JP2014153495A - マルチプルビュー液晶表示装置 - Google Patents

マルチプルビュー液晶表示装置 Download PDF

Info

Publication number
JP2014153495A
JP2014153495A JP2013022152A JP2013022152A JP2014153495A JP 2014153495 A JP2014153495 A JP 2014153495A JP 2013022152 A JP2013022152 A JP 2013022152A JP 2013022152 A JP2013022152 A JP 2013022152A JP 2014153495 A JP2014153495 A JP 2014153495A
Authority
JP
Japan
Prior art keywords
liquid crystal
region
pixel
slit
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013022152A
Other languages
English (en)
Other versions
JP2014153495A5 (ja
JP6071605B2 (ja
Inventor
Shingo Nagano
慎吾 永野
Takamitsu Ishikawa
敬充 石川
Tetsuya Satake
徹也 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013022152A priority Critical patent/JP6071605B2/ja
Priority to US14/173,559 priority patent/US9869869B2/en
Priority to DE102014202206.1A priority patent/DE102014202206B4/de
Publication of JP2014153495A publication Critical patent/JP2014153495A/ja
Publication of JP2014153495A5 publication Critical patent/JP2014153495A5/ja
Application granted granted Critical
Publication of JP6071605B2 publication Critical patent/JP6071605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】ノーマリブラックモードのマルチプルビュー液晶表示装置において、実使用上の視野範囲のコントラスト比を低下させずに、クロストークの発生を抑制する。
【解決手段】ノーマリブラックモードのマルチプルビュー液晶表示装置の各画素は、フリンジ電界を発生させるスリット200が設けられた対向電極161を備える。対向電極161が配設されたTFT基板4の表面には、所定の方向に液晶配向処理された配向膜が設けられる。画素領域の端部(第1領域)におけるスリット200の延伸方向と液晶配向処理の方向とのなす角度は、画素領域の中央部(第2領域)おけるスリット200の延伸方向と液晶配向処理の方向とのなす角度よりも大きい。第1領域は、低輝度表示を行うときに第2領域よりも高い透過率となる。
【選択図】図4

Description

本発明は液晶表示装置に関し、特に、複数の画像をそれぞれ異なる方向に向けて表示可能なマルチプルビュー液晶表示装置に関するものである。
液晶表示装置の一つの付加価値技術として、視差バリアを用いたマルチプルビュー液晶表示装置(複数画面液晶表示装置)の開発が行われている。特に、二つの異なる画面を同時にかつ分離して表示する2画面液晶表示装置の提案が多くなされている。
視差バリア方式のマルチプルビュー液晶表示装置は、複数の画像を表示する画素が所定の規則に従い混在して配列された液晶表示パネル(以下「液晶パネル」)と、その前面側(視認側)に配設された視差バリア(パララックスバリア)と呼ばれる遮光層とを備えた構造となる。視差バリアは、液晶パネルの各画素から特定の方向に向かう光を遮るように配置される。それにより、液晶パネルからの光が複数の方向に分離され、液晶パネルが表示した複数の画像が、それぞれ異なる方向に向けて表示される。
視差バリア方式のマルチプルビュー液晶表示装置には、ある方向に向けて表示された画像に、他の方向に向けて表示されるべき画像の一部が漏れて観察される「クロストーク」の問題がある。
例えば、2つの画像を左右に分けて表示する視差バリア方式の2画面液晶表示装置でクロストークが生じた場合、画面を正面よりも左から見たときに表示されるべき画像(左用画像)と、右から見たときに表示されるべき画像(右用画像)とが重なって見える。このクロストークは、各画像の視野角の範囲(視野範囲)が重複したときに生じるため、各画像の視野範囲の境界付近で生じやすい。つまり2画面液晶表示装置では、右用画像の視野範囲と左用画像の視野範囲との境界である、画面の正面から見たときに生じやすい。特に、黒表示(低輝度表示)が多い画像を表示しているときには、他方の画像からの漏れが僅かでも視認されやすいため、画質に与える影響が大きくなる。
また、一般に、液晶パネルは、画素電極およびそれに画像信号を供給するスイッチング素子や信号線などが配設される第1の基板と、各画素の領域を規定するブラックマトリクスやカラーフィルタ(CF)が配設される第2の基板と、その間に挟持された液晶を備える構造となっている。視差バリア方式のマルチプルビュー液晶表示装置では、第2の基板における第1の基板との対向面に画素領域を規定するブラックマトリクスが形成され、その反対面(視認側)に視差バリアが形成される。よって視差バリアとブラックマトリクスとの間には、第2の基板の厚さに相当するギャップが存在する。このギャップの大きさは、視差バリアの開口部の大きさや画素のピッチ等と共に、同時に表示する複数の画像それぞれの視野範囲の方向および広さを決定する要素となる。
視差バリア方式のマルチプルビュー液晶表示装置では、視差バリアとブラックマトリクスとの間のギャップの存在に起因して、画面を正面から大きく外れた方向から見たときに、逆方向に向けて表示されるべき画像が見える「逆視」と呼ばれる現象が生じる。例えば、観察者が、2画面液晶表示装置に対して画面の正面から右へ移動すると、まず右用画像が見えるが、さらに右へ移動し続けると左用画像が見える範囲がある。これは、視差バリアの開口部を通して、本来見えるべき画素の隣の他の画素が見えてしまうことによるものである。
つまり、視差バリア方式の2画面液晶表示装置においては、右用画像の視野範囲の外側に、逆視現象による左用画像の視野範囲が存在し、左用画像の視野範囲の外側に、逆視現象による右用画像の視野範囲が存在する。そのため右用画像と左用画像のクロストークは、画面の正面付近だけでなく、右用画像および左用画像それぞれの視野範囲の外端付近においても生じやすい。以下、画面の正面付近で生じるクロストークを「正面クロストーク」、各画像それぞれの視野範囲の外端付近で生じる逆視現象に起因するクロストークを「逆視クロストーク」と称する。
正面クロストークおよび逆視クロストークは、2画面液晶表示装置のみならず、視差バリア方式の任意のマルチプルビュー液晶表示装置においても問題となる。
近年、一般的な液晶表示装置において、従来のTN(Twisted Nematic)モードに代わり、主に基板面に対して横方向の電界を印加して液晶を駆動する方式であるIn Plane Switchingモード(FFS(Fringe Field Switching)モードを含み、以下、「横電界モード」と呼ぶ)の適用が拡大している。横電界モードの液晶表示装置は視野範囲が広いため、異なる複数の方向からの観察を前提とするマルチプルビュー液晶表示装置に適用することで、マルチプルビュー液晶表示装置の表示品位を大幅に向上させることが期待できる。なお、横電界モードを適用したマルチプルビュー液晶表示装置の構成は、例えば下記の特許文献1に開示されている。
特開2008−064918号公報
2画面液晶表示装置で発生するクロストークの強度を示すクロストーク率Rxtは、
xt=(Lwb−Lbb)/MIN(Lwb,Lbb) …式(1)
と表すことができる。式(1)において、Lwbは、観察側で黒表示し、他方側で白表示したときの観察側の輝度(黒輝度)(以下「白−黒表示時の黒輝度」)であり、Lbbは、観察側でも他方側でも黒表示したときの観察側の輝度(黒輝度)(以下「黒−黒表示時の黒輝度」)である。なお、「MIN(Lwb,Lbb)」は、LwbとLbbの小さい方の値をとる関数である。
式(1)は、黒表示している観察側の視野範囲に、白表示している他方側から漏れてくる光の割合を示している。クロストーク率を減少させるには、白−黒表示時の黒輝度Lwbを下げるか、黒−黒表示時の黒輝度Lbbを上げるかの2種類の手法が有効となる。白−黒表示時の黒輝度Lwbを下げる手法は、白表示側からの光漏れを抑えることによって、クロストーク自体を減らすものである。一方、黒−黒表示時の黒輝度Lbbを上げる手法は、黒表示時の光漏れを増やすことによって、クロストークを目立たなくする(視認性を低下させる)ものである。
ここで、クロストークと液晶表示モードとの関係を考える。従来のTNモードはノーマリホワイト(NW)モードであるのに対して、横電界モードはノーマリブラック(NB)モードである。そのため、横電界モードの方がTNモードよりもコントラスト比(CR)が高い、言い換えると、黒輝度が低い。
本発明者は、横電界モードの液晶パネルを使用して視差バリア方式のマルチプルビュー液晶表示装置を構成すると、コントラスト比の高さによる黒輝度の低さから、TNモードを使用した場合よりも、クロストークが悪化するという新たな課題を見出した。しかし、クロストークを抑制する目的で黒輝度を上げると、コントラスト比が高いという横電界モードの利点が生かせない。この問題は、特許文献1に開示されている横電界モードを用いたマルチプルビュー液晶表示装置でも同様に生ずる。
本発明は以上のような課題を解決するためになされたものであり、ノーマリブラックモードのマルチプルビュー液晶表示装置において、実使用上の視野範囲のコントラスト比を低下させずに、クロストークの発生を抑制することを目的としている。
本発明に係るマルチプルビュー液晶表示装置は、ノーマリブラックモードの液晶パネルと、前記液晶パネルの前面に配設された視差バリアとを備え、前記液晶パネルの各画素は、互いに異なる電圧−透過率特性を有する第1領域および第2領域を有し、前記第1領域は前記画素の端部を含み、前記第2領域は前記画素の中央部を含み、前記第1領域は、低輝度表示を行うときに前記第2領域よりも高い透過率となる電圧−透過率特性を有しているものである。
本発明によれば、実使用上の視野範囲でのコントラスト比を低下させることなく、クロストーク率を低く抑えることができる。
本発明に係るマルチプルビュー液晶表示装置の構成を示す分解斜視図である。 視差バリア方式の液晶表示パネルの断面図である。 2画面液晶表示装置における規格化開口率の視野角特性のシミュレーション結果を示すグラフである。 実施の形態1に係るマルチプルビュー液晶表示装置の画素の構成を示す平面図である。 実施の形態1に係るマルチプルビュー液晶表示装置の画素の構成を示す断面図である。 FFSモードの液晶パネルにおける対向電極のスリットの延伸方向とラビング方向とのなす角度が、液晶層の透過率−電圧特性に与える影響を示すグラフである。 実施の形態2に係るマルチプルビュー液晶表示装置の画素の構成を示す平面図である。 実施の形態2に係るマルチプルビュー液晶表示装置の画素の構成を示す断面図である。 実施の形態3に係るマルチプルビュー液晶表示装置の画素の構成を示す平面図である。 実施の形態3に係るマルチプルビュー液晶表示装置の画素の構成を示す断面図である。 FFSモードの液晶パネルにおける対向電極のスリットの幅が、液晶層の透過率−電圧特性に与える影響を示すグラフである。 実施の形態4に係るマルチプルビュー液晶表示装置の画素の構成を示す平面図である。 実施の形態4に係るマルチプルビュー液晶表示装置の画素の構成を示す断面図である。 実施の形態5に係るマルチプルビュー液晶表示装置の画素の構成を示す平面図である。 実施の形態5に係るマルチプルビュー液晶表示装置の画素の構成を示す断面図である。 FFSモードの液晶パネルにおける画素電極と対向電極との間の層間絶縁膜の厚さが、液晶層の透過率−電圧特性に与える影響を示すグラフである。
<実施の形態1>
図1は、本発明に係るマルチプルビュー液晶表示装置の概略構成を示す分解斜視図である。同図の如く、当該マルチプルビュー液晶表示装置は、光源および導光板などから成る面状光源装置であるバックライト1上に、直線偏光子2a、液晶パネル10、直線偏光子2bがこの順に重なって成る、透過型の表示装置である。液晶パネル10は、バックライト1側のTFT(Thin Film Transistor)基板4と、前面側(視認側)の対向基板6との間に、液晶5が挟持された構造を有している。
対向基板6は、TFT基板4との対向面にブラックマトリクス7を備え、対向基板6の視認側の面に視差バリア8を備える。つまり本実施の形態において、視差バリア8とブラックマトリクス7との間に配設される対向基板6(より正確には、対向基板6を構成する透光性基板)は、視差バリア8とブラックマトリクス7との間隔を規定するギャップ層として機能する。各実施の形態では、対向基板6がギャップ層となる例を示すが、ギャップ層は対向基板6とは別に設けてもよい。例えば、対向基板6よりも内側に(例えば対向基板6におけるTFT基板4との対向面に)、視差バリア層、ブラックマトリクス、およびその間のギャップ層(所定厚さに塗布形成した樹脂層など)を配設してもよい。
液晶パネル10において、TFT基板4および対向基板6は、その周縁部に塗布されたシール材を介して貼着されており、そのシール材で囲まれた領域内に液晶5が封止されている。
ここでは、本発明をFFSモードの液晶パネル10に適用した例を示す。つまり、当該液晶パネル10では、TFT基板4が画素電極と対向電極の両方を有し、その一方の電極にスリット(開口部)が設けられている。
TFT基板4は、ガラス基板等の透光性基板上に、各画素の画素電極、それら画素電極に画像信号を供給するためのスイッチング素子であるTFT、TFTのゲート電極に駆動信号を供給するためのゲート配線(走査信号配線)、TFTのソース電極に画像信号を供給するソース配線(表示信号配線)、および各画素電極に対向配置される対向電極などが配設されて成っており、さらに、その液晶5側の最表面に配向膜を備えている。
対向基板6は、ガラス基板等の透光性基板における液晶5側の面に、透明樹脂膜からなるオーバーコート層、赤(R)・緑(G)・青(B)各色の着色層から成るカラーフィルタ、画素間を遮光することにより各画素の領域を規定する遮光膜であるブラックマトリクス7などが配設されて成る。また、対向基板6の視認側の面には、視差バリア8が設けられる。よってブラックマトリクス7と視差バリア8とのギャップは、対向基板6の厚さ(上記の透光性基板の厚さ)に相当することとなる。
直線偏光子2a,2bは、特定の直線偏光(P偏光あるいはS偏光)を選択的に透過させるフィルムである。本実施形態では、直線偏光子2a,2bとして、TAC(セルローストリアセテート)フィルムを基板とした、透過させる直線偏光に直交する偏光軸(吸収軸)の直線偏光を吸収する、吸収型のものを用いている。直線偏光子2a,2bは、透過させる直線偏光に直交する偏光軸の直線偏光を反射する反射型のものを用いてもよい。
本実施の形態では、マルチプルビュー液晶表示装置の例として、2つの異なる画像を正面よりも右側と左側に分けて表示する2画面液晶表示装置を示す。但し、本発明は2以上の画像を異なる方向に表示する、視差バリア方式のマルチプルビュー液晶表示装置に広く適用可能である。
図2は、2画面液晶表示装置に用いられる液晶パネル10の構成を示す断面図である。2画面液晶表示装置の液晶パネル10には、画面の正面よりも右側の視野範囲へ向けて表示する画像(右用画像)を構成する画素PR(右用画素)と、画面の正面よりも左側の視野範囲へ向けて表示する画像(左用画像)を構成する画素PL(左用画素)とが、所定の規則に従い混在して配設される。視差バリア8は、右用画素PRの光と左用画素PLの光とをそれぞれ画面の正面よりも右側と左側に分離することにより、右用画像と左用画像を分離してそれぞれ異なる方向へ表示させる。
視差バリア8は、画面の正面よりも右側に対しては左用画素PLの光を遮り、画面の正面よりも左側に対しては右用画素PRの光を遮る遮光膜である。言い方を変えれば、視差バリア8には、画面の正面よりも右側へ右用画素PRの光のみを通し、画面の正面よりも左側へ左用画素PLの光のみを通す開口部80を有する遮光膜である。
視差バリア8のパターンは、液晶パネル10における右用画素PRおよび左用画素PLの配列パターンに応じて決められる。視差バリア8は、右側画像を画面の正面よりも右側へ、左側画像を画面の正面よりも左側へ、それぞれ正しく表示できるように設計されていれば、そのパターンは任意でよい。例えば、視差バリア8に開口部80が市松状(千鳥状)に配置されていてもよいし、視差バリア8に開口部80がストライプ状に配置されていてもよい。
図2を用いて、2画面液晶表示装置において2つの画像が分離される原理を説明する。上記したように、液晶パネル10は、背面側(バックライト1側)のTFT基板4と、前面側(視認側)の対向基板6との間に、液晶5が挟持されて成る構造を有する(図2では、液晶5中の液晶分子51を模式的に図示している)。TFT基板4には、各画素の画素電極、対向電極、TFT、ゲート配線、ソース配線などが配設されるが、図2においてはそれらのうちソース配線12のみが図示されている。
対向基板6には、TFT基板4との対向面にブラックマトリクス7が形成され、視認側の面に視差バリア8が形成される。実際には、対向基板6におけるTFT基板4との対向面には、ブラックマトリクス7の他にカラーフィルタなども形成されるが、図2ではそれらの図示は省略している。
ブラックマトリクス7は、各画素の領域を規定する開口部(画素開口部)70を備える遮光膜である。ここでは左用画素PLと右用画素PRとが、画素列ごとに交互に配置されるものとする。つまり平面視で、右用画素PRの画素列と、左用画素PLの画素列とがストライプ状に交互に配置される。
画素開口部70は、視差バリア8の開口部80からずれた位置に配設される。つまり視差バリア8の開口部80の真下には、ブラックマトリクス7の遮光部71が配設される。視差バリア8の同一の開口部80から視認されるべき右用画素PRおよび左用画素PLは、その遮光部71を挟むように配設される。また視差バリア8の遮光部で覆われた領域においても、互いに隣り合う右用画素PRと左用画素PLとの間に、ブラックマトリクス7の遮光部72が配設される。以下、視差バリア8の開口部80の真下に配設された遮光部71を「第1遮光部」、真上が視差バリア8で覆われた第2遮光部72を「第2遮光部」と称する。
本実施の形態では、右用画素PRの画素列と左用画素PLの画素列とがストライプ状に交互に配置されるので、ブラックマトリクス7には複数の画素開口部70がストライプ状に配置される。このとき、ブラックマトリクス7の遮光部は、図2のように、その画素開口部70を挟んで第1遮光部71と第2遮光部72とが交互に配置されるパターンとなる。
視差バリア8の開口部80とブラックマトリクス7の画素開口部70との位置関係が、上記の関係を成すことにより、右用画素PRが生成する右用画像は画面の正面よりも右側へ向けて表示され、左用画素PLが生成する左用画像は画面の正面よりも左側へ向けて表示される。図2を参照し、右用画素PRが生成する右用画像は、視野範囲IRから視認でき、左用画素PLが生成する左用画像は、視野範囲ILから視認できる。
右用画像の視野範囲IRと左用画像の視野範囲ILとが重複した位置では、クロストークが生じる。そのため、液晶パネル10では、それらがなるべく重ならないように、ブラックマトリクス7と視差バリア8とのギャップや、画素開口部70および視差バリア8の開口部80それぞれの位置や径の設計が行われる。
本実施の形態のマルチプルビュー液晶表示装置において、ブラックマトリクス7と視差バリア8との間のギャップや、ブラックマトリクス7の画素開口部70並びに視差バリア8の開口部80それぞれの位置および径は、右用画像の視野範囲IRと左用画像の視野範囲ILとが分離されるように設計されている。
対向基板6全体の厚みは、表示装置に要求される視野角の条件や画素サイズに応じて定められるが、例えば画素サイズが200μmであり、正面から左右60度までの範囲を視野角の条件とすると、許容される対向基板6の最大の厚みは0.09mm程度である。
図3はその条件に基づいて設計したマルチプルビュー液晶表示装置における規格化開口率の視野角特性のシミュレーション結果を示すグラフである。規格化開口率とは、画素の幅すべてを光の透過部として利用できる場合を「1」とした開口率である。点線のグラフは、右用画像についての規格化開口率であり、実線のグラフは、左用画像についての規格化開口率である。
右用画像の規格化開口率は、正面から右へ30度の位置付近でピークとなり、左用画像の規格化開口率は、正面から左へ30度の位置付近でピークとなる。また正面(0°)付近は、右用画像および左用画像の両方の規格化開口率が0、つまり右用画像と左用画像のどちらも見えない領域となっている。これは、右用画像の視野範囲IRと左用画像の視野範囲ILとが分離され、計算上は正面クロストークが生じないことを意味している。
しかし実際には、視差バリア8の開口部での光の回折現象や、液晶パネル10内での光の散乱現象などに起因して、正面(0°)付近で正面クロストークが発生する。
クロストークは、視差バリア8の開口部80の端部が寄与する視野範囲、つまり画像が切り変わる視野範囲で最も顕著になる。例えば、正面クロストークは、右用画像と左用画像とが切り替わる画面の正面付近(右用画像の視野範囲IRと左用画像の視野範囲ILとの境界付近)の視野範囲で最も顕著になる。
各画素から出射する光のうち、画面の正面付近への表示に寄与するのは、ブラックマトリクス7の画素開口部70の端部から出射し、且つ、視差バリア8の開口部80の端部を通過した光だけであり、画素開口部70の中央部から出射した光は寄与しない。図2を参照し、例えば、右用画素PRから画面の正面付近へ向かう光は、右用画素PRの左端部から出射した光だけである。同様に、左用画素PLから画面の正面付近へ向かう光は、左用画素PLの右端部から出射した光だけである。このように、正面クロストークに寄与する光は、各画素の端部(視差バリア8の開口部80に近い側の端部)から出射した光だけである。
このことは、逆視クロストークについても同様である。すなわち、逆視クロストークは、右用画像の視野範囲IRとその外側の左用画像の視野範囲ILとの境界付近の視野範囲、並びに、左用画像の視野範囲ILとその外側の右用画像の視野範囲IRとの境界付近の視野範囲で、最も顕著になる。
各画素から出射する光のうち、それらの視野範囲への表示に寄与するのは、ブラックマトリクス7の画素開口部70の端部から出射し、且つ、視差バリア8の開口部80の端部を通過した光だけであり、画素開口部70の中央部から出射した光は寄与しない。図2を参照し、例えば、右用画素PRから視野範囲IRと視野範囲ILとの境界付近へ向かう光は、右用画素PRの右端部から出射した光だけである。同様に、左用画素PLから視野範囲ILと視野範囲IRとの境界付近へ向かう光は、左用画素PLの左端部から出射した光だけである。このように、逆視クロストークに寄与する光は、各画素の端部(視差バリア8の開口部80から遠い側の端部)から出射した光だけである。
図4および図5は、実施の形態1に係るマルチプルビュー液晶表示装置の画素の構成を示す図である。図4は当該画素の平面図であり、図5は図4に示すC−C線に沿った断面図である。図4においては、液晶5および対向基板6の図示は省略しているため、TFT基板4における画素部分の平面構造が示されている。一方、図5では、TFT基板4だけでなく、液晶5および対向基板6も示している。
TFT基板4には、互いに平行な複数のゲート配線11と、互いに平行な複数のソース配線12とが配設される。複数のゲート配線11と複数のソース配線12とは、平面視で互いに交差しており、ゲート配線11とソース配線12とで囲まれる個々の領域に対応して、画素領域が配置される。
ゲート配線11は、TFT基板4を構成する透光性基板40上に形成され、その上はゲート絶縁膜18により覆われている。ゲート絶縁膜18上には、ゲート配線11と重複するように、TFTのチャネル層となる半導体薄膜15が形成され、その上にTFTのソース電極13およびドレイン電極14が形成される。ゲート配線11における半導体薄膜15との重複部分は、TFTのゲート電極として機能する。また、ソース電極13はソース配線12に接続される。
また、画素領域のほぼ全体に、透明導電膜からなる画素電極162が形成される。画素電極162の一部は、ドレイン電極14上に乗り上げており、それにより両者は電気的に接続される。
画素電極162の上方には、層間絶縁膜19を介して、複数のスリット200を有する透明導電膜からなる対向電極161が形成される。対向電極161には、共通配線17から所定の電位(共通電位)が供給される。共通配線17は、ゲート配線11と同層であり、対向電極161は、コンタクトホール20を通して共通配線17と接続している。
また、図示は省略しているが、TFT基板4における液晶5側の最表面には、ラビング処理された配向膜が形成されている。図4に示す矢印RBは、当該配向膜のラビング方向を示している。
一方、対向基板6は、透光性基板60におけるTFT基板4との対向面に形成されたブラックマトリクス7と、その反対面(視認側)に形成された視差バリア8をと備えている。よって、ブラックマトリクス7と視差バリア8とのギャップは、透光性基板60の厚さによって規定される。また、透光性基板60におけるTFT基板4との対向面には、赤・緑・青各色の着色層73とそれを覆うオーバーコート層74がさらに形成されている。
実施の形態1のマルチプルビュー液晶表示装置は、各画素領域内に、対向電極161のスリット200の設計が互いに異なる領域を備えている。すなわち、スリット200の延伸方向(長辺に沿う方向(長手方向))とラビング方向RBとのなす角度をA1とする第1領域と、スリット200の延伸方向とラビング方向RBとのなす角度をA2とする第2領域とが、各画素領域内に設けられる。第1領域は画素領域の左右の端部に配置され、第2領域は画素領域の中央部に配置される。図5のように、第1領域が配置される「画素領域の端部」は、主にブラックマトリクス7(第1遮光部71または第2遮光部72)で覆われる部分となる。
また、図4に示されるように、第1領域におけるスリット200の延伸方向とラビング方向RBとのなす角度A1は、第2領域におけるスリット200の延伸方向とラビング方向RBとのなす角度A2よりも大きく設定される(すなわち、A1>A2)。本実施の形態では、ラビング方向RBを第1領域と第2領域とで同じにし、スリット200の延伸方向を第1領域と第2領域とで異なるようにすることで、その関係を得ている。また、各スリット200は、対向電極161の右端部近傍から左端部近傍まで連続し、第1領域と第2領域の境界で屈曲した折れ線形状とした。
なお、ここではマルチプルビュー液晶表示装置における画像の分離方向を左右方向と仮定しているが、例えば、画像の分離方向が上下方向となる場合には、第1領域は、画素領域の上下の端部に配置され、その間に第2領域が配置される。つまり、第1領域は、画素領域における画像の分離方向の端部に配置される。
図6は、FFSモードの液晶パネルにおいて、対向電極のスリットの延伸方向とラビング方向とのなす角度が、液晶の駆動電圧と液晶の透過率との関係(透過率−電圧特性)へ与える影響を示すグラフである。図6(b)のグラフは、図6(a)のグラフにおいて楕円の点線で示した部分(駆動電圧が0V〜2Vの範囲)を拡大したものである。図6(a)および図6(b)には、対向電極のスリットの延伸方向とラビング方向とのなす角度が5度の場合、10度の場合および15度の場合の各グラフが示されている。なお、図6(a)および図6(b)のグラフの縦軸である規格化透過率とは、入射光のすべてが透過光となる場合を「1」とした透過率である。
FFSモードの液晶パネルでは、対向電極のスリットの延伸方向とラビング方向の角度が大きくなるほど、透過率−電圧特性の傾きが緩やかになる特徴がある。そのため、液晶の駆動電圧が低い範囲では、図6(b)に示すように、スリットの延伸方向とラビング方向の角度が大きい方が、液晶の透過率は高くなる。よって、図4に示したスリット200を有する画素では、液晶の駆動電圧が低いとき、スリット200の延伸方向とラビング方向RBと角度が大きい画素領域の端部(第1領域)の方が、その角度が小さい中央部よりも透過率が高くなる。
本実施の形態の液晶パネル10はノーマリブラックモードなので、液晶の駆動電圧が低い範囲では、黒表示(低輝度表示)となる。つまり、図4の画素では、黒表示を行うとき、その端部の方が中央部よりも高い輝度となる。
式(1)を用いて説明したように、マルチプルビュー液晶表示装置におけるクロストークを減少させる方法の一つに、黒輝度(Lbb)を上げる方法がある。しかし、従来の横電界モードのマルチプルビュー液晶表示装置で黒輝度を上げると、コントラスト比が高い(黒輝度が低い)という横電界モードの特徴を生かせないという問題があった。
本実施の形態では、クロストークは黒表示のときに視認されやすいこと、およびクロストークには画素の端部から出射した光だけが寄与することに着目して、黒表示の際に各画素の端部(第1領域)の輝度を中央部(第2領域)よりも高くしている。これは、画素の中央部で黒輝度を低く維持しながら、クロストークに寄与する画素の端部において黒輝度を上げる方法を行っていることになる。従って、本実施の形態に係るマルチプルビュー液晶表示装置では、コントラスト比が高いという横電界モードの特徴が損なわれることを防止しつつ、クロストークを低減させることができる。
なお、第1領域におけるスリット200の延伸方向とラビング方向RBとの成す角度A1、および第2領域におけるスリット200の延伸方向とラビング方向RBとの成す角度A2は、それぞれ0度<A1<15度、5度<A2<30度であることが好ましい。
以下、本実施の形態に係るTFT基板4の製造方法を説明する。
まず、ガラス基板等の透光性基板40上に、金属膜をスパッタリングにより成膜し、写真製版およびエッチングによってパターニングすることで、ゲート配線11および共通配線17を形成する。そして、ゲート配線11および共通配線17を覆うようにゲート絶縁膜18を成膜する。
続いて、ゲート絶縁膜18上に、下層の真性半導体層(i層)と上層のn型半導体層からなる半導体薄膜を成膜する。そして、この半導体薄膜をパターニングすることで、TFTのチャネル層となる半導体薄膜15を形成する。さらに、金属膜をスパッタリングにより成膜してパターニングすることで、ソース配線12、ソース電極13、ドレイン電極14を形成する。このパターニングのためのエッチングの際、ソース配線12とソース電極13の間に露出した半導体薄膜15の部分のn層全てとi層の一部を除去する(バックチャネルエッチ)。それにより、TFTが形成される。
その後、透明導電膜であるITOを成膜してパターニングすることで、画素電極162を形成する。さらに、層間絶縁膜19を成膜し、当該層間絶縁膜19に、共通配線17に達するコンタクトホール20を形成する。そして、再びITOをスパッタリングにより成膜し、パターニングすることにより、スリット200を有する対向電極161を形成する。このとき対向電極161の一部はコンタクトホール20を通して共通配線17に接続される。
以上の工程により、TFT基板4が完成する。
本実施の形態では、対向電極161のパターニング工程において、対向電極161に設けるスリット200の延伸方向を、画素の端部(第1領域)と中央部(第2領域)とで異なるようにする。それにより、対向電極161のスリット200の延伸方向と、この後行われるラビング処理の方向(ラビング方向RB)とのなす角度が、第1領域と第2領域とで異なるように(A1>A2となるように)することができる。
完成したTFT基板4および別途作製した対向基板6のそれぞれの表面(液晶5側の面)には、液晶5の配向を制御するための配向膜が設けられる。配向膜は、ポリイミド樹脂などの材料を塗布形成し、その表面に所定の液晶配向処理を行うことにより形成される。本実施の形態では、液晶配向処理として、回転ローラの表面に設けられた布などで配向膜の表面を一方向(ラビング方向RB)に擦るラビング法を用いた。
なお、配向膜に対して行われる液晶配向処理は、ラビング法に限定されない。例えば、紫外線などの光を配向膜の表面に照射することよって、液晶配向処理を行う光配向法を用いてもよい。光配向法を用いる場合も、液晶配向処理の方向はラビング法を用いる場合と同じ(ラビング方向RBと同じ)でよい。以下に説明する実施の形態2〜5についても同様である。
<実施の形態2>
図7および図8は、実施の形態2に係るマルチプルビュー液晶表示装置の画素の構成を示す図である。図7は当該画素の平面図であり、図8は図7に示すC−C線に沿った断面図である。図7においては、液晶5および対向基板6の図示は省略しているため、TFT基板4における画素部分の平面構造が示されている。一方、図8では、TFT基板4だけでなく、液晶5および対向基板6も示している。
図7に示すように、実施の形態2に係るマルチプルビュー液晶表示装置の画素では、対向電極161に設けられるスリットが、第1領域の部分と第2領域の部分とに分離されている。つまり、対向電極161には、画素領域の端部(第1領域)に設けられるスリット201と、画素領域の中央部(第2領域)に設けられるスリット202とが、それぞれ独立して設けられている。
それ以外の構成は、実施の形態1と同様である。すなわち、第1領域のスリット201の延伸方向とラビング方向RBとのなす角度A1が、第2領域のスリット202の延伸方向とラビング方向RBとの成す角A2よりも大きくなるように(A1>A2)、スリット201,202がレイアウトされている。具体的には、ラビング方向RBは第1領域と第2領域とで同じにし、スリット201の延伸方向とスリット202の延伸方向を互いに異ならすことで、A1>A2の関係を得ている。
実施の形態2においても、実施の形態1と同様の効果を得ることができる。また、第1領域と第2領域にスリットを個別に配置することで、一般的に長方形の画素領域において、スリットを配置できない領域を少なくし、画素領域の全体にわたってスリット200を配置することが可能となる(図4と図7を比較すると、図7の方が対向電極161のスリットが占める面積が大きい)。それにより、第1領域の液晶5の透過率をより均一な状態とすることができる。また、光利用効率を増加させる効果も得られる。
さらに、対向電極161が格子状のパターンとなるため、対向電極161の冗長性が高くなる。例えば、対向電極161の形成時にパターン欠けが生じても、対向電極161に共通電位が供給されない部分が生じることが少なくなる。
本実施の形態のスリット201,202と、実施の形態1のスリット200とを組み合わせて用いてもよい。例えば、図4において、スリット200を配置できない領域に、スリット201または202を配設してもよい。これによっても、実施の形態2と同様の効果が得られる。
なお、実施の形態2に係るTFT基板4の製造方法は、対向電極161に設けるスリットのパターンの違いを除けば、実施の形態1と同様でよいため、説明は省略する。
<実施の形態3>
図9および図10は、実施の形態3に係るマルチプルビュー液晶表示装置の画素の構成を示す図である。図9は当該画素の平面図であり、図10は図9に示すC−C線に沿った断面図である。図9においては、液晶5および対向基板6の図示は省略しているため、TFT基板4における画素部分の平面構造が示されている。一方、図10では、TFT基板4だけでなく、液晶5および対向基板6も示している。
実施の形態3では、対向電極161のスリット200の延伸方向が、マルチプルビュー液晶表示装置における画像の分離方向とは異なる方向、すなわち上下方向となっている。本実施の形態でも、各画素領域内に、対向電極161のスリット200の設計が互いに異なる領域が設けられる。幅の広いスリット203が設けられる第1領域と、幅の狭いスリット204が設けられる第2領域とが配置される。すなわち、第1領域のスリット203の幅をW1、第2領域のスリット204の幅をW2とすると、W1>W2の関係となる。第1領域は画素領域の左右の端部(画像の分離方向の端部)に配置されており、第2領域は画素領域の中央部に配置されている。
図11は、FFSモードの液晶パネルにおいて、対向電極のスリットの幅が、液晶の駆動電圧と液晶の透過率との関係(透過率−電圧特性)へ与える影響を示すグラフである。図11(b)のグラフは、図11(a)のグラフにおいて楕円の点線で示した部分(駆動電圧が0V〜2Vの範囲)を拡大したものである。図11(a)および図11(b)には、対向電極のスリットの幅が3.5μmの場合と7.0μmの場合の各グラフが示されている。
FFSモードの液晶パネルでは、対向電極のスリットの幅が広くなると、駆動電圧が低いときの液晶の透過率が高くなる。よって、図9に示したスリット203,204を有する画素では、黒表示を行うとき、幅の広いスリット203が配設された画素領域の端部(第1領域)の方が、幅の狭いスリット204が配設された中央部よりも透過率が高くなる。よって、実施の形態1と同様の効果が得られる。
なお、実施の形態3に係るTFT基板4の製造方法は、対向電極161に設けるスリットのパターンの違いを除けば、実施の形態1と同様でよいため、説明は省略する。
<実施の形態4>
図12および図13は、実施の形態4に係るマルチプルビュー液晶表示装置の画素の構成を示す図である。図12は当該画素の平面図であり、図13は図12に示すC−C線に沿った断面図である。図12においては、液晶5および対向基板6の図示は省略しているため、TFT基板4における画素部分の平面構造が示されている。一方、図13では、TFT基板4だけでなく、液晶5および対向基板6も示している。
実施の形態4では、対向電極161のスリット200を、対向電極161の右端部近傍から左端部近傍まで連続する直線状にし、ラビング方向を第1領域と第2領域とで変えている。すなわち、スリット200の延伸方向は第1領域と第2領域とで同じにし、第1領域におけるラビング方向RB1と第2領域におけるラビング方向RB2を互いに異ならしている。ここでも、第1領域は画素領域の左右の端部(画像の分離方向の端部)に配置され、第2領域は画素領域の中央部に配置されている。
実施の形態4では、第1領域と第2領域とでラビング方向を変えることにより、第1領域におけるスリット200の延伸方向とラビング方向RB1とのなす角度A1を、第2領域におけるスリット200の延伸方向とラビング方向RB2とのなす角度A2よりも大きくしている(すなわち、A1>A2)。
その結果、実施の形態1と同様に、黒表示を行うとき、スリット200の延伸方向とラビング方向と角度が大きい画素領域の端部(第1領域)の方が、その角度が小さい中央部よりも透過率が高くなる。よって、実施の形態1と同様の効果が得られる。
また、スリット200の形状を直線状にできるので、一般的に長方形の画素領域において、スリットを配置できない領域を少なくし、画素領域の全体にわたってスリット200を配置することが可能となる。この効果は実施の形態2でも得られるが、スリットが第1領域と第2領域とで分割する必要がなく、第1領域と第2領域の境界部分にもスリットが配設されるので、第1領域における液晶5の透過率の均一化、並びに、光利用効率の増加に関しては、実施の形態2よりも高い効果を期待できる。
実施の形態1と同様に、第1領域におけるスリット200の延伸方向とラビング方向RB1との成す角度A1、および第2領域におけるスリット200の延伸方向とラビング方向RB2との成す角度A2は、それぞれ0度<A1<15度、5度<A2<30度であることが好ましい。
なお、実施の形態3に係るTFT基板4の製造方法は、対向電極161に設けるスリットのパターンの違いを除けば、実施の形態1と同様でよい。但し、TFT基板4の表面に設ける配向膜に対しては、第1領域と第2領域とで異なる方向の液晶配向処理を行う必要がある。例えば、配向膜の液晶配向処理としてラビング処理を行う場合は、領域ごとにマスクを設けることで選択的なラビング処理を行うマスクラビング法を用いることができる。また、ラビング方以外の光配向法などを用いる場合も同様に、マスクを用いた選択的な方法をとることが可能である。
<実施の形態5>
図14および図15は、実施の形態4に係るマルチプルビュー液晶表示装置の画素の構成を示す図である。図14は当該画素の平面図であり、図15は図14に示すC−C線に沿った断面図である。図14においては、液晶5および対向基板6の図示は省略しているため、TFT基板4における画素部分の平面構造が示されている。一方、図15では、TFT基板4だけでなく、液晶5および対向基板6も示している。
実施の形態5では、画素電極162と対向電極161の間の層間絶縁膜19の厚さを、第1領域と第2領域とで異ならせ、第1領域における層間絶縁膜19の厚さT1が、第2領域における層間絶縁膜19の厚さT2よりも薄くなるようにしている(T1<T2)。本実施の形態では、第1領域の層間絶縁膜19を絶縁膜19aの単層構造にし、第2領域の層間絶縁膜19を絶縁膜19aの上に絶縁膜19bを重ねた二層構造にすることで、T1<T2の関係を得ている。
図16は、FFSモードの液晶パネルにおいて、画素電極と対向電極との間の層間絶縁膜の厚さが、液晶の駆動電圧と液晶の透過率との関係(透過率−電圧特性)へ与える影響を示すグラフである。図16(b)のグラフは、図16(a)のグラフにおいて楕円の点線で示した部分(駆動電圧が0V〜2Vの範囲)を拡大したものである。図16(a)および図16(b)には、層間絶縁膜の厚さが0.4μmの場合と0.6μmの場合の各グラフが示されている。
FFSモードの液晶パネルでは、層間絶縁膜19が薄い方が(対向電極161と画素電極162との距離が近い方が)、画素電極162に同じ電圧を印加した場合に発生する電界強度が高くなるため、より低い電圧で液晶の配向が変化して透過率が上昇する。よって、図15のような層間絶縁膜19を有する画素では、黒表示を行うとき、層間絶縁膜19の薄い画素領域の端部(第1領域)の方が、層間絶縁膜19の厚い中央部よりも透過率が高くなる。よって、実施の形態1と同様の効果が得られる。
実施の形態5に係るTFT基板4の製造方法は、対向電極161に設けるスリットのパターンの違いと、層間絶縁膜19の厚さの違いを除けば、実施の形態1と同様でよい。本実施の形態では、第1領域よりも第2領域で厚い層間絶縁膜19を形成する方法として、層間絶縁膜19を絶縁膜19a,19bの二層構造にし、絶縁膜19a,19bをそれぞれ異なる形状にパターニングする方法をとった。すなわち、絶縁膜19aの上に絶縁膜19bを成膜し、その後、絶縁膜19bが第2領域のみに残るように、絶縁膜19bをパターニングした。
あるいは、先に絶縁膜19aを第2領域のみに残るようにパターニングし、パターニングされた絶縁膜19bを覆うように、絶縁膜19bを画素領域の全域(第1領域と第2領域の双方)に形成しても、第1領域よりも第2領域で厚い層間絶縁膜19を形成することができる。
なお、図15では、第2領域に残る絶縁膜19bの端面が、絶縁膜19aの上面に対してほぼ垂直になっているが、ある程度傾斜していてもよい。特に、厚さT1と厚さT2の差を大きく設定する場合には、その部分の段差が大きくなり配向処理に悪影響を与えるため、それ軽減するために絶縁膜19bの端面を傾斜させることが好ましい。つまり、層間絶縁膜19の厚い部分は、上部よりも底部が広いテーパー形状であることが好ましい。これは、絶縁膜19aと絶縁膜19bのいずれをパターニングする場合も同様である。
<変形例>
以上の実施の形態1〜5では、平板状の画素電極162の上方に、層間絶縁膜19を介して、スリット(開口部)を有する対向電極161が配置されたFFSモードの液晶パネルに本発明を適用した例を示した。FFSモードの液晶パネルでは、それとは逆に、平板状の対向電極161の上方に、スリット(開口部)を有する画素電極162が配置される構成も考えられる。本発明は前者だけでなく後者の構成に対しても適用可能である。
後者の構成の場合、画素電極162に設けるスリットの延伸方向とラビング方向との関係を、実施の形態1〜4における対向電極161のスリットの延伸方向とラビング方向との関係と同様にすれば、実施の形態1〜4と同様の効果が得られる。また、下層の対向電極161と上層の画素電極162との間に設けられる層間絶縁膜の厚さを、画素領域の中央部(第2領域)で厚く形成すれば、実施の形態5と同様の効果が得られる。
つまり、実施の形態1〜5は、各画素領域に、下層の電極と、それとの間でフリンジ電界を発生させるスリットを有する上層の電極とを備えた構成(FFSモード)の液晶パネルに適用可能である。
また、本発明は、FFSモード以外の横電界モードの液晶パネルや、VA(Vertical Alignment)モードの液晶パネルにも応用できる。すなわち、これらのノーマリブラックモードの液晶パネルを用いた視差バリア方式のマルチプルビュー液晶表示装置においても、視差バリアの開口との位置関係に基づき、各画素内に、クロストークに寄与する光を出射する第1領域(画素領域の端部)と、画面の正面方向へ光を出射する第2領域(画素領域の中央部)を規定し、黒表示を行うときに第2領域よりも第1領域の輝度が高くなるように、第1領域および第2領域の電圧−透過率特性を調整すれば、実使用上の視野範囲のコントラスト比を低下させずに、クロストークの視認性を低下させることができる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 バックライト、2a,2b 直線偏光子、4 TFT基板、5 液晶、51 液晶分子、6 対向基板、7 ブラックマトリクス、8 視差バリア、10 液晶パネル、11 ゲート配線、12 ソース配線、13 ソース電極、14 ドレイン電極、15 半導体薄膜、17 共通配線、18 ゲート絶縁膜、19 層間絶縁膜、20 コンタクトホール、24 TFT、40 透光性基板、60 透光性基板、70 画素開口部、71 第1遮光部、72 第2遮光部、73 着色層、74 オーバーコート層、80 視差バリアの開口部、161 対向電極、162 画素電極、200〜204 スリット、PL 左用画素、PR 右用画素、IL 左用画像の視野範囲、IR 右用画像の視野範囲、RB,RB1,RB2 ラビング方向。

Claims (9)

  1. ノーマリブラックモードの液晶パネルと、
    前記液晶パネルの前面に配設された視差バリアとを備え、
    前記液晶パネルの各画素は、互いに異なる電圧−透過率特性を有する第1領域および第2領域を有し、
    前記第1領域は前記画素の端部を含み、
    前記第2領域は前記画素の中央部を含み、
    前記第1領域は、低輝度表示を行うときに前記第2領域よりも高い透過率となる電圧−透過率特性を有している
    ことを特徴とするマルチプルビュー液晶表示装置。
  2. 前記液晶パネルは、各画素の領域を規定するブラックマトリクスを備え、
    前記第1領域は、前記ブラックマトリクスの遮光部の下に配置されている
    請求項1記載のマルチプルビュー液晶表示装置。
  3. 前記画素は、フリンジ電界を発生させるスリットが設けられた電極を備え、
    前記液晶パネルは液晶を挟持する2枚の基板を含み、前記電極が配設された側の前記基板は所定の方向に液晶配向処理された配向膜を備え、
    前記第1領域における前記スリットの延伸方向と前記液晶配向処理の方向とのなす角度は、前記第2領域における前記スリットの延伸方向と前記液晶配向処理の方向とのなす角度よりも大きい
    請求項1または請求項2記載のマルチプルビュー液晶表示装置。
  4. 前記液晶配向処理の方向は、前記第1領域と前記第2領域とで同じであり、
    前記スリットの延伸方向が、前記第1領域と前記第2領域とで異なっている
    請求項3記載のマルチプルビュー液晶表示装置。
  5. 前記スリットは、前記第1領域と前記第2領域との境界で屈曲している
    請求項3または請求項4記載のマルチプルビュー液晶表示装置。
  6. 前記第1領域に設けられた前記スリットと、前記第2領域に設けられた前記スリットとは、互いに分離している
    請求項3または請求項4記載のマルチプルビュー液晶表示装置。
  7. 前記スリットの延伸方向は、前記第1領域と前記第2領域とで同じであり、
    前記液晶配向処理の方向が、前記第1領域と前記第2領域とで異なっている
    請求項3記載のマルチプルビュー液晶表示装置。
  8. 前記画素は、フリンジ電界を発生させるスリットが設けられた電極を備え、
    前記液晶パネルは液晶を挟持する2枚の基板を含み、前記電極が配設された側の前記基板は所定の方向に液晶配向処理された配向膜を備え、
    前記第1領域に設けられる前記スリットの幅は、前記第2領域に設けられる前記スリットの幅よりも大きい
    請求項1または請求項2記載のマルチプルビュー液晶表示装置。
  9. 前記画素は、フリンジ電界を発生させるスリットが設けられた第1電極および当該第1電極に絶縁膜を介して対向配置された第2電極を備え、
    前記第1領域における前記絶縁膜の厚さは、前記第2領域における前記絶縁膜の厚さよりも薄い
    請求項1または請求項2記載のマルチプルビュー液晶表示装置。
JP2013022152A 2013-02-07 2013-02-07 マルチプルビュー液晶表示装置 Active JP6071605B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013022152A JP6071605B2 (ja) 2013-02-07 2013-02-07 マルチプルビュー液晶表示装置
US14/173,559 US9869869B2 (en) 2013-02-07 2014-02-05 Multiple view liquid crystal display
DE102014202206.1A DE102014202206B4 (de) 2013-02-07 2014-02-06 Mehrfachsicht-Flüssigkristallanzeige

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022152A JP6071605B2 (ja) 2013-02-07 2013-02-07 マルチプルビュー液晶表示装置

Publications (3)

Publication Number Publication Date
JP2014153495A true JP2014153495A (ja) 2014-08-25
JP2014153495A5 JP2014153495A5 (ja) 2016-03-03
JP6071605B2 JP6071605B2 (ja) 2017-02-01

Family

ID=51206277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022152A Active JP6071605B2 (ja) 2013-02-07 2013-02-07 マルチプルビュー液晶表示装置

Country Status (3)

Country Link
US (1) US9869869B2 (ja)
JP (1) JP6071605B2 (ja)
DE (1) DE102014202206B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153637A (ja) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp 液晶表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445944B (zh) * 2014-06-24 2018-08-10 联想(北京)有限公司 引导光的传输的导光装置、导光方法和显示设备
CN104407476B (zh) * 2014-12-23 2017-11-14 厦门天马微电子有限公司 一种阵列基板、显示面板和显示装置
KR102481169B1 (ko) * 2015-11-26 2022-12-26 삼성디스플레이 주식회사 액정 표시 장치
WO2018207590A1 (ja) * 2017-05-12 2018-11-15 ソニー株式会社 表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248557A (ja) * 2006-03-14 2007-09-27 Nec Lcd Technologies Ltd 横電界型液晶表示装置
WO2007111012A1 (ja) * 2006-03-27 2007-10-04 Sharp Kabushiki Kaisha 液晶表示装置
JP2008064918A (ja) * 2006-09-06 2008-03-21 Seiko Epson Corp 電気光学装置、液晶装置及び電子機器
US20090213307A1 (en) * 2008-02-26 2009-08-27 Au Optronics Corporation Pixel unit, liquid crystal display panel, electro-optical apparatus, and methods for manufacturing the same
JP2009237541A (ja) * 2008-03-06 2009-10-15 Epson Imaging Devices Corp 液晶装置および電子機器
JP2009237233A (ja) * 2008-03-27 2009-10-15 Epson Imaging Devices Corp 液晶装置
CN102749755A (zh) * 2012-04-25 2012-10-24 友达光电股份有限公司 立体显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459464B1 (en) 2000-08-14 2002-10-01 Kabushiki Kaisha Advanced Display Liquid crystal display device with reduced weighting trace defects
CN100543522C (zh) * 2003-12-12 2009-09-23 鸿富锦精密工业(深圳)有限公司 边缘电场开关型液晶显示装置
KR20070001652A (ko) * 2005-06-29 2007-01-04 엘지.필립스 엘시디 주식회사 프린지 필드 스위칭 모드 액정 표시 장치
EP3229066A1 (en) * 2005-12-05 2017-10-11 Semiconductor Energy Laboratory Co., Ltd. Transflective liquid crystal display with a horizontal electric field configuration
JP4245036B2 (ja) * 2006-10-31 2009-03-25 エプソンイメージングデバイス株式会社 液晶表示装置
JP5628611B2 (ja) * 2010-09-16 2014-11-19 三菱電機株式会社 液晶表示装置
US9323112B2 (en) * 2011-10-12 2016-04-26 Japan Display Inc. Liquid crystal display and electronic apparatus having electrodes with openings therein
JP5830433B2 (ja) * 2012-05-30 2015-12-09 株式会社ジャパンディスプレイ 液晶表示装置
CN104062815A (zh) * 2013-03-21 2014-09-24 瀚宇彩晶股份有限公司 液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248557A (ja) * 2006-03-14 2007-09-27 Nec Lcd Technologies Ltd 横電界型液晶表示装置
WO2007111012A1 (ja) * 2006-03-27 2007-10-04 Sharp Kabushiki Kaisha 液晶表示装置
JP2008064918A (ja) * 2006-09-06 2008-03-21 Seiko Epson Corp 電気光学装置、液晶装置及び電子機器
US20090213307A1 (en) * 2008-02-26 2009-08-27 Au Optronics Corporation Pixel unit, liquid crystal display panel, electro-optical apparatus, and methods for manufacturing the same
JP2009237541A (ja) * 2008-03-06 2009-10-15 Epson Imaging Devices Corp 液晶装置および電子機器
JP2009237233A (ja) * 2008-03-27 2009-10-15 Epson Imaging Devices Corp 液晶装置
CN102749755A (zh) * 2012-04-25 2012-10-24 友达光电股份有限公司 立体显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153637A (ja) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp 液晶表示装置

Also Published As

Publication number Publication date
US9869869B2 (en) 2018-01-16
DE102014202206A1 (de) 2014-08-07
US20140218670A1 (en) 2014-08-07
JP6071605B2 (ja) 2017-02-01
DE102014202206B4 (de) 2019-06-13

Similar Documents

Publication Publication Date Title
US9268168B2 (en) Liquid crystal display device and method of fabricating the same
US9389464B2 (en) Liquid crystal display device
JP6334179B2 (ja) 表示装置
US8648971B2 (en) Multiple view liquid crystal display
JP5460123B2 (ja) 液晶表示装置
US10613395B2 (en) Liquid crystal display device
JP2013190704A (ja) 横電界方式の液晶表示装置
US8830435B2 (en) Liquid crystal display device
JP6071605B2 (ja) マルチプルビュー液晶表示装置
US20120293752A1 (en) Liquid crystal display device
JP4609525B2 (ja) 液晶表示装置
US20150098042A1 (en) Liquid crystal display device
US9906777B2 (en) Stereoscopic display device
WO2017128779A1 (zh) 显示基板及其制作方法、显示装置
US9568781B2 (en) Liquid crystal display device
US9448435B2 (en) Liquid crystal display device
JP5512158B2 (ja) 表示装置
US9354453B2 (en) Stereoscopic image display device and method for manufacturing the same
JP2014153637A (ja) 液晶表示装置
JP6267894B2 (ja) 液晶表示装置
JP2007139934A (ja) 液晶表示装置
JP2008065214A (ja) 液晶装置の製造方法
JP2017122831A (ja) 液晶表示装置
JP2009116060A (ja) 液晶装置の製造方法、液晶装置及び電子機器
JP2016126178A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250