JP2014072997A - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
JP2014072997A
JP2014072997A JP2012217469A JP2012217469A JP2014072997A JP 2014072997 A JP2014072997 A JP 2014072997A JP 2012217469 A JP2012217469 A JP 2012217469A JP 2012217469 A JP2012217469 A JP 2012217469A JP 2014072997 A JP2014072997 A JP 2014072997A
Authority
JP
Japan
Prior art keywords
phase
control
value
current
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012217469A
Other languages
English (en)
Other versions
JP5958250B2 (ja
Inventor
Takashi Suzuki
崇史 鈴木
Hirobumi Kako
寛文 加古
Takeshi Ito
武志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012217469A priority Critical patent/JP5958250B2/ja
Priority to US14/039,262 priority patent/US8957616B2/en
Priority to CN201310452570.XA priority patent/CN103715959B/zh
Publication of JP2014072997A publication Critical patent/JP2014072997A/ja
Application granted granted Critical
Publication of JP5958250B2 publication Critical patent/JP5958250B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】電流センサの異常を検出可能であり、交流電動機の制御の精度を向上可能な交流電動機の制御装置を提供する。
【解決手段】回転数算出部51にて、電気角θeに基づき、交流電動機2の回転数Nを算出し、回転数判定部52にて、回転数Nが所定の判定値X以下であるか否かを判定する。電流選択部35では、回転数Nが判定値X以下であると判定された場合、dq軸電流値id、iqに基づいて電圧指令値vd*、vq*を算出する2相制御モードとする。また、回転数Nが判定値Xより大きいと判定された場合、dq軸電流推定値id_est、iq_estに基づいて電圧指令値vd*、vq*を算出するとともに制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードとする。これにより、電流センサ12、13の異常を検出可能であり、交流電動機2の制御の精度を向上可能である。
【選択図】 図3

Description

本発明は、交流電動機の制御装置に関する。
近年、低燃費、低排気エミッションの社会的要請から車両の動力源として交流電動機を搭載した電気自動車やハイブリッド自動車が注目されている。例えば、ハイブリッド自動車においては、二次電池等からなる直流電源と交流電動機とを、インバータ等で構成された電力変換装置を介して接続し、直流電源の直流電圧をインバータで交流電圧に変換して交流電動機を駆動するようにしたものがある。
このようなハイブリッド自動車や電気自動車に搭載される交流電動機の制御装置において、相電流を検出する電流センサを1相のみに設けることで、電流センサの数を減らし、インバータの3相出力端子近傍の小型化や交流電動機の制御系統のコスト低減を図る技術が知られている(例えば特許文献1参照)。また、1相のみの電流検出値に基づいて電動機の制御を行う技術としては、例えば特許文献2のように、電流検出器間のゲイン誤差を要因とする3相不均衡によるトルクリプルを防ぐべく、1相の電流値に基づく理想的な交流波形を得てモータ制御を行うものもある。
特開2004−159391号公報 特許第4942425号公報
特許文献2では、理想的には各相の交流波形が120°ずつ位相のずれた状態であることに基づき、理想的な交流波形に合うように1相の電流値を単に120°遅らせて他相の電流値を推定している。このような方法では、本来、ベクトル制御に必要な二次元量(例えばd軸電流およびq軸電流)を正確に制御することはできない。
また特許文献1では、1相の電流センサの検出値に係数を乗じて他相の電流を推定しているが、ロック状態に限らず検出値が0となる状態では全ての相の電流が0になってしまう。また、3相交流電流を理想的な正弦波とおいて位相と係数を導出するため実際の電流を反映した推定値になっていない。
例えばハイブリッド車両や電気自動車の主機モータ等のように、高速、高精度での制御が必要なシステムにおいて精度よくベクトル制御を行うためには、検出される1相の電流検出値に加え、残りの1次元分を補う補正が必要である。そのためには、交流電動機の回転に同期して変化する情報を用いることで2次元量を精度よく推定することが考えられる。このとき、交流電動機の回転数が小さいと、回転に同期して変化する情報の変化が小さく、電流推定精度が悪化する虞がある。
電流推定精度が悪化すると、交流電動機に異常な電流が通電され、異常なトルクが発生する虞がある。異常なトルクが発生すると、例えば交流電動機をハイブリッド車両や電動自動車に搭載した場合、ドライバビリティ(以下、「ドラビリ」という。)が悪化してしまう。ここで、異常な電流とは、過小電流および過大電流を含むものとする。また、異常なトルクとは、過小電流による過小トルクおよび過大電流による過大トルクを含むものとする。
例えば交流電動機をハイブリッド車両や電気自動車の主機に適用した場合、過小電流となると、所望のトルクが発生しないため、ユーザによりアクセルペダルが必要以上に踏み込まれてしまったり、電流推定精度が改善したときに急にトルクが発生することにより急発進してしまったりする虞がある。
また、過大電流が通電されると、交流電動機の制御装置に用いられる各種の素子の発熱や故障が生じる虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、電流センサの異常を検出可能であり、交流電動機の制御の精度を向上可能な交流電動機の制御装置を提供することにある。
請求項1に記載の発明の交流電動機の制御装置は、インバータによって印加電圧が制御される3相の交流電動機の駆動を制御するものであり、制御相電流取得手段と、監視相電流取得手段と、回転角取得手段と、電流算出手段と、電流推定手段と、電圧指令値算出手段と、他相電流推定手段と、異常検出手段と、切替手段と、回転数算出手段と、回転数判定手段と、を備える。
制御相電流取得手段は、交流電動機のいずれか1相である制御相に設けられる制御相電流センサから制御相電流検出値を取得する。監視相電流取得手段は、交流電動機の制御相とは異なる1相である監視相に設けられる監視相電流センサから監視相電流検出値を取得する。回転角取得手段は、交流電動機の回転角を検出する回転角センサから回転角検出値を取得する。
電流算出手段は、制御相電流検出値、監視相電流検出値および回転角検出値に基づき、2相制御電流値を算出する。
電流推定手段は、制御相電流検出値および回転角検出値に基づく制御用1相電流推定値を算出する。詳細には、前回の演算で算出された制御用1相電流推定値の制御相の成分である電流基準値と制御相電流検出値とに基づいて算出される補正ベクトルをdq軸平面上にて積算することにより、制御用1相電流推定値を算出する。
電圧指令値算出手段は、フィードバックされる2相制御電流値または制御用1相電流推定値に基づき、インバータに印加される電圧に係る電圧指令値を算出する。
他相電流推定手段は、制御相電流検出値と回転角検出値とに基づいて推定される監視相電流推定値、および、監視相電流検出値と回転角検出値とに基づいて推定される制御相電流推定値の少なくとも一方を算出する。
異常検出手段は、監視相電流推定値と監視相電流検出値とを比較した第1比較結果、および、制御相電流推定値と制御相電流検出値とを比較した第2比較結果の少なくとも一方に基づき、制御相電流センサおよび監視相電流センサの少なくとも一方に異常が生じていることを検出する。
切替手段は、2相制御電流値に基づいて電圧指令値を算出する2相制御モードと、制御用1相電流推定値に基づいて電圧指令値を算出するとともに異常検出手段による異常検出を行う1相制御モードと、を切り替える。
回転数算出手段は、回転角検出値に基づき、交流電動機の回転数を算出する。回転数判定手段は、回転数が所定の判定値以下であるか否かを判定する。
本発明では、切替手段は、回転数が判定値以下であると判定された場合、2相制御モードとし、回転数が判定値より大きいと判定された場合、1相制御モードとする。
請求項4に記載の発明の交流電動機の制御装置は、インバータによって印加電圧が制御される3相の交流電動機の駆動を制御するものであり、制御相電流取得手段と、監視相電流取得手段と、回転角取得手段と、電流算出手段と、電流推定手段と、電圧指令値算出手段と、他相電流推定手段と、切替手段と、異常検出手段と、回転数算出手段と、を備える。
制御相電流取得手段は、交流電動機のいずれか1相である制御相に設けられる制御相電流センサから制御相電流検出値を取得する。監視相電流取得手段は、交流電動機の制御相とは異なる1相である監視相に設けられる監視相電流センサから監視相電流検出値を取得する。回転角取得手段は、交流電動機の回転角を検出する回転角センサから回転角検出値を取得する。
電流算出手段は、制御相電流検出値、監視相電流検出値および回転角検出値に基づき、2相制御電流値を算出する。
電流推定手段は、制御相電流検出値、回転角検出値、および、交流電動機の駆動に係る電流指令値に基づき、制御用1相電流推定値を算出する。
電圧指令値算出手段は、フィードバックされる2相制御電流値または制御用1相電流推定値に基づき、インバータに印加される電圧に係る電圧指令値を算出する。
他相電流推定手段は、制御相電流検出値と回転角検出値とに基づいて推定される監視相電流推定値、および、監視相電流検出値と回転角検出値とに基づいて推定される制御相電流推定値の少なくとも一方を算出する。
異常検出手段は、監視相電流推定値と監視相電流検出値とを比較した第1比較結果、および、制御相電流推定値と制御相電流検出値とを比較した第2比較結果の少なくとも一方に基づき、制御相電流センサおよび監視相電流センサの少なくとも一方に異常が生じていることを検出する。
切替手段は、2相制御電流値に基づいて電圧指令値を算出する2相制御モードと、制御用1相電流推定値に基づいて電圧指令値を算出するとともに異常検出手段による異常検出を行う1相制御モードと、を切り替える。
回転数算出手段は、回転角検出値に基づき、交流電動機の回転数を算出する。回転数判定手段は、回転数が所定の判定値以下であるか否かを判定する。
本発明では、切替手段は、回転数が判定値以下であると判定された場合、2相制御モードとし、回転数が判定値より大きいと判定された場合、1相制御モードとする。
請求項1に記載の発明、および、請求項4に記載の発明では、電流センサを3相のうちの2相に設けている。そして、回転数が判定値以下である場合、2相制御モードにて2相の電流検出値に基づく2相制御電流値を用いて高速かつ高精度に電流フィードバック制御を行っている。一方、回転数が判定値より大きい場合、1相制御モードとしている。
ここで、交流電動機の駆動を制御するための電流センサ(以下、「制御用の電流センサ」という。)と、電流センサの異常を検出するための電流センサ(以下、「監視用の電流センサ」という。)は、明確に区別されなければならない。なぜなら、電流検出値が所望の正弦波電流に一致するように高速にフィードバック制御されるシステム(例えば電動車両の主機モータ)においては、制御用の電流センサによって検出された電流検出値は、全て所望の正弦波電流になるように精密に制御され、制御用電流センサの電流検出値を電流センサの異常を検出に用いると、あたかも電流センサに異常がないように見えてしまうことが起こり得る。これを「電流フィードバックの干渉」と称する。電流フィードバックの干渉を防止するには、少なくとも電流センサの異常を検出する際には、監視用の電流センサを電流フィードバックループから完全に独立させる必要があり、そのために交流電動機の駆動を制御するための制御用の電流センサと電流センサの異常を検出するための監視用の電流センサとを明確に区別する必要がある。
本発明では、1相制御モードにおいては、監視相電流検出値を電流フィードバック制御に用いず、制御用1相電流推定値を用いて電流フィードバック制御を行うことで、監視相電流検出値への電流フィードバック制御の干渉を防いだ上で電流センサの異常を検出するようにしている。また本発明では、推定値と検出値との比較結果に基づいて電流センサの異常検出を行っている。ここで、比較する検出値または推定値の一方は、電流フィードバック制御に用いていない監視相電流検出値そのもの、または、監視相電流検出値に基づく推定値であり、電流フィードバック制御の干渉を受けないので、適切に電流センサの異常を検出することができる。
請求項1に記載の発明では、電流推定手段は、補正ベクトルをdq軸平面上にて積算することにより制御用1相電流推定値を算出している。また請求項4に記載の発明では、電流推定手段は、制御相電流検出値および回転角検出値に加え、電流指令値を用いて1相制御電流推定値を算出している。
このように、請求項1に記載の発明では、交流電動機の回転に伴って変化する情報として、補正ベクトルを用いている。また、請求項4に記載の発明では、交流電動機の回転に伴って変化する情報として、例えば電流指令値と制御用1相電流推定値との偏差を用いることができる。このように、交流電動機の回転に伴って変化する情報を用いて制御用1相電流推定値を算出しているので、制御相電流検出値に加え、残りの1次元分を補い、2次元量を精度よく推定し、2次元上のベクトル制御を高精度に行うことができる。
ここで、交流電動機の回転数が小さいと、回転に同期して変化する情報である補正ベクトル、或いは、電流指令値と1相制御電流推定値との偏差の変化量が小さいため、制御性が悪化する虞がある。
そこで、請求項1に記載の発明、および、請求項4に記載の発明では、制御用1相電流推定値の推定精度が悪化する虞のある低回転時には、制御用1相電流推定値を用いず、制御相電流検出値および監視相電流検出値を用いて実電流値である2相制御電流値を算出し、2相制御電流値に基づいて算出される電圧指令値に基づいて交流電動機を制御する。これにより、低回転時における交流電動機の制御性の悪化を防ぐことができ、異常な電流が通電されることによる異常なトルクの発生や、制御装置を構成する各種素子の発熱や故障の発生を抑制することができる。また、交流電動機をハイブリッド車両や電気自動車の主機に用いた場合、異常なトルクの発生によるドラビリの悪化や、過小電流となることにより所望のトルクが発生せず、ユーザによりアクセルペダルが必要以上に踏み込まれることや、電流推定精度が改善したときに急にトルクが発生することによる急発進を防ぐことができる。
本発明の第1実施形態の電動機駆動システムの構成を示す模式図である。 本発明の第1実施形態の電動機制御装置の構成を示す模式図である。 本発明の第1実施形態の電動機制御装置の構成を示すブロック図である。 本発明の第1実施形態の電流推定部の構成を示すブロック図である。 本発明の第1実施形態による電流推定を説明する説明図である。 本発明の第1実施形態による電流推定を説明する説明図である。 本発明の第1実施形態において回転数が大きい場合の電流推定を説明する説明図である。 本発明の第1実施形態において回転数が小さい場合の電流推定を説明する説明図である。 本発明の第1実施形態の電流フィードバック制御処理を示すフローチャートである。 本発明の第1実施形態の回転数とモードの切り替えを説明する説明図である。 本発明の第2実施形態の電動機制御装置の構成を示すブロック図である。 本発明の第2実施形態の電流フィードバック制御処理を示すフローチャートである。 本発明の第3実施形態の電流フィードバック制御処理を示すフローチャートである。 本発明の第4実施形態による電流推定部の構成を説明するブロック図である。 本発明の第4実施形態による電流推定を説明する説明図である。 本発明の第5実施形態による電流推定方法を説明する説明図である。 本発明の第6実施形態による電流推定部の構成を説明するブロック図である。
以下、本発明による交流電動機の駆動を制御する交流電動機の制御装置を図面に基づいて説明する。なお、以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
図1に示すように、本発明の第1実施形態による交流電動機2の制御装置としての電動機制御装置10は、電動車両を駆動する電動機駆動システム1に適用される。
電動機駆動システム1は、交流電動機2、直流電源8、および、電動機制御装置10等を備える。
交流電動機2は、例えば電動車両の駆動輪6を駆動するためのトルクを発生する電動機である。本実施形態の交流電動機2は、3相永久磁石式同期モータである。
電動車両には、ハイブリッド自動車、電気自動車、燃料電池車等、電気エネルギによって駆動輪6を駆動する車両が含まれるものとする。本実施形態の電動車両は、エンジン3を備えるハイブリッド車両であり、交流電動機2は、駆動輪6を駆動するためのトルクを発生する電動機としての機能、および、エンジン3により駆動されて発電可能な発電機としての機能を有する、所謂モータジェネレータである。
交流電動機2は、ギア4を介して車軸5に接続される。これにより、交流電動機2の駆動により生じるトルクは、ギア4を介して車軸5を回転させることにより、駆動輪6を駆動する。
直流電源8は、例えばニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等、充放電可能な蓄電装置である。直流電源8は、電動機制御装置10のインバータ11(図2参照)と接続され、インバータ11を介して交流電動機2と電力の授受可能に構成されている。
車両制御回路9は、マイクロコンピュータ等により構成され、内部にはいずれも図示しないCPU、ROM、I/O、および、これらの構成を接続するバスライン等を備えている。車両制御回路9は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理により、電動車両全体を制御する。
車両制御回路9は、いずれも図示しないアクセルセンサからのアクセル信号、ブレーキスイッチからのブレーキ信号、および、シフトスイッチからのシフト信号等の各種センサやスイッチ等から信号を取得可能に構成されている。また、車両制御回路9では、取得されたこれらの信号等に基づいて車両の運転状態を検出し、運転状態に応じたトルク指令値trq*を電動機制御装置10に出力する。また、車両制御回路9は、エンジン3の運転を制御する図示しないエンジン制御回路に対し、指令信号を出力する。
図2に示すように、電動機制御装置10は、インバータ11および制御部15を備える。
インバータ11には、交流電動機2の駆動状態や車両要求等に応じて、直流電源8の直流電圧を図示しない昇圧コンバータにより昇圧したシステム電圧VHが印加される。また、インバータ11は、ブリッジ接続される図示しない6つのスイッチング素子を有する。スイッチング素子には、例えばIGBT(Insulated Gate Bipolar Transistor)、MOS(Metal Oxide Semiconductor)トランジスタ、バイポーラトランジスタ等を用いることができる。スイッチング素子は、制御部15の逆dq変換部23から出力される電圧指令値vu*、vv*、vw*に基づいてオン/オフが制御される。これにより、インバータ11は、交流電動機2に印加される3相交流電圧vu、vv、vwを制御する。交流電動機2は、インバータ11により生成された3相交流電圧vu、vv、vwが印加されることにより駆動が制御される。
ここで、交流電動機2の駆動制御について説明する。電動機制御装置10は、回転角センサ14が検出した電気角θeに基づく交流電動機2の回転数Nおよび車両制御回路9からのトルク指令値trq*に応じて、交流電動機2を「電動機としての力行動作」により電力を消費し、または、「発電機としての回生動作」により電力を生成する。具体的には、回転数Nおよびトルク指令値trq*の正負によって、以下の4つのパターンで動作を切り替える。
<1.正転力行> 回転数Nが正でトルク指令値trq*が正のとき、電力消費。
<2.正転回生> 回転数Nが正でトルク指令値trq*が負のとき、発電。
<3.逆転力行> 回転数Nが負でトルク指令値trq*が負のとき、電力消費。
<4.逆転回生> 回転数Nが負でトルク指令値trq*が正のとき、発電。
回転数N>0(正転)でトルク指令値trq*>0である場合、または、回転数N<0(逆転)でトルク指令値trq*<0である場合、インバータ11は、スイッチング素子のスイッチング動作により、直流電源8側から供給される直流電力を交流電力に変換してトルクを出力する(力行動作する)ように、交流電動機2を駆動する。
一方、回転数N>0(正転)でトルク指令値trq*<0である場合、または、回転数N<0(逆転)でトルク指令値trq*>0である場合、インバータ11は、スイッチング素子のスイッチング動作により、交流電動機2が発電した交流電力を直流電力に変換し、直流電源8側へ供給することにより、回生動作する。
制御相電流センサ12は、交流電動機2のいずれか1相に設けられる。本実施形態では、制御相電流センサ12は、W相に設けられる。すなわち、本実施形態ではW相が「制御相」に対応する。制御相電流センサ12は、制御相であるW相に通電される制御相電流検出値iw_snsを検出し、制御部15に出力する。
監視相電流センサ13は、交流電動機2の制御相とは異なる1相に設けられる。本実施形態では、監視相電流センサ13は、V相に設けられる。すなわち、本実施形態ではV相が「監視相」に対応する。監視相電流センサ13は、監視相であるV相に通電される監視相電流検出値iv_snsを検出し、制御部15に出力する。
本実施形態では、制御相電流センサ12および監視相電流センサ13は、該当する相に印加される電圧を検出し、電圧に基づいて電流を検出しているが、制御部15により制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを取得可能であれば、どのような構成であってもよい。また、本実施形態では、制御相をW相とし、監視相をV相としているが、制御相および監視相が異なる相であれば、どの相としてもよい。
回転角センサ14は、交流電動機2の図示しないロータ近傍に設けられ、電気角θeを検出し、制御部15に出力する。また、回転角センサ14により検出される電気角θeに基づき、交流電動機2のロータの回転数N(以下適宜、単に「交流電動機2の回転数N」という。)が算出される。本実施形態の回転角センサ14は、レゾルバである。その他、回転角センサ14は、ロータリエンコーダ等、他種のセンサでもよい。
制御部15は、マイクロコンピュータ等により構成され、内部にはいずれも図示しないCPU、ROM、I/O、および、これらの構成を接続するバスライン等を備えている。制御部15は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理により、交流電動機2の動作を制御する。
図3に示すように、制御部15は、電流指令値演算部21、PI演算部22、逆dq変換部23、2相制御電流算出部31、電流推定部32、電流選択部35、制御相電流推定部41、制御相電流比較部42、監視相電流比較部43、異常判定部45、回転数算出部51、および、回転数判定部52を有する。
電流指令値演算部21は、車両制御回路9から取得されるトルク指令値trq*に基づき、交流電動機2の回転座標として設定される回転座標系(d−q座標系)におけるd軸電流指令値id*、および、q軸電流指令値iq*を演算する。本実施形態では、d軸電流指令値id*およびq軸電流指令値iq*は、予め記憶されているマップを参照することにより演算されるが、数式等から演算するように構成してもよい。
PI演算部22は、d軸電圧指令値vd*およびq軸電圧指令値vq*を算出する。詳細には、電流選択部35からフィードバックされるd軸電流値idまたはd軸電流推定値id_estをd軸電流指令値id*に追従させるべく、d軸電流値idまたはd軸電流推定値id_estとの差を0に収束させるようにd軸電圧指令値vd*をPI演算により算出する。同様に、電流選択部35からフィードバックされるq軸電流値iqまたはq軸電流推定値iq_estをq軸電流指令値iq*に追従させるべく、q軸電流値iqまたはq軸電流推定値iq_estとの差を0に収束させるようにq軸電圧指令値vq*をPI演算により算出する。
逆dq変換部23では、回転角センサ14から取得される電気角θeに基づき、d軸電圧指令値vd*およびq軸電圧指令値vq*を、U相電圧指令値vu*、V相電圧指令値vv*、および、W相電圧指令値vw*に変換する。
そして、インバータ11のスイッチング素子は、U相電圧指令値vu*、V相電圧指令値vv*、および、W相電圧指令値vw*に基づいてオン/オフされる。これにより、インバータ11により3相交流電圧vu、vv、vwが生成され、この3相交流電圧が交流電動機2に印加されることにより、トルク指令値trq*に応じたトルクが出力されるように、交流電動機2の駆動が制御される。本実施形態では、3相交流電圧vu、vv、vwが「印加電圧」に対応する。
2相制御電流算出部31では、制御相電流検出値iw_sns、監視相電流検出値iv_sns、および、電気角θeに基づき、dq変換によりd軸電流値idおよびq軸電流値iqを算出する。2相制御電流算出部31では、2相の電流検出値である制御相電流検出値iw_snsおよび監視相電流検出値iv_snsに基づいてdq軸電流値id、iqを算出している。したがって、ここで算出されるdq軸電流値id、iqは、実電流値である。
ここで、dq変換の一般式を式(1)に示す。
Figure 2014072997
また、キルヒホッフの法則(式(2)参照)より算出される式(3)を、上記式(1)に代入すると、式(4)が得られる。
iu+iv+iw=0 ・・・(2)
iu=−iv−iw ・・・(3)
Figure 2014072997
式(4)に示すように、3相のうちの2相の電流値がわかれば、d軸電流値idおよびq軸電流値iqを算出可能であるので、他の相(本実施形態ではU相)の電流値を算出する必要はない。
電流推定部32は、制御相電流検出値iw_snsおよび電気角θeに基づき、d軸電流推定値id_est、q軸電流推定値iq_est、および、監視相電流推定値iv_estを算出する。
すなわち、電流推定部32では、1相の制御相電流検出値iw_snsを用いてdq軸電流推定値id_est、iq_estを推定している。図5に示すように、2相の電流検出値である制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを用いれば、dq軸電流値id、iqを直接算出可能である。しかしながら1相の制御相電流検出値iw_snsを用いてdq軸電流推定値id_est、iq_estを算出する場合、誤差ベクトルΔieのW相成分である制御相推定誤差Δiwは算出可能であるものの、W相に直交する成分のβ軸推定誤差Δiβは算出できない。
そこで本実施形態では、回転座標系であるdq軸平面上でW相軸が相対的に回転することを利用し、制御相推定誤差Δiwを積算してdq軸電流値id、iqに漸近させることにより、1相の制御相電流検出値iw_snsに基づいて精度よくdq軸電流推定値id_est、iq_estを算出している。
図4に示すように、電流推定部32は、電流基準値算出部321、減算器322、ゲイン補正部323、制御相方向補正値算出部324、減算器325、他相電流推定部326、および、遅延素子327を有する。ここで、今回入力される電流検出値に基づく電流推定処理を第n回目の処理とし、入力されるW相の電流検出値を「iw_sns(n)」、電気角を「θe(n)」とし、この処理によって得られる電流推定値を「i#_est(n)」(ただし、#は、d、q、u、v、w)のように表す。
電流基準値算出部321には、前回の演算で算出されたdq軸電流推定値id_est(n−1)、iq_est(n−1)が入力される。電流基準値算出部321では、前回の演算で算出されたdq軸電流推定値id_est(n−1)、iq_est(n−1)を、電気角θe(n)を用いて逆dq変換し、制御相成分である電流基準値iw_bfを算出する。
減算器322では、電流基準値iw_bfと制御相電流検出値iw_sns(n)との差分である制御相推定誤差Δiwを算出する。
ゲイン補正部323では、制御相推定誤差ΔiwにゲインKを乗じ、補正後誤差KΔiwを算出する。なお、ゲインKは、dq軸電流推定値id_est、iq_estに設けられたローパスフィルタ(以下、「LPF」という。)の役割をなすものでありdq軸電流推定値id_est、iq_estの変化を緩やかにするものである(詳細は後述)。Kの値は、そのLPFの所望の時定数間の処理回数(時定数÷処理周期)をKlpfとすると、1/Klpfで表され、0<K<1の範囲となる。
制御相方向補正値算出部324では、Δiu=0、Δiv=0とし、補正後誤差KΔiwをdq変換し、制御相方向補正値id_crr(n)、iq_crr(n)を算出する。本実施形態では、制御相方向補正値id_crr(n)、iq_crr(n)が「補正ベクトル」に対応する。以下、制御相方向補正値id_crr(n)、iq_crr(n)をベクトルとして扱う場合、適宜「補正ベクトル(Δid、Δiq)」ということにする。
減算器325では、遅延素子327を経由してフィードバックされた前回のdq軸電流推定値id_est(n−1)、iq_est(n−1)に対し制御相方向補正値id_crr(n)、iq_crr(n)を減算し、d軸電流推定値id_est(n)、および、q軸電流推定値iq_est(n)を算出する。なお、減算器325にて制御相方向補正値id_crr(n)、iq_crr(n)を前回のdq軸電流推定値id_est(n−1)、iq_est(n−1)に対して減算することが「補正ベクトルをdq軸平面上にて積算する」ことに対応する。
また、算出されたdq軸電流推定値id_est(n)、iq_est(n)は、遅延素子327を経由して電流基準値算出部321へフィードバックされる。
他相電流推定部326では、電気角θe(n)に基づき、dq軸電流推定値id_est(n)、iq_est(n)を逆dq変換し、3相電流推定値iu_est(n)、iv_est(n)、iw_est(n)を算出する。なお、必要に応じ、例えばV相電流推定値iv_est(n)のみを算出する、といった具合に、必要な相のみを演算するようにしてもよい。本実施形態では、監視相であるV相電流推定値iv_est(n)のみが算出される。
ここで、電流推定部32における演算を表した漸化式を式(5)に示す。ただし、式中のθw(n)=θe(n)+120°である。また、式中のKcos(θw(n))Δiwがd軸制御相方向補正値id_crr(n)に対応し、−Ksin(θw(n))Δiwがq軸制御相方向補正値id_crr(n)に対応する。
Figure 2014072997
式(5)に示す漸化式をベクトル図で表現すると、図6(a)のようになる。ここで、本実施形態では、ゲインKを0<K<1となるように設定しているので、図6(b)に示すように、回転座標系であるdq軸平面上において、W相軸が相対的に回転することを利用し、矢印YIで示す補正ベクトル(Δid、Δiq)を積算していくことにより、dq軸電流推定値id_est、iq_estをdq軸電流値id、iqに漸近させている。これにより、制御相1相の電流検出値に基づき、精度よく電流推定を行うことができる。
ここで、ゲインKは、dq軸電流推定値id_est、iq_estがdq軸電流値id、iqに漸近する速度を律するためのフィルタ要素である。また、ゲインKが大きすぎると、すなわち1に比較的近い値であると、誤差ベクトルΔie(図5参照)とW相軸とが直交に近くなってしまい、dq軸電流値id、iqを中心とする円周方向に動き、渦を描いてしまうため、漸近しにくくなってしまう。このような点を考慮し、dq軸電流値id、iqに漸近しやすいようなゲインKを0<K<1の範囲で適宜設定可能である。
図3に戻り、電流選択部35では、PI演算部22にフィードバックする電流値を、dq軸電流値id、iqにするか、dq軸電流推定値id_est、iq_estにするかを選択する。本実施形態では、電流選択部35からPI演算部22にフィードバックする電流値を回転数Nに応じて切り替える。フィードバックする電流値の切替の詳細については後述する。なお、以下適宜、d軸電流値idおよびq軸電流値iqをPI演算部22にフィードバックして交流電動機2を制御することを「2相制御」といい、d軸電流推定値id_estおよびq軸電流推定値iq_estをPI演算部22にフィードバックして交流電動機2を制御することを「1相制御」という。
制御相電流推定部41では、監視相電流検出値iv_sns、および、電気角θeに基づき、制御相電流推定値iw_estを算出する。制御相電流推定部41における演算は、電流推定部32と同様である。補足しておくと、制御相電流検出値iw_snsに替えて監視相電流検出値iv_snsを用い、監視相電流検出値iv_snsに基づいて算出されるdq軸電流推定値が「監視用1相電流検出値」に対応し、監視相電流検出値iv_snsに基づいて算出されるdq軸電流推定値の監視相の成分が監視相電流基準値iv_bfであり、監視相電流基準値iv_bfにゲインKを乗じた値であるKΔivをdq変換にて算出される監視相方向補正値が「監視相補正ベクトル」に対応することになる。
制御相電流比較部42では、制御相電流推定値iw_estと制御相電流検出値iw_snsとを比較する。具体的には、制御相電流推定値iw_estと制御相電流検出値iw_snsとの差をLPF処理した値である制御相差分参照値Δiw_refを算出する。この制御相差分参照値Δiw_refが「第2比較結果」に対応する。
監視相電流比較部43では、監視相電流推定値iv_estと監視相電流検出値iv_snsとを比較する。具体的には、監視相電流推定値iv_estと監視相電流検出値iv_snsとの差をLPF処理した値である監視相差分参照値Δiv_ref算出する。この監視相差分参照値Δiv_refが「第1比較結果」に対応する。
ここで、各差分参照値Δiw_ref、Δiv_refに関し、制御相電流推定値iw_estと制御相電流検出値iw_snsとの差、および、監視相電流推定値iv_estと監視相電流検出値iv_snsとの差に対し、単純にLPF処理をすると、ゲイン誤差のような、偏差が正負に現われて平均するとゼロになってしまう場合を検出できない。この点に注目すれば、LPF処理を行わなくてもよい。ただし、ノイズや瞬間的な外乱要因により値が急変した場合に誤検出の恐れがあるので、適切なフィルタをかけることが望ましい。さらには、電流の電気周波数とフィルタの時定数によっては、ゲイン誤差のような、偏差が正負に現われて平均すると見かけ上誤差が小さくなってしまう場合も検出できるように絶対値をとるとさらに良い。
異常判定部45では、差分参照値Δiw_ref、Δiv_refに基づき、制御相電流センサ12および監視相電流センサ13の異常を検出する。本実施形態では、差分参照値Δiw_ref、Δiv_refの少なくとも一方が異常判定閾値Rより大きい場合、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていると判定する。制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていると判定された場合、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じている旨の情報を車両制御回路9へ通知し、電動機制御装置10による交流電動機2の駆動を停止する。
ところで、図6で説明したように、電流推定部32では、回転座標系であるdq軸平面上において、W相軸が相対的に回転することを利用し、矢印YIで示す補正ベクトル(Δid、Δiq)を積算していくことにより、dq軸電流推定値id_est、iq_estをdq軸電流値id、iqに漸近させている。
ここで、図7および図8では、(a)→(b)→(c)のように、dq軸平面上にてW相軸が回転していく様子を説明している。
図7に示すように、電気角θeの角度移動量Δθeが比較的大きい状態、すなわち交流電動機2の回転数Nが大きい場合、誤差ベクトルΔie(図5参照)のW相成分である制御相推定誤差Δiwが大きいので、dq軸電流推定値id_est、iq_estがdq軸電流値id、iqに収束していく収束量が大きい。
一方、図8に示すように、電気角θeの角度移動量Δθeが比較的小さい状態、すなわち交流電動機2の回転数Nが小さい場合、誤差ベクトルΔieのW相成分である制御相推定誤差Δiwが小さく、誤差ベクトルΔieとW相軸とが直交角に近いので、dq軸電流推定値id_est、iq_estがdq軸電流値id、iqに収束していく収束量が小さい。そのため、交流電動機2の回転数Nが小さい場合、回転数Nが大きい場合と比較して、dq軸電流推定値id_est、iq_estの推定精度が悪いことがある。
そこで本実施形態では、交流電動機2の回転数Nが小さい場合において、精度よく交流電動機2を制御すべく、図3に示すように、制御部15は、回転数算出部51および回転数判定部52を有している。
回転数算出部51では、回転角センサ14から取得される電気角θeに基づき、交流電動機2の回転数Nを算出する。
回転数判定部52では、回転数Nが所定の判定値Xより大きいか否かを判定する。上述の通り、例えば、モータロック時等、回転数Nが小さいとき、制御相電流検出値iw_snsからdq軸電流推定値id_est、iq_estを推定する推定精度が悪化することがわかってきた。また、制御部15内では、各種の値は離散値で表現されるため、交流電動機2が完全に停止していなくても、ある低回転の範囲では推定精度が悪化する虞がある。そこで本実施形態では、回転数Nが所定の判定値X以下である場合、2相制御モードに切り替え、2相制御としている。ここで、回転数Nの判定値Xは、dq軸電流推定値id_est、iq_estの推定精度が良好となる回転数に適宜設定可能であり、例えば1500rpmとする。なお、回転数Nの判定値Xは、極対数によっても異なるので、極対数を考慮して適宜設定される。
ここで、本実施形態の制御部15にて実行される電流フィードバック処理を図9に示すフローチャートに基づいて説明する。このフィードバック制御処理は、所定の間隔(例えば100μsec)で実行される。
最初のステップS101(以下、「ステップ」を省略し、単に記号「S」で示す。)では、回転角センサ14から交流電動機2の電気角θeを取得する。
S102では、制御相電流センサ12から制御相電流検出値iw_snsを取得し、監視相電流センサ13から監視相電流検出値iv_snsを取得する。
S103では、2相制御電流算出部31にて、制御相電流検出値iw_sns、監視相電流検出値iv_sns、および、電気角θeに基づき、dq軸電流値id、iqを算出する。
S104では、電流推定部32にて、制御相電流検出値iw_snsおよび電気角θeに基づき、dq軸電流推定値id_est、iq_est、および、監視相電流推定値iv_estを算出する。また、制御相電流推定部41にて、監視相電流検出値iv_snsおよび電気角θeに基づき、制御相電流推定値iw_estを算出する。
S105では、回転数算出部51にて、電気角θeに基づき、交流電動機2の回転数Nを算出する。
S106では、回転数判定部52にて、回転数Nが所定の判定値Xより大きいか否かを判定する。回転数Nが判定値Xより大きいと判断された場合(S106:YES)、S108へ移行する。S106にて肯定判断された場合に実行されるS108およびS109の処理が「1相制御モード」に対応する。回転数Nが判定値X以下であると判断された場合(S106:NO)、S107へ移行する。S106にて否定判断された場合に実行されるS107が「2相制御モード」に対応する。
S107では、電流選択部35において、PI演算部22にフィードバックする電流として、制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを用いて2相制御電流算出部31にて算出されたdq軸電流値id、iqを選択する。
回転数Nが判定値Xより大きいと判断された場合(S106:YES)に移行するS108では、電流選択部35において、PI演算部22にフィードバックする電流として、制御相電流検出値iw_snsを用いて電流推定部32にて算出されたdq軸電流推定値id_est、iq_estを選択する。
S109では、異常判定部45にて、制御相電流センサ12および監視相電流センサ13の異常判定を行う。制御相電流比較部42にて算出された制御相差分参照値Δiw_ref、または、監視相電流比較部43にて算出された監視相差分参照値Δiv_refの少なくとも一方が異常判定閾値Rより大きい場合、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていると判定し、電流センサ異常フラグをセットする。
S110では、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じているか否かを判断する。本実施形態では、電流センサ異常フラグに基づいて判断する。制御相電流センサ12および監視相電流センサ13に異常が生じていないと判断された場合(S110:NO)、すなわち電流センサ異常フラグがセットされていない場合、S112へ移行する。制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていると判断された場合(S110:YES)、すなわち電流センサ異常フラグがセットされていない場合、S111へ移行する。
S111では、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じている旨の情報を車両制御回路9へ通知し、電動機制御装置10による交流電動機2の駆動を停止する。
S110にて否定判断された場合、または、S107に続いて移行するS112では、PI演算部22にて、電流選択部35からフィードバックされたdq軸電流値id、iq、または、dq軸電流推定値id_est、iq_estに基づくPI演算を行い、d軸電圧指令値vd*およびq軸電圧指令値vq*を算出する。
S113では、逆dq変換部23にて、電気角θeに基づき、d軸電圧指令値vd*およびq軸電圧指令値vq*を逆dq変換し、3相電圧指令値vu*、vv*、vw*を算出する。
S114では、3相電圧指令値vu*、vv*、vw*をインバータ11へ出力する。そして、インバータ11では、3相電圧指令値vu*、vv*、vw*に基づいてスイッチング素子のオン/オフが制御されることにより、3相交流電圧が生成され、この3相交流電圧が交流電動機2に印加されることにより、交流電動機2の駆動が制御される。
本実施形態では、図10に示すように、回転数Nが判定値X以下の場合(S106:NO)、2相制御モードとし、2相制御を行っている。また、回転数Nが判定値Xより大きい場合(S106:YES)、1相制御モードとし、1相制御とするとともに、制御相電流センサ12および監視相電流センサ13の異常検出を行っている。これにより、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていることを適切に検出することができる。また、dq軸電流推定値id_est、iq_estの推定精度が悪化する虞のある低回転領域では、dq軸電流推定値id_est、iq_estを交流電動機2の制御に用いず、制御相電流検出値iw_snsおよび監視相電流検出値iv_snsに基づく実電流であるdq軸電流値id、iqを交流電動機2の制御に用いているので、低回転領域においても、精度よく交流電動機2を制御することができる。
以上詳述したように、本実施形態の電動機制御装置10は、インバータ11によって印加電圧vu、vv、vwが制御される3相の交流電動機2の駆動を制御する。制御部15では、以下の処理が実行される。
交流電動機2のいずれか1相である制御相(本実施形態ではW相)に設けられる制御相電流センサ12から制御相電流検出値iw_snsを取得し、交流電動機2の制御相とは異なる1相である監視相(本実施形態ではV相)に設けられる監視相電流センサ13から監視相電流検出値iv_snsを取得する(図9中のS102)。また、交流電動機2の回転角を検出する回転角センサ14から電気角θeを取得する(S101)。
2相制御電流算出部31では、制御相電流検出値iw_sns、監視相電流検出値iv_sns、および、電気角θeに基づき、dq軸電流値id、iqを算出する(S103)。
電流推定部32では、制御相電流検出値iw_snsおよび電気角θeに基づくdq軸電流推定値id_est、iq_estを算出する(S104)。本実施形態では、前回の演算で算出されたdq軸電流推定値id_est、iq_estの制御相の成分である電流基準値iw_bfと制御相電流検出値iw_snsとに基づいて算出され、回転座標系であるdq軸平面上にて相対的に回転する制御相方向の制御相方向補正値id_crr、iq_crrを積算することにより、dq軸電流推定値id_est、iq_estを算出する。
PI演算部22では、フィードバックされたdq軸電流値id、iq、または、dq軸電流推定値id_est、iq_estに基づき、電圧指令値vd*、vq*を算出する(S112)。
また、電流推定部32では、制御相電流検出値iw_snsおよび電気角θeに基づいて推定される監視相電流推定値iv_estを算出し、制御相電流推定部41では、監視相電流検出値iv_snsおよび電気角θeに基づいて推定される制御相電流推定値iw_estを算出する(S109)。異常判定部45では、監視相電流推定値iv_estと監視相電流検出値iv_snsとを比較した監視相差分参照値Δiv_ref、および、制御相電流推定値iw_estと制御相電流検出値iw_snsとを比較した制御相差分参照値Δiw_refの少なくとも一方に基づき、制御相電流センサ12および監視相電流センサ13の少なくとも一方に異常が生じていることを検出する(S109)。
本実施形態では、回転数算出部51にて、電気角θeに基づき、交流電動機2の回転数Nを算出し(S105)、回転数判定部52にて、回転数Nが所定の判定値X以下であるか否かを判定する(S106)。
電流選択部35では、dq軸電流値id、iqに基づいて電圧指令値vd*、vq*を算出する2相制御モードと、dq軸電流推定値id_est、iq_estに基づいて電圧指令値vd*、vq*を算出するとともに制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードと、を切り替える。本実施形態では、回転数Nが判定値X以下であると判定された場合(S106:NO)、2相制御モードとし、回転数Nが判定値Xより大きいと判定された場合(S106:YES)、1相制御モードとする。具体的には、回転数Nが判定値X以下であると判定された場合、電流選択部35からPI演算部22にフィードバックする電流をdq軸電流値id、iqとし、回転数Nが判定値Xより大きいと判定された場合、電流選択部35からPI演算部22にフィードバックする電流をdq軸電流推定値id_est、iq_estとする。
本実施形態では、回転数Nが判定値X以下である場合、2相制御モードにて2相の電流検出値である制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを用いて高速かつ高精度に電流フィードバック制御を行っている。一方、回転数Nが判定値Xより大きい場合、1相制御モードとし、監視相電流検出値iv_snsを電流フィードバック制御に用いず、制御相電流検出値iw_snsを用いて算出されるdq軸電流推定値id_est、iq_estを用いて電流フィードバック制御を行うことで、監視相電流検出値iv_snsへの電流フィードバック制御の干渉を防いだ上で、制御相電流センサ12および監視相電流センサ13の異常検出を行っている。また本実施形態では、推定値と検出値との比較結果である差分参照値Δiw_ref、Δiv_refに基づいて制御相電流センサ12および監視相電流センサ13の異常検出を行っている。ここで、比較する検出値または推定値の一方は、電流フィードバック制御に用いていないために電流フィードバックループから独立した監視相電流検出値iv_snsそのもの、または、監視相電流検出値iv_snsに基づく制御相電流推定値iw_estであり、電流フィードバック制御の干渉を受けない。
具体的には、制御相電流推定部41にて推定される制御相電流推定値iw_estは、1相制御時に電流推定部32におけるdq軸電流推定値id_est、iq_estの演算に用いられていない監視相電流検出値iv_snsに基づいて算出されるため、電流フィードバックの干渉を受けない。また、監視相電流比較部43における比較に用いられる監視相電流検出値iv_snsも、電流フィードバックの干渉を受けない、ということである。
これにより、電流センサの異常、詳細には制御相電流センサ12または監視相電流センサ13の少なくとも一方に異常が生じていることを適切に検出することができる。
ので、適切に異常を検出することができる。
また、本実施形態では、2つの差分参照値Δiw_ref、Δiv_refに基づいて制御相電流センサ12および監視相電流センサ13の異常を検出しているので、より適切に異常を検出することができる。
また、電流推定部32では、制御相方向補正値id_crr、iq_crrをdq軸平面上にて積算することによりdq軸電流推定値id_est、iq_estを算出している。より詳細には、dq軸上にて制御相方向の制御相方向補正値id_crr、iq_crrを積算している。
このように、交流電動機2の回転に伴って変化する情報である制御相方向補正値id_crr、iq_crrを用いてdq軸電流推定値id_est、iq_estを算出しているので、制御相電流検出値iw_snsに加え、残りの1次元分を補い、2次元量を精度よく推定し、2次元上のベクトル制御を高精度に行うことができる。
ここで、交流電動機2の電気角θeの角度移動量Δθeが小さい、すなわち交流電動機2の回転数Nが小さいと、制御相方向補正値id_crr、iq_crrの変化量が小さいため、制御性が悪化する虞がある。
そこで本実施形態では、dq軸電流推定値id_est、iq_estの推定精度が悪化する虞のある低回転時には、dq軸電流推定値id_est、iq_estを用いず、制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを用いて実電流値であるdq軸電流値id、iqを算出し、dq軸電流値id、iqに基づいて算出される電圧指令値vd*、vq*に基づいて交流電動機2を制御する。すなわち、dq軸電流推定値id_est、iq_estの推定精度が悪化する虞のある低回転時には、監視相電流センサ13から取得される監視相電流検出値iv_snsを「制御用」として用いている、ということである。また、制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードにおいては、監視相電流センサ13から取得される監視相電流検出値iv_snsを「監視用」として用いている、ということである。
これにより、低回転時における交流電動機2の制御性の悪化を防ぐことができる。また本実施形態では、交流電動機2は、ハイブリッド車両や電動車両の主機に適用されており、交流電動機2を精度よく制御することにより、異常な電流が通電されることによる異常なトルクの発生に伴うドラビリの悪化や、制御装置を構成する各種素子の発熱や故障の発生を抑制することができる。また、過小電流となることにより所望のトルクが発生せず、ユーザによりアクセルペダルが必要以上に踏み込まれることや、電流推定精度が改善したときに急にトルクが発生することによる急発進を防ぐことができる。
また、電流推定部32では、dq軸電流推定値id_est、iq_estに基づき、監視相電流推定値iv_estを算出する。
さらにまた、制御相電流推定部41では、監視相電流検出値iv_snsおよび電気角θeに基づく監視用1相電流推定値(dq軸電流推定値)を算出し、前回の演算で算出された監視用1相制御電流値の監視相成分である監視相電流基準値iv_bfと監視相電流検出値iv_snsとに基づいて算出される監視相補正ベクトルをdq軸平面上にて積算することにより監視用1相電流推定値を算出し、算出された監視用1相電流推定値に基づき、制御相電流推定値iw_estを算出する。
本実施形態では、2相制御電流算出部31は、1相制御モードまたは2相制御モードのいずれであっても、dq軸電流値id、iqの演算を行う。また、電流推定部32は、1相制御モードまたは2相制御モードのいずれであっても、dq軸電流推定値id_est、iq_est、および、監視相電流推定値iv_estの演算を行う。同様に、制御相電流推定部41は、1相制御モードまたは2相制御モードのいずれであっても、制御相電流推定値iw_estの演算を行う。
すなわち本実施形態では、2相制御を行っている2相制御モード中においても、dq軸電流推定値id_est、iq_estの演算を行っている。そのため、本実施形態の電流推定部32における演算方法のように、フィルタ系を含む演算であってもdq軸電流推定値id_est、iq_estとdq軸電流値id、iqとの誤差が小さい状態が維持される。これにより、2相制御モードから1相制御モードに切り替わったとき、すなわち2相制御から1相制御に切り替わったとき、dq軸電流推定値id_est、iq_estとdq軸電流値id、iqとの誤差に起因して交流電動機2の制御が不安定になるのを抑制することができる。
本実施形態では、制御部15が「制御相電流取得手段」、「監視相電流取得手段」、「回転角取得手段」、「電流算出手段」、「電流推定手段」、「電圧指令値算出手段」、「他相電流推定手段」、「異常検出手段」、「切替手段」、「回転数算出手段」、および、「回転数判定手段」を構成する。詳細には、2相制御電流算出部31、電流推定部32および制御相電流比較部42が「制御相電流取得手段」を構成する。制御相電流推定部41、監視相電流比較部43が「監視相電流取得手段」を構成する。PI演算部22、2相制御電流算出部31、電流推定部32、制御相電流推定部41、および、回転数算出部51が「回転角取得手段」を構成する。また、2相制御電流算出部31が「電流算出手段」を構成し、電流推定部32が「電流推定手段」を構成し、PI演算部22が「電圧指令値算出手段」を構成する。さらに、電流推定部32および制御相電流推定部41が「他相電流推定手段」を構成し、異常判定部45が「異常判定手段」を構成し、電流選択部35が「切替手段」を構成し、回転数算出部51が「回転数算出手段」を構成し、回転数判定部52が「回転数判定手段」を構成する。
また、図9中のS102が「制御相電流取得手段」および「監視相電流取得手段」の機能としての処理に相当し、S101が「回転角取得手段」の機能としての処理に相当し、S103が「電流算出手段」の機能としての処理に相当し、S104が「電流推定手段」および「他相電流推定手段」の機能としての処理に相当し、S112が「電圧指令値算出手段」の機能としての処理に相当する。また、S109が「異常検出手段」の機能としての処理に相当し、S105が「回転数算出手段」の機能としての処理に相当し、S106が「回転数判定手段」の機能としての処理に相当し、S107およびS108が「切替手段」の機能としての処理に相当する。
本実施形態では、電気角θeが「回転角検出値」に対応し、dq軸電流値id、iqが「2相制御電流値」に対応し、dq軸電流推定値id_est、iq_estが「制御用1相電流推定値」に対応し、監視相差分参照値Δiv_refが「第1比較結果」に対応し、制御相差分参照値Δiw_refが「第2比較結果」に対応する。
(第2実施形態)
本発明の第2実施形態による交流電動機の制御装置を図11および図12に基づいて説明する。
第2実施形態では、2相制御時には電流推定部32および制御相電流推定部41による電流推定処理を行わず、1相制御時には2相制御電流算出部31における演算処理を行わない点が異なっているので、この点を中心に説明し、その他の構成等の説明は省略する。
図11に示すように、回転数Nが判定値X以下の場合、すなわち2相制御時には、電流推定部32によるdq軸電流推定値id_est、iq_est等の演算を中止する。また、回転数Nが判定値Xより大きい場合、すなわち1相制御時には、2相制御電流算出部31によるdq軸電流値id、iqの演算を中止する。
ここで、本実施形態における電流フィードバック処理を図12に基づいて説明する。
S201、S202の処理は、図9中のS101、S102の処理と同様であるので、説明を省略する。
S203の処理は、S105の処理と同様であり、回転数算出部51にて、電気角θeに基づき、回転数Nを算出する。
S204は回転数判定処理である。すなわち本実施形態では、第1実施形態とは異なり、回転数判定処理の前に、2相制御電流算出部31におけるdq軸電流値id、iqの演算、および、電流推定部32におけるdq軸電流推定値id_est、iq_est等の演算を行っていない。
S204では、回転数Nが判定値Xより大きいか否かを判断する。回転数Nが判定値Xより大きいと判断された場合(S204:YES)、S207へ移行する。S204にて肯定判断された場合に実行されるS208、S209の処理が「1相制御モード」に対応する。回転数Nが判定値X以下であると判断された場合(S204:NO)、S205へ移行する。S204にて否定判断された場合に実行されるS206の処理が「2相制御モード」に対応する。
S205の処理は、S103の処理と同様であり、2相制御電流算出部31にてdq軸電流値id、iqを算出する。
S206の処理は、S107の処理と同様であり、電流選択部35において、PI演算部22にフィードバックする電流として、制御相電流検出値iw_snsおよび監視相電流検出値iv_snsを用いて2相制御電流算出部31にて算出されたdq軸電流値id、iqを選択する。
回転数Nが判定値Xより大きいと判定された場合(S204:YES)に移行するS207の処理は、S104の処理と同様であり、電流推定部32にてdq軸電流推定値id_est、iq_est、監視相電流推定値iv_estを算出し、制御相電流推定部41にて制御相電流推定値iw_estを算出する。
S208の処理は、S108の処理と同様であり、電流選択部35にて、PI演算部22にフィードバックする電流として、制御相電流検出値iw_snsを用いて電流推定部32にて算出されたdq軸電流推定値id_est、iq_estを選択する。
S209〜S214の処理は、S109〜S114の処理と同様であるので、説明を省略する。
本実施形態では、2相制御電流算出部31では、1相制御モードにおいて、dq軸電流値id、iqの演算を中止する。また、電流推定部32では、2相制御モードにおいて、dq軸電流推定値id_est、iq_est、および、監視相電流推定値iv_estの演算を中止する。同様に、制御相電流推定部41では、2相制御モードにおいて、制御相電流推定値iw_estの演算を中止する。
すなわち本実施形態では、回転数Nが判定値Xより大きく、1相制御するとともに制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードのとき、dq軸電流推定値id_est、iq_set、監視相電流推定値iv_est、および、制御相電流推定値iw_estの演算を行い、2相制御に用いるdq軸電流値id、iqの演算を行っていない。一方、回転数Nが判定値X以下であり、2相制御を行う2相制御モードのとき、dq軸電流値id、iqの演算を行い、1相制御および異常検出に用いるdq軸電流推定値id_est、iq_est、監視相電流推定値iv_est、および、制御相電流推定値iw_estの演算を行っていない。
これにより、dq軸電流推定値id_est、iq_est、監視相電流推定値iv_est、制御相電流推定値iw_est、および、dq軸電流値id、iqの演算を常時行う場合と比較し、演算負荷を低減し、リソースを節約することができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、図12中のS202が「制御相電流取得手段」および「監視相電流取得手段」の機能としての処理に相当し、S201が「回転角取得手段」の機能としての処理に相当し、S205が「電流算出手段」の機能としての処理に相当し、S207が「電流推定手段」および「他相電流推定手段」の機能としての処理に相当し、S212が「電圧指令値算出手段」の機能としての処理に相当し、S209が「異常検出手段」の機能としての処理に相当し、S206およびS208が「切替手段」の機能としての処理に相当する。
(第3実施形態)
第3実施形態は、第2実施形態の変形例である。第3実施形態による電流フィードバック処理を図13に基づいて説明する。
第1実施形態で説明したように、電流推定部32において、フィルタ系の演算を行っているため、演算開始直後のdq軸電流推定値id_est、iq_estは、必ずしも実際のdq軸電流値id、iqと一致していないことがある。そのため、本実施形態では、2相制御から1相制御に切り替える前の所定のタイミングからdq軸電流推定値id_est、iq_estの演算を開始している。
図13に示す本実施形態の電流フィードバック処理では、図12に示す第2実施形態の電流フィードバック処理のS205とS206との間に、S215〜S217が追加されている点が異なっている。ここでは、この点を中心に説明し、他の構成等の説明は省略する。
S205に続いて移行するS215では、回転数Nが直前判定値Yより大きいか否かを判断する。直前判定値Yは、判定値Xより小さい値であり、例えば判定値Xが1500rpmであれば、直前判定値Yは1400rpmといった具合である。直前判定値Yは、dq軸電流推定値id_est、iq_estがdq軸電流値id、iqに漸近し、推定精度が高まるのに要する時間に応じて適宜設定される。すなわち、回転数Nが直前判定値Yから判定値Xに達するまでの間に、dq軸電流推定値id_est、iq_estの推定精度が高まるように、直前判定値Yを設定する、ということである。
回転数Nが直前判定値Y以下であると判断された場合(S215:NO)、S217の処理を行わず、S206へ移行する。回転数Nが直前判定値Yより大きいと判断された場合(S215:YES)、S216へ移行する。
S216では、回転数Nの変化方向が増加方向か減少方向かを判断する。回転数Nの変化方向が増加方向であるとは、回転数Nが直前判定値Yより小さい状態から直前判定値Yより大きい値へ変化している状態である。回転数Nの変化方向が増加方向であるとき、回転数Nが判定値Xより大きくなり、2相制御である2相制御モードから1相制御にて制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードへ切り替わる直前である、とみなす。一方、回転数Nが減少方向であるとは、回転数Nが判定値Xより大きい状態から判定値X以下に変化している状態である。回転数Nの変化方向が減少方向であるとき、1相制御にて制御相電流センサ12および監視相電流センサ13の異常検出を行う1相制御モードから2相制御モードへ切り替わった直後であり、1相制御モードへの切り替え直前ではない、とみなす。なお、ここでは回転数Nの微小な変化については問わないものとする。
回転数Nの変化方向が増加方向ではないと判断された場合(S216:NO)、すなわち回転数Nの変化方向が減少方向であり、1相制御モードへの切り替え直前ではない場合、S217の処理を行わず、S206へ移行する。回転数Nの変化方向が増加方向であると判断された場合(S216:YES)、すなわち1相制御モードへの切り替え直前である場合、S217へ移行する。
S217の処理は、図9中の104の処理と同様であり、電流推定部32にてdq軸電流推定値id_est、iq_estおよび監視相電流推定値iv_estを算出し、制御相電流推定部41にて制御相電流推定値iw_estを算出する。なお、回転数Nが直前判定値Yより大きく判定値X以下の範囲では、dq軸電流推定値id_est、iq_est等の演算を開始するが、電流選択部35からPI演算部22にフィードバックする電流はdq軸電流値id、iqとし、2相制御とする。
本実施形態では、回転数判定部52では、2相制御モードから1相制御モードへの切り替え直前であるか否かを判定する(S215、S216)。回転数Nが判定値Xより大きい1相制御モードにおいて、2相制御電流算出部31は、dq軸電流値id、iqの演算を中止する。
また、2相制御モードにおいて、2相制御モードから1相制御モードへの切り替え直前でないと判定された場合(S215:NO、または、S216:NO)、電流推定部32は、dq軸電流推定値id_est、iq_estおよび監視相電流推定値iv_estの算出を中止し、制御相電流推定部41は、制御相電流推定値iw_estの算出を中止する。一方、2相制御モードにおいて、2相制御モードから1相制御モードへの切り替え直前であると判定された場合(S215:YESかつS216:YES)、電流推定部32は、dq軸電流推定値id_est、iq_estおよび監視相電流推定値iv_estの算出を行い、制御相電流推定部41は、制御相電流推定値iw_estの算出を行う。
これにより、2相制御モードから1相制御モードに切り替わったとき、すなわち2相制御から1相制御に切り替わったとき、dq軸電流推定値id_est、iq_estとdq軸電流値id、iqとの誤差を小さくすることができるので、1相制御に切り替わったときにdq軸電流推定値id_est、iq_estとdq軸電流値id、iqとの誤差に起因して交流電動機2の制御が不安定になるのを抑制することができる。
また、dq軸電流推定値id_est、iq_est、監視相電流推定値iv_est、制御相電流推定値iw_est、および、dq軸電流値id、iqの演算を常時行う場合と比較し、演算負荷を低減し、リソースを節約することができる。
さらに、上記実施形態と同様の効果を奏する。
本実施形態では、制御部15の回転数判定部52が「切替直前判定手段」を構成する。また、S215およびS216が「切替直前判定手段」の機能としての処理に相当する。
(第4実施形態)
第4実施形態は、電流推定部32における演算方法のみが異なっているので、この点を中心に説明し、他の構成等の説明は省略する。
第1実施形態では、制御相方向の補正ベクトル(Δid、Δiq)を積算することによりdq軸電流推定値id_est、iq_setのdq軸電流値id、iqへの収束性を高めていた。換言すると、上記実施形態では、dq軸電流推定値id_est、iq_estを制御相の方向に補正していた。本実施形態では、dq軸電流推定値id_est、iq_estのdq軸電流値id、iqへの収束性を高めるべく、制御相に直交する方向にも補正している。
詳細には、図14に示すように、電流推定部32は、さらに直交方向補正値算出部328を有している。本実施形態の電流推定部32における演算を表した漸化式を式(6)に示し、式(6)に示す漸化式をベクトル図で表現すると、図15のようになる。
Figure 2014072997
本実施形態では、制御相方向補正値算出部324にて制御相方向補正値id_crr(n)、iq_crr(n)を算出し、減算器325にて、遅延素子327を経由してフィードバックされた前回のdq軸電流推定値id_est(n−1)、iq_est(n−1)に対し減算することでW相方向に補正されたdq軸電流暫定推定値id_est’(n)、iq_est’(n)を算出する。dq軸電流暫定推定値id_est’(n)、iq_est’(n)は、第1実施形態のdq軸電流推定値id_est(n)、iq_est(n)と同様である。
直交方向補正値算出部328では、制御相に直交する成分のβ軸推定誤差Δiβを式(7)に基づいて推定する。また、β軸推定誤差Δiβを用い、dq変換により直交方向補正値id_crr_β(n)、iq_crr_β(n)を算出する(式(8)参照)。
減算器329では、算出された直交方向補正値id_crr_β(n)、iq_crr_β(n)を用い、dq軸電流暫定推定値id_est’ (n)、iq_est’ (n)に対し減算することでdq軸電流推定値id_est、iq_estを算出する(式(6)参照)。
本実施形態では、電流推定部32では、前回の演算で算出されたdq軸電流推定値id_est、iq_estの制御相成分である電流基準値iw_bfと制御相電流検出値iw_snsとに基づいて算出される制御相方向補正値id_crr(n)、iq_crr(n)および直交方向補正値id_crr_β(n)、iq_crr_β(n)をdq軸平面上にて積算することによりdq軸電流推定値id_est、iq_estを算出する。より詳細には、本実施形態では制御相方向補正値id_crr(n)、iq_crr(n)および制御相に直交する方向の直交方向補正値id_crr_β(n)、iq_crr_β(n)が合成された補正ベクトル(Δid、Δiq)をdq軸平面上にて積算している。
この方法では、直交する方向にも補正できるが、直交方向の補正量は電気角の変化量から算出するため回転数の低い領域では精度が悪化する虞があるため、回転数の低い領域では2相制御としている。
これにより、交流電動機2の回転に伴って回転する制御相方向補正値id_crr(n)、iq_crr(n)および直交方向補正値id_crr_β(n)、iq_crr_β(n)を用いることにより、dq軸電流推定値id_est、iq_estを精度よく算出することができる。また、上記実施形態と同様の効果を奏する。
第4実施形態の電流推定方法は、上記第1実施形態〜第3実施形態のいずれの実施形態の電流推定方法としてもよい。
本実施形態では、制御相方向補正値id_crr(n)、iq_crr(n)と直交方向補正値id_crr_β(n)、iq_crr_β(n)とを合成された補正ベクトル(Δid、Δiq)が「補正ベクトル」に対応する。また、減算器325、329にて制御相方向補正値id_crr(n)、iq_crr(n)および直交方向補正値id_crr_β(n)、iq_crr_β(n)をdq軸電流推定値id_est(n−1)、iq_est(n−1)に対して減算することが「補正ベクトルをdq軸平面上にて積算する」ことに対応する。
(第5実施形態)
第5実施形態および第6実施形態は、電流推定部32における演算方法のみが異なっているので、この点を中心に説明し、他の構成等の説明は省略する。
上記実施形態では、補正ベクトル(Δid、Δiq)を積算することによりdq軸電流推定値id_est、iq_estを算出した。第5実施形態では、dq軸電流指令値id*、iq*を用いてdq軸電流推定値id_est、iq_estを算出する。
本実施形態では、式(1)のW相電流として制御相電流検出値iw_snsを用いる。また、U相電流iuおよびV相電流ivとして、dq軸電流指令値id*、iq*の逆dq変換により算出される3相電流指令値であるU相電流指令値iu*およびV相電流指令値iv*を用いる。また、U相電流指令値iu*またはV相電流指令値iv*の一方を用い、他方において3相和=0を維持させる方法でもよい。
dq軸電流指令値id*、iq*を用いた電流推定について、図16に基づいて説明する。図16(a)は、制御相であるW相軸をα軸とし、W相軸に直交する方向をβ軸とする座標系を示しており、このαβ軸座標系は、回転座標系である図示しないdq軸座標系において相対的に回転する。ここで、制御相電流検出値iw_snsと、dq軸電流指令値id*、iq*の逆dq変換によるU相電流指令値iu*およびV相電流指令値iv*とからdq軸電流推定値id_est、iq_estを算出する。算出されたdq軸電流指令値id*、iq*とdq軸電流推定値id_est、iq_estとの偏差Dは、必ず制御相方向(この例ではW軸方向)となる。したがって、図3中のPI演算部22におけるPI演算において、電圧操作は実際の制御相電流検出値iw_snsに基づくため、信頼性の高いW相軸方向にしかなされず、比較的信頼性の低いそれ以外の方向(U相軸方向、V相軸方向)には電圧操作が行われない。従って、電流推定値の推定誤差によって誤って異常な電圧を出力することを防止でき、安全に運転可能である。
そこで、図16(b)に示すように、回転座標系であるdq軸平面上において、交流電動機2の回転に伴って破線矢印で示すW相軸が相対的に回転することを利用し、電圧指令値vd*、vq*を、dq軸電流推定値id_est、iq_estをdq軸電流指令値id*、iq*に一致させるためにあるべき電圧に漸近させていく。したがって、センサ周期(例えば100μsec)ごとの角度移動量Δθeがある程度以上の大きさであれば、換言すると回転数Nが所定の判定値X以上であれば、電圧指令値vd*、vq*が所望の値に漸近していくので、交流電動機2を精度よく制御することができる。
なお、図16(b)中において、矢印YVは、PI演算にて算出される電圧指令値vd*、vq*のI項の挙動を示している。また、記号「×」は、P項も含んだ電圧指令値vd*、vq*を示している。
(第6実施形態)
第6実施形態では、dq軸電流指令値id*、iq*を用いて制御相基準電流位相φを算出し、制御相基準電流位相φに基づいてdq軸電流推定値id_est、iq_estを算出する。
図17に示すように、電流推定部32は、制御相基準電流位相検知部301、他相推定部302、および、dq変換部303を有する。
制御相基準電流位相検知部301は、逆dq変換部311および位相検知部312を有する。
まず、逆dq変換部311では、電気角θeを用い、d軸電流指令値id*およびq軸電流指令値iq*を逆dq変換することにより、U相電流指令値iu*およびV相電流指令値iv*を算出する。
位相検知部312では、逆dq変換部311にて算出されたV相電流指令値iv*、おおび、制御相電流検出値iw_snsに基づき、制御相基準電流位相φを算出する。ここで、制御相であるW相軸をα軸、α軸に直交する方向をβ軸とすると、α軸電流iαおよびβ軸電流iβは、式(9)、(10)のように表される。
Figure 2014072997
なお、式(10)は、制御相であるW相の成分を含ませるべく、制御相電流検出値iw_snsを含むように、キルヒホッフの法則を用いて変形してもよい。制御相であるW相の成分を含ませることにより、推定精度が向上する。
制御相基準電流位相φは、α軸電流iαおよびβ軸電流iβを用い、以下の式(11)のように表される。
Figure 2014072997
他相推定部302は、位相検知部312にて算出された制御相基準電流位相φ、および、制御相電流検出値iw_snsに基づき、推定相電流推定値iu_estを算出する(式(12)参照)。なお、式(12)中のIaは、振幅であるが、最終的には含まれない係数であるので、演算する必要はない。
Figure 2014072997
dq変換部303では、推定相電流推定値iu_est、制御相電流検出値iw_sns、および、電気角θeに基づき、dq変換によりdq軸電流推定値id_est、iq_estを算出する。
ここで、制御相電流検出値iw_snsが0Aになるとき、或いは、制御相基準電流位相φの正接tan(φ)が無限大になるとき、式(12)において、0で乗算する「ゼロ掛け」が生じる。また、制御相基準電流位相φの正接tan(φ)が0となるとき、式(12)において、および0で除算する「ゼロ割り」が生じてしまう。そのため、推定相電流推定値iu_estが変動してしまう虞がある。そのため、ゼロクロス範囲内である場合、「ゼロ掛け」、「ゼロ割り」をマスクするようなゼロクロス補正処理を行ってもよい。ゼロクロス補正処理としては、例えばd軸電流偏差およびq軸電流偏差を強制的に0Aとすることで、d軸電流指令値vd*、および、q軸電圧指令値vq*を固定する。或いは、d軸電圧指令値vd*およびq軸電圧指令値vq*を前回値に保持することによって直接固定してもよい。
このように制御相基準電流位相φを用いてdq軸電流推定値id_est、iq_estを算出した場合も、第5実施形態と同様、図16(b)に示すように、電圧指令値vd*、vq*が所望の値に漸近していくので、交流電動機2を精度よく制御することができる。
なお、ここではU相電流を推定する例を説明したが、制御相電流検出値iw_snsから監視相電流推定値iv_estを算出する方法も同様である。また、制御相電流推定部41でも同様の演算が行われ、監視相電流検出値iv_snsを用いてU相電流またはW相電流(制御相電流推定値iw_est)を推定する方法も同様であるので、説明を省略する。
本実施形態では、制御相電流検出値iw_snsと電気角θeに加え、電流指令値id*、iq*に基づいて監視相電流推定値iv_estを算出する。また、監視相電流検出値iv_snsと電気角θeに加え、電流指令値id*、iq*に基づいて制御相電流推定値iw_estを算出する。
また、第5実施形態および第6実施形態では、電流推定部32は、交流電動機2の駆動に係るdq軸電流指令値id*、iq*、制御相電流検出値iw_sns、および、電気角θeに基づき、dq軸電流推定値id_est、iq_estを算出する。また、PI演算部22は、回転座標系であるdq軸平面上で回転する制御相(本実施形態ではW相)方向であるdq軸電流指令値id*、iq*とdq軸電流推定値id_est、iq_estとの偏差Dを積算することにより、dq軸電流推定値id_est、iq_estがdq軸電流指令値id*、iq*に一致するような電圧指令値vd*、vq*を算出する。
第5実施形態および第6実施形態では、制御相電流検出値iw_snsと電気角θeに基づいて電流推定する際にdq軸電流指令値id*、iq*を基準とすることで、dq軸電流推定値id_est、iq_estを精度よく算出することができる。これにより、第5実施形態および第6実施形態においても、上記実施形態と同様の効果を奏する。
なお、第5実施形態および第6実施形態においては、dq軸電流指令値id*、iq*が「電流指令値」に対応する。
第5実施形態または第6実施形態の電流推定方法は、上記第1実施形態〜第3実施形態のいずれの実施形態の電流推定方法としてもよい。
(他の実施形態)
(ア)電流推定方法としては、補正ベクトルを積算する方法、または、電流指令値を用いる方法であれば、1相制御電流推定値をどのように算出してもよい。
また、制御電流推定部における演算方法と、電流推定部における演算方法とが同じであることを前提として説明したが、他の実施形態では、制御相電流推定部における演算方法と、電流推定部における演算方法とは、異なる方法であってもよい。
(イ)他の実施形態では、1相制御電流推定値の演算における初期値を直前のdq軸電流値id、iqにしてもよい。これにより、1相制御に切り替わった際のdq軸電流推定値id_est、iq_estとdq軸電流値id、iqとの誤差を小さくすることができるので、当該誤差に起因して交流電動機2の制御が不安定になるのを抑制することができる。
(ウ)上記実施形態では、回転角センサは電気角θeを検出し、制御部へ出力した。他の実施形態では、回転角センサは機械角θmを検出し、制御部へ出力し、制御部の内部にて電気角θeに換算してもよい。また、電気角θeに替えて、機械角θmを「回転角検出値」としてもよい。さらにまた、回転数Nは、機械角θmに基づいて算出してもよい。
(エ)上記実施形態では、交流電動機の駆動が低回転領域か否かを回転数Nに基づいて判定した。他の実施形態では、回転数Nに替えて、電気周波数に基づいて判定してもよい。例えば、交流電動機の極対数が4である場合、上記実施形態にて例示した判定値の回転数1500rpmは、電気周波数100Hzに対応するので、この電気周波数に基づいて判定する、といった具合である。
(オ)上記第3実施形態では、回転数Nが直前判定値Yより大きく判定値X以下であり、回転数Nの変化方向が増加方向である場合、1相制御モードへの切り替え直前であると判定した。他の実施形態では、回転数Nが減少変化している局面であったとしても、回転数Nが直前判定値Yより大きく判定値X以下である場合には、すぐに1相制御に戻る可能性があることを考慮し、回転数Nの変化方向によらず、回転数Nが直前判定値Yより大きく判定値X以下である場合、1相制御モードへの切り替え直前であると判定してもよい。すなわち、図13中のS216の判断処理を省略してもよい。
(カ)上記実施形態では、制御相電流比較部にて制御相電流推定値iw_estと制御相電流検出値iw_snsとを比較した制御相差分参照値Δiw_ref、および、監視相電流比較部にて監視相電流推定値iv_estと監視相電流検出値iv_snsとを比較した監視相差分参照値Δiv_refに基づいて制御相電流センサおよび監視相電流センサの異常を検出した。
他の実施形態では、監視相電流比較部を省略し、制御相電流比較部による制御相差分参照値Δiw_refのみに基づいて電流センサの異常検出を行ってもよい。制御相電流比較部にて用いられる制御相電流推定値iw_estの演算を行う制御相電流推定部の演算結果は、電流フィードバック制御に用いられていない。そのため、電流フィードバック制御の干渉を受けることがないので、制御相電流センサおよび監視相電流センサの異常を適切に検出することができる。
さらに他の実施形態では、制御相電流推定部および制御相電流比較部を省略し、監視相電流比較部により監視相差分参照値Δiv_refのみに基づいて制御相電流センサおよび監視相電流センサの異常検出を行ってもよい。これにより、制御相電流センサおよび監視相電流センサの異常検出に係る演算量を低減することができる。
(キ)上記実施形態では、電流センサが3相のうちの2相に設けられている例について説明した。他の実施形態では、電流センサが3相に設けられており、いずれか1相にて異常が生じており、異常が生じていない2相で制御を行う場合において、上記電流フィードバック処理を行うようにしてもよい。その場合、異常が生じていない2相のうちの一方を制御相とみなし、他方を監視相とみなせばよい。なお、3相のうちの1相に生じた異常の検出方法や、異常が生じた相の特定方法は、どのような方法であってもよい。
(ク)交流電動機の印加電圧を制御するインバータは、電流フィードバック制御がなされる制御方法であれば、どのような方法で制御されてもよい。例えば、正弦波PWM制御モード、過変調PWM制御モード、および、矩形波制御モード等を適宜切り替えて制御されるように構成することができる。なお、矩形波制御モードは、電圧の位相しか制御できず、トルクフィードバック制御である場合もあるが、フィードバックするトルクは電流から推定されるものであるため、広義での「電流フィードバック制御」と捉えることができる。
(ケ)上記実施形態では、2相制御電流値をdq軸電流値id、iqとし、制御用1相電流推定値をdq軸電流推定値id_est、iq_estとした。他の実施形態では、2相制御電流値および1相制御電流推定値は、電流フィードバック制御に利用可能な電流値であれば、各相電流や他の軸に基づく電流値としてもよい。なお、「制御用1相電流推定値」は、電流フィードバック制御に用いるために1相の電流検出値から推定された電流推定値を示すものである。また、「監視用1相電流推定値」は、電流センサの異常検出を行うために1相の電流検出値から推定された電流推定値を示すものである。
(コ)上記実施形態では、交流電動機は、3相永久磁石式同期モータであったが、他の実施形態では、誘導モータやその他の同期モータであってもよい。また、上記実施形態の交流電動機は、電動機としての機能および発電機としての機能を併せ持つ所謂モータジェネレータであったが、他の実施形態では、発電機としての機能を持たない電動機であってもよい。
交流電動機は、エンジンに対して電動機として動作し、エンジンの始動を行うように構成されていてもよい。また、エンジンを設けなくてもよい。さらに、交流電動機を複数設けてもよいし、複数の交流電動機における動力を分割する動力分割機構等をさらに設けてもよい。
(サ)本発明による交流電動機の制御装置は、上記実施形態のようにインバータと交流電動機を一組のみ設けたシステムに限らず、インバータと交流電動機を二組以上設けたシステムに適用してもよい。また、1台のインバータに複数台の交流電動機を並列接続させた電車等のシステムに適用してもよい。
また、交流電動機の制御装置は、電動車両に適用されていたが、電動車両以外に用いてもよい。
最後に、本出願の課題等をまとめておく。
例えばハイブリッド車両や電気自動車の主機モータ等のように、高速、高精度での制御が必要なシステムにおいて、1相のみの電流検出値を用いて精度よくベクトル制御を行うためには、以下のような工夫が必要である。
例えば、回転座標系であるdq座標系において、本来は固定座標系である1相の電流検出値の成分が相対的に回転することを利用して、電流推定値に対し電流検出値に基づいた補正を積み重ねていき(積算し)、dq座標系においては見かけ上補正方向が次第に回転していくため、2次元のdq座標上の一点である実電流ベクトルに漸近しやがて一致するというような推定方法がある。このような電流推定方法では、2次元座標上の実電流ベクトルの一点を正確に推定し得るため、高速、高精度なベクトル制御を行っても、2相の電流検出値をもとに制御を行う場合に対して性能の悪化を防ぐことができる。
また例えば、1相のみの電流検出値以外の残りの2相の電流値を、電流指令値に基づいて算出する方法がある。このようにすると、電流指令値との偏差をもとにPI制御演算がなされ電圧指令が算出される電流フィードバック制御において、フィードバックする電流推定値の一部の成分が電流指令値から算出されているため、その成分の偏差は生じなくなる。電流指令値から算出される成分は、電流検出値に無関係な成分であり、例えば特許文献1、2のように、精度の低い電流推定値をフィードバックした場合に起こり得る、誤った電圧指令演算を抑止できる。しかも、上記の方法と同様に、dq座標系においては1相の成分はdq座標系において相対的に回転するので、電圧操作がPI制御の積分値に積算されることで、やがて電流偏差がゼロになり、電流指令値に一致するdq座標上の一点の電圧に収束する。このため、高速、高精度なベクトル制御を行っても、誤った電圧操作を防止して、安定的に制御することができる。
以上のようにすることで、1相のみの電流検出値を用いて精度よくベクトル制御を行うことができるが、発明者らは、研究の結果、交流電動機の回転が停止に近くなると制御性能が悪化する課題があることを発見した。その原因は上記のように交流電動機の回転によって、dq座標上にて1相の電流検出値の成分が相対的に回転することを利用して、2次元平面上のあるべき一点に制御量(電流推定値あるいは電圧指令値)を収束させる方法のため、交流電動機の回転による種々の状態量(回転角、位相、相電流)が変化することが高い精度を保つのに重要な要素であることが判明した。
そこで発明者らは、制御用の1相以外のいずれかに監視用に電流センサが設けられていることに着目し、上記のような電流推定方法を適用した際に制御性能が悪化する回転数が低い領域に限定して監視用の電流センサを制御用に用いて、2相の電流検出値をもとに制御することで、回転数に左右される要因を排除し、性能の低下を防止するようにした。また、2相の電流検出値をもとに制御される領域は、回転数が低い場合に限定されるため、この領域を超えた回転数に達した段階で、監視用の電流センサを監視用として復帰させることで、監視体制は維持され、安全に交流電動機を駆動することができる。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1・・・電動機駆動システム
2・・・交流電動機
10・・・電動機制御装置(制御装置)
11・・・インバータ
12・・・制御相電流センサ
13・・・監視相電流センサ
14・・・回転角センサ
15・・・制御部(制御相電流取得手段、監視相電流取得手段、回転角取得手段、電流算出手段、電流推定手段、電圧指令値算出手段、他相電流推定手段、異常検出手段、切替手段、回転数算出手段、回転数判定手段、切替直前判定手段)

Claims (9)

  1. インバータ(11)によって印加電圧が制御される3相の交流電動機(2)の駆動を制御する交流電動機の制御装置(10)であって、
    前記交流電動機のいずれか1相である制御相に設けられる制御相電流センサ(12)から制御相電流検出値を取得する制御相電流取得手段(31、32、42)と、
    前記交流電動機の前記制御相とは異なる1相である監視相に設けられる監視相電流センサ(13)から監視相電流検出値を取得する監視相電流取得手段(41、43)と、
    前記交流電動機の回転角を検出する回転角センサ(14)から回転角検出値を取得する回転角取得手段(23、31、32、41、43、51)と、
    前記制御相電流検出値、前記監視相電流検出値および前記回転角検出値に基づき、2相制御電流値を算出する電流算出手段(31)と、
    前記制御相電流検出値および前記回転角検出値に基づく制御用1相電流推定値を算出する電流推定手段であって、前回の演算で算出された前記制御用1相電流推定値の前記制御相の成分である電流基準値と前記制御相電流検出値とに基づいて算出される補正ベクトルをdq軸平面上にて積算することにより前記制御用1相電流推定値を算出する電流推定手段(32)と、
    フィードバックされる前記2相制御電流値または前記制御用1相電流推定値に基づき、前記インバータに印加される電圧に係る電圧指令値を算出する電圧指令値算出手段(22)と、
    前記制御相電流検出値と前記回転角検出値とに基づいて推定される監視相電流推定値、および、前記監視相電流検出値と前記回転角検出値とに基づいて推定される制御相電流推定値の少なくとも一方を算出する他相電流推定手段(32、41)と、
    前記監視相電流推定値と前記監視相電流検出値とを比較した第1比較結果、および、前記制御相電流推定値と前記制御相電流検出値とを比較した第2比較結果の少なくとも一方に基づき、前記制御相電流センサおよび前記監視相電流センサの少なくとも一方に異常が生じていることを検出する異常検出手段(45)と、
    前記2相制御電流値に基づいて前記電圧指令値を算出する2相制御モードと、前記制御用1相電流推定値に基づいて前記電圧指令値を算出するとともに前記異常検出手段による異常検出を行う1相制御モードと、を切り替える切替手段(35)と、
    前記回転角検出値に基づき、前記交流電動機の回転数を算出する回転数算出手段(51)と、
    前記回転数が所定の判定値以下であるか否かを判定する回転数判定手段(52)と、
    を備え、
    前記切替手段は、
    前記回転数が前記判定値以下であると判定された場合、前記2相制御モードとし、
    前記回転数が前記判定値より大きいと判定された場合、前記1相制御モードとすることを特徴とする交流電動機の制御装置。
  2. 前記他相電流推定手段は、前記制御用1相電流推定値に基づき、前記監視相電流推定値を算出することを特徴とする請求項1に記載の交流電動機の制御装置。
  3. 前記他相電流推定手段は、前記監視相電流検出値および前記回転角検出値に基づく監視用1相電流推定値を算出し、前回の演算で算出された前記監視用1相電流推定値の前記監視相の成分である監視相電流基準値と前記監視相電流検出値とに基づいて算出される監視相補正ベクトルをdq軸平面上にて積算することにより前記監視用1相電流推定値を算出し、算出された前記監視用1相電流推定値に基づき、前記制御相電流推定値を算出することを特徴とする請求項1または2に記載の交流電動機の制御装置。
  4. インバータ(11)によって印加電圧が制御される3相の交流電動機(2)の駆動を制御する交流電動機の制御装置(10)であって、
    前記交流電動機のいずれか1相である制御相に設けられる制御相電流センサ(12)から制御相電流検出値を取得する制御相電流取得手段(31、32、42)と、
    前記交流電動機の前記制御相とは異なる1相である監視相に設けられる監視相電流センサ(13)から監視相電流検出値を取得する監視相電流取得手段(41、43)と、
    前記交流電動機の回転角を検出する回転角センサ(14)から回転角検出値を取得する回転角取得手段(21、23、32、41、43、51)と、
    前記制御相電流検出値、前記監視相電流検出値および前記回転角検出値に基づき、2相制御電流値を算出する電流算出手段(31)と、
    前記制御相電流検出値、前記回転角検出値、および、前記交流電動機の駆動に係る電流指令値に基づき、制御用1相電流推定値を算出する電流推定手段(32)と、
    フィードバックされる前記2相制御電流値または前記制御用1相電流推定値に基づき、前記インバータに印加される電圧に係る電圧指令値を算出する電圧指令値算出手段(22)と、
    前記制御相電流検出値と前記回転角検出値とに基づいて推定される監視相電流推定値、および、前記監視相電流検出値と前記回転角検出値とに基づいて推定される制御相電流推定値の少なくとも一方を算出する他相電流推定手段(32、41)と、
    前記監視相電流推定値と前記監視相電流検出値とを比較した第1比較結果、および、前記制御相電流推定値と前記制御相電流検出値とを比較した第2比較結果の少なくとも一方に基づき、前記制御相電流センサおよび前記監視相電流センサの少なくとも一方に異常が生じていることを検出する異常検出手段(45)と、
    前記2相制御電流値に基づいて前記電圧指令値を算出する2相制御モードと、前記制御用1相電流推定値に基づいて前記電圧指令値を算出するとともに前記異常検出手段による異常検出を行う1相制御モードと、を切り替える切替手段(35)と、
    前記回転角検出値に基づき、前記交流電動機の回転数を算出する回転数算出手段(51)と、
    前記回転数が所定の判定値以下であるか否かを判定する回転数判定手段(52)と、
    を備え、
    前記切替手段は、
    前記回転数が前記判定値以下であると判定された場合、前記2相制御モードとし、
    前記回転数が前記判定値より大きいと判定された場合、前記1相制御モードとすることを特徴とする交流電動機の制御装置。
  5. 前記他相電流推定手段は、前記制御相電流検出値と前記回転角検出値とに加え、前記電流指令値に基づいて前記監視相電流推定値を算出することを特徴とする請求項4に記載の交流電動機の制御装置。
  6. 前記他相電流推定手段は、前記監視相電流検出値と前記回転角検出値とに加え、前記電流指令値に基づいて前記制御相電流推定値を算出することを特徴とする請求項4または5に記載の交流電動機の制御装置。
  7. 前記1相制御モードにおいて、
    前記電流算出手段は、前記2相制御電流値の演算を中止し、
    前記2相制御モードにおいて、
    前記電流推定手段は、前記制御用1相電流推定値の演算を中止し、
    前記他相電流推定手段は、前記監視相電流推定値および前記制御相電流推定値の演算を中止することを特徴とする請求項1〜6のいずれか一項に記載の交流電動機の制御装置。
  8. 前記2相制御モードから前記1相制御モードへの切り替え直前であるか否かを判定する切替直前判定手段(52)をさらに備え、
    前記1相制御モードにおいて、
    前記電流算出手段は、前記2相制御電流値の演算を中止し、
    前記2相制御モードにおいて、前記切替直前判定手段により前記2相制御モードから前記1相制御モードへの切り替え直前でないと判定された場合、
    前記電流推定手段は、前記制御用1相電流推定値の演算を中止し、
    前記他相電流推定手段は、前記監視相電流推定値および前記制御相電流推定値の演算を中止し、
    前記2相制御モードにおいて、前記切替直前判定手段により前記2相制御モードから前記1相制御モードへの切り替え直前であると判定された場合、
    前記電流推定手段は、前記制御用1相電流推定値の演算を行い、
    前記他相電流推定手段は、前記監視相電流推定値および前記制御相電流推定値の少なくとも一方の演算を行うことを特徴とする請請求項1〜6のいずれか一項に記載の交流電動機の制御装置。
  9. 前記電流算出手段は、前記1相制御モードまたは前記2相制御モードのいずれであっても前記2相制御電流値の演算を行い、
    前記電流推定手段は、前記1相制御モードまたは前記2相制御モードのいずれであっても前記制御用1相電流推定値の演算を行い、
    前記他相電流推定手段は、前記1相制御モードまたは前記2相制御モードのいずれであっても前記監視相電流推定値および前記制御相電流推定値の少なくとも一方の演算を行うことを特徴とする請求項1〜6のいずれか一項に記載の交流電動機の制御装置。
JP2012217469A 2012-09-28 2012-09-28 交流電動機の制御装置 Active JP5958250B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012217469A JP5958250B2 (ja) 2012-09-28 2012-09-28 交流電動機の制御装置
US14/039,262 US8957616B2 (en) 2012-09-28 2013-09-27 Control device for AC motor
CN201310452570.XA CN103715959B (zh) 2012-09-28 2013-09-27 用于交流电机的控制设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217469A JP5958250B2 (ja) 2012-09-28 2012-09-28 交流電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2014072997A true JP2014072997A (ja) 2014-04-21
JP5958250B2 JP5958250B2 (ja) 2016-07-27

Family

ID=50384533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217469A Active JP5958250B2 (ja) 2012-09-28 2012-09-28 交流電動機の制御装置

Country Status (3)

Country Link
US (1) US8957616B2 (ja)
JP (1) JP5958250B2 (ja)
CN (1) CN103715959B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703384A (zh) * 2018-12-29 2019-05-03 苏州唯控汽车科技有限公司 模块化车用电池系统单相充电和三相逆变行驶互锁装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101622011B1 (ko) * 2013-12-31 2016-05-17 현대모비스 주식회사 3상 교류 모터 제어 방법 및 장치
US9656570B2 (en) * 2014-12-15 2017-05-23 Ford Global Technologies, Llc Current sensor for a vehicle
JP2017030466A (ja) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 電動車両
DE102016211498A1 (de) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur externen Überwachung einer Leistungselektronik
CN107415750A (zh) * 2017-08-10 2017-12-01 杭州衡源汽车科技有限公司 一种充电系统和电动汽车
DE112019007350T5 (de) * 2019-05-20 2022-02-17 Mitsubishi Electric Corporation Motorantriebsvorrichtung, kompressorantriebssystem und kühlzyklussystem
CN116480242B (zh) * 2023-04-25 2023-08-29 杭州山松电器有限公司 一种汽车电动车门用减速执行器及其控制方法、汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309697A (ja) * 2000-04-25 2001-11-02 Matsushita Electric Ind Co Ltd 電動機制御装置
JP2006044338A (ja) * 2004-08-02 2006-02-16 Nsk Ltd 電動パワーステアリング装置
JP2008050075A (ja) * 2006-08-22 2008-03-06 Toshiba Elevator Co Ltd エレベータの制御装置
JP2008086139A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd モータ制御装置
US20090224707A1 (en) * 2005-12-23 2009-09-10 Connel Brett Williams Electric Motor Control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611492B2 (ja) 1999-11-12 2005-01-19 株式会社日立製作所 インバータの制御方法および装置
KR100442494B1 (ko) * 2002-02-26 2004-07-30 엘지산전 주식회사 인버터의 토오크 제어장치 및 방법
JP2004015925A (ja) * 2002-06-07 2004-01-15 Mitsuba Corp ブラシレスモータ制御方法
JP3972124B2 (ja) * 2002-07-10 2007-09-05 株式会社日立製作所 同期電動機の速度制御装置
JP2004159398A (ja) 2002-11-05 2004-06-03 Toshiba Corp 電力変換装置
AU2003289041A1 (en) * 2002-12-12 2004-06-30 Nsk Ltd. Motor drive-controlling device and electric power-steering device
JP4359546B2 (ja) * 2004-09-06 2009-11-04 株式会社豊田中央研究所 交流モータの制御装置
CN100413207C (zh) * 2006-11-17 2008-08-20 清华大学 一种异频供电永磁同步电动机矢量控制系统
US7893638B2 (en) * 2006-11-30 2011-02-22 Denso Corporation Apparatus and method for driving rotary machine
US8450962B2 (en) * 2011-02-28 2013-05-28 Deere & Company System for controlling a motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309697A (ja) * 2000-04-25 2001-11-02 Matsushita Electric Ind Co Ltd 電動機制御装置
JP2006044338A (ja) * 2004-08-02 2006-02-16 Nsk Ltd 電動パワーステアリング装置
US20090224707A1 (en) * 2005-12-23 2009-09-10 Connel Brett Williams Electric Motor Control
JP2008050075A (ja) * 2006-08-22 2008-03-06 Toshiba Elevator Co Ltd エレベータの制御装置
JP2008086139A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd モータ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703384A (zh) * 2018-12-29 2019-05-03 苏州唯控汽车科技有限公司 模块化车用电池系统单相充电和三相逆变行驶互锁装置
CN109703384B (zh) * 2018-12-29 2023-08-29 苏州唯控汽车科技有限公司 模块化车用电池系统单相充电和三相逆变行驶互锁装置

Also Published As

Publication number Publication date
US8957616B2 (en) 2015-02-17
JP5958250B2 (ja) 2016-07-27
US20140091744A1 (en) 2014-04-03
CN103715959B (zh) 2017-03-01
CN103715959A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5958250B2 (ja) 交流電動機の制御装置
JP5958253B2 (ja) 交流電動機の制御装置
JP5928438B2 (ja) 交流電動機の制御装置
JP5939228B2 (ja) 交流電動機の制御装置
JP5807847B2 (ja) 交流電動機の制御装置
JP5751234B2 (ja) 交流電動機の制御装置
JP5929873B2 (ja) 交流電動機の制御装置
JP5772843B2 (ja) 交流電動機の制御装置
JP5929874B2 (ja) 交流電動機の制御装置
JP5757304B2 (ja) 交流電動機の制御装置
JP5700059B2 (ja) 交流電動機の制御装置
JP5803951B2 (ja) 回転電機駆動システム
JP5741611B2 (ja) 交流電動機の制御装置
JP5910583B2 (ja) 交流電動機の制御装置
JP5884747B2 (ja) 交流電動機の制御装置
JP5920635B2 (ja) 交流電動機の制御装置
JP5910582B2 (ja) 交流電動機の制御装置
JP2015162928A (ja) 交流電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5958250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250