763671B TW I763671 B TWI763671 B TW I763671B TW 106117425 A TW106117425 A TW 106117425A TW 106117425 A TW106117425 A TW 106117425A TW I763671 B TWI763671 B TW I763671B
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
signal
supply voltage
response
Prior art date
Application number
TW106117425A
Other languages
English (en)
Other versions
TW201817149A (zh
Inventor
葉區萬特 納葛雷 科拉
傑佛瑞 泰德 布萊奇
桑傑 帕堤爾
夏德哈 史瑞德哈爾
柏特 李 普萊斯
葛畢瑞爾 梅特爾 塔爾
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201817149A publication Critical patent/TW201817149A/zh
Application granted granted Critical
Publication of TWI763671B publication Critical patent/TWI763671B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Dc-Dc Converters (AREA)
  • Power Sources (AREA)
  • Pens And Brushes (AREA)
  • Amplifiers (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本發明提供用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路。在一個態樣中,一適應性電壓調變電路藉由偵測一供應電壓何時降低至低於一降臨限電壓而偵測一供應電壓降,並回應於一供應電壓降而調整提供至一負載電路的一時脈信號。該適應性電壓調變電路保持時脈信號週期的數目之一計數,在該時脈信號週期期間該供應電壓低於該降臨限電壓。該適應性電壓調變電路回應於該計數超出一上限臨限值而增大該供應電壓,並回應於該計數小於一經定義時段之一結束時的一下限臨限值而減小該供應電壓。該適應性電壓調變電路可減少一負載電路以降低之頻率操作的時間同時最小化功率消耗。

Description

用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統
本發明之技術大體上係關於供應電壓降,且特定言之係關於調整供應電壓以減少供應電壓降及功率消耗。
負面地影響電路效能的一個因素為供應電壓降之出現。供應電壓降為低於藉由電力供應器提供至電路中之一或多個元件的供應電壓之特定電壓位準的暫時下降或減小。供應電壓降可為回應於由電力供應器供電的電路之負載電流需求的變化藉由電力供應器提供電力供應電流中之電湧的結果。例如,回應於在電路操作期間電路切換中之電晶體,電路之負載電流需求可增加。負載電流需求之增加引起電力供應電流中之電湧,該電湧產生供應電壓降。對應於供應電壓降的供應電壓之減小使得電路操作之速度減小,因此負面地影響電路效能。
各種技術可用以減小或避免電路中之供應電壓降的影響例如,電路元件可經設計以在相對於供應電壓之特定電壓界限中操作。以此方 式,電路元件可在接收超出或達不到供應電壓達特定百分比(亦即,界限,諸如該供應電壓之+/-10%)的電壓時實現所需操作。然而,此類電壓界限習知地設定成符合最差操作條件,且因此,可增加功率消耗且降低電路效能。作為另一個實例,電壓調節器可用以感測電路之負載電流需求之變化,且回應於此類變化調整供應電壓。然而,電壓調節器通常太緩慢而不能有效地緩和高頻供應電壓降。另外,電壓感測器可用以偵測供應電壓降且回應於偵測到供應電壓降而降低時脈信號之頻率從而減少對應負載電路之負載電流需求。然而,以此方式降低時脈信號之頻率減小電路之操作速度。因此,利用電壓感測器使經歷多個供應電壓降的電路以頻繁地調節至較低時脈頻率,該較低時脈頻率限制電路之效能。
公開於實施方式中之態樣包括用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路。在一個態樣中,提供一種適應性電壓調變電路。該適應性電壓調變電路偵測供應電壓是否降低至低於降臨限電壓(亦即,偵測供應電壓降),並調整提供至負載電路用於供應電壓降之持續時間的時脈信號。調整時脈信號可包括降低負載電路操作之頻率以減少或避免由供應電壓降引起的時序故障。除了緩和供應電壓降之影響外,適應性電壓調變電路對時脈週期的數目進行計數,在該時脈週期期間供應電壓低於降臨限電壓。換言之,該計數指示負載電路經歷供應電壓降的時間長度。回應於該計數超出上限臨限值,適應性電壓調變電路增大供應電壓。以此方式,回應於對應於較高負載電流需求的負載電路之操作增加供應電壓。相反地,回應於計數小於經定義時段之結束時的下限臨限值,適應性電壓調變電路減小供應電壓。以此方式,回應於對應於較低 負載電流需求的負載電路之操作減小供應電壓。基於負載電路之操作需求調整供應電壓可減小供應電壓降之出現機會並避免設定供應電壓大於負載電路所需之電壓。因此,適應性電壓調變電路緩和供應電壓降之影響,且亦減小供應電壓降之出現機會同時最小化負載電路之功率消耗。
就此而言,在一個態樣中,提供一種適應性電壓調變電路。適應性電壓調變電路包含供應電壓降偵測及緩和電路。供應電壓降偵測及緩和電路包含經配置以回應於提供至負載電路之供應電壓小於降臨限電壓而產生處於作用狀態之降偵測信號的偵測電路。供應電壓降偵測及緩和電路進一步包含經配置以回應於降偵測信號調整提供至負載電路之負載時脈信號之時脈調整電路。適應性電壓調變電路進一步包含供應電壓調整電路。供應電壓調整電路包含經配置以回應於參考時脈信號之每一週期而增加計數的計數器電路,其中降偵測信號處於作用狀態。供應電壓調整電路亦包含經配置以回應於計數大於調高臨限值而產生處於作用狀態的電壓調高信號之電壓調高電路。供應電壓調整電路進一步包含經配置以回應於計數在小於藉由參考時脈信號所量測之經定義時段之結束時的調低臨限值產生處於作用狀態之電壓調低信號的電壓調低電路。適應性電壓調變電路進一步包含供應電壓控制器電路。供應電壓控制器電路經配置以回應於電壓調高信號處於作用狀態而增大提供至負載電路的供應電壓,且回應於電壓調低信號處於作用狀態而減小提供至負載電路的供應電壓。
在另一態樣中,提供一種適應性電壓調變電路。適應性電壓調變電路包含用於回應於供應電壓小於降臨限電壓而產生處於作用狀態的降偵測信號的構件。適應性電壓調變電路亦包含用於回應於降偵測信號而調整提供至負載電路之負載時脈信號的構件,及用於回應於參考時脈信號之 每一週期而增加計數的構件,其中降偵測信號處於作用狀態。適應性電壓調變電路亦包含用於回應於計數大於調高臨限值而產生處於作用狀態之電壓調高信號的構件,及用於回應於計數小於如藉由參考時脈信號所量測的經定義時段之結束時的調低臨限值而產生處於作用狀態之電壓調低信號的構件。適應性電壓調變電路進一步包含用於回應於電壓調高信號處於作用狀態而增大提供至負載電路之供應電壓的構件,及用於回應於電壓調低信號處於作用狀態而減小提供至負載電路之供應電壓的構件。
在另一態樣中,提供一種用於適應性地調變供應電壓之方法。該方法包含回應於供應電壓小於降臨限電壓而產生處於作用狀態的降偵測信號,且回應於降偵測信號而調整提供至負載電路的負載時脈信號。該方法進一步包含回應於參考時脈信號之每一週期而增加計數,其中降偵測信號處於作用狀態。該方法亦包含回應於計數大於調高臨限值產生處於作用狀態之電壓調高信號,及回應於計數小於如藉由參考時脈信號所量測的經定義時段之結束時的調低臨限值而產生處於作用狀態之電壓調低信號。該方法亦包含回應於電壓調高信號處於作用狀態而增大提供至負載電路的供應電壓,且回應於電壓調低信號處於作用狀態而減小提供至負載電路的供應電壓。
在另一態樣中,提供一種基於處理器之系統。基於處理器之電路包含處理器、經配置以將供應電壓提供至處理器的電力管理電路及適應性電壓調變電路。適應性電壓調變電路包含供應電壓降偵測及緩和電路。供應電壓降偵測及緩和電路包含經配置以回應於供應電壓小於降臨限電壓而產生處於作用狀態之降偵測信號的偵測電路,及經配置以回應於降偵測信號而調整提供至處理器的負載時脈信號之時脈調整電路。適應性電壓調 變電路亦包含供應電壓調整電路。供應電壓調整電路包含經配置以回應於參考時脈信號之每一週期而增加計數的計數器電路,其中降偵測信號處於作用狀態。供應電壓調整電路進一步包含經配置以回應於計數大於調高臨限值而產生處於作用狀態之電壓調高信號的電壓調高電路,及經配置以回應於計數小於如藉由參考時脈信號所量測的經定義時段之結束時的調低臨限值而產生處於作用狀態的電壓調低信號之電壓調低電路。適應性電壓調變電路進一步包含供應電壓控制器電路。供應電壓控制器電路經配置以回應於電壓調高信號處於作用狀態而增大提供至處理器的供應電壓,且回應於電壓調低信號處於作用狀態而減小提供至處理器的供應電壓。
100:適應性電壓調變電路
102:負載電路
104:供應電壓降偵測及緩和電路
106:偵測電路
106':比較器電路
106":關鍵路徑電壓監測(CPVM)電路
108:降偵測信號
108':降偵測信號
108":降偵測信號
110:時脈調整電路
112:供應電壓調整電路
114:計數器電路
114':計數器電路
116:電壓調高電路
118:電壓調高信號
120:電壓調低電路
120':電壓調低電路
122:電壓調低信號
122':電壓調低信號
124:供應電壓控制器電路
126:電力管理電路
200:程序
202:區塊
204:區塊
206:區塊
208:區塊
210:區塊
212:區塊
214:區塊
300:適應性電壓調變電路
302:供應電壓降偵測及緩和電路
304:降臨限暫存器
306:輸出節點
308:數位至類比轉換器(DAC)
310:輸入節點
312:輸出節點
314:第一輸入節點
316:第二輸入節點
318:輸出節點
320:第一輸入節點
322:鎖相迴路(PLL)
324:第二輸入節點
326:輸出節點
328:供應電壓調整電路
330:第一輸入節點
332:第二輸入節點
334(1):第一輸出節點
334(2):第二輸出節點
336(1):上調計數信號
336(2):下調計數信號
338:調高暫存器
340:調低暫存器
342:輸出節點
344:輸出節點
346:第一輸入節點
348:第二輸入節點
350:輸出節點
352:第一輸入節點
354:第二輸入節點
356:輸出節點
400:適應性電壓調變電路
402:供應電壓降偵測及緩和電路
404:功率輸入端
406:正反器電路
408:正反器電路
410:輸出節點
412:輸出信號
414:輸入節點
416:緩衝器
418:輸出節點
420:輸入節點
422:反相器
424:輸出節點
426:輸入節點
428:AND閘極
430:啟用信號
432:第二輸入節點
434:輸出節點
436:輸入節點
438:第一輸入節點
440:XOR閘極
442:第一路徑
444:輸入節點
446:輸出節點
448:輸出信號
450:輸入節點
452(1)至452(N):緩衝器
454:輸出節點
456:第二輸入節點
458:輸出信號
460:輸出節點
462:第二路徑
464:正反器電路
468:輸出節點
500:基於處理器之系統
502:中央處理單元(CPU)
504:處理器
506:快取記憶體
508:系統匯流排
510:記憶體控制器
512:記憶體系統
514:輸入器件
516:輸出器件
518:網路介面器件
520:顯示控制器
522:網路
524(0)至524(M):記憶體單元
526:顯示器
528:視訊處理器
600:無線通信器件
602:積體電路(IC)
604:收發器
606:資料處理器
608:傳輸器
610:接收器
612(1):數位至類比轉換器(DAC)
612(2):數位至類比轉換器(DAC)
614(1):低通濾波器
614(2):低通濾波器
616(1):放大器(AMP)
616(2):放大器(AMP)
618:增頻轉換器
620(1):混合器
620(2):混合器
622:信號產生器
624:信號
626:濾波器
628:功率放大器(PA)
630:雙工器或開關
632:天線
634:低雜訊放大器(LNA)
636:濾波器
638(1):降頻轉換混合器
638(2):降頻轉換混合器
640:信號產生器
642(1):放大器(AMP)
642(2):放大器(AMP)
644(1):低通濾波器
644(2):低通濾波器
646(1):類比至數位轉換器(ADC)
646(2):類比至數位轉換器(ADC)
648:TX PLL電路
650:RX PLL電路
圖1為用於減少供應電壓降並最小化功率消耗之例示性適應性電壓調變電路的方塊圖;圖2為繪示可藉由圖1中之適應性電壓調變電路利用以適應性地調變供應電壓以減少供應電壓降並最小化功率消耗的例示性程序之流程圖;圖3為用於減少供應電壓降並最小化功率消耗之另一例示性適應性電壓調變電路的方塊圖;圖4為用於減少供應電壓降並最小化功率消耗之另一例示性適應性電壓調變電路的方塊圖;圖5為可包括用於減少圖1、圖3及圖4中之供應電壓降的適應性電壓調變電路之例示性基於處理器之系統之方塊圖;及圖6為包括射頻(RF)組件的例示性無線通信器件之方塊圖,其中無線通信器件包括用於減少圖1、圖3及圖4中之供應電壓降的適應性電壓調變 電路。
本申請案主張於2016年5月27日申請之名為「ADAPTIVE VOLTAGE MODULATION CIRCUITS FOR ADJUSTING SUPPLY VOLTAGE TO MITIGATE SUPPLY VOLTAGE DROOPS」的美國臨時專利申請案第62/342,638號之優先權,該申請案之內容以全文引用之方式併入本文中。
現參考圖式,描述本發明之若干例示性態樣。詞語「例示性」在本文中用以意謂「充當實例、例項或說明」。在本文中被描述為「例示性」之任何態樣不必解釋為比其他態樣更佳或更有利。
圖1繪示偵測提供至負載電路102的供應電壓(V)是否降低至低於降臨限電壓(VDT)(亦即,偵測供應電壓降)的例示性適應性電壓調變電路100。如本文所使用,供應電壓降為至低於藉由電力供應器提供至負載電路102之供應電壓(V)的特定電壓位準的暫時下降或減小。回應於偵測到供應電壓降,適應性電壓調變電路100調整提供至負載電路102之用於供應電壓降之持續時間以緩和供應電壓降之影響的負載時脈信號CLK_LD。另外,適應性電壓調變電路100對負載電路102經歷供應電壓降的時間長度(例如,參考時脈週期的數目)進行計數,且回應於該計數超出上限臨限值而增大供應電壓(V)。相反地,適應性電壓調變電路100回應於計數小於經定義時段之結束時的下限臨限值而減小供應電壓。如下文更詳細地描述,以此方式調整供應電壓(V)可減小供應電壓降之出現機會且避免設定供應電壓(V)高於負載電路102所需之電壓。因此,適應性電壓調變電路100緩和供應電壓降之影響,且亦減小供應電壓降之出現機會 同時最小化負載電路102之功率消耗。
就此而言,繼續參考圖1,適應性電壓調變電路100利用供應電壓降偵測及包括經配置以回應於供應電壓(V)小於降臨限電壓(VDT)而產生處於作用狀態的降偵測信號108之偵測電路106的緩和電路104。如下文更詳細地描述,可使用經配置以基於供應電壓(V)及降臨限電壓(VDT)之比較而產生降偵測信號108的運算放大器將偵測電路106實施為比較器電路。替代地,可使用經配置以回應於偵測到與供應電壓(V)相關聯之雜訊足夠大以將供應電壓(V)降低至低於降臨限電壓(VDT)而產生降偵測信號108的關鍵路徑電壓監測(CPVM)電路來實施偵測電路106。供應電壓降偵測及緩和電路104亦包括經配置以回應於降偵測信號108而調整提供至負載電路102的負載時脈信號CLK_LD之時脈調整電路110。例如,時脈調整電路110可回應於降偵測信號108轉換至作用狀態(亦即,回應於偵測到供應電壓降)而將負載時脈信號CLK_LD之頻率降低至小於主時脈信號CLK_RT之頻率,該主時脈信號CLK_RT藉由時脈調整電路110接收。如下文更詳細地描述,主時脈信號CLK_RT可為由諸如鎖相迴路(PLL)之系統電路產生的系統級時脈信號。
繼續參考圖1,降低負載時脈信號CLK_LD之頻率降低負載電路102操作之頻率,其可減少或避免由供應電壓降引起的時序故障。作為非限制性實例,此態樣中之時脈調整電路110藉由分割主時脈信號CLK_RT降低負載時脈信號CLK_LD之頻率。在其他態樣中,時脈調整電路110可以其他方法調整主時脈信號CLK_RT,諸如(但不限於),門控主時脈信號CLK_RT或切換時脈多工器以選擇用於負載時脈信號CLK_LD的不同頻率。另外,時脈調整電路110亦可回應於降偵測信號108轉變至非 作用狀態(亦即,回應於偵測到供應電壓降之缺失)而將負載時脈信號CLK_LD之頻率提高至大體上等於主時脈信號CLK_RT之頻率。
繼續參考圖1,適應性電壓調變電路100亦利用包括計數器電路114的供應電壓調整電路112,該計數器電路經配置以對參考時脈信號CLK_REF之週期的數目進行計數,在該週期期間供應電壓(V)小於降臨限電壓(VDT)。具體而言,計數器電路114經配置以回應於參考時脈信號CLK_REF之每一週期而增加計數CNT,其中降偵測信號108處於作用狀態。如本文所使用,參考時脈信號CLK_REF可為具有固定頻率(例如,二十(20)兆赫茲(MHz))之時脈信號,該參考時脈信號CLK_REF為單獨的且與主時脈信號CLK_RT及負載時脈信號CLK_LD不同。替代地,參考時脈信號CLK_REF可與主時脈信號CLK_RT相同。另外,計數器電路114可經配置以在如藉由參考時脈信號CLK_REF所量測之經定義時段內增加計數CNT,且在經定義時段之結束時將計數CNT重設為最初計數值。以此方式,計數CNT指示負載電路102經歷供應電壓降的經定義時段之百分比,且因此為負載電路102以負載時脈信號CLK_LD的降低之頻率操作的時間之百分比。
繼續參考圖1,供應電壓調整電路112亦包括經配置以回應於計數CNT大於調高臨限值(AU)而產生處於作用狀態之電壓調高信號118的電壓調高電路116。電壓調高電路116亦可經配置以回應於計數CNT小於經定義時段之結束時的調高臨限值(AU)而產生處於非作用狀態之電壓調高信號118。另外,供應電壓調整電路112包括經配置以回應於計數CNT小於經定義時段之結束時的調低臨限值(AD)而產生處於作用狀態之電壓調低信號122的電壓調低電路120。電壓調低電路120亦可經配置以回應於計 數CNT大於經定義時段之結束時的調低臨限值(AD)而產生處於非作用狀態之電壓調低信號122。換言之,回應於計數CNT超出經定義時段期間之任何時間的調高臨限值(AU)而產生處於作用狀態的電壓調高信號118。相反地,回應於計數CNT小於經定義時段之結束時的調低臨限值(AD)而產生處於作用狀態的電壓調低信號122。
繼續參考圖1,回應於來自供應電壓控制器電路124之應答消息信號指示供應電壓(V)已調高,亦可產生處於非作用狀態的電壓調高信號118,其中該應答消息信號亦重設計數CNT。另外,回應於來自供應電壓控制器電路124之應答消息信號指示供應電壓(V)已調低,亦可產生處於非作用狀態之電壓調低信號122,其中該應答消息信號亦重設計數CNT。
繼續參考圖1,適應性電壓調變電路100亦包括經配置以回應於電壓調高信號118而增大提供至負載電路102之供應電壓(V)的供應電壓控制器電路124。另外,供應電壓控制器電路124經配置以回應於電壓調低信號122而減小提供至負載電路102的供應電壓(V)。在此實例中,供應電壓控制器電路124藉由發指令給電力管理電路126將供應電壓(V)改變為特定位準而調整供應電壓(V)。以此方式,回應於負載時脈信號CLK_LD之頻率在經定義時段中經減少之時間量(亦被稱作「調節百分比」)可增大供應電壓(V)。因此,適應性電壓調變電路100回應於負載電路102在經定義時段之較高百分比經歷供應電壓降增加供應電壓(V)(例如,較高調整百分比),及回應於負載電路102在經定義時段之較低百分比經歷供應電壓降減小供應電壓(V)(例如,較低調整百分比)。在一些態樣中,適應性電壓調變電路100可根據上文藉由預定義電壓階躍所描述而增大或減小供應電壓(V)。作為非限制性實例,若未經調整供應電壓(V)等於800毫伏(mV),則 適應性電壓調變電路100可將供應電壓(V)增大十(10)mV之預定義躍階或將供應電壓(V)減小10mV之預定義躍階。
就此而言,適應性電壓調變電路100回應於對應於較高負載電流需求的負載電路102之操作使得供應電壓降在相對較長持續時間超過降臨限電壓(VDT)而增大供應電壓(V)。相反地,適應性電壓調變電路100回應於對應於較低負載電流需求的負載電路102之操作使得供應電壓降在相對較短持續時間超過降臨限電壓(VDT)而減小供應電壓(V)。基於操作需求及相關之供應電壓降量值及負載電路102之持續時間調整供應電壓(V)可減小供應電壓降之出現機會並避免設定供應電壓(V)高於負載電路102所需之電壓。例如,適應性電壓調變電路100回應於判定負載電路102具有較高負載電流需求增加供應電壓(V),但回應於判定負載電路102具有較低負載電流需求減小供應電壓(V)。因此,適應性電壓調變電路100可減小供應電壓降之出現機會,其減少負載電路102以經降低之頻率操作之時間量同時亦最小化負載電路102之功率消耗。
繼續參考圖1,作為非限制性實例,在1000週期之經定義時段利用適應性電壓調變電路100。此外,計數CNT之最初計數值設定為零(0),調高臨限值(AU)設定為三十(30),且調低臨限值(AD)設定為十(10)。回應於降偵測信號108在經定義時段之週期一(1)與週期十(10)之間處於作用狀態,計數器電路114將計數CNT增大至十(10),且時脈調整電路110降低負載時脈信號CLK_LD之頻率。在經定義時段之週期十一(11)及週期三十(30)之間,降偵測信號108處於非作用狀態,表示不存在供應電壓降。然而,在經定義時段之週期三十一(31)及週期五十二(52)之間,降偵測信號108處於作用狀態,這使得計數器電路114將計數CNT增大至 三十一(31)。回應於計數CNT大於三十(30)之調高臨限值(AU),電壓調高電路116產生處於作用狀態之電壓調高信號118,因此使供應電壓控制器電路124增加提供至負載電路102的供應電壓(V)從而減小供應電壓降之出現機會。
繼續參考圖1,作為替代非限制性實例,降偵測信號108僅在經定義時段之週期二十(20)及週期二十五(25)之間處於作用狀態。以此方式,計數CNT在經定義時段之1000週期期間僅增大至值五(5)。在經定義時段之結束時,電壓調低電路120回應於計數CNT小於調低臨限值(AD)十(10)而產生處於作用狀態的電壓調低信號122。因此,供應電壓控制器電路124減小供應電壓(V),因此最小化負載電路102之功率消耗。
圖2繪示可藉由圖1中之適應性電壓調變電路100利用以適應性地調變供應電壓(V)以減少供應電壓降並最小化功率消耗的例示性程序200。程序200包括回應於供應電壓(V)小於降臨限電壓(VDT)產生處於作用狀態的降偵測信號108的偵測電路106(區塊202)。程序200亦包括回應於降偵測信號108而調整提供至負載電路102之負載時脈信號CLK_LD的時脈調整電路110(區塊204)。另外,程序200包括回應於參考時脈信號CLK_REF之每一週期而增加計數CNT的計數器電路114,其中降偵測信號108處於作用狀態(區塊206)。程序200亦包括回應於計數CNT大於調高臨限值(AU)而產生處於作用狀態的電壓調高信號118之電壓調高電路116(區塊208)。此外,程序200包括回應於計數CNT小於藉由參考時脈信號CLK_REF所量測的經定義時段之結束時的調低臨限值(AD)而產生處於作用狀態之電壓調低信號122的電壓調低電路120(區塊210)。程序200亦包括回應於電壓調高信號118處於作用狀態而增大提供至負載電路102的供 應電壓(V)之供應電壓控制器電路124(區塊212)。程序200亦包括回應於電壓調低信號122處於作用狀態而減小提供至負載電路102之供應電壓(V)的供應電壓控制器電路124(區塊214)。使用程序200調整供應電壓(V)以符合負載電路102之操作需求減少負載電路102以經降低之頻率操作的時間量同時最小化負載電路102之功率消耗。
圖3繪示用於減少供應電壓降並最小化功率消耗之另一例示性適應性電壓調變電路300。適應性電壓調變電路300包括具有圖1之適應性電壓調變電路100的如藉由圖1及圖3之間的共同元件標號所示的某些共同組件,且因此本文將不再描述。
參考圖3,適應性電壓調變電路300利用供應電壓降偵測及包括可被實施為比較器電路106'之偵測電路的緩和電路302。具體而言,比較器電路106'經配置以基於執行供應電壓(V)與降臨限電壓(VDT')的比較而產生降偵測信號108'。基於儲存於包括於供應電壓降偵測及緩和電路302中之降臨限暫存器304中的數位臨限值(DV)判定此態樣中之降臨限電壓(VDT')。數位臨限值(DV)為降臨限電壓(VDT')之數位表示,其中降臨限暫存器304經配置以將數位臨限值(DV)提供於降臨限暫存器304之輸出節點306上。另外,供應電壓降偵測及緩和電路302包括數位至類比轉換器(DAC)308以將數位臨限值(DV)轉換為比較器電路106'使用之降臨限電壓(VDT')。具體而言,DAC 308包括電耦接至降臨限暫存器304之輸出節點306的輸入節點310,及DAC 308經配置以將降臨限電壓(VDT')提供於其上的輸出節點312。
繼續參考圖3,比較器電路106'包括電耦接至DAC 308之輸出節點312以便接收降臨限電壓(VDT')的第一輸入節點314,以及接收供應 電壓(V)的第二輸入節點316。比較器電路106'亦包括輸出節點318,比較器電路106'經配置以於該輸出節點318上提供降偵測信號108'。更特定言之,回應於降臨限電壓(VDT')大於供應電壓(V),由比較器電路106'產生的降偵測信號108'轉換至作用狀態。換言之,回應於偵測到供應電壓降,降偵測信號108'處於作用狀態。另外,回應於降臨限電壓(VDT')小於供應電壓(V),由比較器電路106'產生的降偵測信號108'轉換至非作用狀態。換言之,回應於偵測到當前不存在供應電壓降,降偵測信號108'處於非作用狀態。
繼續參考圖3,供應電壓降偵測及緩和電路302亦包括經配置以回應於降偵測信號108'而調整提供至負載電路102的負載時脈信號CLK_LD'之時脈調整電路110。具體而言,時脈調整電路110包括接收由此態樣中之鎖相迴路(PLL)322產生的主時脈信號CLK_RT'之第一輸入節點320。時脈調整電路110亦包括電耦接至比較器電路106'之輸出節點318以使得第二輸入節點324接收降偵測信號108'的第二輸入節點324。此外,時脈調整電路110包括輸出節點326,時脈調整電路110經配置以於該輸出節點326上提供負載時脈信號CLK_LD'。如上文先前所描述,回應於偵測到供應電壓降而調整負載時脈信號CLK_LD'可減少或避免由供應電壓降引起的時序故障,同時適應性電壓調變電路300之其他部分調整供應電壓(V)以減小供應電壓降之出現機會。
繼續參考圖3,適應性電壓調變電路300亦利用包括計數器電路114'的供應電壓調整電路328,該計數器電路經配置以對參考時脈信號CLK_REF之週期的數目進行計數,在該週期期間供應電壓(V)小於降臨限電壓(VDT')。在此態樣中,計數器電路114'用作十六(16)位元計數器電路 114'。計數器電路114'包括第一輸入節點330,計數器電路114'經配置以於該第一輸入節點330上接收降偵測信號108'。計數器電路114'亦包括第二輸入節點332,計數器電路114'經配置以於該第二輸入節點332上接收參考時脈信號CLK_REF。計數器電路114'經配置以保持兩個單獨計數、調高計數UP_CNT及調低計數DN_CNT,其中之每一者對應於特定經定義時段,而不是保持如參考圖1所描述之單個計數CNT。更特定言之,計數器電路114'回應於參考時脈信號CLK_REF之每一週期而增大調高計數UP_CNT,其中降偵測信號108'在調高期間處於作用狀態,並在調高期間之結束時將計數CNT重設為最初計數值。另外,計數器電路114'回應於參考時脈信號CLK_REF之每一週期而增大調低計數DN_CNT,其中降偵測信號108'在調低週期期間處於作用狀態,並在調低週期期間之結束時將計數CNT重設為最初計數值。
繼續參考圖3,利用對應於單獨的調高及調低時段之單獨的調高及調低計數UP_CNT、DN_CNT允許此態樣將較高權重分配至較高效能或較大電力節省。例如,把較高權重放於較高效能上,可定義調高時段在持續時間上比調低時段更短以使得比減小供應電壓(V)之決策更頻繁地評估增大供應電壓(V)之決策。相反地,把較高權重放於較大電力節省上,可定義調低時段在持續時間上比調高時段更短以使得與比增大供應電壓(V)之決策更頻繁地評估減小供應電壓(V)之決策。為傳達調高及調低計數UP_CNT、DN_CNT,計數器電路114'包括第一輸出節點334(1),計數器電路114'經配置以於該第一輸出節點334(1)上提供指示調高計數UP_CNT之上調計數信號336(1),及第二輸出節點334(2),計數器電路114'經配置以於該第二輸出節點334(2)上提供指示調低計數DN_CNT之下調計數信號 336(2)。
繼續參考圖3,為了基於調低及調高計數UP_CNT、DN_CNT而調整供應電壓(V),供應電壓調整電路328亦包括調高暫存器338及調低暫存器340。具體而言,調高暫存器338經配置以儲存調高臨限值(AU),同時調低暫存器340經配置以儲存調低臨限值(AD)。調高暫存器338包括輸出節點342,調高暫存器338經配置以於該輸出節點342上提供調高臨限值(AU)。類似地,調低暫存器340包括輸出節點344,調低暫存器340經配置以於該輸出節點344上提供調低臨限值(AD)。作為非限制性實例,可在測試對應晶片期間判定調高及調低臨限值(AU)、(AD)且將其儲存於調高及調低暫存器338、340中。
繼續參考圖3,供應電壓調整電路328亦包括經配置以回應於調高計數UP_CNT大於調高臨限值(AU)而產生電壓調高信號118'的電壓調高電路116'。具體而言,電壓調高電路116'包括電耦接至計數器電路114'之第一輸出節點334(1)以接收上調計數信號336(1)的第一輸入節點346。電壓調高電路116'亦包括電耦接至調高暫存器338之輸出節點342以接收調高臨限值(AU)的第二輸入節點348。電壓調高電路116'進一步包括輸出節點350,電壓調高電路116'經配置以於該輸出節點350上提供電壓調高信號118'。具體而言,電壓調高信號118'最初處於非作用狀態,其中電壓調高電路116'回應於藉由上調計數信號336(1)所指示之調高計數UP_CNT大於在經定義時段期間的任何時間之調高臨限值(AU)而產生處於作用狀態的電壓調高信號118'。另外,電壓調高電路116'回應於藉由上調計數信號336(1)所指示之調高計數UP_CNT小於調高週期之結束時的調高臨限值(AU)而將電壓調高信號118'重設為非作用狀態。以此方式,若負載電路 102在較大百分比之調高時段內經歷供應電壓降,則電壓調高信號118'處於作用狀態,該信號指示供應電壓(V)應經增大從而減少或避免供應電壓降。此外,回應於來自供應電壓控制器電路124之應答消息信號指示供應電壓(V)已經調低,可產生處於非作用狀態之電壓調高信號118',其中該應答消息信號亦重設計數UP_CNT。
繼續參考圖3,供應電壓調高電路328亦包括經配置以回應於調低計數DN_CNT小於在調低時段之結束時的調低臨限值(AD)產生調低信號122'的電壓調低電路120'。具體而言,電壓調低電路120'包括電耦接至計數器電路114'之第二輸出節點334(2)以便接收下調計數信號336(2)的第一輸入節點352。電壓調低電路120'亦包括電耦接至調低暫存器340之輸出節點344以便接收調低臨限值(AD)的第二輸入節點354。電壓調低電路120'進一步包括輸出節點356,電壓調低電路120'經配置以於該輸出節點356上提供電壓調低信號122'。具體而言,電壓調低信號122'最初處於非作用狀態,其中電壓調低電路120'回應於藉由下調計數信號336(2)所指示之調低計數DN_CNT小於調低時段之結束時的調低臨限值(AD)而產生處於作用狀態的電壓調低信號122'。另外,電壓調低電路120'回應於藉由下調計數信號336(2)所指示之調低計數DN_CNT大於調低時段之結束時的調低臨限值(AD)而產生處於非作用狀態的電壓調低信號122'。以此方式,若負載電路102不在特定百分比之調低時段內經歷供應電壓降,則電壓調低信號122'處於作用狀態,該信號指示可減小供應電壓(V)以最小化負載電路102之功率消耗。此外,回應於來自供應電壓控制器電路124之應答消息信號指示供應電壓(V)已調高,可產生處於非作用狀態之電壓調低信號122',其中該應答信號亦重設調低計數DN_CNT。
繼續參考圖3,適應性電壓調變電路300亦包括經配置以藉由發指令給電力管理電路126將供應電壓(V)改變至特定位準而調整供應電壓(V)的供應電壓控制器電路124。如先前所描述,供應電壓控制器電路124經配置以回應於電壓調高信號118'處於作用狀態而增大提供至負載電路102的供應電壓(V)。另外,供應電壓控制器電路124經配置以回應於電壓調低信號122'處於作用狀態而減小提供至負載電路102的供應電壓(V)。作為非限制性實例,在一些態樣中,供應電壓控制器電路124可包括有限狀態機以判定是增大抑或減小供應電壓(V)。此類態樣亦可包括供應電壓調整電路328之多個例項,其中之每一者對應於負載電路102之不同例項,該供應電壓調整電路328與供應電壓控制器電路124通信。此外,供應電壓控制器電路124之其他態樣可包括經配置以運行韌體以執行上文所描述之功能的控制器電路。以此方式,供應電壓控制器電路124可在每一供應電壓調整電路328之需求之間判斷且根據利用負載電路102之多個例項之晶片的需求調整供應電壓(V)。
圖4繪示用於減少供應電壓降並最小化功率消耗之另一例示性適應性電壓調變電路400。適應性電壓調變電路400包括具有圖1及圖3之適應性電壓調變電路100及300的某些共同組件,該等組件藉由圖1、圖3及圖4中之共同元件標號展示,且因此本文將不再描述。
參考圖4,適應性電壓調變電路400利用供應電壓降偵測及包括可被實施為關鍵路徑電壓監測(CPVM)電路106"的偵測電路之緩和電路402。CPVM電路106"經配置以回應於偵測到與供應電壓(V)相關聯之雜訊大到足以將供應電壓(V)減小到低於降臨限電壓(VDT")而產生降偵測信號108"。作為非限制性實例,CPVM電路106"藉由功率輸入端404上之供 應電壓(V)供電,且包含正反器電路406、408。正反器電路406藉由主時脈信號CLK_RT'計時,且包括輸出節點410,正反器電路406經配置以於該輸出節點410上提供輸出信號412。輸出節點410電耦接至緩衝器416之輸入節點414。緩衝器416具有電耦接至反相器422之輸入節點420的輸出節點418,其中反相器422之輸出節點424電耦接至基於AND的閘極428(例如,AND閘極428)之輸入節點426。另外,提供啟用信號430至AND閘極428之第二輸入節點432,且AND閘極428之輸出節點434電耦接至正反器電路406之輸入節點436。以此方式,正反器電路406回應於啟用信號430充當雙態觸發正反器電路。更特定言之,輸出信號412在邏輯『1』值及邏輯『0』值之間以大致等於主時脈信號CLK_RT'之頻率的二分之一(1/2)之頻率雙態觸發。另外,緩衝器416之輸出節點418電耦接至基於XOR的閘極440(例如,XOR閘極440)之第一輸入節點438。以此方式利用正反器電路406及緩衝器416產生第一路徑442。具體而言,該第一路徑442充當經設計以甚至在供應電壓降之最大量期間提供穩定值至XOR閘極440之第一輸入節點438的對照參考路徑。
繼續參考圖4,正反器電路408亦藉由主時脈信號CLK_RT'計時,且包括電耦接至AND閘極428之輸出節點434的輸入節點444,及輸出節點446,正反器電路408經配置以於該輸出節點446上提供輸出信號448。以此方式,正反器電路408經配置以充當雙態觸發正反器電路,其中輸出信號448在邏輯『1』值及邏輯『0』值之間以大致等於主時脈信號CLK_RT'之頻率的二分之一(1/2)的頻率雙態觸發。輸出節點446電耦接至緩衝器452(1)之輸入節點450,該緩衝器為複數個串聯連接的緩衝器452(1)至452(N)之第一緩衝器452(1)。在此實例中,緩衝器452(1)至 452(N)之數目N經設定以表示與降臨限電壓(VDT")相關之延遲值。此外,緩衝器452(N)之輸出節點454(例如,最末緩衝器452(N))電耦接至XOR閘極440之第二輸入節點456。
繼續參考圖4,表示供應電壓降是否出現的XOR閘極440之輸出信號458提供於XOR閘極440之輸出節點460上。作為非限制性實例,在主時脈信號CLK_RT'之例示性週期中,正反器電路406接收邏輯『1』值,導致第一路徑442提供邏輯『1』值至XOR閘極440之第一輸入節點438。另外,正反器電路408接收邏輯『1』值。就此而言,在供應電壓(V)具有足夠高的值的情況下,對應於正反器電路408及緩衝器452(1)至452(N)的第二路徑462可按照對應於緩衝器452(1)至452(N)提供延遲邏輯『1』值至第二輸入節點456。回應於第一及第二輸入節點438、456兩者都接收邏輯『1』值,輸出信號458具有邏輯『0』值,表示不存在供應電壓降。然而,在供應電壓(V)降低於降臨限電壓(VDT")的情況下,第二路徑462經設計以具有對應於緩衝器452(1)至452(N)的延遲以在此實例中產生邏輯『0』值。因此,基於主時脈信號CLK_RT'之時脈時段臨時提供邏輯『0』值至第二輸入節點456。因此,回應於第二輸入節點456接收邏輯『0』值同時第一輸入節點438接收邏輯『1』值,輸出信號458具有邏輯『1』值,其表示存在供應電壓降。作為其他非限制性實例,於主時脈信號CLK_RT'之後續週期上,正反器電路406接收邏輯『0』值以使第一路徑442提供邏輯『0』值至XOR閘極440之第一輸入節點438。正反器電路408亦接收邏輯『0』值,其中在供應電壓(V)不下降至低於降臨限電壓(VDT")的情況下,第二路徑462提供邏輯『0』值至第二輸入節點456,導致輸出信號458具有表示不存在供應電壓降的邏輯『0』值。然而,在 供應電壓(V)下降至低於下降臨限電壓(VDT")之情況下,第二路徑462提供邏輯『1』值至第二輸入節點456,導致輸出信號458具有表示存在供應電壓降的邏輯『1』值。
繼續參考圖4,CPVM電路106"亦包括正反器電路464,該正反器電路包括經配置以接收輸出信號458的輸入節點466,且該正反器電路藉由主時脈信號CLK_RT'計時。另外,正反器電路464包括輸出節點468,正反器電路464經配置以基於輸出信號458於該輸出節點468上產生降偵測信號108"。具體而言,對應於第二路徑462的延遲加對應於XOR閘極440的延遲經設計以在供應電壓(V)下降至低於降臨限電壓(VDT")時錯過正反器電路464之建立時間,使降偵測信號108"指示供應電壓降。降偵測信號108"供如先前所描述之時脈調整電路110及供應電壓調整電路328使用。以此方式,可利用CPVM電路106"以基於上文所描述之基於時序的判定並非圖3中所描述之電壓比較判定來偵測供應電壓降。
本文所描述的元件有時被稱作用於執行特定功能之構件。就此而言,圖1中所繪示之偵測電路106為「用於回應於供應電壓小於降臨限電壓而產生處於作用狀態之降偵測信號的構件」之實例。圖1中所繪示之偵測電路106亦為「用於執行供應電壓與降臨限電壓之比較的構件」及「用於回應於降臨限電壓小於供應電壓而產生處於非作用狀態之降偵測信號的構件」之實例。圖1中所繪示之時脈調整電路110為「用於回應於降偵測信號而調整提供至負載電路之負載時脈信號的構件」之實例。圖1中所繪示之時脈調整電路110亦為「用於回應於降偵測信號轉變至作用狀態以使負載時脈信號之頻率低於主時脈信號之頻率而降低負載時脈信號之頻率的構件」之實例。圖1中所繪示之時脈調整電路110亦為「用於回應於 降偵測信號轉變至非作用狀態以使負載時脈信號之頻率等於或大體上等於主時脈信號之頻率而提高負載時脈信號之頻率的構件」之實例。圖1中所繪示之計數器電路114為「用於回應於參考時脈信號之每一週期而增大計數的構件,其中降偵測信號處於作用狀態」之實例。圖1中所繪示之計數器電路114亦為「用於回應於經定義時段之結束而將計數重設成最初計數值的構件」之實例。
另外,圖1中所繪示之電壓調高電路116為「用於回應於計數大於調高臨限值而產生處於作用狀態的電壓調高信號的構件」之實例。圖1中所繪示之電壓調高電路116亦為「用於回應於計數小於調高臨限值而產生處於非作用狀態的電壓調高信號的構件」之實例。圖1中所繪示之電壓調低電路120為「用於回應於計數小於如藉由參考時脈信號所量測的經定義時段之結束時的調低臨限值而產生處於作用狀態之電壓調低信號的構件」之實例。圖1中所繪示之電壓調低電路120亦為「用於回應於計數大於調低臨限值而產生處於非作用狀態的電壓調低信號的構件」之實例。圖1中所繪示之供應電壓控制器電路124為「用於回應於電壓調高信號處於作用狀態而增加提供至負載電路之供應電壓的構件」之實例。圖1中所繪示之供應電壓控制器電路124亦為「用於回應於電壓調低信號處於作用狀態而減小提供至負載電路之供應電壓的構件」之實例。圖3中所繪示之DAC 308為「用於基於數位臨限信號產生降臨限電壓的構件,其中數位臨限信號為儲存於適應性電壓調變電路中之暫存器的降臨限電壓之數位表示」之實例。
可將用於根據本文揭示之態樣調整供應電壓以減少供應電壓降並最小化功率消耗的適應性電壓調變電路提供或整合於任何基於處理器之 器件中。實例包括(但不限於)機上盒、娛樂單元、導航器件、通信器件、固定位置資料單元、行動位置數據單元、全球定位系統(GPS)器件、行動電話、蜂巢式電話、智慧型電話、會話發起協定(SIP)電話、平板電腦、平板手機、伺服器、電腦、攜帶型電腦、行動計算器件、可穿戴式計算器件(例如,智慧型手錶、健康或健身跟蹤器、眼鏡等等)、桌上型電腦、個人數位助理(PDA)、監視器、電腦監視器、電視機、調諧器、無線電、衛星無線電、音樂播放器、數位音樂播放器、攜帶型音樂播放器、數位視訊播放器、視訊播放器、數位視訊光碟(DVD)播放器、攜帶型數位視訊播放器、汽車、車輛組件、航空電子設備系統、無人機及多旋翼飛行器。
就此而言,圖5繪示可使用在圖1、圖3及圖4中分別繪示之適應性電壓調變電路100、300及400的基於處理器之系統500的實例。在此實例中,基於處理器之系統500包括一或多個中央處理單元(CPU)502,其各自包括一或多個處理器504。CPU 502可具有耦接至處理器504以用於快速地存取暫時儲存之資料的快取記憶體506。CPU 502耦接至系統匯流排508,且可相互耦接包括於基於處理器之系統500中的主控器件及從屬器件。眾所周知,CPU 502經由系統匯流排508交換位址、控制及資料資訊與此等其他器件通信。舉例而言,CPU 502可將匯流排異動請求傳達至作為從屬器件之一實例的記憶體控制器510。儘管圖5中未說明,但可提供多個系統匯流排508,其中每一系統匯流排508構成不同網狀架構。
其他主控器件及從屬器件可連接至系統匯流排508。如圖5中所繪示,此等器件可包括(例如)記憶體系統512、一或多個輸入器件514、一或多個輸出器件516、一或多個網路介面器件518及一或多個顯示控制器520。輸入器件514可包括任何類型之輸入器件,包括(但不限於)輸入鍵、 開關、語音處理器等。輸出器件516可包括任何類型之輸出器件,包括(但不限於)音訊指示器、視訊指示器、其他視覺指示器等。網路介面器件518可為經配置以允許將資料交換至網路522及自網路522交換資料的任何器件。網路522可為任何類型之網路,包括(但不限於)有線或無線網路、私用或公用網路、區域網路(LAN)、無線區域網路(WLAN)、廣域網路(WAN)、BLUETOOTHTM網路及網際網路。網路介面器件518可經配置以支援所要之任何類型的通信協定。記憶體系統512可包括一或多個記憶體單元524(0)至524(M)。
CPU 502亦可經配置以經由系統匯流排508存取顯示控制器520以控制發送至一或多個顯示器526之資訊。顯示控制器520發送資訊至顯示器526以供經由一或多個視訊處理器528顯示,該等處理器將待顯示之資訊處理成適合於顯示器526之格式。顯示器526可包括任何類型之顯示器,包括(但不限於)陰極射線管(CRT)、液晶顯示器(LCD)、電漿顯示器、發光二極體(LED)顯示器等。
圖6繪示可包括射頻(RF)組件無線通信器件600之實例,其中無線通信器件600可包括在圖1、圖3及圖4中分別繪示之適應性電壓調變電路100、300及400。就此而言,可提供無線通信器件600於積體電路(IC)602中。無線通信器件600,作為實例,可包括或提供於以上參考器件中之任一者中。如圖6中所示,無線通信器件600包括收發器604及資料處理器606。資料處理器606可包括記憶體(未圖示)以儲存資料及程式碼。收發器604包括支援雙向通信之傳輸器608及接收器610。大體而言,無線通信器件600可包括用於任何數目個通信系統及頻帶的任何數目個發射器及/或接收器。可於一或多個類比IC、RF IC(RFIC)、混合信號IC等上實施收 發器604之全部或部分。
傳輸器或接收器可藉由超外差架構或直接變換架構實施。在超外差架構中,信號在多個階段在RF及基頻之間經頻率轉換,例如,在一個階段自RF至中頻(IF),並接著在接收器之另一階段自IF至基頻。在直接變換架構中,信號在一個階段在RF及基頻之間經頻率轉換。超外差式及直接變換架構可使用不同電路區塊及/或具有不同需求。在圖6中之無線通信器件600中,藉由直接變換架構實施傳輸器608及接收器610。
在傳輸路徑中,資料處理器606處理待經傳輸的資料且提供I及Q模擬輸出信號至傳輸器608。在例示性無線通信器件600中,資料處理器606包括用於將由資料處理器606產生的數位信號轉換為I及Q模擬輸出信號(例如,I及Q輸出電流,以供進一步處理)的DAC 612(1)、612(2)。
在傳輸器608中,低通濾波器614(1)、614(2)分別濾波I及Q模擬輸出信號以移除由之前數位至類比轉化產生的不合需要之信號。放大器(AMP)616(1)、616(2)分別放大來自低通濾波器614(1)、614(2)之信號,並提供I及Q基頻信號。增頻轉換器618增頻轉換經由來自TX LO信號產生器622的混合器620(1)、620(2)變頻具有I及Q傳輸(TX)本地振盪器(LO)信號之I及Q基頻信號以提供經增頻轉換的信號624。濾波器626濾波經增頻轉換的信號624以移除由增頻轉換以及接收頻帶中之雜訊產生的不合需要之信號。功率放大器(PA)628放大來自濾波器626之經增頻轉換的信號624以獲得所需輸出功率位準且提供傳輸RF信號。傳輸RF信號經由雙工器或開關630路由且經由天線632傳輸。
在接收路徑中,天線632接收藉由基地台傳輸之信號及提供接收RF信號,該RF信號經由雙工器或開關630路由且提供至低雜訊放大器 (LNA)634。雙工器或開關630經設計以用特定接收(RX)至TX雙工器頻率分離操作,以使RX信號與TX信號隔離。藉由LNA 634放大並藉由濾波器636濾波之所接收RF信號以獲得所需RF輸入信號。降頻轉換混合器638(1)、638(2)混合具備來自RX LO信號產生器640的I及Q RX LO信號(亦即,LO_I及LO_Q)之濾波器636之輸出以產生I及Q基頻信號。藉由放大器(AMP)642(1)、642(2)放大且藉由低通濾波器644(1)、644(2)進一步濾波I及Q基頻信號以獲得I及Q類比輸入信號,該等I及Q類比輸入信號經提供至資料處理器606。在此實例中,資料處理器606包括用於轉換I及Q模擬輸入信號為待藉由資料處理器606進一步處理之數位信號的類比至數位轉換器(ADC)646(1)、646(2)。
在圖6中之無線通信器件600中,TX LO信號產生器622產生用於增頻轉換之I及Q TX LO信號,同時RX LO信號產生器640產生用於降頻轉換之I及Q RX LO信號。每一LO信號為具有特定基本頻率的週期性信號。TX PLL電路648自資料處理器606接收時許資訊且產生用以調整來自TX LO信號產生器622之I及Q TX LO信號的頻率及/或相位的控制信號。類似地,RX PLL電路650自資料處理器606接收時序資訊且產生用以調整來自RX LO信號產生器640之I及Q RX LO信號的頻率及/或相位的控制信號。
熟習此項技術者將進一步瞭解,結合本文中所揭示之態樣描述的各種說明性邏輯區塊、模組、電路及演算法可被實施為電子硬體、儲存於記憶體或另一電腦可讀媒體中且由處理器或其他處理器件執行之指令,或此兩者之組合。作為實例,本文中所描述之主控器件及從屬器件可用於任何電路、硬體組件、積體電路(IC)或IC晶片中。本文中所揭示之記憶體 可為任何類型及大小之記憶體,且可經配置以儲存所需之任何類型的資訊。為了清楚地說明此可互換性,上文已大體上關於功能性描述了各種說明性組件、區塊、模組、電路及步驟。如何實施此功能性取決於特定應用、設計選擇及/或強加於總系統上之設計約束。熟習此項技術者可針對每一特定應用以不同方法實施所描述之功能性,但該等實施決策不應解譯為引起對本發明之範疇的偏離。
可藉由處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘極陣列(FPGA)或經設計以執行本文中所描述功能的其他可程式化邏輯器件、離散閘極或電晶體邏輯、離散硬體組件或其任何組合來實施或執行結合本文中所揭示之態樣而描述的各種說明性邏輯區塊、模組及電路。處理器可為微處理器,但在替代方案中,處理器可為任何習知處理器、控制器、微控制器或狀態機。處理器亦可實施為計算器件之組合(例如,DSP與微處理器之組合、複數個微處理器、結合DSP核心之一或多個微處理器,或任何其他此配置)。
本文中所揭示之態樣可體現於硬體及儲存於硬體中之指令中,且可駐存於(例如)隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、電可程式化ROM(EPROM)、電可抹除可程式化ROM(EEPROM)、暫存器、硬碟、可卸除式磁碟、CD-ROM或此項技術中已知的任何其他形式之電腦可讀媒體中。例示性儲存媒體耦接至處理器,以使得處理器可自儲存媒體讀取資訊且將資訊寫入至儲存媒體。在替代方案中,儲存媒體可整合至處理器。處理器及儲存媒體可駐存於ASIC中。ASIC可駐存於遠端台中。在替代例中,處理器及儲存媒體可作為離散組件而駐存於遠端台、基地台或伺服器中。
亦應注意,描述本文中在任何例示性態樣中之任一者所描述之操作步驟以提供實例及論述。所描述之操作可依以與所說明之序列外的眾多不同序列來執行。此外,可實際上在大量不同步驟中執行單一執行步驟中所描述之操作。另外,可組合例示性態樣中所論述之一或多個操作步驟。應理解,如熟習此項技術者將顯而易見,流程圖中所說明之操作步驟可經受眾多不同修改。熟習此項技術者亦將理解,可使用多種不同技術及技藝中之任一者來表示資訊及信號。舉例而言,可由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子或其任何組合表示貫穿以上描述可能提及的資料、指令、命令、資訊、信號、位元、符號及碼片。
提供本發明之先前描述以使得任何熟習此項技術者能夠進行或使用本發明。熟習此項技術者將易於瞭解對本發明之各種修改,且本文中定義之一般原理可在不背離本發明之精神或範疇的情況下應用於其他變化中。因此,本發明並不意欲限於本文中描述之實例及設計,而應符合與本文中揭示之原理及新穎特徵相一致的最廣泛範疇。
100:適應性電壓調變電路
102:負載電路
104:供應電壓降偵測及緩和電路
106:偵測電路
108:降偵測信號
110:時脈調整電路
112:供應電壓調整電路
114:計數器電路
116:電壓調高電路
118:電壓調高信號
120:電壓調低電路
122:電壓調低信號
124:供應電壓控制器電路
126:電力管理電路

Claims (30)

  1. 一種適應性電壓調變電路,其包含:一供應電壓降偵測及緩和電路,其包含:一偵測電路,其經配置以回應於提供至一負載電路之一供應電壓小於一降臨限電壓而產生處於一作用狀態之一降偵測信號;及一時脈調整電路,其經配置以回應於該降偵測信號而調整提供至該負載電路之一負載時脈信號;一供應電壓調整電路,其包含:一計數器電路,其經配置以回應於一參考時脈信號之每一週期而增大一計數,其中該降偵測信號處於一作用狀態;一電壓調高電路,其經配置以回應於該計數大於一調高臨限值而產生處於一作用狀態之一電壓調高信號;及一電壓調低電路,其經配置以回應於該計數小於如藉由該參考時脈信號所量測之一經定義時段之一結束時的一調低臨限值而產生處於一作用狀態的一電壓調低信號;及一供應電壓控制器電路,其經配置以:回應於該電壓調高信號處於一作用狀態而增大提供至該負載電路的該供應電壓;且回應於該電壓調低信號處於一作用狀態而減小提供至該負載電路之該供應電壓。
  2. 如請求項1之適應性電壓調變電路,其中: 該電壓調高電路進一步經配置以回應於該計數小於該經定義時段之該結束時的該調高臨限值而產生處於一非作用狀態之該電壓調高信號;及該電壓調低電路進一步經配置以回應於該計數大於該經定義時段之該結束時的該調低臨限值而產生處於一非作用狀態之該電壓調低信號。
  3. 如請求項1之適應性電壓調變電路,其中:該電壓調高電路進一步經配置以回應於一供應電壓控制器電路之一應答消息信號指示該供應電壓已經調高而產生處於一非作用狀態的該電壓調高信號;且該電壓調低電路進一步經配置以回應於該供應電壓控制器電路之一應答消息信號指示該供應電壓已經調低而產生處於一非作用狀態之該電壓調低信號。
  4. 如請求項3之適應性電壓調變電路,其中該計數器電路經配置以回應於該供應電壓控制器電路之該應答消息信號指示該供應電壓已經調高而將該計數重設成一最初計數值。
  5. 如請求項3之適應性電壓調變電路,其中該計數器電路經配置以回應於該供應電壓控制器電路之該應答消息信號指示該供應電壓已經調低而將該計數重設成一最初計數值。
  6. 如請求項1之適應性電壓調變電路,其中該計數器電路經配置以回應於該經定義時段之該結束而將該計數重設成一最初計數值。
  7. 如請求項1之適應性電壓調變電路,其中該計數器電路進一步經配置以:回應於該參考時脈信號之每一週期而在一調高時段期間增大一調高計數,其中該降偵測信號處於一作用狀態;且回應於參考時脈信號每一週期而在一調低時段期間增大一調低計數,其中該降偵測信號處於一作用狀態。
  8. 如請求項7之適應性電壓調變電路,其中該計數器電路包含:一第一輸入節點;一第二輸入節點;一第一輸出節點;及一第二輸出節點;該計數器電路經配置以:於該計數器電路之該第一輸入節點上接收該降偵測信號;於該計數器電路之該第二輸入節點上接收該參考時脈信號;在該計數器電路之該第一輸出節點上提供指示該調高計數的一上調計數信號;且在該計數器電路之該第二輸出節點上提供指示該調低計數的一下調計數信號。
  9. 如請求項8之適應性電壓調變電路,其中該供應電壓調整電路進一步包含: 一調高暫存器,其包含一輸出節點且經配置以:儲存該調高臨限值;且在該調高暫存器之該輸出節點上提供該調高臨限值;及一調低暫存器,其包含一輸出節點且經配置以:儲存該調低臨限值;且在該調低暫存器之該輸出節點上提供該調低臨限值。
  10. 如請求項9之適應性電壓調變電路,其中:該電壓調高電路包含:一第一輸入節點,其電耦接至該計數器電路之該第一輸出節點;一第二輸入節點,其電耦接至該調高暫存器之該輸出節點;及一輸出節點,其電耦接至該供應電壓控制器電路之一第一輸入節點;該電壓調高電路經配置以在該電壓調高電路之該輸出節點上提供該電壓調高信號;及該電壓調低電路包含:一第一輸入節點,其電耦接至該計數器電路之該第二輸出節點;一第二輸入節點,其電耦接至該調低暫存器之該輸出節點;及一輸出節點,其電耦接至該供應電壓控制器電路之一第二輸入節點;該電壓調低電路經配置以在該電壓調低電路之該輸出節點上提供該電壓調低信號。
  11. 如請求項1之適應性電壓調變電路,其中該供應電壓降偵測及緩和電路進一步包含一降臨限暫存器,該降臨限暫存器包含一輸出節點且其經配置以:儲存為該降臨限電壓之一數位表示的一數位臨限信號;且在該降臨限暫存器之該輸出節點上提供該數位臨限信號。
  12. 如請求項11之適應性電壓調變電路,其中該供應電壓降偵測及緩和電路進一步包含:一數位至類比轉換器(DAC),其包含:一輸入節點,其電耦接至該降臨限暫存器之該輸出節點;及一輸出節點;該DAC經配置以在該DAC之該輸出節點上提供該降臨限電壓;且其中該偵測電路包含一比較器電路,其包含:一第一輸入節點,其電耦接至該DAC之該輸出節點;一第二輸入節點,其電耦接至該供應電壓;及一輸出節點;該比較器電路經配置以在該比較器電路之該輸出節點上提供該降偵測信號,其中:該降偵測信號回應於該降臨限電壓大於該供應電壓而轉換至一作用狀態;且該降偵測信號回應於該降臨限電壓小於該供應電壓而轉換至一非作用狀態。
  13. 如請求項12之適應性電壓調變電路,其中該時脈調整電路包含:一第一輸入節點,其接收一主時脈信號;一第二輸入節點,其電耦接至該比較器電路之該輸出節點;及一輸出節點;該時脈調整電路經配置以在該時脈調整電路之該輸出節點上提供該負載時脈信號,其中該負載時脈信號基於該主時脈信號。
  14. 如請求項13之適應性電壓調變電路,其中該時脈調整電路經配置以藉由經配置以進行以下操作而調整該負載時脈信號:回應於該降偵測信號轉變至一作用狀態而降低該負載時脈信號之一頻率以使該負載時脈信號之該頻率低於該主時脈信號之一頻率;且回應於該降偵測信號轉變至一非作用狀態而提高該負載時脈信號之該頻率以使該負載時脈信號之該頻率等於或大體上等於該主時脈信號之該頻率。
  15. 如請求項1之適應性電壓調變電路,其中該偵測電路包含藉由該供應電壓供電且包含以下各者之一關鍵路徑電壓監測電路:一第一路徑,其包含:一第一正反器電路,其經配置以藉由一主時脈信號計時,其包含:一輸入節點;及一輸出節點;一緩衝器,其包含: 一輸入節點,其電耦接至該第一正反器電路之該輸出節點;及一輸出節點;一反相器,其包含:一輸入節點,其電耦接至該緩衝器之該輸出節點;及一輸出節點;一基於AND之閘極,其包含:一第一輸入節點,其電耦接至該反相器之該輸出節點;一第二輸入節點,其經配置以接收一啟用信號;及一輸出節點,其電耦接至該第一正反器電路之該輸入節點;及一第二路徑,其包含:一第二正反器電路,其經配置以藉由該主時脈信號計時,其包含:一輸入節點,其電耦接至該基於AND之閘極的該輸出節點;及一輸出節點;及複數個經串聯連接之緩衝器,其中:該複數個經串聯連接之緩衝器之一第一緩衝器包含電耦接至該第二正反器電路之該輸出節點的一輸入節點;且該複數個經串聯連接之緩衝器之一最末緩衝器包含一輸出節點;一基於XOR之閘極,其包含:一第一輸入節點,其電耦接至該第一路徑之該緩衝器的該輸出節點;一第二輸入節點,其電耦接至該第二路徑之該複數個經串聯連接 之緩衝器的該最末緩衝器的該輸出節點;及一輸出節點,該基於XOR之閘極經配置以於其上提供一輸出信號;及一正反器電路,其經配置以藉由該主時脈信號計時,其包含:一輸入節點,其電耦接至該基於XOR之閘極的該輸出節點;及一輸出節點,該正反器電路經配置以於其上提供該降偵測信號。
  16. 如請求項1之適應性電壓調變電路,其整合於一積體電路(IC)中。
  17. 如請求項1之適應性電壓調變電路,其整合至選自由以下各者組成之群的一器件中:一機上盒;一娛樂單元;一導航器件;一通信器件;一固定位置資料單元;一行動位置資料單元;一全球定位系統(GPS)器件;一行動電話;一蜂巢式電話;一智慧型電話;一會話發起協定(SIP)電話;一平板電腦;一平板手機;一伺服器;一電腦;一攜帶型電腦;一行動計算器件;一可穿戴式計算器件;一桌上型電腦;一個人數位助理(PDA);一監視器;一電腦監視器;一電視機;一調諧器;一無線電;一衛星無線電;一音樂播放器;一數位音樂播放器;一攜帶型音樂播放器;一數位視訊播放器;一視訊播放器;一數位視訊光碟(DVD)播放器;一攜帶型數位視訊播放器;一汽車;一車輛組件;航空電子系統;一無人機;及一多旋翼飛行器。
  18. 一種適應性電壓調變電路,其包含:用於回應於提供至一負載電路之一供應電壓小於一降臨限電壓而產 生處於一作用狀態之一降偵測信號之一構件;用於回應於該降偵測信號而調整提供至該負載電路之一負載時脈信號之一構件;用於回應於一參考時脈信號之每一週期而增大一計數之一構件,其中該降偵測信號處於一作用狀態;用於回應於該計數大於一調高臨限值而產生處於一作用狀態的一電壓調高信號之一構件;用於回應於該計數小於如藉由該參考時脈信號所量測之一經定義時段之一結束時的一調低臨限值而產生處於一作用狀態的一電壓調低信號之一構件;用於回應於該電壓調高信號處於一作用狀態而增大提供至該負載電路的該供應電壓之一構件;及用於回應於該電壓調低信號處於一作用狀態而減小提供至該負載電路之該供應電壓之一構件。
  19. 如請求項18之適應性電壓調變電路,其進一步包含:用於回應於該計數小於該經定義時段之該結束時的該調高臨限值而產生處於一非作用狀態之該電壓調高信號之一構件;及用於回應於該計數大於經定義時段之該結束時的該調低臨限值而產生處於一非作用狀態之該電壓調低信號之一構件。
  20. 如請求項18之適應性電壓調變電路,其進一步包含用於回應於該經定義時段之該結束而將該計數重設成一最初計數值的一構件。
  21. 如請求項18之適應性電壓調變電路,其進一步包含用於基於一數位臨限信號產生該降臨限電壓的一構件,其中該數位臨限信號為儲存於該適應性電壓調變電路中之一暫存器中的該降臨限電壓之一數位表示。
  22. 如請求項18之適應性電壓調變電路,其進一步包含:用於執行該供應電壓與該降臨限電壓之一比較之一構件;及用於回應於該降臨限電壓小於該供應電壓而產生處於一非作用狀態之該降偵測信號之一構件。
  23. 如請求項22之適應性電壓調變電路,其中用於調整該負載時脈信號的該構件包含:用於回應於該降偵測信號轉變至一作用狀態而降低該負載時脈信號之一頻率以使該負載時脈信號之該頻率低於一主時脈信號之一頻率之一構件;及用於回應於該降偵測信號轉變至一非作用狀態而提高該負載時脈信號之該頻率以使該負載時脈信號之該頻率等於或大體上等於該主時脈信號之該頻率之一構件。
  24. 一種用於適應性地調變一供應電壓之方法,其包含:回應於提供至一負載電路之一供應電壓小於一降臨限電壓而產生處於一作用狀態之一降偵測信號;回應於該降偵測信號而調整提供至該負載電路之一負載時脈信號; 回應於一參考時脈信號之每一週期而增大一計數,其中該降偵測信號處於一作用狀態;回應於該計數大於一調高臨限值而產生處於一作用狀態的一電壓調高信號;回應於該計數小於如藉由該參考時脈信號所量測之一經定義時段之一結束時的一調低臨限值而產生處於一作用狀態的一電壓調低信號;回應於該電壓調高信號處於一作用狀態而增加提供至該負載電路的該供應電壓;及回應於該電壓調低信號處於一作用狀態而減小提供至該負載電路之該供應電壓。
  25. 如請求項24之方法,其進一步包含:回應於該計數小於該經定義時段之一結束時的該調高臨限值而產生處於一非作用狀態之該電壓調高信號;及回應於該計數大於經定義時段之該結束時的該調低臨限值而產生處於一非作用狀態之該電壓調低信號。
  26. 如請求項24之方法,其進一步包含回應於該經定義時段之該結束而將該計數重設成一最初計數值。
  27. 如請求項24之方法,其進一步包含基於一數位臨限信號產生該降臨限電壓,其中該數位臨限信號為該降臨限電壓之一數位表示。
  28. 如請求項24之方法,其中產生該降偵測信號包含:執行該供應電壓與該降臨限電壓之一比較;及回應於該降臨限電壓小於該供應電壓而產生處於一非作用狀態之該降偵測信號。
  29. 如請求項28之方法,其中調整該負載時脈信號包含:回應於該降偵測信號處於一作用狀態降低該負載時脈信號之一頻率以使該負載時脈信號之該頻率低於一主時脈信號之一頻率;及回應於該降偵測信號處於一非作用狀態提高該負載時脈信號之該頻率以使該負載時脈信號之該頻率等於或大體上等於該主時脈信號之該頻率。
  30. 一種基於處理器之系統,其包含:一處理器;一電力管理電路,其經配置以提供一供應電壓至該處理器;及一種適應性電壓調變電路,其包含:一供應電壓降偵測及緩和電路,其包含:一偵測電路,其經配置以回應於該供應電壓小於一降臨限電壓而產生處於一作用狀態之一降偵測信號;及一時脈調整電路,其經配置以回應於該降偵測信號而調整提供至該處理器之一負載時脈信號;一供應電壓調整電路,其包含:一計數器電路,其經配置以回應於一參考時脈信號之每一週期 而增大一計數,其中該降偵測信號處於一作用狀態;一電壓調高電路,其經配置以回應於該計數大於一調高臨限值而產生處於一作用狀態之一電壓調高信號;及一電壓調低電路,其經配置以回應於該計數小於如藉由該參考時脈信號所量測之一經定義時段之一結束時的一調低臨限值而產生處於一作用狀態的一電壓調低信號;及一供應電壓控制器電路,其經配置以:回應於該電壓調高信號處於一作用狀態而增大提供至該處理器的該供應電壓;且回應於該電壓調低信號處於一作用狀態而減小提供至該處理器之該供應電壓。
TW106117425A 2016-05-27 2017-05-25 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統 TWI763671B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662342638P 2016-05-27 2016-05-27
US62/342,638 2016-05-27
US15/604,038 2017-05-24
US15/604,038 US10635159B2 (en) 2016-05-27 2017-05-24 Adaptive voltage modulation circuits for adjusting supply voltage to reduce supply voltage droops and minimize power consumption

Publications (2)

Publication Number Publication Date
TW201817149A TW201817149A (zh) 2018-05-01
TWI763671B true TWI763671B (zh) 2022-05-11

Family

ID=59009811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117425A TWI763671B (zh) 2016-05-27 2017-05-25 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統

Country Status (10)

Country Link
US (1) US10635159B2 (zh)
EP (1) EP3465895B1 (zh)
JP (1) JP6768842B2 (zh)
KR (1) KR102168501B1 (zh)
CN (1) CN109247044B (zh)
BR (1) BR112018074272B1 (zh)
ES (1) ES2886590T3 (zh)
SG (1) SG11201808927WA (zh)
TW (1) TWI763671B (zh)
WO (1) WO2017205583A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230020571A (ko) 2017-11-15 2023-02-10 프로틴텍스 엘티디. 집적 회로 마진 측정 및 고장 예측 장치
US11740281B2 (en) 2018-01-08 2023-08-29 Proteantecs Ltd. Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing
US11223898B2 (en) 2018-02-05 2022-01-11 Radio Sound, Inc. Audio system including speakers with integrated amplifier and method of detecting speakers
TWI828676B (zh) 2018-04-16 2024-01-11 以色列商普騰泰克斯有限公司 用於積體電路剖析及異常檢測之方法和相關的電腦程式產品
CN113474668A (zh) 2018-12-30 2021-10-01 普罗泰克斯公司 集成电路i/o完整性和退化监测
US10686582B1 (en) * 2019-02-25 2020-06-16 Intel Corporation Clock phase compensation apparatus and method
US20190377405A1 (en) * 2019-03-29 2019-12-12 Intel Corporation Input Voltage Protection
EP4070315A4 (en) 2019-12-04 2023-11-29 Proteantecs Ltd. MONITORING DEGRADATION OF A STORAGE DEVICE
GB2590660B (en) * 2019-12-23 2022-01-05 Graphcore Ltd Reactive droop limiter
US11681311B2 (en) * 2020-04-02 2023-06-20 Canon Kabushiki Kaisha Circuit and method for controlling power supply voltage based on predicted voltage drop
JP7309658B2 (ja) * 2020-05-22 2023-07-18 ルネサスエレクトロニクス株式会社 半導体装置
US11249530B1 (en) * 2020-11-25 2022-02-15 Qualcomm Incorporated Adaptive voltage controller
US11449125B1 (en) * 2021-04-01 2022-09-20 Qualcomm Incorporated Adaptive dynamic clock and voltage scaling
EP4320497A1 (en) * 2021-04-07 2024-02-14 Proteantecs Ltd. Adaptive frequency scaling based on clock cycle time measurement
CN113157076B (zh) * 2021-04-22 2024-01-30 中科可控信息产业有限公司 一种电子设备及功耗控制方法
KR20220159029A (ko) * 2021-05-25 2022-12-02 삼성전자주식회사 동적 전력 모니터 및 주파수 컨트롤러를 포함하는 시스템-온-칩 및 이의 동작 방법
US20230071427A1 (en) * 2021-09-08 2023-03-09 International Business Machines Corporation Providing deterministic frequency and voltage enhancements for a processor
CN114237345A (zh) * 2021-12-17 2022-03-25 合肥智芯半导体有限公司 芯片及基于芯片工作负载检测的系统时钟自适应扩频装置
CN114706449B (zh) * 2022-03-28 2024-04-26 杭州中天微系统有限公司 基于自适应时钟的频率控制方法、电路及芯片
CN114815948B (zh) * 2022-05-23 2024-02-20 杭州中天微系统有限公司 自适应时钟电路、芯片及电压调整方法、装置
US11815551B1 (en) 2022-06-07 2023-11-14 Proteantecs Ltd. Die-to-die connectivity monitoring using a clocked receiver
CN115202975B (zh) * 2022-07-15 2024-01-26 摩尔线程智能科技(北京)有限责任公司 控制负载的功率消耗的方法、装置和系统
US11953982B2 (en) * 2022-07-19 2024-04-09 International Business Machines Corporation Dynamic guard band with timing protection and with performance protection
WO2024018353A1 (en) * 2022-07-19 2024-01-25 International Business Machines Corporation Dynamic guard band with timing protection and with performance protection
US11989071B2 (en) 2022-07-19 2024-05-21 International Business Machines Corporation Dynamic guard band with timing protection and with performance protection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062507A1 (en) * 2003-08-26 2005-03-24 Naffziger Samuel D. System and method to adjust voltage
TW200623596A (en) * 2004-08-19 2006-07-01 Int Rectifier Corp Method and apparatus for adjusting current amongst phases of a multi-phase converter
EP2036181B1 (en) * 2006-06-30 2010-07-21 ABB Technology AG Hvdc system and method to control a voltage source converter in a hvdc system
US20110291630A1 (en) * 2010-05-25 2011-12-01 Oracle International Corporation Microprocessor performance and power optimization through self calibrated inductive voltage droop monitoring and correction
CN102347607A (zh) * 2010-07-28 2012-02-08 半导体元件工业有限责任公司 自适应电流限制器和包括该自适应电流限制器的调光器系统
JP2014509832A (ja) * 2011-04-01 2014-04-21 クゥアルコム・インコーポレイテッド 電源制御器
US20140277812A1 (en) * 2013-03-13 2014-09-18 Yi-Chun Shih Dual loop digital low drop regulator and current sharing control apparatus for distributable voltage regulators
US8933737B1 (en) * 2013-06-28 2015-01-13 Stmicroelectronics International N.V. System and method for variable frequency clock generation
US9395782B2 (en) * 2012-05-24 2016-07-19 International Business Machines Corporation Processor noise mitigation using differential crictical path monitoring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665480B2 (ja) * 2004-10-26 2011-04-06 パナソニック電工株式会社 放電灯点灯装置、照明器具、および照明システム
US7915910B2 (en) * 2009-01-28 2011-03-29 Apple Inc. Dynamic voltage and frequency management
KR101566200B1 (ko) * 2009-12-09 2015-11-05 삼성전자 주식회사 디스플레이장치 및 그 구동방법
US8963904B2 (en) * 2010-03-22 2015-02-24 Apple Inc. Clock feedthrough and crosstalk reduction method
KR101740338B1 (ko) * 2010-10-20 2017-05-26 삼성전자주식회사 디지털 시스템에서 동적 클럭 제어 장치 및 방법
US8825170B2 (en) 2010-10-29 2014-09-02 Medtronic, Inc. Low-power system clock calibration based on a high-accuracy reference clock
US20120187991A1 (en) 2011-01-25 2012-07-26 Advanced Micro Devices, Inc. Clock stretcher for voltage droop mitigation
US8984308B2 (en) * 2012-12-03 2015-03-17 Qualcomm Incorporated System and method of adaptive voltage scaling
US9413344B2 (en) * 2014-09-08 2016-08-09 Qualcomm Incorporated Automatic calibration circuits for operational calibration of critical-path time delays in adaptive clock distribution systems, and related methods and systems
US9753525B2 (en) 2014-12-23 2017-09-05 Intel Corporation Systems and methods for core droop mitigation based on license state
US10248177B2 (en) * 2015-05-22 2019-04-02 Advanced Micro Devices, Inc. Droop detection and regulation for processor tiles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062507A1 (en) * 2003-08-26 2005-03-24 Naffziger Samuel D. System and method to adjust voltage
TW200623596A (en) * 2004-08-19 2006-07-01 Int Rectifier Corp Method and apparatus for adjusting current amongst phases of a multi-phase converter
EP2036181B1 (en) * 2006-06-30 2010-07-21 ABB Technology AG Hvdc system and method to control a voltage source converter in a hvdc system
US20110291630A1 (en) * 2010-05-25 2011-12-01 Oracle International Corporation Microprocessor performance and power optimization through self calibrated inductive voltage droop monitoring and correction
CN102347607A (zh) * 2010-07-28 2012-02-08 半导体元件工业有限责任公司 自适应电流限制器和包括该自适应电流限制器的调光器系统
JP2014509832A (ja) * 2011-04-01 2014-04-21 クゥアルコム・インコーポレイテッド 電源制御器
US9395782B2 (en) * 2012-05-24 2016-07-19 International Business Machines Corporation Processor noise mitigation using differential crictical path monitoring
US20140277812A1 (en) * 2013-03-13 2014-09-18 Yi-Chun Shih Dual loop digital low drop regulator and current sharing control apparatus for distributable voltage regulators
US8933737B1 (en) * 2013-06-28 2015-01-13 Stmicroelectronics International N.V. System and method for variable frequency clock generation

Also Published As

Publication number Publication date
CN109247044B (zh) 2020-10-16
EP3465895A1 (en) 2019-04-10
US20170344102A1 (en) 2017-11-30
WO2017205583A1 (en) 2017-11-30
TW201817149A (zh) 2018-05-01
BR112018074272B1 (pt) 2023-04-18
JP2019517763A (ja) 2019-06-24
ES2886590T3 (es) 2021-12-20
JP6768842B2 (ja) 2020-10-14
BR112018074272A2 (pt) 2019-03-12
SG11201808927WA (en) 2018-12-28
US10635159B2 (en) 2020-04-28
CN109247044A (zh) 2019-01-18
KR20190013768A (ko) 2019-02-11
KR102168501B1 (ko) 2020-10-21
EP3465895B1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI763671B (zh) 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統
US10587250B2 (en) Current-starving in tunable-length delay (TLD) circuits employable in adaptive clock distribution (ACD) systems for compensating supply voltage droops in integrated circuits (ICs)
US11637494B2 (en) Current sensing in an on-die direct current-direct current (DC-DC) converter for measuring delivered power
CN109075789B (zh) 一种功率多路复用系统及方法
EP3375097B1 (en) Communicating low-speed and high-speed parallel bit streams over a high-speed serial bus
US8421504B2 (en) Microcomputer, hysteresis comparator circuit, and voltage monitoring apparatus
US10727838B2 (en) Systems and methods for power conservation in a phase locked loop (PLL)
US9660664B1 (en) Generating asynchronous clock signals for successive approximation register (SAR) analog to digital converters (ADCs)
WO2014077902A1 (en) Power-efficient, single-ended termination using on-die voltage supply
TW201843474A (zh) 動態控制提供給三維(3d)積體電路(ic)(3dic)的電壓以解決在3dic的互連的ic層之間量測的製程變化
CN110998337A (zh) 使用分布式电压平均化以独立于电流分布的方式感测分布式负载电路的总电流
US10447292B1 (en) Multiple-bit parallel successive approximation register (SAR) analog-to-digital converter (ADC) circuits
CN110301094B (zh) 在受控延迟线路中采用相位误差检测的多相位时钟生成
US10425095B1 (en) Multiple-bit parallel successive approximation (SA) flash analog-to-digital converter (ADC) circuits
JPWO2015029293A1 (ja) 半導体集積回路および複数の半導体集積回路を備えた電源制御システム
US10310585B2 (en) Replacement physical layer (PHY) for low-speed peripheral component interconnect (PCI) express (PCIe) systems