JP2014130912A - 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法 - Google Patents

積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法 Download PDF

Info

Publication number
JP2014130912A
JP2014130912A JP2012287755A JP2012287755A JP2014130912A JP 2014130912 A JP2014130912 A JP 2014130912A JP 2012287755 A JP2012287755 A JP 2012287755A JP 2012287755 A JP2012287755 A JP 2012287755A JP 2014130912 A JP2014130912 A JP 2014130912A
Authority
JP
Japan
Prior art keywords
multilayer ceramic
ceramic capacitor
magnetic flux
flux density
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012287755A
Other languages
English (en)
Other versions
JP5725010B2 (ja
Inventor
Yoshikazu Sasaoka
嘉一 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012287755A priority Critical patent/JP5725010B2/ja
Priority to US14/102,616 priority patent/US9431175B2/en
Publication of JP2014130912A publication Critical patent/JP2014130912A/ja
Application granted granted Critical
Publication of JP5725010B2 publication Critical patent/JP5725010B2/ja
Priority to US15/226,000 priority patent/US10141111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】積層セラミックコンデンサの方向を正確に識別できる方法を提供する。
【解決手段】磁気発生装置31から発生する磁束密度を磁束密度計測器32により計測しながら、積層セラミックコンデンサ1bを、磁気発生装置31と磁束密度計測器32との間を通過させ、少なくとも積層セラミックコンデンサ1bの通過時における磁束密度の変化を計測する。磁束密度の計測結果に基づいて積層セラミックコンデンサ1bにおける複数の内部電極11,12の積層方向を識別する。
【選択図】図1

Description

本発明は、積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法に関する。
積層セラミックコンデンサは、一の方向に沿って積層された複数の内部電極を有する。このため、積層セラミックコンデンサにおいては、内部電極の積層方向を識別したいという要望がある。しかしながら、例えば、積層セラミックコンデンサが正四角柱状であるような場合には、外観により積層セラミックコンデンサにおける内部電極の積層方向を識別することは困難である。
例えば特許文献1には、積層セラミックコンデンサにおける内部電極の積層方向を外観によらずに識別し得る方法が記載されている。具体的には、特許文献1には、内部電極層が引き出されていない一面に一定の磁場を加えて、積層セラミックコンデンサの磁束密度を計測し、磁化の強さによって内部電極層の方向を識別する方法が開示されている。この方法は、内部電極が磁束とほぼ平行(コンデンサとしては底面に対して内部電極が垂直方向)になる向きにコンデンサが配置された状態と、ほぼ垂直(コンデンサとしては底面に対して内部電極が水平方向)となる向きにコンデンサが配置された状態とで、計測される磁束密度が異なることを利用した方法である。
特開平7−115033号公報
しかしながら、内部電極の積層方向と磁束の方向とが平行である場合と、内部電極の積層方向と磁束の方向とが垂直である場合とで、計測される磁束密度の差は非常に小さい。また、計測される磁束密度は、磁石とセンサープローブ、コンデンサとの位置関係に大きく左右される。特に、小型の積層セラミックコンデンサでは計測される磁束密度に対する磁石とセンサープローブ、コンデンサとの位置関係が与える影響は甚大である。
このように、方向が異なる場合に計測される磁束密度の差が小さく、かつ、計測時のコンデンサの位置により計測される磁束密度が大きく異なるため、特許文献1に記載の方法では、積層セラミックコンデンサの方向を正確に識別することは困難である。
この問題についてより具体的に説明する。例えば、長さ寸法が1mmで、幅寸法が0.5mmで、高さ寸法が0.5mmであり、静電容量が4.7μFである積層セラミックコンデンサについて、ある測定条件で磁束密度を計測した場合を想定する。この積層セラミックコンデンサの、内部電極の積層方向が磁束の方向と平行な場合の最大磁束密度は、約53.6mTである。一方、この積層セラミックコンデンサの、内部電極の積層方向が磁束の方向と垂直な場合の最大磁束密度は、約52.3mTである。従って、この積層セラミックコンデンサでは、内部電極の積層方向と磁束の方向とが平行である場合と垂直である場合とで、磁束密度の最大値は1.3mTのみ異なる。従って、内部電極の積層方向と磁束の方向とが平行である場合と垂直である場合との間の磁束密度の最大値の差は、内部電極の積層方向と磁束の方向とが平行である場合の磁束密度の最大値に対して僅か2.4%である。
また、積層セラミックコンデンサの計測位置が積層セラミックコンデンサの中心位置から0.3mmずれたときの、内部電極の積層方向と磁束の方向とが平行である積層セラミックコンデンサの磁束密度は、約52.3mTとなり、内部電極の積層方向と磁束の方向とが垂直である場合の積層セラミックコンデンサの磁束密度の最大値(測定位置が積層セラミックコンデンサの中心位置である場合)とほぼ等しくなる。このことから、積層セラミックコンデンサの計測位置が0.3mm以上変化し得る場合には、積層セラミックコンデンサの方向識別が困難である。この問題は、積層セラミックコンデンサが小型化するほど、例えば長さ寸法が1mmで、幅寸法が0.5mmで、高さ寸法が0.5mmの1005サイズ以下であるほど、計測位置を中心位置に定めることが難しくなるため、顕著になる。
本発明の主な目的は、積層セラミックコンデンサの方向を正確に識別できる方法を提供することにある。
本発明に係る積層セラミックコンデンサの方向識別方法は、一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する方法である。磁気発生装置から発生する磁束密度を磁束密度計測器により計測しながら、積層セラミックコンデンサを、磁気発生装置と磁束密度計測器との間を通過させ、少なくとも積層セラミックコンデンサの通過時における磁束密度の変化を計測する。磁束密度の計測結果に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法のある特定の局面では、計測された磁束密度の変化から、磁束密度の最大値を算出し、当該磁束密度の最大値に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法の別の特定の局面では、積層セラミックコンデンサにおける複数の内部電極の積層方向と磁束の方向とが平行である場合の磁束密度の最大値の範囲である第1の範囲と、積層セラミックコンデンサにおける複数の内部電極の積層方向と磁束の方向とが垂直である場合の磁束密度の最大値の範囲である第2の範囲とを設定し、計測された磁束密度の最大値が第1または第2の範囲に属するか否かによって積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法の他の特定の局面では、計測された磁束密度の変化から、積層セラミックコンデンサが磁気発生装置と磁束密度計測器との間を通過する直前または直後の磁束密度を算出し、当該通過直前の磁束密度に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向及び積層セラミックコンデンサの有無を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法のさらに他の特定の局面では、間隔をおいて配列された複数の積層セラミックコンデンサに対して計測工程を順に行う。計測された磁束密度の変化から、積層セラミックコンデンサが磁気発生装置と磁束密度計測器との間を通過する直前及び直後の磁束密度を算出し、通過直前の磁束密度と通過直後の磁束密度との両方に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向及び積層セラミックコンデンサの有無を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法のさらに別の特定の局面では、計測された磁束密度の変化から、磁束密度の最大値と、積層セラミックコンデンサが磁気発生装置と磁束密度計測器との間に至る直前の磁束密度との差を算出し、当該磁束密度差に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法のまた他の特定の局面では、計測された磁束密度の変化から、積層セラミックコンデンサが磁気発生装置と磁束密度計測器との間を通過する間における磁束密度の平均値を算出し、当該磁束密度の平均値に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの方向識別方法のまた別の特定の局面では、磁束密度の計測結果として、計測された磁束密度の移動平均をとることにより平滑化された磁束密度の変化結果を用いる。
本発明に係る積層セラミックコンデンサの方向識別方法のさらにまた他の特定の局面では、積層セラミックコンデンサを、磁気発生装置と磁束密度計測器との間を通過させる際に、積層セラミックコンデンサを回転させない。
本発明に係る積層セラミックコンデンサの方向識別方法のさらにまた別の特定の局面では、一の方向に沿って間隔をおいて設けられた複数の収容室のそれぞれに積層セラミックコンデンサが収容されたテーピング積層セラミックコンデンサ連を、一の方向に沿って磁気発生装置と磁束密度計測器との間を通過させ、複数の積層セラミックコンデンサに対して計測工程を順に行う。
本発明に係る積層セラミックコンデンサの方向識別方法のまたさらに他の特定の局面では、平面視において、収容室は、積層セラミックコンデンサよりも大きい。
本発明に係る積層セラミックコンデンサの方向識別装置は、一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する装置である。本発明に係る積層セラミックコンデンサの方向識別装置は、磁気発生装置と、磁束密度計測器と、搬送装置と、識別部とを備える。磁束密度計測器は、磁気発生装置から発生した磁束の密度を計測する。搬送装置は、磁気発生装置と磁束密度計測器との間を、積層セラミックコンデンサを通過させる。磁束密度計測器は、少なくとも積層セラミックコンデンサの通過時における磁束密度の変化を計測する。識別部は、磁束密度計測器から出力された磁束密度の計測結果に基づいて積層セラミックコンデンサにおける複数の内部電極の積層方向を識別する。
本発明に係る積層セラミックコンデンサの製造方法では、一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサを作製する。積層セラミックコンデンサにおける複数の内部電極の積層方向を、上記本発明に係る方向識別方法により識別する。
本発明によれば、積層セラミックコンデンサの方向を正確に識別できる方法を提供することができる。
本発明の一実施形態における積層セラミックコンデンサの方向識別装置の模式的側面図である。 本発明の一実施形態におけるテーピング積層セラミックコンデンサ連の略図的断面図である。 本発明の一実施形態におけるテーピング積層セラミックコンデンサ連の略図的平面図である。 本発明の一実施形態における積層セラミックコンデンサの略図的斜視図である。 図4の線V−Vにおける略図的断面図である。 磁気発生装置と磁束密度計測器との間に積層セラミックコンデンサがない場合の磁力線の模式図である。 磁気発生装置と磁束密度計測器との間に、内部電極が磁束の方向に対して垂直(コンデンサとしては底面に対して内部電極が水平方向)となるように積層セラミックコンデンサが位置している場合の磁力線の模式図である。 磁気発生装置と磁束密度計測器との間に、内部電極が磁束の方向に対して水平(コンデンサとしては底面に対して内部電極が垂直方向)となるように積層セラミックコンデンサが位置している場合の磁力線の模式図である。 水平品、水平品、水平品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。 垂直品、垂直品、垂直品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。 水平品、垂直品、水平品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。 垂直品、水平品、垂直品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。 第1の積層セラミックコンデンサ方向識別方法を表すフローチャートである。 第2の積層セラミックコンデンサ方向識別方法を表すフローチャートである。 垂直品、水平品、水平品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。 水平品、垂直品、垂直品の順番で列んでいた場合の磁束密度を表す模式的なグラフである。
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
本実施形態では、図4及び図5に示す積層セラミックコンデンサ1の方向識別方法について説明する。まずは、識別対象となる積層セラミックコンデンサ1の構成について説明する。
(積層セラミックコンデンサ1の構成)
図4及び図5に示されるように、積層セラミックコンデンサ1は、セラミック素体10を備えている。セラミック素体10は、略直方体状である。具体的には、セラミック素体10は、正四角柱状である。セラミック素体10は、第1及び第2の主面10a,10bと、第1及び第2の側面10c,10dと、第1及び第2の端面10e,10f(図5を参照)とを有する。第1及び第2の主面10a,10bは、それぞれ、長さ方向L及び幅方向Wに沿って延びている。第1の主面10aと第2の主面10bとは、互いに平行である。第1及び第2の側面10c,10dは、それぞれ、長さ方向L及び厚み方向Tに沿って延びている。第1の側面10cと第2の側面10dとは、互いに平行である。第1及び第2の端面10e,10fは、それぞれ、幅方向W及び厚み方向Tに沿って延びている。第1の端面10eと第2の端面10fとは互いに平行である。
セラミック素体10の長さ方向Lに沿った寸法は、0.4mm〜2.0mmであることが好ましく、0.6mm〜1.0mmであることがより好ましい。セラミック素体10の幅方向Wに沿った寸法は、0.2mm〜1.2mmであることが好ましく、0.3mm〜0.5mmであることがより好ましい。セラミック素体10の厚み方向Tに沿った寸法は、0.2mm〜1.2mmであることが好ましく、0.3mm〜0.5mmであることがより好ましい。長さ方向Lに沿った寸法が1.0mm以下で、幅方向Wおよび厚み方向Tに沿った寸法が0.5mm以下であるいわゆる1005サイズ以下である方が好ましいのは、1005サイズ以下の小型品の場合に特に磁束密度の測定位置が積層セラミックコンデンサの中心位置から変化しやすいからである。また、長さ方向Lに沿った寸法が0.6mm以上で、幅方向Wおよび厚み方向Tに沿った寸法が0.3mm以上であるいわゆる0603サイズ以上である方が好ましいのは、内部電極の密度が高いものの方が磁束密度による方向識別が行いやすいからである。同様の理由で、静電容量が1μF以上の積層セラミックコンデンサが本発明に適している。
セラミック素体10は、例えば、誘電体セラミックを主成分とする材料により構成することができる。誘電体セラミックの具体例としては、例えば、BaTiO、CaTiO、SrTiO、CaZrOなどが挙げられる。セラミック素体10には、例えば、Mn化合物、Mg化合物、Si化合物、Co化合物、Ni化合物、希土類化合物などの副成分を適宜添加してもよい。
なお、「略直方体」には、角部や稜線部が面取りされた直方体や、角部や稜線部が丸められた直方体が含まれるものとする。
図5に示されるように、セラミック素体10の内部には、複数の内部電極11,12が設けられている。複数の内部電極11,12は、厚み方向Tに沿って積層されている。各内部電極11,12は、長さ方向L及び幅方向Wに平行に設けられている。セラミック素体10の内部において、内部電極11と内部電極12とは、厚み方向Tに沿って交互に設けられている。厚み方向Tにおいて隣り合う内部電極11,12間には、セラミック部15が配されている。すなわち、厚み方向Tにおいて隣り合う内部電極11,12は、セラミック部15を介して対向している。
内部電極11は、第1の端面10eに引き出されている。第1の端面10eの上には、外部電極13が設けられている。外部電極13は、内部電極11と電気的に接続されている。
内部電極12は、第2の端面10fに引き出されている。第2の端面10fの上には、外部電極14が設けられている。外部電極14は、内部電極12と電気的に接続されている。
内部電極11,12は、Niなどの磁性材料により構成することができる。
外部電極13,14は、例えば、Ni,Cu,Ag,Pd,Au,Ag−Pd合金などの適宜の導電材料により構成することができる。
図2及び図3に示されるように、積層セラミックコンデンサ1は、テーピング積層セラミックコンデンサ連2を構成している。テーピング積層セラミックコンデンサ連2は、テーピング20を有する。テーピング20は、長手方向に沿って間隔をおいて設けられた直方体状の複数の収容室21を有する。複数の収容室21のそれぞれに積層セラミックコンデンサ1が収容されている。平面視において、収容室21は、積層セラミックコンデンサ1よりも大きい。従って、収容室21内において、積層セラミックコンデンサ1は、面方向に変位可能である。収容室21内における積層セラミックコンデンサ1の位置が収容穴21ごとに変化すれば、磁束密度計測における積層セラミックコンデンサの中心位置からの変化量も収容穴21ごとに変化することになる。
なお、積層セラミックコンデンサ1は、図4に示すような2端子型の積層セラミックコンデンサの他に、側面電極を備える3端子ないし多端子型の積層セラミックコンデンサであってもよい。
(積層セラミックコンデンサ方向識別装置3の構成)
積層セラミックコンデンサ方向識別装置3(以下、単に「識別装置3」とする。)は、積層セラミックコンデンサ1における複数の内部電極11,12の積層方向を識別するための装置である。以下、本明細書において、「積層セラミックコンデンサ1における複数の内部電極11,12の積層方向」を、「積層セラミックコンデンサ1の方向」と記載する。
図1に示されるように、識別装置3は、磁気発生装置31と、磁束密度計測器32とを備える。磁束密度計測器32は、磁気発生装置31において発生した磁束密度を検出可能なように配置されている。磁束密度計測器32は、磁気発生装置31から発生した磁束密度を計測する。
識別装置3は、搬送装置35をさらに備える。搬送装置35は、磁気発生装置31と磁束密度計測器32との間を、積層セラミックコンデンサ1を通過させる。具体的には、搬送装置35は、第1のロール33と、第2のロール34とを有する。第1のロール33には、テーピング積層セラミックコンデンサ連2が巻き取られており、この第1のロール33からテーピング積層セラミックコンデンサ連2が送り出される。磁気発生装置31と、磁束密度計測器32との間を通過したテーピング積層セラミックコンデンサ連2は、第2のロール34により巻き取られる。
磁束密度計測器32は、少なくとも積層セラミックコンデンサ1の通過時における磁束密度の変化を計測する。磁束密度計測器32は、計測結果を、識別部36に出力する。識別部36は、磁束密度計測器32から出力された磁束密度の計測結果に基づいて積層セラミックコンデンサ1の方向を識別する。識別部36は、この積層セラミックコンデンサ1の方向識別をテーピング積層セラミックコンデンサ連2中に相互に間隔をおいて配された複数の積層セラミックコンデンサ1に対して順に行っていく。
積層セラミックコンデンサ1の製造に際しては、まず、積層セラミックコンデンサ1を作製する。次に、作製した積層セラミックコンデンサ1をテーピング20内に収容し、テーピング積層セラミックコンデンサ連2を作製する。次に、テーピング積層セラミックコンデンサ連2に収容された積層セラミックコンデンサ1の方向を識別する。その結果、例えば、積層セラミックコンデンサの整列率を確認したり、積層セラミックコンデンサ1の方向が所望する方向とは異なる積層セラミックコンデンサ1が検出された場合は、その積層セラミックコンデンサ1にマーキングを施したり、除外したりする。
(方向識別方法)
次に、識別部36が行う積層セラミックコンデンサ1の方向識別方法について説明する。
まず、本実施形態における方向識別方法の原理について、図6〜図8を参照しながら説明する。例えば、図6に示されるように、磁気発生装置31と磁束密度計測器32との間に積層セラミックコンデンサ1が位置していない状態のときは、磁束密度計測器32を通過する磁力線Lの間隔が最も広くなり、言い換えると、単位面積あたりの磁力線Lの本数が少なくなり、磁束密度としては低い値となる。図7及び図8に示されるように、磁気発生装置31と磁束密度計測器32との間に積層セラミックコンデンサ1が位置している場合は、積層セラミックコンデンサ1が位置していない場合よりも磁束密度計測器32を通過する磁力線Lの間隔が狭くなり、言い換えると単位面積あたりの磁力線Lの本数が多くなり、磁束密度としては高い値となる。なかでも、図8に示す内部電極11,12の積層方向が磁束の方向と平行(コンデンサとしては底面に対して内部電極が垂直方向)であるときのほうが、図7に示す垂直(コンデンサとしては底面に対して内部電極が水平方向)であるときよりも、磁束密度計測器32を通過する磁力線Lの間隔が狭くなり、言い換えると単位面積あたりの磁力線Lの本数が多くなり、磁束密度としては高い値となる。従って、磁束密度計測器32によって計測される磁束密度は、積層セラミックコンデンサ1の有無、積層セラミックコンデンサ1の方向によって変化する。本実施形態の識別方法では、この原理を用いて積層セラミックコンデンサ1の方向を識別する。すなわち、磁気発生装置31から発生する磁束密度を磁束密度計測器32により計測しながら、積層セラミックコンデンサ1を、磁気発生装置31と磁束密度計測器32との間を通過させ、少なくとも積層セラミックコンデンサ1の通過時における磁束密度の変化を計測する。そして、識別部36は、その磁束密度の計測結果に基づいて積層セラミックコンデンサ1の方向を識別する。このように、本実施形態では、通過時における磁束密度の変化を計測するため、積層セラミックコンデンサ1を、磁気発生装置31と磁束密度計測器32との間を通過させる際に、積層セラミックコンデンサ1を回転させない。積層セラミックコンデンサ1を回転させずに通過させることで、回転に伴う計測位置の変化が生じるのを避けることができる。
次に、図9〜図12に示す例を用いて、本実施形態の識別方法についてより詳細に説明する。なお、図9〜図12において、横軸は、テーピング積層セラミックコンデンサ連2の延びる方向における磁束密度の計測位置座標を表している。図9〜図12において、縦軸は、磁束密度計測器32によって計測される磁束密度を表している。本実施形態では、識別部36は、磁束密度計測器32から出力された生の磁束密度データの移動平均をとることにより平滑化する。図9〜図12に示されるグラフは、平滑化された後のデータである。本実施形態では、図9〜図12に示されるような平滑化された後のデータを用いて積層セラミックコンデンサ1の方向の識別が行われる。
図9〜図12に示す例では、積層セラミックコンデンサ1a、積層セラミックコンデンサ1b及び積層セラミックコンデンサ1cが第2のロール34側からこの順番で配列されている。従って、積層セラミックコンデンサ1a、積層セラミックコンデンサ1b、積層セラミックコンデンサ1cの順番で、磁気発生装置31と磁束密度計測器32との間を通過する。ここでは、積層セラミックコンデンサ1bの方向を識別例について説明する。
なお、内部電極11,12の積層方向が磁束の方向と垂直であるものを「水平品」(積層セラミックコンデンサとしては底面に対して内部電極が水平方向であるため)とし、平行であるものを「垂直品」(積層セラミックコンデンサとしては底面に対して内部電極が垂直方向であるため)とする。
また、計測される磁束密度は、積層セラミックコンデンサ1bの方向性によって積層セラミックコンデンサ1bが位置している領域における磁束密度が変化するだけでなく、積層セラミックコンデンサ1a〜1cが位置していない領域においても通過前後の積層セラミックコンデンサ1a〜1cの方向に影響によって変化する。
図9に示す例では、積層セラミックコンデンサ1a〜1cは、すべて水平品である。図10に示す例では、積層セラミックコンデンサ1a〜1cは、すべて、垂直品である。このため、積層セラミックコンデンサ1aと積層セラミックコンデンサ1bとの中間において計測される磁束密度は、図9に示す積層セラミックコンデンサ1a、1bが共に水平品である例では、D0であるのに対して、図10に示す積層セラミックコンデンサ1a、1bが共に垂直品である例では、D0よりも高いD2となる。また、積層セラミックコンデンサ1bが位置している領域において計測される磁束密度は、図9に示す積層セラミックコンデンサ1bが水平品である例では、D3であるのに対して、図10に示す積層セラミックコンデンサ1bが垂直品である例では、D3よりも高いD4となる。
図11に示す例では、積層セラミックコンデンサ1aが水平品であり、積層セラミックコンデンサ1bが垂直品である。このため、積層セラミックコンデンサ1aと積層セラミックコンデンサ1bとの中間において計測される磁束密度は、D0よりも高く、D2よりも低い、D1となる。積層セラミックコンデンサ1bが位置している領域において計測される磁束密度は、D4となる。
図12に示す例では、積層セラミックコンデンサ1aが垂直品であり、積層セラミックコンデンサ1bが水平品である。このため、積層セラミックコンデンサ1aと積層セラミックコンデンサ1bとの中間において計測される磁束密度は、D0よりも高く、D2よりも低い、D1となる。積層セラミックコンデンサ1bが位置している領域において計測される磁束密度は、D3となる。
なお、一般的に、D2とD3の磁束密度の差は、D3とD4の磁束密度の差よりも小さくなる。
また、積層セラミックコンデンサ1bの中心位置における磁束密度と、積層セラミックコンデンサ1bの端部における磁束密度では大きな差が生じる。例えば、積層セラミックコンデンサ1bの端部における磁束密度は、積層セラミックコンデンサ1bの中心位置における磁束密度と、積層セラミックコンデンサ1aと積層セラミックコンデンサ1bとの中間において計測される磁束密度との平均程度の磁束密度となる。
(第1の方向識別方法)
図13は、第1の方向識別方法を示すフローチャートである。図13に示されるように、第1の方向識別方法では、まず、ステップS1において、識別部36は、磁束密度計測器32から出力された計測結果から、磁束密度最大値を算出する。そして、ステップS2において、識別部36は、磁束密度最大値に基づいて積層セラミックコンデンサ1bの方向を識別する。
前述のように、内部電極11,12の積層方向が磁束の方向と平行(垂直品)である場合に計測される磁束密度の最大値D4は、内部電極11,12の積層方向が磁束の方向と垂直(水平品)である場合に計測される磁束密度の最大値D3よりも大きい。このため、磁束密度最大値を参照することによって積層セラミックコンデンサ1bの方向を識別することができる。具体的には、複数の測定結果からD3,D4を設定し、個別の測定結果をD3,D4と比較してもよいし、予め、D3,D4を求めて設定しておき、計測された磁束密度最大値と、予め求めたD3,D4とを比較してもよい。その結果、磁束密度最大値がD4である場合は、垂直品、D3である場合は、水平品と判断することができる。
なお、実際上は、内部電極11,12の積層方向が磁束の方向と平行である場合に計測される磁束密度の最大値、垂直である場合に計測される最大値等は、すべて一定の値になるわけではなく、範囲を持っている。従って、D0〜D4は、それぞれ、すべて範囲を持っている。
(第2の方向識別方法)
図14は、第2の積層セラミックコンデンサ方向識別方法を表すフローチャートである。図14に示されるように、第2の方向識別方法では、まず、ステップS3において、積層セラミックコンデンサ1bが磁気発生装置31と磁束密度計測器32との間に至る直前の磁束密度(直前磁束密度)を算出する。次に、ステップS4において、識別部36は、直前磁束密度に基づいて積層セラミックコンデンサ1bの方向を識別する。
前述のように、内部電極11,12の積層方向が磁束の方向と平行である場合に計測される直前磁束密度と、内部電極11,12の積層方向が磁束の方向と垂直である場合に計測される直前磁束密度とは相互に異なる。具体的には、これから通過する積層セラミックコンデンサ1bと、先に通過した積層セラミックコンデンサ1aとの両方が水平品である場合、両方が垂直品である場合、一方が水平品で他方が垂直品である場合とで計測される直前磁束密度が異なる。従って、直前磁束密度を参照することによって積層セラミックコンデンサ1bの方向を識別することができる。具体的には、計測された直前磁束密度がD0である場合には、積層セラミックコンデンサ1bが水平品であると識別することができる。計測された直前磁束密度がD2である場合は、積層セラミックコンデンサ1bが垂直品であると識別することができる。計測された直前磁束密度がD1である場合は、先に通過した積層セラミックコンデンサ1aと、これから通過する積層セラミックコンデンサ1bとのうちの一方が垂直品で他方が水平品であると識別できる。このため、これから通過する積層セラミックコンデンサ1bの方向を確実に識別するためには、他の識別方法をさらに行うことが好ましい。
例えば、積層セラミックコンデンサ1bが磁気発生装置31と磁束密度計測器32との間を通過した直後の磁束密度(直後磁束密度)をさらに算出し、直後磁束密度をさらに参照して積層セラミックコンデンサ1bの方向を識別してもよい。具体的には、図15に示されるように、直前磁束密度がD1であり、直後磁束密度がD0である場合には、積層セラミックコンデンサ1bは水平品であると識別できる。図16に示されるように、直前磁束密度がD1であり、直後磁束密度がD2である場合には、積層セラミックコンデンサ1bは、垂直品であると識別できる。直前磁束密度がD1であり、直後磁束密度がD1である場合には、積層セラミックコンデンサ1cが磁気発生装置31と磁束密度計測器32との間を通過した直後の磁束密度をさらに参照すればよい。このようにして、直後磁束密度がD0またはD2になるまで計測を行えば、積層セラミックコンデンサ1の方向を確定させることができる。
(第3の方向識別方法)
第3の識別方法では、まず、積層セラミックコンデンサ1bが磁気発生装置31と磁束密度計測器32との間を通過する際の磁束密度の最大値と、積層セラミックコンデンサ1bが磁気発生装置31と磁束密度計測器32との間に至る直前(または直後)の磁束密度の値の関係、例えば両者の値の差(磁束密度差)を算出する。そして、識別部36は、磁束密度差に基づいて積層セラミックコンデンサ1bの方向を識別する。第3の方向識別方法は、水平品が位置している領域の磁束密度であるのか、積層セラミックコンデンサが位置していない領域の磁束密度であるのかを識別するために有効である。一般的に、水平品が位置している領域の磁束密度D3と、これから通過する積層セラミックコンデンサと、先に通過した積層セラミックコンデンサとの両方が垂直品である場合の中間の磁束密度D2とは、バラツキの範囲で見ると近接する場合があるからである。例えば、積層セラミックコンデンサが収容されていない収容室がある場合、そこに水平品が収容されているのか、何も収容されていないのか、を識別するためには、最大値や通過前後だけでなく、両者の関係(磁束密度が大きくなる方に変化すれば水平品、小さくなる方に変化するか変化しなければ何も収容されていない等)を考慮すれば、積層セラミックコンデンサの有無ないし方向を識別することができる。
(第4の方向識別方法)
第4の方向識別方法では、計測された磁束密度の変化から、積層セラミックコンデンサ1bが磁気発生装置31と磁束密度計測器32との間を通過する間における磁束密度の平均値を算出し、当該平均値に基づいて積層セラミックコンデンサ1bの方向を識別する。例えば、積層セラミックコンデンサ1a〜1cがすべて垂直品であった場合には、平均値が最も高くなり、すべて水平品であった場合には、平均値が最も低くなる。
勿論、上記第1〜第4の方向識別方向の2つ以上を組み合わせて行ってもよい。そうすることにより、識別精度を向上させることができる。
以上説明したように、本実施形態では、磁気発生装置31から発生する磁束密度を磁束密度計測器32により計測しながら、積層セラミックコンデンサ1bを磁気発生装置31と磁束密度計測器32との間を通過させ、少なくとも積層セラミックコンデンサ1bの通過時における磁束密度の変化を測定する。そして、この磁束密度の変化に基づいて積層セラミックコンデンサ1bの方向を識別する。このため、上述のように、積層セラミックコンデンサ1bにおける内部電極11,12の積層方向を高精度に識別することができる。例えば、収容室21が積層セラミックコンデンサ1よりも大きく、積層セラミックコンデンサ1が変位するような場合であっても、積層セラミックコンデンサ1bにおける内部電極11,12の積層方向を高精度に識別することができる。
1,1a〜1c…積層セラミックコンデンサ
2…テーピング積層セラミックコンデンサ連
3…積層セラミックコンデンサ方向識別装置
10…セラミック素体
10a…第1の主面
10b…第2の主面
10c…第1の側面
10d…第2の側面
10e…第1の端面
10f…第2の端面
11,12…内部電極
13,14…外部電極
15…セラミック部
20…テーピング
21…収容室
31…磁気発生装置
32…磁束密度計測器
33…第1のロール
34…第2のロール
35…搬送装置
36…識別部

Claims (13)

  1. 一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する方法であって、
    磁気発生装置から発生する磁束密度を磁束密度計測器により計測しながら、積層セラミックコンデンサを、前記磁気発生装置と前記磁束密度計測器との間を通過させ、少なくとも前記積層セラミックコンデンサの通過時における磁束密度の変化を計測する工程と、
    前記磁束密度の計測結果に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する工程と、
    を備える、積層セラミックコンデンサの方向識別方法。
  2. 前記計測された磁束密度の変化から、磁束密度の最大値を算出し、当該磁束密度の最大値に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する、請求項1に記載の積層セラミックコンデンサの方向識別方法。
  3. 積層セラミックコンデンサにおける前記複数の内部電極の積層方向と磁束の方向とが平行である場合の磁束密度の最大値の範囲である第1の範囲と、積層セラミックコンデンサにおける前記複数の内部電極の積層方向と磁束の方向とが垂直である場合の磁束密度の最大値の範囲である第2の範囲とを設定し、前記計測された磁束密度の最大値が前記第1または第2の範囲に属するか否かによって前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する、請求項2に記載の積層セラミックコンデンサの方向識別方法。
  4. 前記計測された磁束密度の変化から、前記積層セラミックコンデンサが前記磁気発生装置と前記磁束密度計測器との間を通過する直前または直後の磁束密度を算出し、当該通過直前の磁束密度に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向及び積層セラミックコンデンサの有無を識別する、請求項1〜3のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  5. 間隔をおいて配列された複数の積層セラミックコンデンサに対して前記計測工程を順に行い、
    前記計測された磁束密度の変化から、前記積層セラミックコンデンサが前記磁気発生装置と前記磁束密度計測器との間を通過する直前及び直後の磁束密度を算出し、前記通過直前の磁束密度と前記通過直後の磁束密度との両方に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向及び積層セラミックコンデンサの有無を識別する、請求項4に記載の積層セラミックコンデンサの方向識別方法。
  6. 前記計測された磁束密度の変化から、磁束密度の最大値と、前記積層セラミックコンデンサが前記磁気発生装置と前記磁束密度計測器との間に至る直前の磁束密度との差を算出し、当該磁束密度差に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する、請求項1〜5のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  7. 前記計測された磁束密度の変化から、前記積層セラミックコンデンサが前記磁気発生装置と前記磁束密度計測器との間を通過する間における磁束密度の平均値を算出し、当該磁束密度の平均値に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する、請求項1〜6のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  8. 前記磁束密度の計測結果として、前記計測された磁束密度の移動平均をとることにより平滑化された磁束密度の変化結果を用いる、請求項1〜7のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  9. 前記積層セラミックコンデンサを、前記磁気発生装置と前記磁束密度計測器との間を通過させる際に、前記積層セラミックコンデンサを回転させない、請求項1〜8のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  10. 一の方向に沿って間隔をおいて設けられた複数の収容室のそれぞれに積層セラミックコンデンサが収容されたテーピング積層セラミックコンデンサ連を、前記一の方向に沿って前記磁気発生装置と前記磁束密度計測器との間を通過させ、前記複数の積層セラミックコンデンサに対して前記計測工程を順に行う、請求項1〜9のいずれか一項に記載の積層セラミックコンデンサの方向識別方法。
  11. 平面視において、前記収容室は、前記積層セラミックコンデンサよりも大きい、請求項10に記載の積層セラミックコンデンサの方向識別方法。
  12. 一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する装置であって、
    磁気発生装置と、
    前記磁気発生装置から発生した磁束の密度を計測する磁束密度計測器と、
    前記磁気発生装置と前記磁束密度計測器との間を、積層セラミックコンデンサを通過させる搬送装置と、
    識別部と、
    を備え、
    前記磁束密度計測器は、少なくとも前記積層セラミックコンデンサの通過時における磁束密度の変化を計測し、
    前記識別部は、前記磁束密度計測器から出力された前記磁束密度の計測結果に基づいて前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を識別する、積層セラミックコンデンサの方向識別装置。
  13. 一の方向に沿って積層された複数の内部電極を備える積層セラミックコンデンサを作製する工程と、
    前記積層セラミックコンデンサにおける前記複数の内部電極の積層方向を、請求項1〜11のいずれか一項に記載の方法により識別する工程と、
    を備える、積層セラミックコンデンサの製造方法。
JP2012287755A 2012-12-28 2012-12-28 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法 Active JP5725010B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012287755A JP5725010B2 (ja) 2012-12-28 2012-12-28 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
US14/102,616 US9431175B2 (en) 2012-12-28 2013-12-11 Method of identifying direction of stacking in stacked ceramic capacitor
US15/226,000 US10141111B2 (en) 2012-12-28 2016-08-02 Method of manufacturing stacked ceramic capacitor including identifying direction of stacking in stacked ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287755A JP5725010B2 (ja) 2012-12-28 2012-12-28 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015007077A Division JP2015092625A (ja) 2015-01-16 2015-01-16 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法

Publications (2)

Publication Number Publication Date
JP2014130912A true JP2014130912A (ja) 2014-07-10
JP5725010B2 JP5725010B2 (ja) 2015-05-27

Family

ID=51015534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287755A Active JP5725010B2 (ja) 2012-12-28 2012-12-28 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法

Country Status (2)

Country Link
US (2) US9431175B2 (ja)
JP (1) JP5725010B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222811A (zh) * 2014-06-25 2016-01-06 株式会社村田制作所 层叠陶瓷电容器的方向识别方法、层叠陶瓷电容器的方向识别装置及层叠陶瓷电容器的制造方法
JP2016009802A (ja) * 2014-06-25 2016-01-18 株式会社村田製作所 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP2016213341A (ja) * 2015-05-11 2016-12-15 株式会社村田製作所 積層セラミックコンデンサの姿勢判別方法、積層セラミックコンデンサの姿勢判別装置、積層セラミックコンデンサ連の製造方法、および積層セラミックコンデンサ連
KR20220056787A (ko) 2020-10-28 2022-05-06 가부시기가이샤 다이신 반송물의 정렬방법 및 반송물 정렬시스템

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725010B2 (ja) * 2012-12-28 2015-05-27 株式会社村田製作所 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP2014220528A (ja) * 2014-08-13 2014-11-20 株式会社村田製作所 積層コンデンサ
JP2014222783A (ja) * 2014-08-13 2014-11-27 株式会社村田製作所 積層コンデンサ及び積層コンデンサの実装構造体
CN104701010B (zh) * 2015-03-16 2018-04-20 广东风华高新科技股份有限公司 多层陶瓷电容器
US20210090809A1 (en) * 2019-09-20 2021-03-25 Samsung Electro-Mechanics Co., Ltd. Board having multilayer capacitor mounted thereon and multilayer capacitor package
KR20230049371A (ko) * 2021-10-06 2023-04-13 삼성전기주식회사 적층형 커패시터의 내부 전극의 적층 방향 검출 장치 및 검출 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180305A (ja) * 1992-12-11 1994-06-28 Glory Ltd 磁気質検出装置
JPH07115034A (ja) * 1993-10-18 1995-05-02 Murata Mfg Co Ltd 積層セラミックコンデンサの方向識別方法
JPH0850106A (ja) * 1994-08-08 1996-02-20 Honshu Paper Co Ltd コンデンサ用金属化フィルム欠陥検出方法
JP2003302432A (ja) * 2002-04-10 2003-10-24 Murata Mfg Co Ltd 電子部品の測定装置
US20070247784A1 (en) * 2006-04-20 2007-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Low tunneling current MIM structure and method of manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU615739B2 (en) * 1989-04-28 1991-10-10 Digital Equipment Corporation Communication protocol for statistical data multiplexers arranged in a wide area network
JP3055374B2 (ja) 1993-10-18 2000-06-26 株式会社村田製作所 積層セラミックコンデンサの方向識別方法
JP3716670B2 (ja) * 1998-09-29 2005-11-16 三菱電機株式会社 誘導電動機の制御装置
GB2367192B (en) * 2000-09-01 2003-11-05 Minebea Electronics A method of designing an inductor
JP3523608B2 (ja) * 2001-04-03 2004-04-26 本田技研工業株式会社 磁束検出装置および方法
JP3747940B2 (ja) * 2004-06-03 2006-02-22 株式会社村田製作所 積層コンデンサおよびその製造方法
KR101058697B1 (ko) 2010-12-21 2011-08-22 삼성전기주식회사 적층 세라믹 커패시터의 회로 기판 실장 구조, 실장 방법과 이를 위한 회로 기판의 랜드 패턴, 수평 방향으로 테이핑한 적층 세라믹 커패시터의 포장체 및 수평 방향 정렬방법
JP2013021300A (ja) * 2011-06-16 2013-01-31 Murata Mfg Co Ltd 積層セラミック電子部品
JP5725010B2 (ja) * 2012-12-28 2015-05-27 株式会社村田製作所 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP2015111655A (ja) * 2013-10-29 2015-06-18 株式会社村田製作所 セラミック電子部品
JP6131933B2 (ja) * 2014-01-10 2017-05-24 株式会社村田製作所 テーピング電子部品連の製造装置、テーピング電子部品連の製造方法、電子部品の搬送装置、電子部品の搬送方法及びテーピング電子部品連

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180305A (ja) * 1992-12-11 1994-06-28 Glory Ltd 磁気質検出装置
JPH07115034A (ja) * 1993-10-18 1995-05-02 Murata Mfg Co Ltd 積層セラミックコンデンサの方向識別方法
JPH0850106A (ja) * 1994-08-08 1996-02-20 Honshu Paper Co Ltd コンデンサ用金属化フィルム欠陥検出方法
JP2003302432A (ja) * 2002-04-10 2003-10-24 Murata Mfg Co Ltd 電子部品の測定装置
US20070247784A1 (en) * 2006-04-20 2007-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Low tunneling current MIM structure and method of manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222811A (zh) * 2014-06-25 2016-01-06 株式会社村田制作所 层叠陶瓷电容器的方向识别方法、层叠陶瓷电容器的方向识别装置及层叠陶瓷电容器的制造方法
JP2016009802A (ja) * 2014-06-25 2016-01-18 株式会社村田製作所 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
US9714921B2 (en) 2014-06-25 2017-07-25 Murata Manufacturing Co., Ltd. Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor
JP2016213341A (ja) * 2015-05-11 2016-12-15 株式会社村田製作所 積層セラミックコンデンサの姿勢判別方法、積層セラミックコンデンサの姿勢判別装置、積層セラミックコンデンサ連の製造方法、および積層セラミックコンデンサ連
KR20220056787A (ko) 2020-10-28 2022-05-06 가부시기가이샤 다이신 반송물의 정렬방법 및 반송물 정렬시스템

Also Published As

Publication number Publication date
US9431175B2 (en) 2016-08-30
US20140182101A1 (en) 2014-07-03
JP5725010B2 (ja) 2015-05-27
US10141111B2 (en) 2018-11-27
US20160343507A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5725010B2 (ja) 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP6107752B2 (ja) 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP4049181B2 (ja) 積層コンデンサ
EP3012846B1 (en) Pcb rogowski coil
KR101532150B1 (ko) 직교형 플럭스게이트 센서
JP6241439B2 (ja) 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP2015109415A (ja) 積層セラミック電子部品、テーピング電子部品連及び積層セラミック電子部品の製造方法
JP2016072484A (ja) セラミック電子部品及びその製造方法
KR101840694B1 (ko) 전자부품 반송 장치
JP2015092625A (ja) 積層セラミックコンデンサの方向識別方法、積層セラミックコンデンサの方向識別装置及び積層セラミックコンデンサの製造方法
JP6210358B2 (ja) 変位センサ
US9714921B2 (en) Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor
KR101713088B1 (ko) 적층 세라믹 콘덴서의 방향 식별 방법, 적층 세라믹 콘덴서의 방향 식별 장치 및 적층 세라믹 콘덴서의 제조 방법
JP6361570B2 (ja) 積層セラミックコンデンサの姿勢判別方法、積層セラミックコンデンサの姿勢判別装置、および積層セラミックコンデンサ連の製造方法
JP4107351B2 (ja) 積層コンデンサ
JP2019212701A (ja) 積層セラミックコンデンサの内部電極積層数検出装置
KR20130106478A (ko) 레졸버용 스테이터 및 이를 포함하는 레졸버
JP5173291B2 (ja) 積層コンデンサ
CN104576057A (zh) 多层陶瓷电容器
JP2013229389A (ja) セラミック電子部品
JP7354956B2 (ja) 方向識別方法
JP4905519B2 (ja) インダクタ及びlc複合部品
JP2012104646A (ja) 多層回路基板および層ずれ測定システム
JP2023055611A (ja) 積層型キャパシタの内部電極の積層方向検出装置及び検出方法
JP2018120985A (ja) 電子部品および電子部品を備えた基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5725010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150