JP2014007693A - 振動素子、振動子、電子デバイス、電子機器、及び移動体 - Google Patents

振動素子、振動子、電子デバイス、電子機器、及び移動体 Download PDF

Info

Publication number
JP2014007693A
JP2014007693A JP2012143908A JP2012143908A JP2014007693A JP 2014007693 A JP2014007693 A JP 2014007693A JP 2012143908 A JP2012143908 A JP 2012143908A JP 2012143908 A JP2012143908 A JP 2012143908A JP 2014007693 A JP2014007693 A JP 2014007693A
Authority
JP
Japan
Prior art keywords
axis
thick
piezoelectric
vibration element
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012143908A
Other languages
English (en)
Other versions
JP2014007693A5 (ja
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012143908A priority Critical patent/JP2014007693A/ja
Priority to US13/587,186 priority patent/US8970316B2/en
Priority to CN201210295585.5A priority patent/CN102957396B/zh
Publication of JP2014007693A publication Critical patent/JP2014007693A/ja
Priority to US14/511,319 priority patent/US9225314B2/en
Publication of JP2014007693A5 publication Critical patent/JP2014007693A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】CI値が小さく、近傍のスプリアスを抑圧した高周波の小型圧電振動素子を基本波で実現する。
【解決手段】圧電振動素子1は、矩形の振動部12、及び振動部12と一体化された厚肉の厚肉部13を有する圧電基板10と、励振電極25a、25bと、リード電極27a、27bと、を備えている。厚肉部13は、第1の厚肉部14と、第1の厚肉部14との一端に連設する第2の厚肉部15、を備えている。第1の厚肉部14は、厚みが変化する第1の傾斜部14bと、四角柱状の第1の厚肉部本体14aと、を備え、第1の厚肉部14には少なくとも一つのスリット20が設けられている。
【選択図】図1

Description

本発明は、厚みすべり振動モードを主振動とする振動子に関し、特に所謂逆メサ型構造を有する振動素子、振動子、電子デバイス、及び振動子を用いた電子機器並びに移動体に関する。
ATカット水晶振動子は、励振する主振動の振動モードが厚みすべり振動であり、小型化、高周波数化に適し、且つ周波数温度特性が優れた三次曲線を呈するので、圧電発振器、電子機器等の多方面で使用されている。
特許文献1には、主面の一部に凹陥部を形成して高周波化を図った所謂逆メサ構造のATカット水晶振動子が開示されている。水晶基板のZ’軸方向の長さが、X軸方向の長さより長い、所謂Z’ロング基板を用いている。
特許文献2には、矩形状で薄肉の振動部において、三辺に各々厚肉の支持部(厚肉部)が連設され、前記薄肉の振動部の一辺が露出した構造を有する逆メサ構造のATカット水晶振動子が開示されている。更に、水晶振動片は、ATカット水晶基板のX軸とZ’軸を、夫々Y’軸を中心に−120°〜+60°の範囲で回転させてなる面内回転ATカット水晶基板であり、振動領域を確保し、且つ量産性に優れた(多数個取り)構造であるという。
特許文献3、4には、矩形状で薄肉の振動部において、三辺に各々厚肉の支持部が連設され、前記薄肉の振動部の一辺が露出した構造を有する逆メサ構造のATカット水晶振動子が開示されており、水晶振動片は水晶基板のX軸方向の長さがZ’軸方向の長さより長い、所謂Xロング基板が用いられている。
特許文献5には、矩形状で薄肉の振動部において、隣接する二辺に各々厚肉の支持部が連設され、平面視でL字状に厚肉部が設けられ、前記薄肉の振動部の二辺が露出した構造を有する逆メサ構造のATカット水晶振動子が開示されている。水晶基板にはZ’ロング基板が用いられている。
しかしながら、特許文献5においては、L字状の厚肉部を得るために、特許文献5の図1(c)、(d)に記載されているように線分αと、線分βに沿って厚肉部を削除しているが、当該削除はダイシング等の機械加工で削除することを前提としているため、切断面にチッピングやクラック等のダメージを負い、超薄部が破損してしまう問題がある。また、振動領域にスプリアスの原因となる不要振動の発生やCI値の増加等の問題が発生する。
特許文献6には、薄肉の振動部の一辺のみに厚肉の支持部が連設され前記薄肉の振動部の三辺が露出した構造を有する逆メサ構造のATカット水晶振動子が開示されている。
特許文献7には、水晶基板の両主面であって表裏面で対向するように凹陥部を形成することにより、高周波化を図った逆メサ構造のATカット振動子が開示されている。水晶基板にはXロング基板が用いられ、凹陥部に形成された振動領域の平坦性が確保された領域に励振電極が設けられ構造が提案されている。
ところで、ATカット水晶振動子の振動領域に励振される厚み滑り振動モードは、弾性定数の異方性により振動変位分布がX軸方向に長径を有する楕円状になることが知られている。特許文献8には、圧電基板の表裏両面に表裏対称に配置された一対のリング状電極を有する厚みすべり振動を励振する圧電振動子が開示されている。リング状電極が対称零次モードのみを励起し、それ以外の非調和高次モードをほとんど励起しないように、リング状電極の外周の径と内周の径との差を設定したものである。
特許文献9には、圧電基板、及び圧電基板の表裏に設ける励振電極の形状を、共に長円形状にした圧電振動子が開示されている。
特許文献10には、水晶基板の長手方向(X軸方向)の両端部、及び電極のX軸方向の両端部の形状を共に半楕円状とし、且つ楕円の長軸対短軸の比(長軸/短軸)を、ほぼ1.26とした水晶振動子が開示されている。
特許文献11には、楕円の水晶基板上に楕円の励振電極を形成した水晶振動子が開示されている。長軸対短軸の比は、1.26:1が望ましいが、製造寸法のバラツキ等を考慮すると、1.14〜1.39:1の範囲程度が実用的であるという。
特許文献12には、厚みすべり圧電振動子のエネルギー閉じ込め効果をより改善するために、振動部と支持部との間に切り欠きやスリットを設けた構造の圧電振動子が開示されている。
ところで、圧電振動子の小型化を図る際に、接着剤に起因する残留応力により、電気的特性の劣化や周波数エージング特性に不良が生じることがある。特許文献13には、矩形平板状のATカット水晶振動子の振動部と支持部との間に、切り欠きやスリットを設けた水晶振動子が開示されている。このような構造を用いることにより、残留応力が振動領域へ広がるのを抑制できるという。
特許文献14には、マウント歪(応力)を改善(緩和)するために、逆メサ型圧電振動子の振動部と支持部との間に切り欠きやスリットを設けた振動子が開示されている。
特許文献15には、逆メサ型圧電振動子の支持部にスリット(貫通孔)を設けることにより、表裏面の電極の導通を確保した圧電振動子が開示されている。
特許文献16には、厚みすべり振動モードのATカット水晶振動子の支持部に、スリットを設けることにより、高次輪郭系の不要モードを抑圧した水晶振動子が開示されている。
また、特許文献17には、逆メサ型ATカット水晶振動子の薄肉の振動部と、厚肉の保持部との連設部、即ち傾斜面を有する残渣部に、スリットを設けることにより、スプリアスを抑圧する振動子が開示されている。
特開2004−165743号公報 特開2009−164824号公報 特開2006−203700号公報 特開2002−198772号公報 特開2002−033640号公報 特開2001−144578号公報 特開2003−264446号公報 特開平2−079508号公報 特開平9−246903号公報 特開2007−158486号公報 特開2007−214941号公報 実開昭61−187116号公報 特開平9−326667号公報 特開2009−158999号公報 特開2004−260695号公報 特開2009−188483号公報 特開2003−087087号公報
近年、圧電デバイスの小型化、高周波化、並びに高性能化に対する要求は強い。しかしながら、小型化、高周波化を図ろうとすると、前述のごとき構造の圧電振動子は、主振動のCI値、近接するスプリアスのCI値比(=CIs/CIm、ここでCImは主振動のCI値、CIsはスプリアスのCI値で、規格の一例は1.8以上)等が要求を満たせないという問題があることが判明した。特に、周波数が数百MHzという高周波になると、圧電振動素子に形成する励振電極、及びリード電極の電極膜厚が問題になる。圧電振動素子の主振動のみを閉じ込めモードにしようとすると、電極膜が薄くなり、オーミックロスが生じ、圧電振動素子のCI値が大きくなるという問題があった。
また、電極膜のオーミックロスを防ぐために膜厚を厚くすると、主振動の他に多くのインハーモニック・モードが閉じ込めモードとなり、近接するスプリアスCI値比を満たせないという問題があった。
そこで、本発明は上記問題の少なくとも一部を解決するためになされたもので、高周波化(100〜500MHz帯)を図ると共に、主振動のCI値を低減し、スプリアスCI値比等の電気的要求を満たした圧電振動素子、圧電振動子、電子デバイス、及び本発明の圧電振動子を用いた電子機器を提供することにある。
本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]本適用例に係る圧電振動素子は、振動領域を含む振動部、及び当該振動部と一体化され、前記振動部よりも厚みが厚い厚肉部を含む基板と、前記振動領域に設けられている励振電極と、を含み、前記厚肉部は、前記振動部の一辺に沿って設けられている第1の厚肉部と、前記一辺と接続している他の一辺に沿って設けられている第2の厚肉部と、を含み、前記第1の厚肉部と前記第2の厚肉部とは、夫々の一端が連設され、前記第1の厚肉部の一方の主面は前記振動部の一方の主面よりも突設され、前記第1の厚肉部の他方の主面と前記振動部の他方の主面とは同一面であり、前記第2の厚肉部の一方の主面は前記振動部の一方の主面よりも突設され、前記第2の厚肉部の他方の主面と前記振動部の他方の主面とは同一面であり、前記第1の厚肉部は、前記振動部の第1の外縁に連接している一方の端縁から他方の端縁に向かって離間するにつれて厚みが増加している第1の傾斜部と、当該第1の傾斜部の前記他方の端縁に連接している第1の厚肉部本体と、を含み、前記第1の厚肉部には、少なくとも一つのスリットが設けられていることを特徴とする。
この構成によれば、基本波を用いた高周波の圧電振動素子が小型化され、大量生産が容易である。更に、第1の厚肉部にスリットを設けることにより、接着・固定に起因する応力の広がりを抑圧できるので、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた圧電振動素子が得られるという効果がある。また、励振電極と、リード電極、及びパッド電極とは、夫々異種構成の金属材料が用いられ、且つ適切な膜厚で構成されているため、主振動のCI値が小さく、主振動のCI値に対する近接したスプリアスのCI値の比、即ちCI値比の大きな圧電振動素子が得られるという効果がある。
[適用例2]前記基板は、水晶の結晶軸である電気軸としてのX軸と、機械軸としてのY軸と、光学軸としてのZ軸と、からなる直交座標系の前記X軸を中心として、前記Z軸を前記Y軸の−Y方向へ傾けた軸をZ’軸とし、前記Y軸を前記Z軸の+Z方向へ傾けた軸をY’軸とし、前記X軸と前記Z’軸とを含む平面を主面とし、前記Y’軸に沿った方向を厚みとする水晶基板であることを特徴とする上記適用例に記載の圧電振動素子である。
以上のような切断角度で切り出された圧電基板を用いて、圧電振動素子を構成することにより、要求仕様の圧電振動素子を、より適したカットアングルで構成することが可能であり、且つ仕様にそった周波数温度特性を有し、CI値が小さく、CI値比の大きな高周波圧電振動素子が得られるという効果がある。
[適用例3]前記第1の厚肉部、および前記第2の厚肉部は、前記Y’軸の+Y方向に突設されていることを特徴とする上記適用例に記載の圧電振動素子である。
このように第1の厚肉部、および前記第2の厚肉部を構成することにより、振動部にかかる歪みをさけ、圧電振動素子をパッケージに固定することができるという利点がある。
[適用例4]前記第2の厚肉部は、前記Z’軸の+Z’方向に設けられていることを特徴とする上記適用例に記載の圧電振動素子である。
このように第2の厚肉部を構成することにより、Z’軸の−Z’方向にエッチングにより生じる2段の傾斜を除去しても、振動部の強度を保つことができるので、圧電振動素子をパッケージに固定することができるという利点がある。
[適用例5]前記第1の厚肉部は、前記X軸の+X方向に設けられていることを特徴とする上記適用例に記載の圧電振動素子である。
このように第1の厚肉部を構成することにより、X軸の+X方向にエッチングにより生じる傾斜が長いので、振動部にかかる歪みをさけ、圧電振動素子をパッケージに固定することができるという利点がある。
[適用例6]前記スリットは、前記第1の傾斜部と、前記第1の厚肉部本体との境界部に沿って、前記第1の厚肉部本体に設けられていることを特徴とする上記適用例に記載の圧電振動素子である。
この構成によれば、圧電振動素子が小型化されると共に、第1の傾斜部と第1の厚肉部本体との境界部に沿ってスリットを設けたので、圧電振動素子を接着・固定する際に生じる応力の広がりを抑圧することができる。これにより、周波数温度特性、CI(クリスタルインピーダンス)温度特性、及び周波数エージング特性の優れた圧電振動素子が得られるという効果がある。
[適用例7]前記スリットは、前記第1の傾斜部内に前記振動部の一辺から離間して設けられていることを特徴とする上記適用例に記載の圧電振動素子である。
この構成によれば、圧電振動素子が小型化されると共に、第1の傾斜部内に振動部の一辺から離間してスリットを設けたので、スリットの形成が容易になり、圧電振動素子を接着・固定する際に生じる応力の広がりを抑圧することができる。これにより、周波数温度特性、及びCI温度特性の優れた圧電振動素子が得られるという効果がある。
[適用例8]前記スリットは、前記第1の厚肉部本体に設けられている第1のスリットと、前記第1の傾斜部内に前記振動部の一辺から離間して設けられている第2のスリットと、を含むことを特徴とする上記適用例に記載の圧電振動素子である。
この構成によれば、圧電振動素子が小型化されると共に、第1の厚肉部に2個のスリットを設けたので、圧電振動素子を接着・固定する際に生じる応力の広がりをよりよく抑圧することができる。これにより、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた圧電振動素子が得られるという効果がある。
[適用例9]前記第1のスリットは、前記第1の傾斜部と、前記第1の厚肉部本体との境界部に沿って、前記第1の厚肉部本体に設けられていることを特徴とする上記適用例に記載の圧電振動素子である。
このように、第1のスリットは第1の傾斜部と第1の厚肉部本体との境界部に沿って設けたので、圧電振動素子を接着・固定する際に生じる応力の広がりをさらに抑圧することができるという効果がある。
[適用例10]上記適用例に記載の圧電振動素子と、該圧電振動素子が収容されているパッケージと、を備えていることを特徴とする圧電振動子である。
この構成によれば、高周波の圧電振動素子が小型化されると共に、圧電振動素子を接着・固定に起因する応力の低減が可能となり、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた圧電振動子が得られるという効果がある。更に、励振電極と、リード電極、及びパッド電極とは、夫々異種構成の金属材料が用いられ、且つ適切な膜厚で構成されているため、主振動のCI値を小さく、主振動のCI値に対する近接したスプリアスのCI値の比、即ちCI値比の大きな圧電振動子が得られ、且つ容量比の小さな圧電振動子が得られるという効果がある。
[適用例11]上記適用例に記載の圧電振動素子と、電子部品と、前記圧電振動素子および前記電子部品が収容されているパッケージと、を備えていることを特徴とする電子デバイスである。
このように圧電振動素子と電子部品とを、パッケージに収容した電子デバイスを構成すると、例えば、電子部品にサーミスターを適用した場合、感温素子のサーミスターが圧電振動素子の極めて近くに配置されているので、圧電振動素子の温度変化を素早く感知することができるという効果がある。また、電子部品を内蔵することにより、使用する機器側に温度コントロール機能付加するなど、機器側の負担を軽減できるという効果がある。
[適用例12]前記電子部品は、可変容量素子、サーミスター、インダクター、コンデンサーのうちの何れかであることを特徴とする上記適用例に記載の電子デバイスである。
このように電子部品に可変容量素子、サーミスター、インダクター、コンデンサーのうちの何れかを用いて電子デバイス(圧電デバイス)を構成すると、要求仕様の電子デバイスにより適したデバイスが、小型、且つ低コストで実現できるという効果がある。
[適用例13]前記圧電振動素子を駆動する発振回路をパッケージに備えていることを特徴とする上記適用例に記載の電子デバイスである。
この構成によれば、周波数再現性、周波数温度特性、エージング特性が優れ、小型、且つ高周波(例えば490MHz帯)の電子デバイス(圧電デバイス)が得られるという効果がある。また、圧電デバイスは基本波の圧電振動素子を用いているので、容量比が小さく、周波数可変幅が広がる。更に、S/N比の良好な電子デバイス(圧電デバイス)が得られるという効果がある。
また、圧電デバイスとして圧電発振器、温度補償型圧電発振器等を構成することが可能であり、周波数再現性、エージング特性、周波数温度特性に優れた電子デバイス(圧電デバイス)を構成することができるという効果がある。
[適用例14]上記適用例に記載の圧電振動子を備えていることを特徴とする電子機器である。
この構成によれば、本適用例の圧電振動子を電子機器に用いるので、高周波で周波数安定度に優れ、S/N比の良好な基準周波数源を備えた電子機器が構成できるという効果がある。
[適用例15]上記適用例に記載の圧電振動子を備えていることを特徴とする移動体である。
この構成によれば、本適用例の圧電振動子を移動体に用いるので、高周波で周波数安定度に優れ、S/N比の良好な基準周波数源を備えた移動体が構成できるという効果がある。
第1実施形態の圧電振動素子1の構造を示した概略図であり、(a)は平面図、(b)はP−P断面図、(c)はQ−Q断面図、(d)、(e)、及び(f)はスリット形状の変形例を示すQ−Q断面図。 ATカット水晶基板と結晶軸との関係を説明する図。 (a)はリード電極とパッド電極の構成を示す平面図、(b)は励振電極の構成を示す平面図。 圧電振動素子1の変形例の構成を示す平面図。 圧電振動素子1の他の変形例の構成を示す平面図。 第2実施形態の圧電振動素子2の構造を示した概略図であり、(a)は平面図、(b)はP−P断面図、(c)はQ−Q断面図。 第3実施形態の圧電振動素子3の構造を示した概略図であり、(a)は平面図、(b)はP−P断面図、(c)はQ−Q断面図。 (a)は圧電振動素子3の変形例の構成を示す平面図であり、(b)は圧電振動素子1および2の変形例の構成を示す平面図。 圧電振動素子1の変形例の構成を示す平面図。 圧電基板の製造工程図。 圧電振動素子の励振電極及びリード電極の製造工程図。 (a)は水晶ウエハーに形成された各凹陥部の平面図、(b)〜(e)は凹陥部のX軸方向の断面図。 (a)は水晶ウエハーに形成された各凹陥部の平面図、(b)〜(e)は凹陥部のZ’軸方向の断面図。 (a)は図1に示す圧電振動素子1の斜視図、(b)はQ−Q縦断面図(切断面のみを示す図)。 (a)は圧電振動子5の平面図、(b)は縦断面図。 電子デバイス(圧電デバイス)6の縦断面図。 (a)は電子デバイス(圧電デバイス)7の平面図、(b)は縦断面図。 電子デバイス(圧電デバイス)7の変形例の縦断面図。 電子機器の模式図。 電子機器の一例としてのモバイル型のパーソナルコンピューターの構成を示す斜視図。 電子機器の一例としての携帯電話機の構成を示す斜視図。 電子機器の一例としてのデジタルスチールカメラの構成を示す斜視図。 移動体の一例としての自動車の構成を示す斜視図。 (a)、(b)、(c)は変形例に係る圧電基板の構成説明図。 (a)、(b)、(c)は他の変形例に係る圧電基板の構成説明図。 圧電振動素子1の変形例であり、(a)は平面図、(b)は要部の拡大図、(c)は要部の断面図。
以下、本発明の一実施形態を、図面を参照しながら詳細に説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る圧電振動素子1の構成を示す概略図である。図1(a)は圧電振動素子1の平面図であり、(b)はP−P断面を+X軸方向からみた断面図であり、(c)はQ−Q断面を−Z’軸方向からみた断面図であり、(d)、(e)、及び(f)はスリット形状の変形例を示すQ−Q断面図である。
圧電振動素子1は、矩形状で薄肉の振動領域を含む振動部12、及び振動部12と一体化され振動領域よりも厚みが厚い厚肉部13を有する圧電基板10と、振動領域の表面、及び裏面で、対向するように夫々配置された励振電極25a、25bと、各励振電極25a、25bから夫々厚肉部13に設けられたパッド電極29a、29bに向けて夫々延在して設けられたリード電極27a、27bと、を備えている。
ここで、圧電基板10は、振動領域と周縁部を含む振動部12と、厚肉部13と、を備えている。また、X軸方向の振動部12の寸法と、Z’軸方向の振動部12の寸法との比は周知のように、1.26:1である。
また、振動領域とは、振動エネルギーが閉じ込められている領域であり、周縁部とは、振動部12内において振動領域の周縁の領域を言う。
圧電基板10は、矩形状であり、且つ薄肉で平板状の振動部12と、振動部12の四辺のうちの一辺である辺12aに沿って配置された第1の厚肉部14と、振動部12の辺12aと隣接する他の一辺である辺12bに沿って配置された第2の厚肉部15と、を備えている。つまり、圧電基板10は、振動部12の隣接する辺12a、12bに沿って一体化されたL字状の厚肉部(厚肉の支持部)13(第1の厚肉部14、第2の厚肉部15)を備えている。
第1の厚肉部14は、振動部12の辺12aに連設され、振動部12の辺12aに連接した一方の端縁(内側端縁)から他方の端縁(外側端縁)に向かって離間するにつれて厚みが漸増する第1の傾斜部14bと、第1の傾斜部14bの前記他方の端縁(外側端縁)に連接する厚肉四角柱状の第1の厚肉部本体14aと、を備えている。
同様に、第2の厚肉部15は、振動部12の辺12bに連設され、振動部12の辺12bに連接する一方の端縁(内側端縁)から他方の端縁(外側端縁)に向かって離間するにつれて厚みが漸増する第2の傾斜部15bと、第2の傾斜部15bの前記他方の端縁(外側端縁)に連接する厚肉四角柱状の第2の厚肉部本体15aと、を備えている。
なお、第1の厚肉部本体14a、第2の厚肉部本体15aとは、Y’軸方向の厚みが一定の領域をいう。
第1の厚肉部14、及び第2の厚肉部15の夫々の一方の主面(表面)は、振動部12の一方の主面(表面)よりも突設されており、振動部12の他方の主面(裏面)と、第1の厚肉部14、及び第2の厚肉部15の夫々の他方の主面(裏面)とは、同一平面上、即ち図1に示す座標軸のX−Z’面と平行な面上にある。上述した一方の主面(表面)を凹陥面ともいい、他方の主面(裏面)をフラット面(平坦面)ともいう。
第1の厚肉部14の一方の主面(表面)は、振動部12の一方の主面(表面)よりも突設して形成されている。そして、第1の厚肉部14の他方の主面(裏面)と振動部12の他方の主面(裏面)とは連続的に連接されており、同一面となるよう構成されている。なお、振動領域にメサ上の突出したエネルギー閉じ込め領域がある場合についても、周縁部の他方の主面(裏面)が第1の厚肉部14の他方の主面と連続的に連接されており、同一面となるように構成されていればよい。
第2の厚肉部15の一方の主面(表面)は、振動部12の一方の主面(表面)よりも突設して形成されている。そして、第2の厚肉部15の他方の主面(裏面)と振動部12の他方の主面(裏面)とは連続的に連接されており、同一面となるよう構成されている。なお、振動領域にメサ上の突出したエネルギー閉じ込め領域がある場合についても、周縁部の他方の主面(裏面)が第2の厚肉部15の他方の主面と連続的に連接されており、同一面となるように構成されていればよい。
このように、第1の厚肉部14は、X軸の+X方向に設けられており、第2の厚肉部15は、Z’軸の+Z’方向に設けられている。
第1の厚肉部14には、圧電振動素子1の実装にともなう少なくとも一つの応力緩和用のスリット20が、振動部12と、パッド電極29a、29bとの間に、Z’軸方向に沿って延在し,Y’軸方向に貫通するように形成されている。図1に示した実施形態例では、スリット20は第1の傾斜部14bと第1の厚肉部本体14aとの境界部(連接部)に沿って第1の厚肉部本体14aの面内に形成されている。換言すれば、スリット20は、第1の厚肉部本体14aに囲まれて形成されている。
なお、スリット20は、図1(c)に示すような貫通形成されたものに限らず底部を有した溝状のスリットであってもよい。溝状のスリットについて詳述すると、例えば、図1(d)に示すように、第1の厚肉部本体14aの表面側から形成されて底部を有する第1のスリット20a、及び第1の厚肉部本体14aの裏面側から形成されて底部を有する第2のスリット20bのように、表裏両面側から設けられたスリットで構成されてもよい。
また、図1(e)に示すように、第1の厚肉部本体14aの表面側から形成されて底部を有する第3のスリット20cで構成されてもよい。また、図1(f)に示すように、第1の厚肉部本体14aの裏面側から形成されて底部を有する第4のスリット20dが設けられている構成でもよい。
また、スリット20a,20b,20c,20dの底部の厚みは、振動部12の厚みより厚くてもよいし、薄くてもよい。
ここで説明したスリット20(20a,20b,20c,20d)の形状は、以降説明する他の実施形態、変形例、および応用例においても適用可能である。
圧電基板10は水晶基板であり、水晶基板の圧電材料は三方晶系に属し、図2に示すように互いに直交する結晶軸X、Y、Zを有する。X軸、Y軸、Z軸は、夫々電気軸、機械軸、光学軸と呼称される。そして水晶基板は、X−Z面をX軸の回りに所定の角度θだけ回転させた平面に沿って、水晶から切り出された、所謂、回転Yカット水晶基板からなる平板が圧電振動素子用として用いられる。例えば、回転Yカット水晶基板がATカット水晶基板の場合は、角度θは略35°15′である。なお、Y軸、及びZ軸もX軸の周りにθ回転させて、夫々Y’軸、及びZ’軸とする。従って、ATカット水晶基板は、直交する結晶軸X、Y’、Z’を有する。また、厚み方向がY’軸であって、Y’軸に直交するXZ’面(X軸、及びZ’軸を含む面)が主面であり、厚みすべり振動が主振動として励振される。
即ち、圧電基板10は、図2に示すようにX軸(電気軸)、Y軸(機械軸)、Z軸(光学軸)からなる直交座標系のX軸を中心として、Z軸をY軸の−Y方向へ傾けた軸をZ’軸とし、Y軸をZ軸の+Z方向へ傾けた軸をY’軸としたときに、X軸とZ’軸に平行な面で構成され、Y’軸に平行な方向を厚みとするATカット水晶基板である。
圧電基板10は、図1(a)に示すように、Y’軸に平行な方向(以下、「Y’軸方向」という)を厚み方向として、X軸に平行な方向(以下、「X軸方向」という)を長辺とし、Z’軸に平行な方向(以下、「Z’軸方向」という)を短辺とする矩形の形状を有する。
なお、圧電基板10は矩形状に限定されるものではなく、正方形、その他の四角形状であってもよいし五角形以上の多角形でも良い。また、振動部の一辺は、直線的なものに限定されず曲率を有するものであっても良いし、振動部の外形が多角形の場合、前記一辺と接続される他の一辺との間の角部に別の辺が設けられていても良い。
また、本発明に係る圧電基板は、角度θが略35°15′のATカットに限定されるものではなく、厚みすべり振動を励振するBTカット等の圧電基板にも広く適用できるのは言うまでもない。
圧電基板10を駆動する励振電極25a、25bは、図1に示す実施形態例では四角形状であり、振動部12のほぼ中央部の表裏両面(上面、及び下面両面)に、圧電基板10を介して互いに対向して形成されている。裏面(フラット面)側の励振電極25bの面積の大きさは、表面側(凹陥面側)の励振電極25aの大きさに対し、十分に大きく設定する。これは、励振電極25a、25bの質量効果によるエネルギー閉じ込め係数を、必要以上に大きくしないためである。つまり、裏面側(フラット面側)の励振電極25bを十分に大きくすることにより、プレートバック量Δ(=(fs−fe)/fs、ここでfsは圧電基板のカットオフ周波数、feは圧電基板の全面に励振電極を付着した場合の周波数)は、表面側(上面側)の励振電極25aの質量効果のみに依存する。
励振電極25a、25bは、蒸着装置、あるいはスパッタ装置等を用いて、例えば、下地にニッケル(Ni)を成膜し、その上に金(Au)を重ねて成膜する。金(Au)の厚さは、オーミックロスが大きくならない範囲で、主振動(S0)のみを閉じ込めモードとし、斜対称インハーモニック・モード(A0、A1・・)、及び対称インハーモニック・モード(S1、S3・・)を、閉じ込めモードとしないことが望ましい。しかし、例えば、490MHz帯という極めて高い高周波帯の圧電振動素子を構成しようと、電極膜厚のオーミックロスを避けるように成膜すると、低次のインハーモニック・モードが閉じ込めモードになることは避けられない。
表面側に形成した励振電極25aから延出したリード電極27aは、振動部12の表面上から第2の傾斜部15bと、第2の厚肉部本体15aとを経由して、第1の厚肉部本体14aの表面に形成されたパッド電極29aに導通接続されている。また、裏面側に形成された励振電極25bから延出したリード電極27bは、圧電基板10の裏面の端縁部を経由して、第1の厚肉部本体14aの裏面に形成されたパッド電極29bと導通接続されている。
図1(a)に示した実施形態例は、リード電極27a、27bの引出し構造の一例であり、リード電極27aは他の厚肉部を経由してもよい。ただ、リード電極27a、27bの長さは最短であることが望ましく、リード電極27a、27b同志が圧電基板10を挟んで交差しないように配慮することにより静電容量の増加を抑えることが望ましい。
また、図1の実施形態例では、圧電基板10の表裏面に対向して夫々パッド電極29a、29bを形成する例を示した。圧電振動素子1をパッケージに収容する際に、後述するように、圧電振動素子1を裏返し、パッド電極29aとパッケージの素子搭載パッドとを導電性接着剤で機械的に固定・電気的に接続し、パッド電極29bとパッケージの電極端子とをボンディングワイヤーを用いて電気的に接続する。このように圧電振動素子1を支持する部位が一点になると、導電性接着剤に起因して生じる応力を小さくすることが可能である。
振動部12と、圧電振動素子1の被支持部であるパッド電極29a、29bとの間にスリット20を設ける理由は、導電性接着剤の硬化時に発生する応力の広がりを防止することにある。
即ち、圧電振動素子1をパッケージに導電性接着剤により接着・固定する場合には、まず第1の厚肉部本体14aのパッド電極(被支持部)29aに導電性接着剤を塗布し、これをパッケージ等の素子搭載パッドに載置し、加重をかける。導電性接着剤を硬化させるために高温で所定の時間保持する。高温状態では第1の厚肉部本体14a、及びパッケージも共に膨張し、接着剤も一時的に軟化するので、第1の厚肉部本体14aには応力は生じない。導電性接着剤が硬化し、第1の厚肉部本体14a、及びパッケージが冷却してその温度が常温(25℃)に戻ると、導電性接着剤、パッケージ、及び第1の厚肉部本体14aの各線膨張係数の差により、硬化した道電性接着剤から生じる応力が生じる。この応力は、第1の厚肉部本体14aから第2の厚肉部15へ、第1の傾斜部14b、及び第2の傾斜部15bから振動部12へと広がる。この応力の広がりを防止するために、応力緩和用のスリット20を設けている。
このように、スリット20を第1の傾斜部14bと、第1の厚肉部本体14aの境界部(連接部)に沿って配置したので、第1の厚肉部本体14aのパッド電極29aの面積を広く確保することができ、塗布する導電性接着剤の径を大きくすることができる。これに対して、スリット20が第1の厚肉部本体14aのパッド電極29a寄りに配置されると、パッド電極29aの面積が狭くなり、導電性接着剤の径を小さくしなければならない。その結果、導電性接着剤内に含まれる導電フィラーの絶対量も減り、導電性が悪化し、圧電振動素子1の共振周波数が安定しなくなり周波数変動(通称、F飛び)が発生しやすくなる虞がある。
従って、スリット20は、第1の傾斜部14bと、第1の厚肉部本体14aの境界部(連接部)へ寄せて配置することが好ましい。
圧電基板10に生じる応力(∝歪)分布を求めるために、有限要素法を用いてシミュレーションを行うのが一般的である。振動部12における応力が少ない程、周波数温度特性、周波数再現性、周波数エージング特性等の優れた圧電振動素子が得られる。
導電性接着剤としては、シリコーン系、エポキシ系、ポリイミド系、ビスマレイミド系等が一般に用いられているが、脱ガスによる圧電振動素子1の周波数経年変化を考慮に入れて、ポリイミド系の導電性接着剤を用いた。
ポリイミド系の導電性接着剤は硬いので、離れた二カ所を支持する(2点支持)よりも一カ所支持の方が、発生する応力の大きさを低減できる。このため、100〜500MHzの高周波数帯、例えば490MHzの電圧制御型圧電発振器(Voltage Controlled Crystal Oscillator:VCXO)用の圧電振動素子1には、一カ所支持(一点支持)構造を用いた。
つまり、後述するように、パッド電極29aは導電性接着を用いてパッケージの素子搭載パッドに機械的に固定すると共に、電気的にも接続し、他方のパッド電極29bはパッケージの電極端子とボンディングワイヤーを用いて電気的に接続することにした。
また、図1に示した圧電基板10の外形は、X軸方向の長さがZ’軸方向の長さより長い、所謂Xロングとした。これは、圧電基板10が導電性接着剤等で接着・固定される際に応力が生じるが、周知のように、ATカット水晶基板のX軸方向の両端に圧力を加えたときの周波周変化と、Z’軸方向の両端に同じ圧力を加えたときの周波周変化と、を比べると、Z’軸方向の両端に圧力を加えたときの方が、周波数変化が小さい。つまり、支持点はZ’軸方向に沿って設ける方が応力による周波数変化は小さくなり、好ましい。
図3(a)は、圧電基板10の表裏面上に形成されたリード電極27a、27b、及びパッド電極29a、29bの配置、構成を示す平面図であり、同図(b)は励振電極25a、25bの配置、構成を示す平面図である。
リード電極27aは、圧電基板10の表面に想定される励振電極25aの端縁から延在され、第2の厚肉部15の表面を経由し、第1の厚肉部本体14aの略中央部の表面に設けられたパッド電極29aに連設するように形成する。また、リード電極27bは、圧電基板10の裏面に想定される励振電極25bの端縁から延在され、裏面(フラット面)の周縁に沿って、第1の厚肉部本体14aの略中央部の裏面に設けられたパッド電極29bに連設するように形成する。
リード電極27a、27bは、圧電基板10の表裏面上に、夫々クロム(Cr)の薄膜から成る第1層と、この第1層の上面に積層された金(Au)の薄膜から成る第2層と、を備えている。リード電極27aの一部27AのR−R断面を拡大した図を、図3(a)中左側の破線円27Aの中に示す。第1の厚肉部本体14aの表面側(上面側)にクロムの薄膜27cを下地とし、この上に金の薄膜27gを積層成膜して、リード電極27aを構成する。リード電極27bについても積層内容は同様である。
また、第1の厚肉部本体14aの中央部の表裏面に設けられたパッド電極29a、29bは、夫々クロム(Cr)の薄膜から成る第1層と、この第1層の上面に積層された金(Au)の薄膜から成る第2層と、を備えている。パッド電極29a、29bの一部29AのT−T断面を拡大した図を、図3(a)中下部の破線円29Aの中に示す。第1の厚肉部本体14aの表面側(上面側)にクロムの薄膜29cを下地とし、この上に金の薄膜29gを積層成膜してパッド電極29aを構成する。パッド電極29bについても積層内容は同様である。
リード電極27a、27b、及びパッド電極29a、29bは、同一工程で形成されるため、膜厚の一例は、第1層のクロム(Cr)の薄膜が100Å(1Å=0.1nm(ナノメートル))、金(Au)の薄膜が2000Åと厚く形成されている。このため、リード電極27a、27b、及びパッド電極29a、29bのオーミックロスは生ぜず、ボンディング強度も十分である。
なお、クロム(Cr)薄膜と金(Au)薄膜との間に、他の金属膜を挟んだ構成でもよい。
図3(b)は、前工程で形成されたリード電極27a、27bと整合するように、圧電基板10上に形成した励振電極25a、25bの配置、構成を示す平面図である。振動部12の表面側に励振電極25aを形成し、裏面側(フラット面側)に励振電極25aの面積より十分に大きく、且つ励振電極25aが面積内に納まる励振電極25bを形成する。
ここで、励振電極25a、25bの形成においては、前工程で先に形成したリード電極27a、27bと少なくとも一部が重なり合うように励振電極25a、25bを形成する。例えば、図3(b)に示すように、励振電極25aは、端部から延在されたリード電極の一部分27dを有している。リード電極の一部分27dが、リード電極27aの表面に重なり合うように構成されている。このように構成することにより、励振電極25aとリード電極27aとを電気的に確実に接続することができ、導通不良をきたすことを防止することができる。裏面側(フラット面側)に形成する励振電極25bについても同様な構成としている。
又は、前工程で先に形成するリード電極27bの一部分が、励振電極25bの領域に入り込む(重なり合う)ように形成してもよい。その際、共振周波数を決定するプレートバック量は、振動部12の表面側である一方の主面に形成される励振電極25aの質量効果のみに依存しているので、プレートバック量が設計値から変化しないように、リード電極27bの一部分が、励振電極25aと圧電基板10を挟んで平面視で重ならないように、励振電極25aの外形よりも外縁側に位置するように構成する。
励振電極25a、25bの構成の一例は、ニッケル(Ni)の薄膜から成る第1層と、この第1層の上面に積層された金(Au)の薄膜から成る第2層と、を備えている。励振電極25a、25bの一部、破線円のU−U断面図を図3(b)中右側の破線円内に示す。振動部12の表裏面の一層目にニッケル(Ni)の薄膜25nが、二層目に金(Au)の薄膜25gが、積層して成膜されている。膜厚の一例は、第1層のニッケル(Ni)の薄膜が70Åであり、金(Au)の薄膜が600Åである。
なお、ニッケル(Ni)薄膜と、金(Au)薄膜との間に他の金属膜を挟んだ構成でもよい。
圧電基板10の振動部12の基本波周波数を490MHzという極めて周波数の高い高周波数帯とした場合、リード電極27a、27b、及びパッド電極29a、29bと、励振電極25a、25bとの夫々の電極材料、及び電極膜厚を異ならせる理由を以下に説明する。リード電極27a、27b、パッド電極29a、29b、及び励振電極25a、25bを、例えば第1層に70Åのニッケル(Ni)の薄膜、第2層に600Åの金(Au)の薄膜で構成するとする。主振動は十分に閉じ込めモードとなり、そのクリスタルインピーダンス(CI;等価抵抗)も小さくなるが、リード電極27a、27bの金(Au)の膜厚が薄いために、薄膜のオーミックロスが生じる虞がある。更に、パッド電極29a、29bが、70Åのニッケル(Ni)の薄膜と、600Åの金(Au)の薄膜とで形成されていると、ワイヤボンディングの強度不足を来たす虞がある。
また、リード電極27a、27b、パッド電極29a、29b、及び励振電極25a、25bを、例えば第1層に70Åのクロム(Cr)の薄膜、第2層に600Åの金(Au)の薄膜で構成すると、金(Au)の薄膜が薄いため、熱によりクロム(Cr)が金(Au)の薄膜内に拡散し、薄膜のオーミックロスが生じ、主振動のCIが大きくなるという虞が生じる。
そこで、本実施形態では、リード電極27a、27b、及びパッド電極29a、29bと、励振電極25a、25bとの形成工程を分離し、且つ夫々の電極薄膜の材料、及び膜厚を、夫々の薄膜の機能に最適になるように設定することにした。つまり、励振電極25a、25bは、主振動を閉じ込めモードとし、近接したインハーモニック・モードはできるだけ伝搬モード(非閉じ込めモード)となるように、例えば電極膜厚をニッケル(Ni)70Å、金600Åと薄く設定した。一方、リード電極27a、27b、及びパッド電極29a、29bは、細いリード電極の膜抵抗を低減し、且つボンディングの接着強度を高めるべく、クロム(Cr)の膜厚100Å、金(Au)の膜厚2000Åと厚めに設定した。
上記の膜厚は一例であり、この数値に限定するものではない。励振電極25a、25bに、エネルギー閉じ込め理論と、薄膜のオーミックロスとを考慮して、最適の膜厚のニッケル(Ni)及び金(Au)の積層膜を用いた。また、リード電極27a、27b、及びパッド電極29a、29bの膜厚は、薄膜のオーミックロスと、ボンディング強度とを考慮して、必要な厚さのクロム(Cr)と金(Au)の積層膜を用いた。
励振電極25a、25b、リード電極27a、27b、及びパッド電極29a、29bの製造方法については後述する。
図1の実施形態例では、励振電極25a、25bの形状として四角形、つまり正方形、または矩形(X軸方向を長辺とする)とした例を示したが、これに限定する必要はない。図4に示す実施形態例は、表面側の励振電極25aが円形であり、裏面側の励振電極25bは、励振電極25aの面積より十分に大きな四角形である。なお、裏面側の励振電極25bが、面積の十分に大きな円形であってもよい。
図5に示す実施形態例は、表面側の励振電極25aが楕円形であり、裏面側の励振電極25bは、励振電極25aの面積より十分に大きな四角形である。水晶の場合、弾性定数の異方性によりX軸方向の変位分布と、Z’軸方向の変位分が異なり、変位分布をX−Z’面に平行な面で切った切断面は、楕円形になる。そのため、楕円形状の励振電極25aを用いた場合が最も効率よく、圧電振動素子1を駆動できる。即ち、圧電振動素子1の容量比γ(=C0/C1、ここで、C0は静電容量、C1は直列共振容量)を最小にできる。また、励振電極25aは長円形であってもよい。
(第2実施形態)
図6は、第2実施形態に係る圧電振動素子2の構成を示す概略図である。図6(a)は圧電振動素子2の平面図であり、(b)はP−P断面を+X軸方向からみた断面図であり、(c)はQ−Q断面を−Z’軸方向からみた断面図である。
圧電振動素子2が、図1に示す圧電振動素子1と異なる点は、応力緩和用のスリット20を設ける位置にある。本形態では、スリット20は、薄肉の振動部12の辺12aの端縁より離間した第1の傾斜部14b内に形成されている。振動部12の辺12aに沿って、スリット20の一方の端縁が辺12aに接するように、第1の傾斜部14b内にスリット20を形成するのではなく、第1の傾斜部14bの両端縁より離間してスリット20を設けている。つまり第1の傾斜部14bには、振動部12の辺12aの端縁と連接する極細の傾斜部14bbが残されている。換言すれば、辺12aとスリット20との間に極細の傾斜部14bbが形成されている。
極細の傾斜部14bbを残した理由は次の通りである。即ち、振動部12に配置された励振電極25a、25bに高周波電圧を印加して振動部12を励振すると、主振動(S0)の他にインハーモニック・モード(A0、S1、A1、S2・)が励振される。望ましくは、主振動(S0)モードのみを閉じ込めモードとし、他のインハーモニック・モードは伝搬モード(非閉じ込めモード)とすることである。しかし、振動部12が薄くなり、その基本波周波数が数百MHzとなると、電極膜のオーミックロスを避けるため、励振電極25a、25bは所定の厚さ以上にする必要がある。このため、励振電極25a、25bの厚みを所定の厚さ以上とした場合に、主振動に近接した低次のインハーモニック・モードが閉じ込めモードになる。つまり、図6の振動部12のZ’軸方向の両端縁の形状は非対称であり、またX軸方向の両端縁の形状も非対称である、これにより低次のインハーモニック・モードの定在波の振幅が、抑えられる。
(第3実施形態)
図7は、第3実施形態に係る圧電振動素子3の構成を示す概略図である。図7(a)は圧電振動素子3の平面図であり、(b)はP−P断面を+X軸方向からみた断面図であり、(c)はQ−Q断面を−Z’軸方向からみた断面図である。
圧電振動素子3が、図1に示す圧電振動素子1と異なる点は、第1の厚肉部本体14aの面内に第1のスリット20eを設けると共に、第1の傾斜部14bの面内に第2のスリット20fを形成して、2個の応力緩和用のスリットを設けた点である。第1の厚肉部本体14aの面内、及び第2の傾斜部14bの面内に夫々個別のスリットを形成する目的は、第1の厚肉部14内に、2個のスリットを設けたことにより、導電性接着剤の硬化時に発生する応力の広がりをよりよく抑圧することができる。詳細については上記で既に説明しているので、ここでは省略する。
図8(a)は、図7に示した圧電振動素子3の変形例の構成を示す平面図である。圧電振動素子3’では、第1のスリット20eは、第1の厚肉部本体14aの面内に設けられており、第2のスリット20fは、第1の傾斜部14bの面内に設けられている。しかし、第1のスリット20e、及び第2のスリット20fは、図7(a)に示す平面図のように、X軸方向に並置するのではなく、Z’軸方向に互いに離れるように段差状にずらして配置されている点が圧電振動素子3と異なる。2個の第1のスリット20e、及び第2のスリット20fを設けることにより、導電性接着剤に起因して生じる応力を、振動部12まで広げないように抑圧する効果を高めることができる。
図8(b)は図1、6に示す第1、及び第2実施形態の圧電振動素子1、2の変形例の構成を示す平面図である。圧電振動素子1’では、スリット20は、第1の厚肉部本体14aと、第1の傾斜部14bとの領域に跨って形成されている。このようにスリット20を形成することにより、圧電振動素子1、2の構造の効果を同時に満たす効果を期待でき、導電性接着剤に起因して生じる応力を、振動部12まで広げないように抑圧する効果を高めることができる。
図9は、図1に示した実施形態例の圧電振動素子1の変形例の構成を示す平面図である。圧電振動素子1”では、リード電極27aは、表面の励振電極25aの端縁から延在され、第2の厚肉部15の表面を経由し、第1の厚肉部本体14aの中央部左側の表面に設けられたパッド電極29aに連設するように形成されている。また、リード電極27bは、裏面の励振電極25bの端縁から延在され、裏面の端部、および表面と裏面に連接する圧電基板10の端縁を経由し、第1の厚肉部本体14aの中央部右側の表面に設けられたパッド電極29bに連設するように形成されている。
図1に示した実施形態例の圧電振動素子1と異なる点は、パッド電極29a、29bが配置される位置である。圧電振動素子1”のパッド電極29a、29bは第1の厚肉部本体14aの表面に、互いに離れて設けられている。パッド電極29bは、裏面に形成されたリード電極27bと導通するように、圧電基板10の端縁に跨って導体薄膜が形成されている。表面側のパッド電極29a、29bに導電性接着剤を塗布し、これを反転してパッケージの素子搭載パッドに載置する際に、容易に導通が図られるように、パッド電極29a、29bが構成されている。
即ち、図9の変形例では圧電振動素子1”の一方の面(表面)の第1の厚肉部14の2カ所(2点)に導電性接着剤を塗布して、導通と支持・固定を図るようにした構造である。低背化に適した構造であるが、導電性接着剤に起因する応力が少し大きくなる虞がある。そこで、第3実施形態である圧電振動素子3や圧電振動素子3’に示すようなスリットを2つ設けた圧電振動素子を採用することで、導電性接着剤の硬化時に発生する応力の振動領域への影響を抑圧できることが期待できる。
または、導電性接着剤の硬度が比較的硬い場合には、導電性接着剤を塗布する「2カ所(2点)」の中心間距離を狭めることにより、2点の中心間で生じる実装に係る歪み(応力)を低減させる手法もある。また一方、導電性接着剤の硬度が比較的柔らかい、シリコーン系接着剤を用いることにより、導電性接着剤に緩衝性を持たせ、2点の中心間で生じる実装に係る歪み(応力)を低減させる手法もある。
図10は、圧電基板10の振動部12、外形、及びスリット20の形成に係る製造工程図である。ここでは、圧電ウエハーとして水晶ウエハーを例にし、図はY’−Z’面における断面のみを示す。
工程S1では、両面がポリッシュ加工された所定の厚さ、例えば80μmの水晶ウエハー10Wを、十分に洗浄し、乾燥した後、表裏面にスパッタリング等により、クロム(Cr)を下地にし、その上に金(Au)を積層した金属膜(耐蝕膜)Mを夫々成膜する。
工程S2では、表裏面の金属膜Mの上に夫々フォトレジスト膜(レジスト膜と称す)Rを両面に塗布する。
工程S3では、露光装置とマスクパターンを用いて、表面の振動部12(凹陥部)に相当する部位のレジスト膜Rを露光する。感光したレジスト膜Rを現像して、感光したレジスト膜を剥離すると、表面の振動部12に相当する位置の金属膜Mが露出する。レジスト膜Rから露出した金層膜Mを王水等の溶液を用いて溶かして除去すると、表面の振動部12に相当する位置の水晶面が露出する。
工程S4では、露出した水晶面をフッ化水素酸(フッ酸)とフッ化アンモニウムとの混合液を用いて、所望の厚さになるまで表面からエッチングする。
工程S5では、所定の溶液を用いて両面のレジスト膜Rを剥離し、更に露出した両面の金属膜Mを、王水等を用いて除去する。この段階で水晶ウエハー10Wは、表面(片面)の振動部12に相当する位置に形成された凹陥部が、格子状に規則的に並んだ状態となる。
工程S6では、工程S5で得られた水晶ウエハー10Wの両面に金属膜M(Cr+Au)を成膜する。
工程S7では、工程S6で形成された金属膜M(Cr+Au)の両面に夫々レジスト膜Rを塗布する。
工程S8では、露光装置と所定のマスクパターンを用いて、圧電基板10の外形とスリット20(図示されず)に相当する部位の各レジスト膜Rを表裏両面から感光し、現像して、各レジスト膜Rを剥離する。更に、露出した金属膜Mを王水等の溶液で溶かして除去する。
工程S9では露出した水晶面をフッ化水素酸(フッ酸)とフッ化アンモニウムとの混合液を用いてエッチングし、圧電基板10の外形とスリット20を形成する。なお、スリット20を、水晶ウエハー10Wの表裏両面側から、それぞれ底部を有する形状(図1(d)参照)で形成する場合には、スリット20に対応する位置のレジスト膜Rの幅を減少させることによって起こるエッチング速度の変化などを用いることにより形成することができる。
工程S10では、残ったレジスト膜Rを剥離し、露出した金属膜Mを溶かして除去する。この段階では水晶ウエハー10Wは、振動部12と厚肉部13とを有する圧電基板10が支持細片で互いに連接し、格子状に規則的に並んだ状態となる。
なお、X軸に直交する断面の外形を示したが、Z’軸に直交する断面の外形も両面エッチングにより加工されて、図1に示すような形状となる。
工程S10が終了した後、水晶ウエハー10Wに格子状に規則的に並んだ各圧電基板10の振動部12の厚さを、例えば光学的手法を用いて計測する。計測した各振動部12の厚さが所定の厚さより厚い場合には、夫々厚さの微調整を行って所定の厚さの範囲に入るようにする。
次に、水晶ウエハー10Wに形成された各圧電基板10の振動部12の厚さが、所定の厚さの範囲内に調整された後、各圧電基板10に励振電極25a、25b、及びリード電極27a、27bを形成し圧電振動素子を製造する手順を、図11に示す圧電振動素子の励振電極及びリード電極の製造工程図を用いて説明する。
工程S11では、水晶ウエハー10Wの表裏全面にスパッタリング等でクロム(Cr)薄膜を成膜し、その上に金(Au)薄膜を積層して、金属膜Mを成膜する。
次に工程S12では、金属膜Mの上に夫々レジストを塗布し、レジスト膜Rを成膜する。
工程S13では、リード電極27a、27b、及びパッド電極29a,29b用のマスクパターンMkを用いて、表裏面上のリード電極27a、27b、及びパッド電極29a,29bに相当する部位のレジスト膜Rを露光する。
次の工程S14では、レジスト膜Rを現像し、不要なレジスト膜Rを剥離する。この剥離により露出した金属膜Mを王水等の溶液で溶かして除去する。リード電極27a、27b、及びパッド電極29a,29bに相当する位置上のレジスト膜Rはそのまま残しておく。
次の工程S15では、水晶ウエハー10Wの表裏全面にスパッタリング等でニッケル(Ni)薄膜を成膜し、その上に金(Au)薄膜を積層して、金属膜Mを成膜する。更に、金属膜Mの上にレジスト膜Rを塗布する。工程S15の図では、煩雑さを避けるため、リード電極、及びパッド電極用の金属膜とレジスト膜(M+R)を、符号Cを用いて表わしている。そして、励振電極25a、25b用のマスクパターンMkを用いて、励振電極25a、25bに相当する部位のレジスト膜Rを露光する。
工程S16では、感光したレジスト膜Rを現像して不要なレジスト膜Rを、溶液を用いて剥離する。
次の工程S17では、レジスト膜Rが剥離して露出した金属膜Mを王水等の溶液で溶かして除去する。工程S18では、符号C(リード電極、及びパッド電極用の金属膜Mとレジスト膜R)を金属膜Mとレジスト膜Rに戻して表わす。
工程S19では、金属膜M上に残った不要なレジスト膜Rを剥離すると、各圧電基板10上には金属膜M(Ni+Au)の励振電極25a、25bと、金属膜M(Cr+Au)のリード電極27a、27b、及び図示しないパッド電極29a、29bが形成されている。
その後、水晶ウエハー10Wに連接する支持細片を折り取りすることにより、分割された圧電振動素子が得られる。
ところで、水晶をウェットエッチングすると、Z軸に沿ってエッチングが進行していくが、各結晶軸の方向に応じてエッチングの速度が変わってくるという水晶特有のエッチング異方性を有している。従って、当該エッチングの異方性により現出するエッチング面は、各結晶軸の方向に応じて違いが現れることは、これまでエッチング異方性を研究テーマにした数多くの学術論文や先行特許文献において論じられてきた。しかしながら、このような背景があるにもかかわらず、水晶のエッチング異方性について明確に系統立てられた資料がなく、ナノ加工技術的側面が非常に強いためにエッチングの諸条件(エッチング溶液の種類や、エッチングレート、エッチング温度、等)の違いによるものなのか、文献によっては、現出する結晶面に相異があるものも多々見受けられるのが現状である。
そこで、本願発明者は、圧電基板をフォトリソグラフィー技法とウェットエッチング技法を用いて製造するに当たり、エッチングシミュレーションと試作実験、並びにナノレベルでの表面分析と観察を繰り返し、圧電振動子は以下の態様となることが判明したので、以下詳細に説明をする。
図12、図13は、フォトリソグラフィー技術とエッチング手法により形成される、ATカットの水晶ウエハー10W上の凹陥部11の概略形状を説明する図である。
図12(a)は、図10の工程S5に相当する水晶ウエハー10Wの平面図である。この段階では、水晶ウエハー10Wの一方の面に凹陥部11が格子状で且つ規則的に形成されている。図12(b)は、X軸方向の断面図であり、凹陥部11の各壁面は垂直の壁面ではなく傾斜面を呈している。つまり、−X軸方向の壁面X1は傾斜面を形成し、+X軸方向の壁面X2は傾斜面を形成している。X軸に直交する溝を形成すると、溝の±X軸方向の壁面X3は楔型を呈する。
図12(c)〜(e)は凹陥部11の壁面X1、X2、及び溝部の壁面X3の拡大図である。−X軸方向の壁面X1は、図12(c)に示すように、水晶ウエハー10WのX−Z’面に対し略62度の傾斜でエッチングされる。+X軸方向の壁面X2は、図12(d)に示すように、水晶ウエハー10WのX−Z’面に対し直交(90度)して少しエッチングが進むが、その後は緩やかな傾斜でエッチングが進行する。形成された凹陥部11の底面は、水晶ウエハー10Wの元の平面(X−Z’面)と平行にエッチングされる。つまり、振動部12は表裏面が平行の平板状となる。
図12(e)は、水晶ウエハー10Wに形成した溝部の断面図である。X軸に直交して形成された溝部の断面は楔型を呈している。これは溝部の壁面X3が、−X軸方向の壁面X1と、+X軸方向の壁面X2とで形成されるために、楔型となるのである。
凹陥部11が形成された面に電極を設ける場合は、+X軸方向に形成される壁面X2の垂直の壁面に注意する必要がある。電極膜の断裂が起り易いので避ける方が望ましい。
図13は水晶ウエハー10Wに形成された凹陥部11の、特にZ’軸方向の断面図の壁面を説明する図である。
図13(a)は、水晶ウエハー10Wの平面図である。図13(b)〜(e)は、水晶ウエハー10WのZ’軸方向の断面を+X軸方向より見た断面図である。
図13(b)に示すように、+Z’軸方向の壁面Z1は傾斜面を形成し、−Z’軸方向の壁面Z2は傾斜面を形成する。Z’軸に直交する溝部を形成すると、溝部の断面の壁面Z3は楔型を呈する。
図13(c)〜(e)は、凹陥部11の壁面Z1、Z2、及び溝部の壁面Z3の拡大図である。図13(c)に示すように、+Z’軸方向の壁面Z1は、水晶ウエハー10Wの平面に対し比較的緩やかな傾斜でエッチングされる。
図13(d)に示すように、−Z’軸方向の壁面Z2は、水晶ウエハー10Wの平面に対し急な傾斜面Z2aでエッチングされるが、その後は緩やかな傾斜面Z2bでエッチングが進行し、その後はより緩やかな傾斜面Z2cとなる。
図13(e)は、Z’軸方向に直交して形成した溝部の断面図で、楔型断面の壁面Z3となる。この溝部の壁面Z3は、+Z’軸方向の壁面Z1と、−Z’軸方向の傾斜面Z2aと、傾斜面Z2bとで形成されるため、ほぼ楔型の断面を呈する。
本実施形態の特徴の1つは、図13(d)に示す、一点鎖線Zcより−Z’軸側の、緩やかな傾斜面Z2c、及びこれに連設する厚肉部17と、図12(c)に示す、一点鎖線Zcより−X軸側の、壁面X1、及びこれに連設する厚肉部16と、をエッチングにより取り去ることにより、圧電基板10の小型化を図ったことである。つまり、振動部12は、2つの隣接する辺をL字状の厚肉部13によって保持された圧電基板10である。
更に、緩やかな傾斜面Z2c、及び厚肉部17と、壁面X1、及び厚肉部16と、を共に削除することを前提として製造方法を確立した。このため、振動部12となる平坦な超薄部の面積を、先行技術として掲げた、従来の如きX軸に沿って振動領域の両端に存在する厚肉部を備えた構造に比べて大きく確保することを実現した。
その結果、振動領域に励振される厚み滑り振動モードにおいて、弾性定数の異方性により振動変位分布がX軸方向に長径を有する楕円状となることを十分に考慮して、設計することが可能となり、長軸対短軸の比を、1.26:1が望ましいところ、製造寸法のバラツキ等を考慮して、1.14〜1.39:1の範囲程度となるような設計が十分に可能となった。
図14は、図1に示した圧電振動素子1のより詳細な図であり、同図(a)は斜視図であり、同図(b)は図1(a)におけるQ−Q断面の切り口である。図14(a)、(b)に示すように、圧電振動素子1の外形は、X軸に交わる端面に傾斜面が現出する。つまり、−X軸側の端面には図14(a)の傾斜面A1が現出し、+X軸側の端面には図14(b)の傾斜面A2が現出している。傾斜面A1と傾斜面A2のXY’平面に平行な断面形状が、異なっている。
また、傾斜面A1、A2共に、端面と、圧電基板10の表面とが交わる付近には、図12(b)、(d)に示すような+X軸方向に形成される壁面X2のような垂直の壁面は現出していない。この理由は、凹陥部11を形成するのに必要なエッチング時間に比べて、傾斜面A1と傾斜面A2の形成時間は、圧電基板(水晶基板)10を表裏からエッチングを開始し、表裏が貫通するまでエッチングするので、エッチング時間が十分に長いためにオーバーエッチングの作用により、垂直の壁面が現出しないのである。
傾斜面A1を構成する傾斜面a1、a2は、X軸に対してほぼ対称関係にあり、傾斜面A2を構成する傾斜面b1、b2、b3、b4では、傾斜面b1とb4、傾斜面b2とb3とが、各々X軸に対してほぼ対称関係にあることが判明した。更に、傾斜面a1、a2のX軸に対する傾斜角度αと、傾斜面b1、b4のX軸に対する傾斜角度βとは、β<αの関係にある。
第1〜3実施形態例に示すように、基本波を用いた高周波の圧電振動素子1,2,3が小型化され、量産化されると共に、厚肉部13と振動部12の間にスリット20を設けることにより、接着・固定に起因する応力の広がりを抑圧できるので、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた圧電振動素子1,2,3が得られるという効果がある。
また、図3に示すように、励振電極25a、25と、リード電極27a、27b及びパッド電極29a、29bとは、夫々異種構成の金属材料が用いられ、且つ適切な膜厚で構成されているため、主振動のCI値が小さく、主振動のCI値に対する近接したスプリアスのCI値の比、即ちCI値比の大きな圧電振動素子が得られるという効果がある。
また、図1、図3に示すように、励振電極25a、25bはニッケルと金の積層膜で形成され、リード電極27a、27b、及びパッド電極29a、29bはクロムと金の積層膜で形成されているため、主振動のCI値が小さく、主振動のCI値に対する近接したスプリアスのCI値の比、即ちCI値比の大きな、ボンディングに十分耐えられる圧電振動素子が得られるという効果がある。
圧電基板10が、図2の切断角度図に示されるように形成されるため、要求仕様の圧電振動素子を、より適したカットアングルで構成することが可能であり、且つ仕様にそった周波数温度特性を有し、CI値が小さく、CI値比の大きな高周波の圧電振動素子が得られるという効果がある。
また、圧電基板10に水晶ATカット水晶基板を用いることにより、フォトリソグラフィー技術、及びエッチング技法に関する実績・経験が活用できるので、圧電基板の量産が可能であるのみならず、高精度の圧電基板が得られ、CI値が小さく、CI値比の大きな圧電振動素子の量産が可能になるという効果がある。
図15は、本発明に係る実施形態の圧電振動子5の構成を示す図であり、同図(a)は蓋部材を省略した平面図であり、同図(b)は縦断面図である。
圧電振動子5は、図15に示すように、例えば圧電振動素子1と、圧電振動素子1を収容するパッケージとを備えている。パッケージは、矩形の箱状に形成されているパッケージ本体40と、金属、セラミック、ガラス等から成る蓋部材49とから成る。なお、以下の説明では、便宜上、図15(b)においてパッケージ本体40に対して蓋部材49の設置されている方向を上方向(上面側)として記載する。
パッケージ本体40は、第1の基板41と、第2の基板42と、第3の基板43とを積層して形成されており、絶縁材料として、酸化アルミニウム質のセラミック・グリーンシートを成形し、箱状とした後で、焼結して形成される。実装端子45は、第1の基板41の外部底面に複数形成されている。第3の基板43は中央部が除去された環状体であり、第3の基板43の上部周縁に例えばコバール等の金属シールリング44が形成されている。
第3の基板43と第2の基板42とにより、圧電振動素子1を収容する凹部(キャビティー)が形成される。第2の基板42の上面の所定の位置には、導体46により実装端子45と電気的に導通する素子搭載パッド47が設けられている。素子搭載パッド47の位置は、圧電振動素子1を載置した際に第1の厚肉部本体14aに形成したパッド電極29aに対応するように配置されている。
圧電振動素子1を固定する際にはまず、圧電振動素子1のパッド電極29aに導電性接着剤30を塗布し、圧電振動素子1を上下反転(裏返し)してパッケージ本体40の素子搭載パッド47に載置して荷重をかける。導電性接着剤30の特性として、導電性接着剤30に起因する応力(∝歪)の大きさは、シリコーン系接着剤、エポキシ系接着剤、ポリイミド系接着剤の順で大きくなる。また、脱ガスは、ポリイミド系接着剤、エポキシ系接着剤、シリコーン系接着剤の順で大きくなる。導電性接着剤30としては経年変化を考慮して脱ガスの少ないポリイミド系接着剤を用いることにした。
パッケージ本体40に搭載された圧電振動素子1の導電性接着剤30を硬化させるために、所定の温度の高温炉に所定の時間入れる。導電性接着剤30を硬化させた後、反転して表面側になったパッド電極29bと、パッケージ本体40の電極端子48とをボンディングワイヤーBWで導通接続する。図15(b)に示すように、圧電振動素子1をパッケージ本体40に支持・固定する部分は、一カ所(1点)、即ちパッド電極29aと、素子搭載パッド47との固定部分だけであるため、支持固定により生じる応力の大きさを小さくすることが可能となる。
アニール処理を施した後、励振電極25a、25bに質量を付加するか、又は質量を減じて周波数調整を行う。パッケージ本体40の上面に形成したシールリング44上に、蓋部材49を載置し、真空中、又は窒素N2ガスの雰囲気中で蓋部材49をシーム溶接して密封し、圧電振動子5が完成する。又は、パッケージ本体40の上面に塗布した低融点ガラスに蓋部材49を載置し、溶融して密着する方法もある。この場合もパッケージのキャビティー内は真空にするか、又は窒素N2ガス等の不活性ガスで充填して、圧電振動子5が完成する。なお、本明細書中に記載している真空とは、減圧雰囲気、或いは低真空の状態を指している。
図1、図6、図7に示す夫々の圧電振動素子1、2、3は、圧電基板10の表裏面に夫々対向して配置されたパッド電極29a、29bが形成されている。図15に示すように、圧電振動素子1をパッケージ本体40に収容する際に、圧電振動素子1を裏返し、パッド電極29aとパッケージ本体40の素子搭載パッド47とを導電性接着剤30で固定・接続する。反転して表面側になったパッド電極29bと、パッケージ本体40の電極端子48とをボンディングワイヤーBWで接続する。このように圧電振動素子1を支持する部位が一点になると、導電性接着剤30に起因して生じる応力が小さくなる。また、パッケージ本体40に収容するに当たり、圧電振動素子1を裏返して、より大きな励振電極25bを上面にすると、圧電振動素子1の周波数微調が容易となる。
また、パッド電極29a、29bの間隔を離して形成した圧電振動素子を用いて圧電振動子5を構成してもよい。この場合も図15で説明した圧電振動子5と同様に圧電振動子を構成することができる。
また図9に示すように、パッド電極29a、29bを同一面上に間隔を離して形成した圧電振動素子1”を用いて圧電振動子5を構成してもよい。この場合、圧電振動素子1”は、パッド電極29a、29bに夫々導電性接着剤30を塗布して、反転してパッケージ本体40に形成された素子搭載パッド47に載置し、加重をかけて、支持・固定を図るようにした構造である。低背化に適した構造であるが、被支持部がパッド電極29a、29bの2点となるので、導電性接着剤30に起因する応力が少し大きくなる虞がある。
以上の圧電振動子5の実施形態例では、パッケージ本体40に積層板を用いた例を説明したが、パッケージ本体40に単層セラミック板を用い、蓋体に絞り加工を施したキャップを用いて圧電振動子を構成してもよい。
図1、図6、図7の実施形態に示す圧電振動素子1、2、3を用いて、図15に示す圧電振動子を構成しているので、高周波の圧電振動子が小型化されると共に、圧電振動素子1、2、3を支持する部位が一点であり、且つ厚肉部13と振動部12の間にスリット20を設けることにより、導電性接着剤30に起因して生じる応力を小さくすることができるため、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた圧電振動子が得られるという効果がる。
また、図3の実施形態例に示すように、励振電極25a、25bの電極材料と、リード電極27a、27b、及びパッド電極29a、29bの電極材料と、を異ならせ、又それらの膜厚も夫々の機能に最適なように構成した圧電振動素子1、2、3を用いているため、主振動のCI値が小さく、主振動のCI値に対する近接したスプリアスのCI値の比、即ちCI値比の大きな圧電振動素子1、2、3が得られるという効果がある。
図16は、本発明に係る電子デバイスの実施形態を示す縦断面図である。電子デバイス6は、圧電振動素子1(圧電振動素子2、3でもよい)と、電子部品の1つであり温度センサーとしての感温素子であるサーミスターThと、圧電振動素子1及びサーミスターThを収容するパッケージと、を概略備えている。以下の説明においても、パッケージ本体40に対して蓋部材49の設置されている方向を上方向(上面側)、上方向の反対方向を下方向(下面側)として記載する。
パッケージは、パッケージ本体40aと、蓋部材49とを備えている。パッケージ本体40aは、上面側に圧電振動素子1を収容するキャビティー31が形成され、外部下面側にサーミスターThを収容する凹部32が形成されている。キャビティー31の内底面の端部に素子搭載用パッド47が設けられ、素子搭載用パッド47は導体46で実装端子45と導通接続されている。圧電振動素子1のパッド電極29aに導電性接着剤30を塗布し、これを反転し、素子搭載用パッド47に載置する。上下反転して上面側になったパッド電極29bと電極端子48とをボンディングワイヤーBWで接続する。
パッケージ本体40aの上部には、コバール等からなるシールリング44が焼成されており、このシールリング44に蓋部材49を載置し、抵抗溶接機等を用いて溶接し、キャビティー31を気密封止する。キャビティー31内は真空にしてもよいし、不活性ガスを封入してもよい。裏面の凹部32に半田ボール等を用いてサーミスターThの端子を接続して、電子デバイス6を完成する。
以上の実施形態例では、パッケージ本体40aの外部下面側に凹部32を形成し、電子部品を搭載した例を説明したが、パッケージ本体40aの内部底面に凹部32を形成し、電子部品を搭載してもよい。
また、圧電振動素子1とサーミスターThとをパッケージ本体40aに収容した例を説明したが、パッケージ本体40aに収容する電子部品としては、サーミスター、コンデンサー、リアクタンス素子、半導体素子のうち少なくとも一つを収容して電子デバイスを構成することが望ましい。
図16に示す実施形態例のように、圧電振動素子1とサーミスターThとをパッケージ本体40aに収容した電子デバイス6を構成すると、感温素子のサーミスターThが圧電振動素子1の極めて近くに配置されているので、圧電振動素子1の温度変化を素早く感知することができるという効果がある。
また、本発明の圧電振動素子と上記の電子部品とで電子デバイスを構成することにより、高周波、且つ小型の電子デバイスが構成できるので、多方面の用途に利用できるという効果がある。
また、電子部品に可変容量素子、サーミスター、インダクター、コンデンサーのうちの何れかを用いて電子デバイス(圧電デバイス)を構成すると、要求仕様により適した電子デバイスが、小型、且つ低コストで実現できるという効果がある。
図17は、本発明の実施形態例に係る電子デバイスの一種である圧電発振器7の構成を示す図であって、同図(a)は蓋部材を省略した平面図であり、同図(b)は縦断面図である。圧電発振器7は、パッケージ本体40b、及び蓋部材49と、圧電振動素子1と、圧電振動素子1を励振する発振回路を搭載したIC部品51と、電圧により容量が変化する可変容量素子、温度により抵抗が変化するサーミスター、インダクター等の電子部品52と、を備えている。
圧電振動素子1のパッド電極29aに導電性接着剤(ポリイミド系)30を塗布し、これを反転してパッケージ本体40bの素子搭載パッド47aに載置し、パッド電極29aと素子搭載パッド47aとの導通を図る。上下反転して上面側になったパッド電極29bは、パッケージ本体40bの他の電極端子48とボンディングワイヤーBWにて接続する。
IC部品51をパッケージ本体40bの所定の位置に固定し、IC部品51の端子と、パッケージ本体40bの電極端子55とをボンディングワイヤーBWにて接続し導通を図る。また、電子部品52は、パッケージ本体40bの所定の位置に載置し、金属バンプ等を用いて接続する。
パッケージ本体40bを真空、あるいは窒素等の不活性気体で満たし、パッケージ本体40bを蓋部材49で密封して圧電発振器(電子デバイス)7を完成する。
パッド電極29bとパッケージ本体40bの電極端子48とをボンディングワイヤーBWで接続する工法は、圧電振動素子1を支持する部位が一点になり、導電性接着剤30に起因して生じる応力を小さくする。また、パッケージ本体40bに収容するに当たり、圧電振動素子1を上下反転して、より大きな励振電極25bを上面にしたので、圧電発振器(電子デバイス)7の周波数微調が容易となる。
図17の実施形態に示した圧電発振器(電子デバイス)7は、同一のパッケージ本体40b上に圧電振動素子1、IC部品51、及び電子部品52を配置したが、図18に示した圧電発振器7の変形例である圧電発振器7’は、H型のパッケージ本体60を用い、上部に形成したキャビティー31に圧電振動素子1を収容し、キャビティー31内部を真空、又は窒素N2ガスで満たし、蓋部材61で密封する。下部には圧電振動素子1を励振する発振回路、増幅回路等を搭載したIC部品51と、可変容量素子と、必要に応じてインダクター、サーミスター、コンデンサー等の電子部品52と、を金属バンプ(Auバンプ)68を介して、パッケージ本体60の端子67に導通・接続する。
本発明の実施形態例に係る電子デバイスの、変形例である圧電発振器7’は、圧電振動素子1と、IC部品51、及び電子部品52とを分離し、圧電振動素子1を単独で気密封止しているために、圧電発振器7’の周波数エージング特性が優れている。
図17、図18に示すように、電子デバイス(例えば電圧制御型圧電発振器)を構成することにより、周波数再現性、周波数温度特性、エージング特性が優れ、小型、且つ高周波(例えば490MHz帯)の電圧制御型圧電発振器が得られるという効果がある。また、圧電デバイスは基本波の圧電振動素子1を用いているので、容量比が小さく、周波数可変幅が広がる。更に、S/N比の良好な電圧制御型圧電発振器が得られるという効果がある。
また、圧電デバイスとして圧電発振器、温度補償型圧電発振器等を構成することが可能であり、周波数再現性、エージング特性、周波数温度特性に優れた圧電発振器を構成することができるという効果がある。
[電子機器]
次いで、本発明の一実施形態に係る圧電振動素子1を用いた圧電振動子5を適用した電子機器について、図19〜図23に基づき、詳細に説明する。
図19は本実施形態に係る電子機器の構成を示す概略構成図である。電子機器8は上記の圧電振動子5を備えている。圧電振動子5を用いた電子機器8としては、伝送機器等が挙げられる。これらの電子機器8において圧電振動子5は、基準信号源、あるいは電圧可変型圧電発振器(VCXO)等として用いられ、小型で、特性の良好な電子機器を提供できる。
図19の模式図に示すように、本実施形態の圧電振動子5を電子機器8に用いることにより、高周波で周波数安定度に優れ、S/N比の良好な基準周波数源を備えた電子機器が構成できるという効果がある。
図20は、本発明の一実施形態に係る振動子1を備える電子機器としてのモバイル型(又はノート型)のパーソナルコンピューターの構成の概略を示す斜視図である。この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部100を備えた表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。このようなパーソナルコンピューター1100には、圧電振動子5が内蔵されている。
図21は、本発明の一実施形態に係る振動子1を備える電子機器としての携帯電話機(PHSも含む)の構成の概略を示す斜視図である。この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206を備え、操作ボタン1202と受話口1204との間には、表示部100が配置されている。このような携帯電話機1200には、圧電振動子5が内蔵されている。
図21は、本発明の一実施形態に係る圧電振動子5を備える電子機器としてのデジタルスチールカメラの構成の概略を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、デジタルスチールカメラ1300は、被写体の光像をCCD(Charge Coupled Device)等の撮像素子により光電変換して撮像信号(画像信号)を生成する。
デジタルスチールカメラ1300におけるケース(ボディー)1302の背面には、表示部100が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、表示部100は、被写体を電子画像として表示するファインダーとして機能する。また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)やCCD等を含む受光ユニット1304が設けられている。
撮影者が表示部100に表示された被写体像を確認し、シャッターボタン1306を押下すると、その時点におけるCCDの撮像信号が、メモリー1308に転送・格納される。また、このデジタルスチールカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニター1430が、データ通信用の入出力端子1314にはパーソナルコンピューター1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、メモリー1308に格納された撮像信号が、テレビモニター1430や、パーソナルコンピューター1440に出力される構成になっている。このようなデジタルスチールカメラ1300には、圧電振動子5が内蔵されている。
なお、本発明の一実施形態に係る圧電振動子5は、図20のパーソナルコンピューター(モバイル型パーソナルコンピューター)、図21の携帯電話機、図22のデジタルスチールカメラの他にも、例えば、インクジェット式吐出装置(例えばインクジェットプリンター)、ラップトップ型パーソナルコンピューター、テレビ、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター等の電子機器に適用することができる。
[移動体]
図23は移動体の一例としての自動車を概略的に示す斜視図である。自動車106には本発明に係る圧電振動子5が搭載されている。例えば、同図に示すように、移動体としての自動車106には、ジャイロ素子2を用いた振動子1を内蔵してタイヤ109などを制御する電子制御ユニット108が車体107に搭載されている。また、圧電振動子5は、他にもキーレスエントリー、イモビライザー、カーナビゲーションシステム、カーエアコン、アンチロックブレーキシステム(ABS)、エアバック、タイヤ・プレッシャー・モニタリング・システム(TPMS:Tire Pressure Monitoring System)、エンジンコントロール、ハイブリッド自動車や電気自動車の電池モニター、車体姿勢制御システム、等の電子制御ユニット(ECU:electronic control unit)に広く適用できる。
[変形例 その1]
圧電振動素子の実装に起因した応力を更に軽減、抑圧する手法として、以下に示すごとき構造を採用することができる。
図24(a)の変形例における圧電基板10は、振動領域を有する薄肉の振動部12と、振動部12の周縁に設けられ、振動部12よりも厚い厚肉部13とを備えた圧電基板10である。厚肉部13は、第1の厚肉部本体14a、および第2の厚肉部本体15aを含み、第1の厚肉部本体14a、および第2の厚肉部本体15aの振動部12側の内壁には第1の傾斜部14b、および第2の傾斜部15bが設けられている。第1の厚肉部本体14aは、縁辺の方向に設けられた緩衝部Sを介して第1の傾斜部14bとマウント部Fが並んで延設されている。緩衝部Sは、マウント部Fと第1の傾斜部14bとの間にスリット20を有している。マウント部Fは、緩衝部Sと厚肉部13との並ぶ方向に対して直交方向の両端部に、面取り部21を有している。
図24(b)の圧電基板10は、振動領域を有する薄肉の振動部12と、振動部12の周縁に設けられ、振動部12よりも厚い厚肉部13とを備えた圧電基板10である。
厚肉部13は、第1の厚肉部本体14a、および第2の厚肉部本体15aを含み、第1、および第2の厚肉部本体14a、15aの振動部12側の内壁には第1、および第2の傾斜部14b、15bが設けられている。第1の厚肉部本体14aは、縁辺の方向に設けられた緩衝部Sを介して第1の傾斜部14bとマウント部Fが並んで延設されている。緩衝部Sは、マウント部Fと第1の傾斜部14bとの間にスリット20を有している。
マウント部Fは、緩衝部Sと厚肉部13との並ぶ方向に対して直交方向(以下直交方向という)の両端部に切欠き部22を有している。スリット20の長手方向(延伸方向)は、前記直交方向と平行である。また、マウント部Fの前記直交方向の幅は、スリットの長手方向の幅より狭く形成されている。スリットの長手方向の両端部は、マウント部Fの両端部よりも緩衝部Sの前記直交方向の外周寄りに設けられている。
図24(c)の圧電基板10は、振動領域を有する薄肉の振動部12と、振動部12の周縁に設けられた厚肉部13とを備えた圧電基板10である。厚肉部13は、第1の厚肉部本体14a、および第2の厚肉部本体15aを含み、第1、および第2の厚肉部本体14a、15aの振動部12側の内壁には第1、および第2の傾斜部14b、15bが設けられている。第1の厚肉部本体14aには、緩衝部Sとマウント部Fが順に連結されている。また、第1の厚肉部本体14aには、緩衝部Sと厚肉部13との並ぶ方向に対して直交方向(以下、直行方向という)の両端部が第2の厚肉部本体15aと振動部12とを合わせた幅よりも突出している肩部が設けられている。緩衝部Sは、マウント部Fと第1の傾斜部14bとの間にスリット20を有している。マウント部Fは、前記直交方向の肩部を含む両端部に、切欠き部22を有している。
図25は、図24の構造に対し、2点支持、即ち横並びに設けられているマウント部F1、及びマウント部F2の形態をとることを特徴としている。
なお、図24、図25においては、厚肉部13の第1、および第2の厚肉部本体14a、15aの内壁に第1、および第2の傾斜部14b、15bが図示されている一方で、また厚肉部13の外側の側壁面には図14に示した如き傾斜面が図示されていないが、これらの傾斜部、傾斜面は図14に示しているように対応する部位に形成されることになる。
なお、図24、図25中の各符号は、上述した実施形態の同じ符号が示す部位と対応している。
[変形例 その2]
更に、図26(a)は圧電振動素子1Aの平面図であり、同図(b)は圧電振動素子1Aのパッド電極29a(マウント部F)の拡大平面図を示し、同図(c)はパッド電極29a(マウント部F)の断面図を示している。このパッド電極29a(マウント部F)においては、接着強度を向上させるために表面を凹凸状とすることによって接着面積を広げている。
1,2,3…圧電振動素子、5…圧電振動子、6,7…電子デバイス、8…電子機器、10…圧電基板、10W…水晶ウエハー、11…凹陥部、12…振動部、12a,12b…振動部の辺、13…厚肉部、14…第1の厚肉部、14a…第1の厚肉部本体、14b…第1の傾斜部、14bb …極細の傾斜部、15…第2の厚肉部、15a…第2の厚肉部本体、15b…第2の傾斜部、20…スリット、20a,20e…第1のスリット、20b,20f…第2のスリット、21…面取り部、22…切欠き部、25a、25b…励振電極、27a,27b…リード電極、29a,29b…パッド電極、30…導電性接着剤、31…キャビティー、32…凹部、40,40a,40b…パッケージ本体、41…第1の基板、42…第2の基板、43…第3の基板、44…シールリング、45…実装端子、46…導体、47…素子搭載パッド、48…電極端子、49…蓋部材、51…IC部品、52電子部品、55…電極端子、60…パッケージ本体、61…蓋部材、67…端子、68…金属バンプ(Auバンプ)、106…移動体としての自動車、1100…電子機器としてのモバイル型のパーソナルコンピューター、1200…電子機器としての携帯電話機、1300…電子機器としてのデジタルスチールカメラ、Th…サーミスター、F,F1,F2…マウント部、S…緩衝部。

Claims (15)

  1. 振動領域を含む振動部、及び当該振動部と一体化され、前記振動部よりも厚みが厚い厚肉部を含む基板と、
    前記振動領域に設けられている励振電極と、
    を含み、
    前記厚肉部は、
    前記振動部の一辺に沿って設けられている第1の厚肉部と、
    前記一辺と接続している他の一辺に沿って設けられている第2の厚肉部と、
    を含み、
    前記第1の厚肉部と前記第2の厚肉部とは、夫々の一端が連設され、
    前記第1の厚肉部の一方の主面は前記振動部の一方の主面よりも突設され、
    前記第1の厚肉部の他方の主面と前記振動部の他方の主面とは同一面であり、
    前記第2の厚肉部の一方の主面は前記振動部の一方の主面よりも突設され、
    前記第2の厚肉部の他方の主面と前記振動部の他方の主面とは同一面であり、
    前記第1の厚肉部は、
    前記振動部の第1の外縁に連接している一方の端縁から他方の端縁に向かって離間するにつれて厚みが増加している第1の傾斜部と、
    当該第1の傾斜部の前記他方の端縁に連接している第1の厚肉部本体と、
    を含み、
    前記第1の厚肉部には、
    少なくとも一つのスリットが設けられていることを特徴とする振動素子。
  2. 請求項1において、
    前記基板は、
    水晶の結晶軸である電気軸としてのX軸と、機械軸としてのY軸と、光学軸としてのZ軸と、からなる直交座標系の前記X軸を中心として、
    前記Z軸を前記Y軸の−Y方向へ傾けた軸をZ’軸とし、
    前記Y軸を前記Z軸の+Z方向へ傾けた軸をY’軸とし、
    前記X軸と前記Z’軸とを含む平面を主面とし、
    前記Y’軸に沿った方向を厚みとする水晶基板であることを特徴とする振動素子。
  3. 請求項2において、
    前記第1の厚肉部の前記一方の主面、および前記第2の厚肉部の前記一方の主面は、前記振動部の前記一方の主面から前記Y’軸の+Y方向に突設していることを特徴とする振動素子。
  4. 請求項2において、
    前記第2の厚肉部は、前記Z’軸の+Z’方向に設けられていることを特徴とする振動素子。
  5. 請求項2において、
    前記第1の厚肉部は、前記X軸の+X方向に設けられていることを特徴とする振動素子。
  6. 請求項1において、
    前記スリットは、
    前記第1の傾斜部と、前記第1の厚肉部本体との境界部に沿って、前記第1の厚肉部本体に設けられていることを特徴とする振動素子。
  7. 請求項1において、
    前記スリットは、
    前記第1の傾斜部内に前記振動部の一辺から離間して配置されていることを特徴とする振動素子。
  8. 請求項1において、
    前記スリットは、
    前記第1の厚肉部本体に配置された第1のスリットと、
    前記第1の傾斜部内に前記振動部の一辺から離間して設けられている第2のスリットと、
    を含むことを特徴とする振動素子。
  9. 請求項8において、
    前記第1のスリットは、
    前記第1の傾斜部と、前記第1の厚肉部本体との境界部に沿って、前記第1の厚肉部本体に設けられていることを特徴とする振動素子。
  10. 請求項1乃至9の何れか一項に記載の振動素子と、
    該振動素子が収容されているパッケージと、を備えていることを特徴とする振動子。
  11. 請求項1乃至9の何れか一項に記載の振動素子と、
    電子部品と、
    前記振動素子および前記電子部品が収容されているパッケージと、を備えていることを特徴とする電子デバイス。
  12. 請求項11において、
    前記電子部品は、
    可変容量素子、サーミスター、インダクター、コンデンサーのうちの何れかであることを特徴とする電子デバイス。
  13. 請求項11又は12において、
    前記振動素子を駆動する発振回路をパッケージに備えていることを特徴とする電子デバイス。
  14. 請求項10に記載の振動子を備えていることを特徴とする電子機器。
  15. 請求項10に記載の振動子を備えていることを特徴とする移動体。
JP2012143908A 2011-08-19 2012-06-27 振動素子、振動子、電子デバイス、電子機器、及び移動体 Withdrawn JP2014007693A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012143908A JP2014007693A (ja) 2012-06-27 2012-06-27 振動素子、振動子、電子デバイス、電子機器、及び移動体
US13/587,186 US8970316B2 (en) 2011-08-19 2012-08-16 Resonating element, resonator, electronic device, electronic apparatus, and mobile object
CN201210295585.5A CN102957396B (zh) 2011-08-19 2012-08-17 振动元件、振子、电子装置、电子设备及移动体
US14/511,319 US9225314B2 (en) 2011-08-19 2014-10-10 Resonating element, resonator, electronic device, electronic apparatus, and mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143908A JP2014007693A (ja) 2012-06-27 2012-06-27 振動素子、振動子、電子デバイス、電子機器、及び移動体

Publications (2)

Publication Number Publication Date
JP2014007693A true JP2014007693A (ja) 2014-01-16
JP2014007693A5 JP2014007693A5 (ja) 2015-07-16

Family

ID=50105033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143908A Withdrawn JP2014007693A (ja) 2011-08-19 2012-06-27 振動素子、振動子、電子デバイス、電子機器、及び移動体

Country Status (1)

Country Link
JP (1) JP2014007693A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025408A (ja) * 2014-07-17 2016-02-08 セイコーエプソン株式会社 振動素子、振動子、発振器、電子機器、および移動体
JP2016034061A (ja) * 2014-07-31 2016-03-10 京セラクリスタルデバイス株式会社 水晶素子および水晶デバイス
JP2016048867A (ja) * 2014-08-28 2016-04-07 京セラクリスタルデバイス株式会社 水晶素子の製造方法
US10291204B2 (en) 2015-10-19 2019-05-14 Seiko Epson Corporation Piezoelectric vibrator element, piezoelectric vibrator, electronic apparatus, and vehicle
JP2020191579A (ja) * 2019-05-23 2020-11-26 京セラ株式会社 振動素子用圧電片、圧電振動素子及び圧電デバイス
WO2021131121A1 (ja) * 2019-12-27 2021-07-01 株式会社村田製作所 圧電振動素子、圧電振動子及び電子装置
WO2022158028A1 (ja) * 2021-01-22 2022-07-28 株式会社村田製作所 圧電振動子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219708A (ja) * 1986-03-19 1987-09-28 Kinseki Kk Atカツト振動子
JP2002033640A (ja) * 2000-07-17 2002-01-31 Toyo Commun Equip Co Ltd 圧電デバイス
JP2005020141A (ja) * 2003-06-24 2005-01-20 Seiko Epson Corp 圧電振動片の製造方法及び圧電デバイスの製造方法
JP2005033293A (ja) * 2003-07-08 2005-02-03 Toyo Commun Equip Co Ltd 圧電デバイス
JP2006311015A (ja) * 2005-04-27 2006-11-09 Seiko Epson Corp 圧電振動片及び圧電振動子
JP2007201858A (ja) * 2006-01-27 2007-08-09 Epson Toyocom Corp 水晶振動子、高精度水晶発振器
JP2009065520A (ja) * 2007-09-07 2009-03-26 Epson Toyocom Corp 圧電デバイスおよびその製造方法
JP2011109681A (ja) * 2000-12-12 2011-06-02 Epson Toyocom Corp 表面実装型圧電デバイス
JP2012029262A (ja) * 2010-07-28 2012-02-09 Seiko Epson Corp 圧電振動片及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219708A (ja) * 1986-03-19 1987-09-28 Kinseki Kk Atカツト振動子
JP2002033640A (ja) * 2000-07-17 2002-01-31 Toyo Commun Equip Co Ltd 圧電デバイス
JP2011109681A (ja) * 2000-12-12 2011-06-02 Epson Toyocom Corp 表面実装型圧電デバイス
JP2005020141A (ja) * 2003-06-24 2005-01-20 Seiko Epson Corp 圧電振動片の製造方法及び圧電デバイスの製造方法
JP2005033293A (ja) * 2003-07-08 2005-02-03 Toyo Commun Equip Co Ltd 圧電デバイス
JP2006311015A (ja) * 2005-04-27 2006-11-09 Seiko Epson Corp 圧電振動片及び圧電振動子
JP2007201858A (ja) * 2006-01-27 2007-08-09 Epson Toyocom Corp 水晶振動子、高精度水晶発振器
JP2009065520A (ja) * 2007-09-07 2009-03-26 Epson Toyocom Corp 圧電デバイスおよびその製造方法
JP2012029262A (ja) * 2010-07-28 2012-02-09 Seiko Epson Corp 圧電振動片及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025408A (ja) * 2014-07-17 2016-02-08 セイコーエプソン株式会社 振動素子、振動子、発振器、電子機器、および移動体
JP2016034061A (ja) * 2014-07-31 2016-03-10 京セラクリスタルデバイス株式会社 水晶素子および水晶デバイス
JP2016048867A (ja) * 2014-08-28 2016-04-07 京セラクリスタルデバイス株式会社 水晶素子の製造方法
US10291204B2 (en) 2015-10-19 2019-05-14 Seiko Epson Corporation Piezoelectric vibrator element, piezoelectric vibrator, electronic apparatus, and vehicle
JP2020191579A (ja) * 2019-05-23 2020-11-26 京セラ株式会社 振動素子用圧電片、圧電振動素子及び圧電デバイス
JP7240250B2 (ja) 2019-05-23 2023-03-15 京セラ株式会社 振動素子用圧電片、圧電振動素子及び圧電デバイス
WO2021131121A1 (ja) * 2019-12-27 2021-07-01 株式会社村田製作所 圧電振動素子、圧電振動子及び電子装置
WO2022158028A1 (ja) * 2021-01-22 2022-07-28 株式会社村田製作所 圧電振動子

Similar Documents

Publication Publication Date Title
US8791766B2 (en) Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US9225314B2 (en) Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9013242B2 (en) Resonator element, resonator, electronic device, electronic apparatus, and mobile object
CN110011630B (zh) 振动元件、振子、电子器件、电子设备以及移动体
US9013243B2 (en) Resonator element, resonator, electronic device, electronic apparatus, and mobile object
JP6119138B2 (ja) 振動片、振動素子、振動子、電子デバイス、電子機器、移動体及び振動片の製造方法
US20160028369A1 (en) Resonator element, resonator, oscillator, electronic apparatus, and mobile object
JP2014007693A (ja) 振動素子、振動子、電子デバイス、電子機器、及び移動体
US9748920B2 (en) Resonator element, resonator, electronic device, electronic apparatus, and moving object
JP6079280B2 (ja) 振動素子、振動子、電子デバイス、電子機器、及び移動体
JP2013255051A (ja) 振動素子、振動子、電子デバイス、電子機器及び振動素子の製造方法
JP6191152B2 (ja) 振動素子、振動子、電子デバイス、電子機器、及び移動体
JP2013042440A (ja) 圧電振動素子、圧電振動子、電子デバイス、及び電子機器
JP6064350B2 (ja) 振動素子、振動子、電子デバイス、及び電子機器
US10103710B2 (en) Resonator, oscillator, electronic apparatus, and mobile object
US10153749B2 (en) Resonator element, resonator, and electronic device
JP2013258452A (ja) 振動素子、振動子、電子デバイス、電子機器、移動体、および振動素子の製造方法
JP6562101B2 (ja) 振動素子、振動子、電子デバイス、電子機器、及び移動体
JP6627902B2 (ja) 振動素子、振動子、電子デバイス、電子機器、移動体および振動素子の製造方法
JP2017099025A (ja) 振動片、振動素子、振動子、電子デバイス、電子機器、移動体及び振動片の製造方法
JP2014023015A (ja) 振動素子、振動子、電子デバイス、電子機器及び移動体
JP6137274B2 (ja) 振動素子、振動子、電子デバイス、及び電子機器
JP2014171150A (ja) 振動素子、振動子、発振器、電子機器および移動体
JP2017220945A (ja) 振動素子、振動子、電子デバイス、電子機器及び振動素子の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160513