JP2013232317A - 有機エレクトロニクスデバイス - Google Patents

有機エレクトロニクスデバイス Download PDF

Info

Publication number
JP2013232317A
JP2013232317A JP2012103372A JP2012103372A JP2013232317A JP 2013232317 A JP2013232317 A JP 2013232317A JP 2012103372 A JP2012103372 A JP 2012103372A JP 2012103372 A JP2012103372 A JP 2012103372A JP 2013232317 A JP2013232317 A JP 2013232317A
Authority
JP
Japan
Prior art keywords
layer
organic
sealant
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103372A
Other languages
English (en)
Other versions
JP5835083B2 (ja
Inventor
Hirohide Ito
博英 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012103372A priority Critical patent/JP5835083B2/ja
Publication of JP2013232317A publication Critical patent/JP2013232317A/ja
Application granted granted Critical
Publication of JP5835083B2 publication Critical patent/JP5835083B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】耐久性に優れた有機エレクトロニクスデバイスを提供する。
【解決手段】基材およびバリア層を有するガスバリア性フィルムと、封止部材と、前記ガスバリア性フィルムと前記封止部材との間に位置する、有機素子および封止剤層と、を有し、前記封止剤層は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤と、を含む、有機エレクトロニクスデバイス。
【選択図】図1

Description

本発明は、有機エレクトロニクスデバイスに関する。
有機エレクトロルミネッセンス素子(有機EL素子)、有機太陽電池、有機トランジスタ、無機エレクトロルミネッセンス素子、無機太陽電池(例えばCIGS太陽電池)等の電子デバイスは、使用環境中に存在する酸素および水分に敏感である。このため、電子デバイスを酸素および水分から保護するための、封止方法が数多く提案されており、ガラスまたは金属を用いたバリア性基材を使って封止する方法が実用化されている。これに対して、近年、電子デバイスの普及に伴い、軽量化、屈曲性、割れ防止による可搬性の向上、曲面への追従性による設置場所の拡大、ロール・トゥ・ロール方式の生産による生産コストの低減などが望まれている。このため、基材として、ガラスに代わって可撓性の樹脂基材を用いた電子デバイスが提案されている(特許文献1参照)。このような電子デバイスでは、酸素や水分に対して十分なバリア性能を有する可撓性バリアフィルム、前記可撓性バリアフィルムの少なくとも一部を接着する接着剤、および必要に応じてバリアフィルムに囲まれた電子デバイス近傍に設けられる酸素、水分吸収材から構成されている。
一般に、電子デバイスに使用可能なバリアフィルムは、プラスチック基板表面に、酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を成膜してバリア層を形成する。成膜方法としては、例えば、テトラエトキシシラン(TEOS)に代表される有機珪素化合物を用いて、減圧下で酸素プラズマ酸化しながら基板上に成長させる化学堆積法(プラズマCVD法:Chemical Vapor Deposition、特許文献2参照)や、半導体レーザーを用いて金属Siを蒸発させ、酸素の存在下で基板上に堆積する物理堆積法(例えば、真空蒸着法やスパッタリング法など。特許文献3〜5参照)といった気相法が知られている。
上記の気相法に対して、気相法ではあるが、原子相成長法または原子層堆積法(以下、ALD(Atomic Layer Deposition)法とも称する)で形成された無機膜は欠陥が少なく、良好なガスバリア性が得られるとされている。
また、上記のような気相法によらないガスバリア層の形成方法の一つとして、基材上に無機前駆体化合物の溶液を塗布し、乾燥して形成した塗布層を、熱や光によって改質することでガスバリア性を向上させる検討がなされており、特に、無機前駆体化合物としてポリシラザンを用いることで、高度なガスバリア性を発現させようとする検討もなされている(特許文献6参照)。
国際公開第2009/086095号 特開2009−101548号公報 国際公開第2012/003198号 国際公開第2011/013341号 特開2007−73332号公報 特開2011−194319号公報
このような従来のバリアフィルムを用いて電子素子を封止する場合、接着剤や封止剤が用いられるが、バリアフィルムが有するバリア層は非常に緻密な構造になっているために、電子素子とバリアフィルムとの接着部の耐久性が低く、電子デバイスの耐久性が低下するという問題があった。特に、可撓性を有するバリアフィルムの場合、繰り返しの屈曲に対しての接着部の耐久性が低いという問題があった。
さらに、酸素や水分の透過度を小さくするために、接着剤の架橋密度が高くし、フィラー等の添加量を多くした場合、その傾向が顕著になっていた。
本発明は、上記課題に鑑みなされたものであり、耐久性に優れた有機エレクトロニクスデバイスを提供することを目的とする。
本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤とを含む封止剤層を、ガスバリア性フィルムと封止部材との間に設けることにより、上記課題が解決することを見出し、本発明を完成させるに至った。
すなわち、上記目的は、以下の構成によって達成される。
1.基材およびバリア層を有するガスバリア性フィルムと、封止部材と、前記ガスバリア性フィルムと前記封止部材との間に位置する、有機素子および封止剤層と、を有し、前記封止剤層は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤と、を含む、有機エレクトロニクスデバイス。
2.前記第1の封止剤の硬化後の水蒸気透過度が20g/m・day以下であり、前記第2の封止剤の硬化後の水蒸気透過度が50g/m・day以下である、上記1.に記載の有機エレクトロニクスデバイス。
3.前記第2の封止剤は、面方向の中心部に配置され、前記第1の封止剤は前記中心部を囲う外周部に配置される、上記1.または2.に記載の有機エレクトロニクスデバイス。
4.前記外周部の外側に、さらに前記第2の封止剤が配置される、上記3.に記載の有機エレクトロニクスデバイス。
5.前記封止部材は、金属または金属化合物を含む、上記1.〜4.のいずれか1つに記載の有機エレクトロニクスデバイス。
6.前記バリア層は、ポリシラザンを含む層を改質処理して形成される、上記1.〜5.のいずれか1つに記載の有機エレクトロニクスデバイス。
7.前記バリア層は、無機層と有機層との積層体である、上記1.〜5.のいずれか1つに記載の有機エレクトロニクスデバイス。
8.前記第1の封止剤は、エポキシ樹脂およびアクリル樹脂の少なくとも一方を含む、上記1.〜7.のいずれか1つに記載の有機エレクトロニクスデバイス。
9.前記第2の封止剤は、ポリオレフィン樹脂、フッ素樹脂、およびポリ塩化ビニリデン樹脂からなる群より選択される少なくとも1種を含む、上記1.〜8.のいずれか1つに記載の有機エレクトロニクスデバイス。
10.前記封止剤層は、液晶滴下工法により形成される、上記1.〜9.のいずれか1つに記載の有機エレクトロニクスデバイス。
本発明によれば、耐久性に優れた有機エレクトロニクスデバイスが提供される。
本発明の一実施形態による有機エレクトロニクスデバイスを示す断面概略図である。 封止剤の面方向の配置形態の一例を示す模式図である。 真空紫外線照射装置の断面模式図である。
本発明は、基材およびバリア層を有するガスバリア性フィルムと、封止部材と、前記ガスバリア性フィルムと前記封止部材との間に位置する、有機素子および封止剤層と、を有し、前記封止剤層は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤と、を含む、有機エレクトロニクスデバイスに関する。
図1は、本発明の一実施形態による有機エレクトロニクスデバイスを示す断面概略図である。図1に示す有機エレクトロニクスデバイス10は、基材11およびバリア層12を有するガスバリア性フィルムと封止部材15との間に、有機素子13および封止剤層14とを有する。
封止剤層14は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤と、を含む。硬化後のショアD硬度が高い前記第1の封止剤は、主にガスバリア性を向上させる役割を果たし、硬化後のショアD硬度が低い前記第2の封止剤は、主に接着性を向上させる役割を果たす。このような構成とすることにより、封止剤層のガスバリア性および接着性が共に向上し、耐久性に優れた有機エレクトロニクスデバイスを得ることができる。
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
[ガスバリア性フィルム]
本発明に係るガスバリア性フィルムは、基材とバリア層とを有し、必要に応じてその他の層を有する。
本発明に係るガスバリア性フィルムの水蒸気透過度は、60℃、90%RHで5×10−3g/m・day以下であることが好ましく、5×10−4g/m・day以下であることがより好ましく、5×10−5g/m・day以下であることがさらに好ましい。
<基材>
本発明に係るガスバリア性フィルムで用いられる基材は、長尺な支持体であって、後述のガスバリア性(単に「バリア性」とも称する)を有するバリア層を保持することができるものであり、下記のような材料で形成されるが、特にこれらに限定されるものではない。
基材の例としては、例えば、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂のフィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(例えば、製品名Sila−DEC;チッソ株式会社製、および製品名シルプラス(登録商標);新日鐵化学株式会社製等)、さらには前記樹脂を2層以上積層して構成される樹脂フィルム等を挙げることができる。
コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等が好ましく用いられ、また光学的透明性、耐熱性、バリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いられる。
一方で、例えば、フレキシブルディスプレイの電子デバイス用途でガスバリア性フィルムを用いる場合、アレイ作製工程でプロセス温度が200℃を超える場合がある。ロール・トゥ・ロールによる製造の場合、基材には常にある程度の張力が印加されているため、基材が高温下に置かれて基材温度が上昇した際、基材温度がガラス転移点温度を超えると基材の弾性率は急激に低下して張力により基材が伸び、バリア層にダメージを与える懸念がある。したがって、このような用途においては、ガラス転移点が150℃以上の耐熱性材料を基材として用いることが好ましい。すなわち、ポリイミドやポリエーテルイミド、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを用いることが好ましい。ただし、これらに代表される耐熱性樹脂は非結晶性のため、結晶性のPETやPENと比較して吸水率は大きな値となり、湿度による基材の寸法変化がより大きくなって、バリア層にダメージを与える懸念がある。しかし、これらの耐熱性材料を基材として用いたときでも、両面にバリア層を形成することにより、高温高湿の過酷な条件下での基材フィルム自身の吸脱湿による寸法変化を抑制することができ、バリア層へのダメージを抑制することができる。したがって、耐熱性材料を基材として用い、かつ、両面にバリア層を形成することがより好ましい態様のひとつである。
基材の厚さは5〜500μm程度が好ましく、25〜250μmがより好ましい。
また、基材は透明であることが好ましい。ここでいう基材が透明とは、可視光(400〜700nm)の光透過率が80%以上であることを示す。
基材が透明であり、基材上に形成するバリア層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明に係る基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。
また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。
この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2倍〜10倍が好ましい。さらには、延伸フィルムに於いて基板の寸法安定性を向上するために、延伸後の緩和処理をする事が好ましい。
また、本発明に係る基材においては、バリア層を形成する前に、その表面にコロナ処理を施してもよい。
本発明に用いられる基材の表面粗さとしては、JIS B0601:2001で規定される10点平均粗さRzが1〜500nmの範囲にあることが好ましく、5〜400nmの範囲にあることがより好ましく、300〜350nmの範囲にあることがさらに好ましい。
また、基材表面において、JIS B0601:2001で規定される中心線平均表面粗さ(Ra)が0.5〜12nmの範囲にあることが好ましく、1〜8nmの範囲にあることがより好ましい。
<バリア層>
本発明で用いられるバリア層の材料としては、特に制限されず、様々な無機バリア材料を使用することができる。無機バリア材料の例としては、例えば、ケイ素(Si)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銅(Cu)、セリウム(Ce)およびタンタル(Ta)からなる群より選択される少なくとも1種の金属の単体、上記金属の酸化物、窒化物、炭化物、酸窒化物または酸化炭化物等の金属化合物が挙げられる。
前記金属化合物のさらに具体的な例としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化インジウム、酸化スズ、酸化インジウムスズ(ITO)、酸化タンタル、酸化ジルコニウム、酸化ニオビウム、アルミニウムシリケート(SiAlO)、炭化ホウ素、炭化タングステン、炭化ケイ素、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸窒化アルミニウム、酸窒化ケイ素、酸窒化ホウ素、酸化ホウ化ジルコニウム、酸化ホウ化チタン、およびこれらの複合体等の金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸化ホウ化物、ダイヤモンドライクカーボン(DLC)、ならびにこれらの組み合わせ等の無機バリア材料が挙げられる。酸化インジウムスズ(ITO)、酸化ケイ素、酸化アルミニウム、アルミニウムシリケート(SiAlO)、窒化ケイ素、酸窒化ケイ素およびこれらの組み合わせは、特に好ましい無機バリア材料である。ITOは、それぞれの元素成分を適切に選択することによって導電性になり得るセラミック材料の特殊部材の一例である。
バリア層の形成方法は、特に制限されず、例えば、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat−CVD)、容量結合プラズマCVD法(CCP−CVD)、光CVD法、プラズマCVD法、エピタキシャル成長法、原子層成長法、反応性スパッタ法等の化学蒸着法等が挙げられる。
また、前記バリア層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、前記バリア層は、上記無機バリア材料を含む無機層と有機層との積層体であってもよい。
有機層は、例えば、有機モノマーまたは有機オリゴマーを基材に塗布し、層を形成し、続いて例えば、電子ビーム装置、UV光源、放電装置、またはその他の好適な装置を使用して重合および必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発および放射線架橋可能な有機モノマーまたは有機オリゴマーを蒸着した後、前記有機モノマーまたは前記有機オリゴマーからポリマーを形成することによっても、有機層は形成されうる。コーティング効率は、基材を冷却することにより改善され得る。有機モノマーまたは有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。
無機層と有機層との積層体である場合、各層の厚さは同じでもよいし異なっていてもよい。無機層の厚さは、好ましくは3〜1000nm、より好ましくは10〜300nmである。有機層の厚さは、好ましくは100nm〜100μm、より好ましくは1μm〜50μmである。
さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を基材上にウェットコーティングした後真空紫外光の照射などにより改質処理を行い、バリア層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、バリア層は形成される。
高いバリア性と本発明の効果をより効果的に得るという観点から、前記バリア層は、ポリシラザンを含む層を改質処理して形成されるか、または無機層と有機層との積層体であることが好ましい。
以下、ポリシラザンを含む層を改質処理して形成されるバリア層について、詳細に説明する。
(ポリシラザン)
本発明に係るバリア層の形成に用いられるポリシラザンとは、珪素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
前記一般式(I)中、R、R、Rは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。
本発明では、得られるバリア層の膜としての緻密性の観点からは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体または固体の物質であり、分子量により異なる。
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
ポリシラザンを含有する塗布液(以下、単にポリシラザン含有塗布液とも称する)を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、ポリシラザン含有塗布液を調製するための溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
ポリシラザン含有塗布液におけるポリシラザンの濃度は、目的とするバリア層の膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。
ポリシラザン含有塗布液は、酸窒化ケイ素への変性を促進するために、ポリシラザンとともに触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.2〜5質量%、さらに好ましくは0.5〜2質量%の範囲である(実施例1質量%)。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
本発明に係るポリシラザン含有塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
ポリシラザン含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ダイコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。ポリシラザン層の膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、ポリシラザン層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
(改質処理)
改質処理の方法としては、基材上にポリシラザンを含有する塗布液を塗布してポリシラザンを含む層(塗膜)を形成した後、該塗膜に200nm以下の波長の真空紫外線を照射する方法が好ましい。
ここで、真空紫外線照射工程でポリシラザンを含む塗膜が改質され、SiOの特定組成となる推定メカニズムを、パーヒドロポリシラザンを例にとって説明する。
パーヒドロポリシラザンは「−(SiH−NH)−」の組成で示すことができる。SiOで示す場合、x=0、yは最大で1である。実際のパーヒドロポリシラザンは、環状構造を有するため、yは1未満であり、0.8前後であると考えられる。x>0となるためには外部の酸素源が必要であるが、これは、(i)ポリシラザン塗布液に含まれる酸素や水分、(ii)塗布乾燥過程の雰囲気中から塗膜に取り込まれる酸素や水分、(iii)真空紫外線照射工程での雰囲気中から塗膜に取り込まれる酸素や水分、オゾン、一重項酸素、(iv)真空紫外線照射工程で印加される熱等により基材側からアウトガスとして塗膜中に移動してくる酸素や水分、(v)真空紫外線照射工程が非酸化性雰囲気で行われる場合には、その非酸化性雰囲気から酸化性雰囲気へと移動した際に、その雰囲気から塗膜に取り込まれる酸素や水分、などが酸素源となる。
一方、yについては、Siの酸化よりも窒化が進行する条件は非常に特殊であると考えられるため、基本的には1が上限である。
また、Si、O、Nの結合手の関係から、基本的にはx、yは2x+3y≦4の範囲にある。酸化が完全に進んだy=0の状態においては、塗膜中にシラノール基を含有するようになり、2<x<2.5の範囲となる場合もある。
真空紫外線照射工程でパーヒドロポリシラザンから酸窒化珪素、さらには酸化珪素が生じると推定される反応機構について、以下に説明する。
(I)脱水素、それに伴うSi−N結合の形成
パーヒドロポリシラザン中のSi−H結合やN−H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi−Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiN組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si−H結合やN−H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはHとして膜外に放出される。
(II)加水分解・脱水縮合によるSi−O−Si結合の形成
パーヒドロポリシラザン中のSi−N結合は水により加水分解され、ポリマー主鎖が切断されてSi−OHを形成する。二つのSi−OHが脱水縮合してSi−O−Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi−OHが残存し、SiO2.1〜SiO2.3の組成で示されるガスバリア性の低い硬化膜となる。
(III)一重項酸素による直接酸化、Si−O−Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi−O−Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
(IV)真空紫外線照射・励起によるSi−N結合切断を伴う酸化
真空紫外線のエネルギーはパーヒドロポリシラザン中のSi−Nの結合エネルギーよりも高いため、Si−N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi−O−Si結合やSi−O−N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
ポリシラザンから形成されるバリア層の組成をSiOで表したときに、0.25≦x≦1.1で、かつ0.4≦y≦0.75である領域を、厚さ方向で50nm以上有することが好ましい態様のひとつである。バリア層の厚さは50nm以上1μm以下の範囲にあることが好ましく、より好ましくは100nm以上700nm以下の範囲にあることがより好ましく、150nm以上500nm以下の範囲にあることがさらに好ましい。
ここで、バリア層の厚さ方向の組成分布は、下記のようなXPS分析を用いた方法で測定して求めることができる。
バリア層のエッチングレートは組成によって異なるため、本発明においては、XPS分析での厚さは、SiO換算のエッチングレートを元にして一旦求めておき、同一試料の断面TEM画像によりバリア層の厚さを求め、これをXPS分析から求めた厚さ方向の組成分布と比較しながら、厚さ方向の組成分布におけるバリア層に対応する領域を特定し、バリア層に対応する領域を断面TEM画像から求めた膜厚と合うように、一律に係数をかけることで厚さ方向の補正を行っている。
バリア層の組成x、yが上記範囲にある領域は、良好なガスバリア性を有する領域である。
xが0.25以上であれば、改質が十分であり、十分なガスバリア性が発揮されうる。
上述の改質推定メカニズムにおいて、改質時の酸化は、ポリシラザンの主鎖である−Si−N−Si−結合を切断して、OがNと置き換わる場合があるが、この際、低分子量化した改質ポリシラザンの結合がより緻密な構造として再結合していると考えられる。したがって、一定量以上のOが存在している場合は、十分なガスバリア性が得られると考えられる。xが1.1以下である場合には、水蒸気捕捉能(酸化されうる能力)の低下を抑制でき、結果としてバリア層としての水蒸気透過度の上昇を抑制できる。
yが0.4以上であれば、ポリシラザンの酸化を適度に進行させ、水蒸気捕捉能(酸化されうる能力)の低下を抑制でき、ガスバリア層としての水蒸気透過度の上昇を抑制できる。yが0.75以下である場合には、十分に改質されて、十分なガスバリア性が得られる。なお、ガスバリア層の厚さ方向の組成分布は成就地下XPS分析を用いた方法で測定して求めることができる。
本発明における真空紫外線照射工程において、ポリシラザン層塗膜が受ける塗膜面での該真空紫外線の照度は30mW/cm以上200mW/cm以下であることが好ましく、50mW/cm以上160mW/cm以下であることがより好ましい。30mW/cm以上であれば十分な改質効果が得られ、200mW/cm以下であれば、塗膜へのアブレーションの発生や基材へのダメージを防止することができる。
真空紫外光照射の時間は、使用する基材やポリシラザン層の組成、濃度等によっても異なるが、通常、0.1秒〜10分であり、好ましくは0.5秒〜3分である。
ポリシラザン層塗膜面における真空紫外線の照射エネルギー量は、200mJ/cm以上5000mJ/cm以下であることが好ましく、500mJ/cm以上3000mJ/cm以下であることがより好ましい。200mJ/cm以上であれば十分に改質でき、5000mJ/cm以下であれば、過剰改質によるバリア層のクラック発生や基材の熱変形を防止することができる。
真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
しかし、放電などによりエネルギーを得た希ガスの励起原子は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、下記化学式のようになり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
エキシマランプの特徴としては、放射が1つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動および再始動に時間を要さないので、瞬時の点灯点滅が可能である。
エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じ、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。
このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため、肉眼でも分る光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に、無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極およびその配置は基本的には誘電体バリア放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
誘電体バリア放電の場合は、micro dischargeが電極間のみで生じるため、放電空間全体で放電を行なわせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
このため、細い金属線を網状にした電極が用いられる。この電極は、光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
無電極電界放電を用いた場合には、外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
細管エキシマランプの最大の特徴は、構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行なうためのガスを封入しているだけである。
細管ランプの管の外径は6nm〜12mm程度で、あまり太いと始動に高い電圧が必要になる。
放電の形態は、誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは、能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単を波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
(真空紫外線(VUV)照射時の酸素濃度)
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため真空紫外線照射工程での効率を低下しやすい。よって、真空紫外線の照射はできるだけ酸素濃度の低い状態で行うことが好ましい。
本発明に係る真空紫外線(VUV)照射時の酸素濃度は、10〜10000体積ppmとすることが好ましく、さらに好ましくは、50〜5000体積ppmである。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
なお、前記バリア層は、単層でもよいし2層以上の多層構造であってもよい。
(中間層)
本発明に係るガスバリア性フィルムの基材とバリア層との間には、さらに中間層を形成してもよい。中間層は、基材表面とバリア層との接着性を向上させる機能を有することが好ましい。市販の易接着層付き基材も好ましく用いることができる。
中間層に用いられる素材としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を1種または2種以上併せて使用することができる。
これらの中間層形成素材には、従来公知の添加剤を加えることもできる。そして、上記の中間層は、ロールコート、ダイコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することにより形成することができる。中間層の塗布量としては、0.1〜5.0g/m(乾燥状態)程度が好ましい。
また、中間層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。
(平滑層)
本発明に係るガスバリア性フィルムにおいては、上記中間層は、平滑層であってもよい。本発明に用いられる平滑層は、突起等が存在する基材の粗面を平坦化し、あるいは、基材に存在する突起によりバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料または熱硬化性材料を硬化させて作製される。
平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X−12−2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン−エピクロルヒドリン樹脂等が挙げられる。
平滑層の形成方法は、特に制限はないが、スピンコーティング法、ダイコート法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウェットコーティング法、あるいは蒸着法等のドライコーティング法により形成することが好ましい。
平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
平滑層の平滑性は、JIS B0601:2001で規定される中心線平均粗さRaが、0.5〜12nmであることが好ましい。より好ましくは、1〜3nmである。また、平滑層表面において、JIS B0601:2001で規定される10点平均粗さRzが5〜50nmであると好ましい。より好ましくは、10〜40nmである。この範囲よりも値が小さい場合には、後述の塗布層を形成する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合に塗布性が損なわれる場合がある。また、この範囲よりも大きい場合には、基材の表面粗さに対して平滑化が不十分となり、平滑層を設ける意味が薄れる。
平滑層の厚さとしては、1〜10μmの範囲が好ましく、さらに2〜7μmの範囲にすることが好ましい。
(ブリードアウト防止層)
本発明に係るガスバリア性フィルムは、バリア層を設ける面とは反対側の基材面にブリードアウト防止層を有してもよい。ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
ブリードアウト防止層に、ハードコート剤として含ませることが可能な重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物または分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。
その他の添加剤として、マット剤を含有してもよい。マット剤としては平均粒子径が0.1〜5μm程度の無機粒子が好ましい。このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
ここで無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
また、ブリードアウト防止層は、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
以上のようなブリードアウト防止層は、ハードコート剤、マット剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。
ブリードアウト防止層において用いられる材料としては、例えば、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズが挙げられる。
なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
ブリードアウト防止層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にし、かつ、ガスバリア性フィルムのカールを調整する観点から、1.0〜10μmの範囲が好ましく、さらに2μm〜7μmの範囲にすることが好ましい。
(オーバーコート層)
本発明に係るバリア層上には、オーバーコート層を設けてもよい。
オーバーコート層に用いられる材料としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。これらの有機樹脂もしくは有機無機複合樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂もしくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。ここで「架橋性基」とは、光照射処理や熱処理で起こる化学反応により樹脂を架橋することができる基のことである。このような機能を有する基であれば特にその化学構造は限定されないが、例えば、付加重合し得る官能基としてエチレン性不飽和基、エポキシ基、オキセタニル基等の環状エーテル基が挙げられる。また、光照射によりラジカルになり得る官能基であってもよく、そのような架橋性基としては、例えば、チオール基、ハロゲン原子、オニウム塩構造等が挙げられる。中でも、エチレン性不飽和基が好ましく、特開2007−17948号公報の段落0130〜0139に記載された官能基が含まれる。
有機無機複合樹脂としては、例えば、米国特許第6,503,634号明細書に「ORMOCER(登録商標)」として記載されている有機無機複合樹脂も好ましく用いることができる。
有機樹脂の構造や重合性基の密度、架橋性基の密度、架橋剤の比率、および硬化条件等を適宜調整することで、オーバーコート層の弾性率を所望の値に調整することができる。
具体的な有機樹脂組成物としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
当該光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。
上記感光性樹脂の組成物は、光重合開始剤を含有する。光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
オーバーコート層には、無機材料を含有させることができる。無機材料を含有させることは、一般的にオーバーコート層の弾性率増加につながる。無機材料の含有比率を適宜調整することでも、オーバーコート層の弾性率を所望の値に調整することができる。
無機素材としては、数平均粒径が1〜200nmの無機微粒子が好ましく、数平均粒径が3〜100nmの無機微粒子がより好ましい。無機微粒子としては、透明性の観点より金属酸化物が好ましい。
金属酸化物として特に制約はないが、SiO、Al、TiO、ZrO、ZnO、SnO、In、BaO、SrO、CaO、MgO、VO、V、CrO、MoO、MoO、MnO、Mn、WO、LiMn、CdSnO、CdIn、ZnSnO、ZnSnO、ZnIn、CdSnO、CdIn、ZnSnO、ZnSnO、ZnInなどが挙げられる。これらは、単独の使用でもまたは2種類以上の併用でもよい。
無機微粒子の分散物を得るには調整してもよいし、市販の無機微粒子分散物も用いることができる。
具体的には、例えば、日産化学工業株式会社製のスノーテックス(登録商標)シリーズやオルガノシリカゾル、ビックケミー・ジャパン株式会社製のNANOBYK(登録商標)シリーズ、Nanophase Technologies社製のNanoDur(登録商標)などの各種金属酸化物の分散物を挙げることができる。
これら無機微粒子は、表面処理が施されたものであってもよい。
その他、無機材料として、天然雲母、合成雲母等の雲母群、3MgO・4SiO・HOで表されるタルク、テニオライト、モンモリロナイト、サポナイト、ヘクトライト、リン酸ジルコニウムなどの平板状微粒子も用いることができる。
さらに具体的には、上記天然雲母としては白雲母、ソーダ雲母、金雲母、黒雲母および鱗雲母等が挙げられる。また、合成雲母としては、フッ素金雲母KMg(AlSi10)F、カリウム四ケイ素雲母KMg2.5(Si10)F等の非膨潤性雲母、およびNaテトラシリリックマイカNaMg2.5(Si10)F、NaまたはLiテニオライト(Na,Li)MgLi(Si10)F、モンモリロナイト系のNaまたはLiヘクトライト(Na,Li)1/8Mg2/5Li1/8(Si10)F等の膨潤性雲母等が挙げられる。また合成スメクタイトも有用である。
オーバーコート層中の無機材料の比率としては、オーバーコート層全体に対して、10〜95質量%の範囲であることが好ましく、20〜90質量%の範囲であることがより好ましい。
オーバーコート層には、いわゆるカップリング剤を単独でもまたは他素材と混合して用いることができる。カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等、特に制限はないが、塗布液の安定性の観点からシランカップリング剤が好ましい。
具体的なシランカップリング剤としては、例えば、ハロゲン含有シランカップリング剤(2−クロロエチルトリメトキシシラン,2−クロロエチルトリエトキシシラン,3−クロロプロピルトリメトキシシラン,3−クロロプロピルトリエトキシシランなど)、エポキシ基含有シランカップリング剤[2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、2−グリシジルオキシエチルトリメトキシシラン、2−グリシジルオキシエチルトリエトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシランなど]、アミノ基含有シランカップリング剤(2−アミノエチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−[N−(2−アミノエチル)アミノ]エチルトリメトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルトリメトキシシラン、3−(2−アミノエチル)アミノ]プロピルトリエトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルメチルジメトキシシランなど)、メルカプト基含有シランカップリング剤(2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなど)、ビニル基含有シランカップリング剤(ビニルトリメトキシシラン、ビニルトリエトキシシランなど)、(メタ)アクリロイル基含有シランカップリング剤(2−メタクリロイルオキシエチルトリメトキシシラン、2−メタクリロイルオキシエチルトリエトキシシラン、2−アクリロイルオキシエチルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリメトキシシランなど)などが挙げられる。これらのシランカップリング剤は単独でまたは二種以上組み合わせて使用できる。
オーバーコート層は、前記有機樹脂や無機材料、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を基材表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することが好ましい。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する。または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
また、オーバーコート層は、上述のエキシマランプによる照射で硬化させることもできる。バリア層とオーバーコート層とを同一ラインで塗布形成する場合には、オーバーコート層の硬化もエキシマランプによる照射で行うことが好ましい。
[封止部材]
本発明に係る封止部材は、上記ガスバリア性フィルムと同様のものが用いられる。すなわち、金属または金属化合物を含むことが好ましい。さらに封止部材として用いられる具体的な材料の例としては、ケイ素(Si)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銅(Cu)、セリウム(Ce)およびタンタル(Ta)からなる群より選択される少なくとも1種の金属の単体、または上記金属の酸化物、窒化物、炭化物、酸窒化物もしくは酸化炭化物等の金属化合物が挙げられる。
また、該封止部材は、上記ガスバリア性フィルムのうち基材を有さないバリア層のみからなる部材であってもよい。その具体例としては、例えば、アルミニウム箔、銅箔等の金属箔、上記ガスバリア性フィルムの項で説明した無機層と有機層との積層体などが挙げられる。
その他、封止部材の構成の詳細は、上記ガスバリア性フィルムの項で説明した内容と同様であるので、ここでは説明を省略する。封止基材がガスバリア性フィルムである場合、封止基材11とガスバリア性フィルム15とは同一の構成であってもよいし、異なる構成(材質、層構成)であってもよい。
[封止剤層]
本発明に係る封止剤層は、ガスバリア性フィルムと封止部材との間に位置する。封止剤層を形成する封止剤は、十分なバリア特性を有し、酸素および/または水分がデバイス内部に侵入することを遅延させる。前記封止剤層は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤とを含む。これにより、ガスバリア性と接着性とが共に向上し、耐久性が向上した封止剤層が形成される。したがって、このような封止剤層を有する本発明の有機エレクトロニクスデバイスは、耐久性に優れる。
前記第1の封止剤に含まれる樹脂(架橋樹脂)の例としては、例えば、エポキシ樹脂、アクリル樹脂、アイオノマー樹脂、ウレタン樹脂、エチレン−酢酸ビニル共重合体樹脂等が挙げられる。中でも、エポキシ樹脂およびアクリル樹脂の少なくとも一方を含むことがより好ましい。
前記第2の封止剤に含まれる樹脂(架橋樹脂)の例としては、例えば、エポキシ樹脂、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂、ポリ塩化ビニリデン樹脂等が挙げられる。これらの中でも、ポリオレフィン樹脂、フッ素樹脂、およびポリ塩化ビニリデン樹脂からなる群より選択される少なくとも1種を含むことがより好ましい。
なお、これらの樹脂は、単独でもまたは2種以上組み合わせて使用してもよい。
封止剤中の前記樹脂の含有量は、第1の封止剤および第2の封止剤ともに、封止剤の全体量を100質量部として、20〜80質量部であることが好ましい。
前記第1の封止剤および前記第2の封止剤は、硬化剤を含んでもよい。硬化剤としては、特に制限はなく、上記樹脂に対して反応性を有する官能基を有する化合物であればよい。具体的には、例えば、トリフェニルメタントリイソシアネート、メチレンビス(4−フェニルメタントリイソシアネート)、トリアリルイソシアネート、ダイマー酸ジイソシアネート、2,4−トリレンジイソシアネート(2,4−TDI)、2,6−トリレンジイソシアネート(2,6−TDI)、4,4’−ジフェニルメタンジイソシアネート(4,4’−MDI)、2,4’−ジフェニルメタンジイソシアネート(2,4’−MDI)、1,4−フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリデンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5−ナフタレンジイソシアネート(NDI)、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアナートメチル(NBDI)、トランスシクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6−XDI(水添XDI)、H12−MDI(水添MDI)、上記ジイソシアネートのカルボジイミド変性ジイソシアネート類、またはこれらのイソシアヌレート変性ジイソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物などの上記イソシアネート類とトリメチロールプロパン等のポリオール化合物とのアダクト体、これらイソシアネート類のビウレット体やイソシアヌレート体等のイソシアネート系硬化剤;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、ジシクロペンタジエン型フェノール樹脂等のフェノール系硬化剤;エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン、2,4−ジアミノ−6−〔2’―メチルイミダゾリル−(1’)〕エチル−s−トリアジン等のトリアジン化合物、1,8−ジアザビシクロ[5,4,0]ウンデセン−7(DBU)、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン等のアミン系硬化剤;無水フタル酸、無水マレイン酸、ドデセニル無水コハク酸、無水トリメリット酸、ベンゾフェノンテトラカルバン酸二無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物系硬化剤;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ−ホルムアルデヒド樹脂;さらにナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル、ジルコニウム等の二価金属から四価金属の塩およびその酸化物等が挙げられる。これら硬化剤は、単独でもまたは2種以上組み合わせて使用してもよい。
封止剤中の前記硬化剤の含有量は、第1の封止剤および第2の封止剤ともに、封止剤の全体量を100質量部として、20〜60質量部であることが好ましい。
前記第1の封止剤および前記第2の封止剤は、必要に応じて他の添加剤を含んでもよい。他の添加剤の具体例としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムホスフェート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4−クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロフォスフェート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ジアリルヨードニウムヘキサフルオロアンチモネート、ジエトキシアセトフェノン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、4−(2−アクリロイル−オキシエトキシ)フェニル−2−ヒドロキシ−2−プロピルケトン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等の硬化触媒、シランカップリング剤、硬化促進剤、イオン液体、リチウム塩、無機フィラー、軟化剤、酸化防止剤、老化防止剤、安定剤、粘着付与樹脂、レベリング剤、消泡剤、可塑剤、染料、顔料(着色顔料、体質顔料等)、処理剤、紫外線遮断剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、滑剤等が挙げられる。
前記第1の封止剤および前記第2の封止剤の硬化前の25℃における粘度は、100〜300,000mPa・sであることが好ましい。なお、粘度は実施例に記載の方法により測定することができる。
前記第1の封止剤および前記第2の封止剤の硬化方法は、特に制限されず、例えば、加熱、紫外線照射、電子線照射等が挙げられる。
前記第1の封止剤の硬化後のショアD硬度は、好ましくは83以上であり、より好ましくは85以上である。また、前記第2の封止剤の硬化後のショアD硬度は、好ましくは75以下であり、より好ましくは70以下である。
封止剤の硬化後のショアD硬度の調整は、使用する封止剤の樹脂を適宜選択することにより行うことができるが、封止剤に柔軟な構造を有するポリマーを導入する方法によって調整を行ってもよい。柔軟な構造としては、ポリエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン構造、ポリアクリル酸ブチルなどのガラス転移点(Tg)が30℃以下である(メタ)アクリル酸エステルポリマー鎖、(メタ)アクリロニトリル−ブタジエン共重合体などの構造が好ましく用いられる。このような柔軟な構造は、上記で例示したポリマー(エラストマーまたは樹脂)を封止剤に添加する方法や、上記ポリマーの末端または内部にアミノ基、カルボキシル基、ヒドロキシル基などの反応性官能基を付加させ、封止剤の樹脂の反応基と反応させる方法によっても導入することができる。
このようなポリマーを添加する場合の添加量は、第1の封止剤および第2の封止剤ともに、封止剤の全体量を100質量部として、5〜30質量部であることが好ましい。
封止剤の硬化後の水蒸気透過度は、使用する樹脂の種類、架橋密度、無機フィラーの量等により適宜調整することができる。しかしながら、架橋密度、無機フィラー等により水蒸気透過度を小さくする、封止剤の硬度が上がり、接着性が低下する傾向にある。よって、前記第1の封止剤の硬化後の水蒸気透過度は、30g/m・day以下であることが好ましく、20g/m・day以下であることがより好ましい。また、前記第2の封止剤の硬化後の水蒸気透過度は、60g/m・day以下であることが好ましく、50g/m・day以下であることがより好ましい。なお、封止剤の硬化後の水蒸気透過度は、実施例に記載の方法により測定することができる。
封止剤層における封止剤の配置については、特に制限されないが、硬化後のショアD硬度が小さい第2の封止剤を面方向の中心部(図2のCの部分)に配置し、前記中心部を囲う外周部(図2のBの部分)に、硬化後のショアD硬度が高い第1の封止剤を配置することが好ましい。このようにして、第1の封止剤および第2の封止剤を配置することにより、本発明の効果をより効率的に得ることができる。
加えて、前記外周部の外側(図2のAの部分)にさらに前記第2の封止剤を配置することにより、ガスバリア性フィルム、有機素子、および封止部材の接着性がさらに向上し、より耐久性に優れた有機エレクトロニクスデバイスを得ることができるため好ましい。この際、中心部に配置する第2の封止剤と、外周部の外側に配置する第2の封止剤とは、同じ種類であってもよいし異なる種類であってもよい。
特に好ましくは、前記第2の封止剤を有機素子の上部(図1の13の上部)に配置し、前記第1の封止剤を前記有機素子が載っていないバリア層の上部(図1の12の上部)に配置し、さらに前記第2の封止剤を前記第1の封止剤の外側に配置する形態である。
封止剤は、市販品を用いてもよいし合成品(調製品)を用いてもよい。市販品の例としては、例えば、ニュクレル(登録商標)AN4214C、AN4225C、AN4228C(以上、三井・デュポンポリケミカル株式会社製)、TB1655、TB3124、TB3125(以上、スリーボンド株式会社製)、DS6000(以上、ヘンケル社製)、LP655、LP415(以上、デロ社製)の接着剤が挙げられる。
封止剤を調製する場合は、例えば、上記に示す樹脂、硬化剤、および必要に応じて他の成分を、−20〜40℃で、1〜24時間の間、攪拌混合する方法が適用される。
封止剤層の形成方法は、特に制限されず、例えば、液状の封止剤を塗布した後乾燥する方法、シート状の封止剤を配置する方法等が挙げられる。
液状の封止剤の塗布方法としては、例えば、マイクログラビアコート法、グラビアコート法、バーコート法、ワイヤーバーコート法、ロールコート法、ディップコート法、フレキソ印刷法、オフセット印刷法、スクリーン印刷法等が挙げられる。封止剤量のコントロールのしやすさから、好ましくは、ディスペンサーにより液状の封止剤を塗布する液晶滴下工法(ODF、One Drop Filling)が用いられる。
[有機素子]
本発明に係る有機素子は、特に制限されず、例えば、有機光電変換素子、有機EL素子、電子ペーパー、液晶表示素子、薄膜トランジスタ、タッチパネル等が挙げられる。
(有機EL素子)
以下、具体的な有機素子の構成について、一例として、有機EL素子を説明する。
本発明に係る有機EL素子は、ガスバリア性フィルム上に、少なくとも第1電極、発光層を含む有機機能層および第2電極を有する有機EL構造体(発光部ともいう)である。具体的な一例としては、ガスバリア性フィルム上に順次、第1電極(陽極)、正孔輸送層、発光層、電子輸送層、および陰極バッファ層(電子注入層)から構成される有機層と、第2電極(陰極)とを積層した構造を有する有機EL構造体を、本発明の封止剤層を介して封止基材と接着し、封止された封止構造となっている。
さらに、本発明に係る有機EL構造体の代表的な層構成例を以下に示す。
(1)ガスバリア性フィルム/第1電極(陽極)/有機層(発光層)/第2電極(陰極)/封止剤層/封止部材;
(2)ガスバリア性フィルム/第1電極(陽極)/有機層(発光層)/電子輸送層/第2電極(陰極)/シート状接着剤/ガスバリア性基材2;
(3)ガスバリア性フィルム/第1電極(陽極)/正孔輸送層/有機層(発光層)/正孔阻止層/電子輸送層/第2電極(陰極)/封止剤層/封止部材;
(4)ガスバリア性フィルム/第1電極(陽極)/正孔輸送層(正孔注入層)/有機層(発光層)/正孔阻止層/電子輸送層/陰極バッファ層(電子注入層)/第2電極(陰極)/封止剤層/封止部材;
(5)ガスバリア性フィルム/第1電極(陽極)/陽極バッファ層(正孔注入層)/正孔輸送層/有機層(発光層)/正孔阻止層/電子輸送層/陰極バッファ層(電子注入層)/第2電極(陰極)/封止剤層/封止部材;
(6)ガスバリア性フィルム/第1電極(陽極)/陽極バッファ層(正孔注入層)/正孔輸送層/有機層(発光層)/正孔阻止層/電子輸送層/陰極バッファ層(電子注入層)/第2電極(陰極)/保護層/封止剤層/封止部材。
〔有機EL構造体〕
次いで、本発明に係る有機EL素子を構成している基材や各構成層について説明する(上述のガスバリア性フィルム、封止剤層、および封止部材を除く)。
(第1電極:陽極)
第1電極(陽極)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。この様な電極物質の具体例としてはAu等の金属、CuI、酸化インジウムスズ(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In・ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。或いは、有機導電性化合物のように塗布可能な物質を用いることも可能である。この第1電極(陽極)より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また第1電極(陽極)としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
(正孔注入層:陽極バッファ層)
第1電極(陽極)と発光層または正孔輸送層の間に、正孔注入層(陽極バッファ層)を存在させてもよい。正孔注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。陽極バッファ層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファ層、酸化バナジウムに代表される酸化物バッファ層、アモルファスカーボンバッファ層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファ層等が挙げられる。
(正孔輸送層)
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることが出来る。正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の何れかを有するものであり、有機物、無機物の何れであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することが出来るが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。芳香族第3級アミン化合物およびスチリルアミン化合物の代表例としては、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル;N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N’−ジフェニル−N,N’−ジ(4−メトキシフェニル)−4,4’−ジアミノビフェニル;N,N,N’,N’−テトラフェニル−4,4’−ジアミノジフェニルエーテル;4,4’−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4’−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4’−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4’−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることも出来る。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することが出来る。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂p型正孔輸送材料を用いることも出来る。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
または、例えば、正孔輸送層としては、Bayer社製、商品名Baytron(登録商標)P等のPEDOT/PSS(ポリ−3,4−エチレンジオキシチオフェン・ポリスチレンスルホネート)、ポリアニリンおよびそのドープ材料、国際公開第2006/019270号公報等に記載のシアン化合物、などを用いることもできる。
(発光層)
発光層とは、青色発光層、緑色発光層、赤色発光層を指す。発光層を積層する場合の積層順としては、特に制限はなく、また各発光層間に非発光性の中間層を有していてもよい。本発明においては、少なくとも1つの青色発光層が、全発光層中最も陽極に近い位置に設けられていることが好ましい。また、発光層を4層以上設ける場合には、陽極に近い順から、例えば青色発光層/緑色発光層/赤色発光層/青色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層/赤色発光層のように青色発光層、緑色発光層、赤色発光層を順に積層することが、輝度安定性を高める上で好ましい。発光層を多層にすることで白色素子の作製が可能である。また、発光層は、電子輸送層の機能を兼ね備えることができる。
発光層の膜厚(乾燥後の膜厚)の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を考慮し、通常2nm〜5μm、好ましくは2〜200nmの範囲で選ばれる。更に10〜50nmの範囲にあるのが好ましい。膜厚を50nm以下にすると電圧面のみならず、駆動電流に対する発光色の安定性が向上する効果があり好ましい。個々の発光層の膜厚(乾燥後の膜厚)は、好ましくは2〜100nmの範囲で選ばれ、2〜50nmの範囲にあることがさらに好ましい。青、緑、赤の各発光層の膜厚の関係については、特に制限はないが、3色発光層中、青色発光層(複数層ある場合はその総和)が最も厚いことが好ましい。
発光層は発光極大波長が各々430〜480nm、510〜550nm、600〜640nmの範囲にある発光スペクトルの異なる少なくとも3層以上の層を含む。3層以上であれば、特に制限はない。4層より多い場合には、同一の発光スペクトルを有する層が複数層あってもよい。発光極大波長が430〜480nmにある層を青色発光層、510〜550nmにある層を緑色発光層、600〜640nmの範囲にある層を赤色発光層と言う。また、前記の極大波長を維持する範囲において、各発光層には複数の発光性化合物を混合してもよい。例えば、青色発光層に、極大波長430〜480nmの青発光性化合物と、同510〜550nmの緑発光性化合物を混合して用いてもよい。
発光層の材料として使用する有機発光材料は、(a)電荷の注入機能、すなわち、電界印加時に陽極或いは正孔注入層から正孔を注入することが出来、陰極或いは電子注入層から電子を注入することが出来る機能、(b)輸送機能、すなわち、注入された正孔および電子を電界の力で移動させる機能、および(c)発光機能、すなわち、電子と正孔の再結合の場を提供し、これらを発光に繋げる機能、の3つの機能を併せもつものであれば特に限定はない。例えば、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤や、スチリルベンゼン系化合物を用いることが出来る。上記の蛍光増白剤の具体例としては、ベンゾオキサゾール系では、2,5−ビス(5,7−ジ−t−ペンチル−2−ベンゾオキサゾリル)−1,3,4−チアジアゾール、4,4’−ビス(5,7−t−ペンチル−2−ベンゾオキサゾリル)スチルベン、4,4’−ビス[5,7−ジ−(2−メチル−2−ブチル)−2−ベンゾオキサゾオリル]スチルベン、2,5−ビス(5,7−ジ−t−ペンチル−2−ベンゾオキサゾリル)チオフェン、2,5−ビス[5−α,α−ジメチルベンジル−2−ベンゾオキサゾリル]チオフェン、2,5−ビス[5,7−ジ−(2−メチル−2−ブチル)−2−ベンゾオキサゾリル]−3,4−ジフェニルチオフェン、2,5−ビス(5−メチル−2−ベンゾオキサゾリル)チオフェン、4,4’−ビス(2−ベンゾオキサゾリル)ビフェニル、5−メチル−2−[2−[4−(5−メチル−2−ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール、2−[2−(4−クロロフェニル)ビニル]ナフト[1,2−d]オキサゾ−ル等が挙げられる。ベンゾチアゾール系では、2,2’−(p−フェニレンジビニレン)−ビスベンゾチアゾール等が挙げられ、ベンゾイミダゾール系では、2−[2−[4−(2−ベンゾイミダゾリル)フェニル]ビニル]ベンゾイミダゾール、2−[2−(4−カルボキシフェニル)ビニル]ベンゾイミダゾール等が挙げられる。さらに、他の有用な化合物は、ケミストリー・オブ・シンセティック・ダイズ(1971),第628〜637頁および第640頁に列挙されている。また、上記のスチリルベンゼン系化合物の具体例としては、1,4−ビス(2−メチルスチリル)ベンゼン、1,4−ビス(3−メチルスチリル)ベンゼン、1,4−ビス(4−メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4−ビス(2−エチルスチリル)ベンゼン、1,4−ビス(3−メチルスチリル)ベンゼン、1,4−ビス(2−メチルスチリル)−2−メチルベンゼン、1,4−ビス(2−メチルスチリル)−2−エチルベンゼン等が挙げられる。
さらに、上述した蛍光増白剤およびスチリルベンゼン系化合物以外にも、例えば、12−フタロペリノン、1,4−ジフェニル−1,3−ブタジエン、1,1,4,4−テトラフェニル−1,3−ブタジエン、ナフタルイミド誘導体、ペリレン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラジリン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、スチリルアミン誘導体、クマリン系化合物、国際公開第90/13148号やAppl.Phys.Lett.,vol 58,18,P1982(1991)に記載されているような高分子化合物、芳香族ジメチリディン系化合物が挙げられる。芳香族ジメチリディン系化合物の具体例としては、1,4−フェニレンジメチリディン、4,4’−フェニレンジメチリディン、2,5−キシリレンジメチリディン、2,6−ナフチレンジメチリディン、1,4−ビフェニレンジメチリディン、1,4−p−テレフェニレンジメチリディン、4,4’−ビス(2,2−ジ−t−ブチルフェニルビニル)ビフェニル、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル等、およびこれらの誘導体が挙げられる。また、上記一般式(I)で表される化合物の具体例としては、ビス(2−メチル−8−キノリノラート)(p−フェニルフェノラート)アルミニウム(III)、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム(III)等が挙げられる。
その他、上述した有機発光材料をホストとし、当該ホストに青色から緑色までの強い蛍光色素、例えばクマリン系或いは前記ホストと同様の蛍光色素をドープした化合物も、有機発光材料として好適である。有機発光材料として前記の化合物を用いた場合には、青色から緑色の発光(発光色はドーパントの種類によって異なる)を高効率で得ることが出来る。前記化合物の材料であるホストの具体例としては、ジスチリルアリーレン骨格の有機発光材料(特に好ましくは、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル)が挙げられ、前記化合物の材料であるドーパントの具体例としては、ジフェニルアミノビニルアリレーン(特に好ましくは、例えば、N,N−ジフェニルアミノビフェニルベンゼンや4,4’−ビス[2−[4−(N,N−ジ−p−トリル)フェニル]ビニル]ビフェニル)が挙げられる。
発光層には、発光層の発光効率を高くするために公知のホスト化合物と公知のリン光性化合物(リン光発光性化合物とも言う)を含有することが好ましい。
ホスト化合物とは、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。ホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することが出来る。また、リン光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることが出来る。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用も出来る。
これらのホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、尚且つ高Tg(ガラス転移温度)である化合物が好ましい。公知のホスト化合物としては、例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等に記載の化合物が挙げられる。
複数の発光層を有する場合、これら各層のホスト化合物の50質量%以上が同一の化合物であることが、有機層全体に渡って均質な膜性状を得やすいことから好ましく、更にはホスト化合物のリン光発光エネルギーが2.9eV以上であることが、ドーパントからのエネルギー移動を効率的に抑制し、高輝度を得る上で有利となることからより好ましい。リン光発光エネルギーとは、ホスト化合物を基板上に100nmの蒸着膜のフォトルミネッセンスを測定し、そのリン光発光の0−0バンドのピークエネルギーを言う。
ホスト化合物は、有機EL素子の経時での劣化(輝度低下、膜性状の劣化)、光源としての市場ニーズ等を考慮し、リン光発光エネルギーが2.9eV以上且つTgが90℃以上のものであることが好ましい。すなわち、輝度と耐久性の両方を満足するためには、リン光発光エネルギーが2.9eV以上且つTgが90℃以上のものであることが好ましい。Tgは、更に好ましくは100℃以上である。
リン光性化合物(リン光発光性化合物)とは、励起三重項からの発光が観測される化合物であり、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物である。先に説明したホスト化合物と合わせ使用することで、より発光効率の高い有機EL素子とすることが出来る。
本発明に係るリン光性化合物は、リン光量子収率は好ましくは0.1以上である。上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定出来る。溶液中でのリン光量子収率は種々の溶媒を用いて測定出来るが、本発明に用いられるリン光性化合物は、任意の溶媒の何れかにおいて上記リン光量子収率が達成されればよい。
リン光性化合物の発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光性化合物に移動させることでリン光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光性化合物がキャリアトラップとなり、リン光性化合物上でキャリアの再結合が起こりリン光性化合物からの発光が得られるというキャリアトラップ型であるが、何れの場合においても、リン光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン光性化合物は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることが出来る。リン光性化合物としては、好ましくは元素の周期表で8族−10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本発明においては、リン光性化合物のリン光発光極大波長としては特に制限されるものではなく、原理的には中心金属、配位子、配位子の置換基等を選択することで得られる発光波長を変化させることが出来る。
本発明に係る有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当て嵌めた時の色で決定される。
本発明で言うところの白色素子とは、2°視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931 表色系における色度がX=0.33±0.07、Y=0.33±0.07の領域内にあることを言う。
(電子輸送層)
電子輸送層とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。電子注入層(陰極バッファ層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファ層、フッ化リチウムに代表されるアルカリ金属化合物バッファ層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファ層、酸化アルミニウムに代表される酸化物バッファ層等が挙げられる。上記バッファ層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
他に発光層側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることが出来、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることが出来る。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることも出来る。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることが出来る。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることが出来る。また、ジスチリルピラジン誘導体も、電子輸送材料として用いることが出来るし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることが出来る。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることも出来る。その例としては、特開平4−297076号公報、特開平10−270172号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。この様なn性の高い電子輸送層を用いることがより低消費電力の素子を作製することが出来るため好ましい。
本発明に係わる有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
(電子注入層:陰極バッファ層)
電子注入層形成工程で形成される電子注入層(陰極バッファ層)とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。電子注入層(陰極バッファ層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファ層、フッ化リチウムに代表されるアルカリ金属化合物バッファ層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファ層、酸化アルミニウムに代表される酸化物バッファ層等が挙げられる。
(第2電極:陰極)
第2電極(陰極)としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。この様な電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することが出来る。
尚、発光した光を透過させるため、有機EL素子の第1電極(陽極)または第2電極(陰極)の何れか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、第2電極として上記電極物質(金属)を1〜100nmの膜厚で作製した後に、第1電極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の第2電極(陰極)を作製することが出来、これを応用することで第1電極(陽極)と第2電極(陰極)の両方が透過性を有する素子を作製することが出来る。
(保護層)
有機エレクトロニクスデバイス10は、必要に応じて、有機素子上に保護層を有してもよい。保護層は、水分や酸素等の有機素子の劣化を促進するものが素子内に侵入することを防止する機能、封止基材12上に配置された有機素子等を絶縁性とする機能、または有機素子による段差を解消する機能を有する。
保護層を形成する材料としては上記機能を有するものであれば特に制限されないが、例えば、アルミニウム(Al)、金(Au)、銀(Ag)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、銅(Cu)、または、これらの合金等の金属、シリカ等の酸化ケイ素、アルミナ等の酸化アルミニウム、チタニア等の酸化チタン、酸化インジウム、酸化スズ、酸化インジウムスズ(ITO)、酸化タンタル、酸化ジルコニウム、酸化ニオブなどの金属酸化物;窒化アルミニウム、窒化ケイ素、窒化ホウ素などの金属窒化物;炭化ホウ素、炭化タングステン、炭化ケイ素などの金属炭化物;酸窒化アルミニウム、酸窒化ケイ素、酸窒化ホウ素などの金属酸窒化物;酸化ホウ化ジルコニウム、酸化ホウ化チタンなどの金属酸化ホウ化物、ダイヤモンド様カーボンおよびこれらの組み合わせが挙げられる。
保護層の形成方法については、特に限定はなく、例えば、スパッタリング;蒸発;化学蒸着(CVD);プラズマ増強化学蒸着(プラズマCVD);無機酸化物または窒化物の前駆体(例えばゾル状の、ポリシラザン、テオス(TEOS)、有機金属化合物など)のウェットコーティング後の加熱および/または真空紫外光の照射などによる無機酸化物または窒化物への改質;めっき;スプレー;スピンコート等の、フィルム金属化技術で使用されている技術を使用して形成される。
保護層の厚さは特に制限されないが、例えば、10nm〜1μmであることが好ましく、50〜500nmであることがより好ましい。
[有機エレクトロニクスデバイスの製造方法]
本発明の有機エレクトロニクスデバイスの製造方法は、特に制限されず、例えば、(1)ガスバリア性フィルム上に有機素子を形成した後、前記ガスバリア性フィルム上および/または前記有機素子上に封止剤層を形成し、その後封止部材を積層し接着する方法;(2)封止部材上に有機素子を形成した後、前記封止部材上および/または前記有機素子上に封止剤層を形成し、その後ガスバリア性フィルムを積層し接着する方法;等が挙げられる。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
(封止剤の調製)
下記表2に示すような成分および組成比で、10℃で4時間攪拌し、封止剤AD−1〜10を調製した。なお、下記表2に示す各成分の詳細は下記表1の通りであり、下記表2中の各成分の数字は質量部を表す。また、封止剤AD−11としては、三井・デュポンポリケミカル株式会社製、ニュクレル(登録商標)AN4228C(厚さ20μmのシート状)を準備した。
各封止剤の硬化前の粘度、硬化後の水蒸気透過度(表2中の「WVTR」)、および硬化後のショアD硬度は、下記の方法により測定した。
粘度
AD−1〜AD−10については、ハーケ社製、回転粘度計ビスコマスターVT550を使用し、25℃でISO3219に準じた方法で粘度を測定した。
水蒸気透過度
AD−1〜AD−10については、セロハン基材上に厚さ100μmになるように塗布し、硬化処理を行い、封止剤シートを得た。AD−11は、20μmの封止剤シートをそのまま用いた。得られた封止剤シートについて、60℃、90%RHの環境下で、JIS Z0208:1976に準じ、水蒸気透過度をカップ法で測定した。なお、AD−11については、100μmあたりの水蒸気透過度にするために、得られた値の1/5を算出した。
ショアD硬度
AD−1〜AD−10については、ガラス基板上に封止剤を約100μmの厚さに塗布した後表1に記載の硬化条件で硬化処理することを繰り返し、厚さ5mmの封止剤層を形成した。AD−11は、厚さ20μmのシートを複数枚重ねて5mm厚とした。このようにして得られた封止剤層について、JIS K6253:1997の方法に従い、TQC社製デュロメーターを用い、25℃での硬化後のショアD硬度を測定した。
なお、上記の硬化処理においては、紫外線硬化装置としてセン特殊光源株式会社製の品名 HLR100T−2を用い、加熱装置としてエスペック株式会社製のPU−2型を用いた。
(実施例1)
《基材の作製》
基材(支持体)として、両面に易接着加工された厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、Q65FWA)を用い、下記に示すように、片面にブリードアウト防止層を、反対面に平滑層を形成したものを基材とした。
〈ブリードアウト防止層の形成〉
上記熱可塑性樹脂基材の一方の面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標) Z7535を、乾燥後の膜厚が4.0μmになる条件で塗布した後、硬化条件として、照射エネルギー量1.0J/cmで、空気雰囲気下、高圧水銀ランプを使用し、乾燥条件80℃で、3分間の硬化処理を行い、ブリードアウト防止層を形成した。
〈平滑層の形成〉
次いで、上記熱可塑性樹脂基材のブリードアウト防止層を形成した面とは反対側の面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標) Z7501を、乾燥後の膜厚が4.0μmになる条件で塗布した後、80℃で、3分間乾燥した後、空気雰囲気下、高圧水銀ランプを使用し、硬化条件として、照射エネルギー量1.0J/cmで照射、硬化して、平滑層を形成した。
得られた平滑層のJIS B0601:2001で規定される方法に準拠して測定した表面粗さRaは1nmであった。また、Rzは20nmであった。
表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行って、それぞれの測定で得られたRaの値、および、10点平均粗さRzをそれぞれ平均したものを測定値とした。
〔ガスバリア性フィルムの作製〕
基材の平滑層の上に、下記ポリシラザン含有塗布液を、スピンコーターを用いて、乾燥後の膜厚が150nmとなる条件で塗布した。乾燥条件は、100℃で2分とした。
〈ポリシラザン含有塗布液の調製〉
無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120−20)と、アミン触媒としてN,N,N’,N’−テトラメチル−1,6−ジアミノヘキサンを1質量%、およびパーヒドロポリシラザンを19質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120−20)とを4:1の比率で混合し、アミン触媒の含有量を塗布液の固形分に対して1質量%に調整した。さらに、設定膜厚に応じてジブチルエーテルで適宜希釈することにより、塗布液を調製した。
(真空紫外線照射処理)
上記の様にしてポリシラザンを含む塗膜を形成した後、下記の方法に従って、3000mJ/cmの照射エネルギーで真空紫外線の照射処理を施して、バリア層を形成した。
〈真空紫外線照射条件・照射エネルギーの測定〉
真空紫外線照射は、図3に断面模式図で示した装置を用いて行った。
図3において、21は装置チャンバであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバ内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。22は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、23は外部電極を兼ねるエキシマランプのホルダーである。24は試料ステージである。試料ステージ24は、図示しない移動手段により装置チャンバ21内を水平に所定の速度Vで往復移動することができる。また、試料ステージ24は図示しない加熱手段により、所定の温度に維持することができる。25はポリシラザン塗布層が形成された試料である。試料ステージ24が水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージ24の高さが調整されている。26は遮光板であり、Xeエキシマランプ22のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。
真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ4中央に設置し、かつ、装置チャンバ21内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ24を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ22の照度を安定させるため、Xeエキシマランプ22の点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。
この測定で得られた照射エネルギーを元に、試料ステージ24の移動速度を調整することで所定の照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。
このようにして、ガスバリア性フィルム1を作製した。また、特開2006−119069号公報で示されるCa法を用い、60℃、90%RHの条件で測定したガスバリア性フィルム1の水蒸気透過度は、3×10−5g/m・dayであった。
《有機エレクトロニクスデバイスの作製》
ガスバリア性フィルム1を封止フィルムとして用いて、以下の手順で、20cm角の有機エレクトロニクスデバイスである有機EL素子6を作製した。
〔有機EL素子の作製〕
(第1電極層の形成)
ガスバリア性フィルム1のバリア層上に、厚さ150nmのITO(酸化インジウムスズ)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。
(正孔輸送層の形成)
上記で形成した第1電極層の上に、以下に示す正孔輸送層形成用塗布液を、乾燥後の厚みが50nmとなるように押出し塗布機で塗布した後乾燥し、正孔輸送層を形成した。
正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
〈塗布条件〉
塗布工程は大気中、25℃、相対湿度50%の環境で行った。
〈正孔輸送層形成用塗布液の準備〉
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Baytron(登録商標)P AI 4083)を純水で65%、およびメタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
〈乾燥および加熱処理条件〉
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で温風を当て溶媒を除去した後、引き続き、加熱処理装置を用い、温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
(発光層の形成)
引き続き、上記で形成した正孔輸送層の上に、以下に示す白色発光層形成用塗布液を乾燥後の厚みが40nmになるように押出し塗布機で塗布した後乾燥し、発光層を形成した。
〈白色発光層形成用塗布液〉
ホスト材H−A 1.0g、ドーパント材D−A 100mg、ドーパント材D−B 0.2mg、およびドーパント材D−C 0.2mgを、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。ホスト材H−A、ドーパント材D−A、ドーパント材D−B、およびドーパント材D−Cの化学構造は、下記化学式に示す通りである。
〈塗布条件〉
塗布工程を、窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
〈乾燥および加熱処理条件〉
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で温風を当て溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
(電子輸送層の形成)
引き続き、上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を、乾燥後の厚みが30nmになるように押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。
〈塗布条件〉
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
〈電子輸送層形成用塗布液〉
電子輸送層は、E−A(下記化学式参照)を2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし、電子輸送層形成用塗布液とした。
〈乾燥および加熱処理条件〉
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で温風を当て、溶媒を除去した後、引き続き加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
(電子注入層の形成)
引き続き、上記で形成した電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバに投入し、5×10−4Paまで減圧した。あらかじめ、真空チャンバにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(第2電極の形成)
引き続き、上記で形成した電子注入層の上に5×10−4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、マスクパターン成膜し、厚さ100nmの第2電極を積層した。
(保護層の形成)
続いて、第1電極および第2電極の取り出し部になる部分を除き、CVD法にてSiOを200nmの厚さで積層し、第2電極層上に保護層を形成した。
(裁断)
保護層まで形成したガスバリア性フィルムを、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断した。
(電極リード接続)
裁断した素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
圧着条件:温度170℃(別途熱電対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
(封止)
30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)を、ドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いドライラミネートした(接着剤層の厚み1.5μm)封止部材上に、液状の封止剤であるAD−1およびAD−6を、武蔵エンジニアリング株式会社製ディスペンサーを使用し、ODF法を用い、以下に示す方法で塗布した。AD−1を図2のB部分に195mm×195mmの大きさで、直角部のR=2mmで塗布し、AD−6を図2のBの内側のCの部分に、等間隔で38×38か所に分けて滴下した。上記封止部材を、ランテクニカルサービス株式会社製真空貼り合わせ装置を使用し、電極リード(フレキシブルプリント基板)を接続した素子上に、封止剤層の厚さが20μmになるように、接着した。AD−1の塗布量は、素子と封止部材との間隙を20μmにしたときにAD−1の巾が1.0mmになるように調整した。AD−6の塗布量は、素子と封止部材との間隙を20μmにしたときに、封止剤AD−1との間に間隙が生じないように調整した。
塗設後、下記表3に記載の硬化条件で封止剤の硬化処理を行い、有機EL素子6を作製した。なお、硬化処理においては、紫外線硬化装置としてセン特殊光源株式会社製のHLR 100T−2を用い、加熱装置としてエスペック株式会社製のPU−2型を用いた。
(実施例2〜13、比較例1〜12)
上記表2に示す封止剤を、下記表3に示すような配置で配置させ、かつ下記表3に記載の硬化条件で封止剤の硬化処理を行ったこと以外は、実施例1と同様にして、有機EL素子1〜5、7〜25を作製した。なお、図2のAの部分に封止剤を配置する場合は、図2のBの部分から2.0mmの間隔を置いて塗布し、厚さ20μmで封止時にBとAとの部分に間隙がないように塗布量を調整した。
液状の封止剤であるAD−1〜AD−10については、電極リード(フレキシブルプリント基板)を接続した素子に、武蔵エンジニアリング株式会社製ディスペンサーを使用し、表3および表4に示す封止パターンで、延展後の厚さが20μmとなるように封止剤層を設置した。また、シート状の封止剤であるAD−11については、所定の大きさに打ち抜き設置した。
《有機EL素子の評価》
上記作製した有機EL素子1〜25について、下記の方法に従って、耐久性の評価を行った。
〔耐久性評価〕
(加速劣化処理)
上記作製した各有機EL素子を、60℃、90%RHの環境下で1000時間の加速劣化処理を施した後、加速劣化処理を施していない有機EL素子と共に、下記の黒点に関する評価を行った。
(黒点の評価)
加速劣化処理を施した有機EL素子および加速劣化処理を施していない有機EL素子に対し、それぞれ1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、有機EL素子の中心部および周辺部の2か所で、有機EL素子に向けての写真撮影を行った。撮影画像を5mm四方に切り抜き、黒点の発生面積比率を求め、下式に従って素子劣化耐性率を算出し、下記の基準に従って耐久性を評価した。評価ランクが、◎、○であれば、実用上好ましい特性であると判定した。
◎:素子劣化耐性率が、90%以上である
○:素子劣化耐性率が、60%以上、90%未満である
△:素子劣化耐性率が、20%以上、60%未満である
×:素子劣化耐性率が、20%未満である
また、作製した有機EL素子を直径10cmの円柱に巻きつけ5分放置した後、平面状に広げ5分放置する操作を100回行った後に、上記と同様の耐久性試験を実施した(表中の「屈曲後耐久性」)。
評価結果を、下記表3および4に示す。
上記表3および表4に記載の結果から明らかなように、本発明の有機EL素子6〜11、13〜15、17〜20、および24〜25(実施例1〜15)は、耐久性に優れることが分かる。
(実施例16〜18、比較例11)
〔ガスバリア性フィルムの作製〕
基材(支持体)として、両面に易接着加工された厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、Q65FWA)上に、国際公開第2012/003198号の実施例1に記載の方法と同様の方法で、無機層および有機層をそれぞれ3層ずつ積層したバリア層を設け、ガスバリア性フィルム2を作製した。無機層は、3層ともSiAlOの層であり、厚さは3層とも30nmであった。また、特開2006−119069号公報で示されるCa法を用い、60℃、90%RHの条件で測定したガスバリア性フィルム2の水蒸気透過度は、4×10−5g/m・dayであった。
このようにして作製したガスバリア性フィルム2を用い、上記表2に示す封止剤を、下記表5に示すような配置で配置させ、かつ下記表5に記載の硬化条件で封止剤の硬化処理を行ったこと以外は、実施例1と同様にして、有機EL素子201〜204を作製した。
(実施例19〜21)
〔ガスバリア性フィルムの作製〕
基材(支持体)として、両面に易接着加工された厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、Q65FWA)上に、国際公開第2011/013341号の実施例E2に記載の方法と同様の方法で作製したバリア膜を3枚貼りあわせて、有機層および無機層が積層されたガスバリア性フィルム3を作製した。無機層は、3層ともSiOの層であり、厚さは3層とも30nmであった。また、特開2006−119069号公報で示されるCa法を用い、60℃、90%RHの条件で測定したガスバリア性フィルム3の水蒸気透過度は、5×10−5g/m・dayであった。
このようにして作製したガスバリア性フィルム3を用い、上記表2に示す封止剤を、下記表5に示すような配置で配置させ、かつ下記表5に記載の硬化条件で封止剤の硬化処理を行ったこと以外は、実施例1と同様にして、有機EL素子205〜207を作製した。
有機EL素子201〜207の耐久性の評価結果を、下記表5に示す。
上記表5に記載の結果から明らかなように、本発明の有機EL素子202〜207(実施例16〜21)は、耐久性に優れることが分かる。
10 有機エレクトロニクスデバイス、
11 基材
12 バリア層、
13 有機素子、
14 封止剤層、
15 封止部材、
21 装置チャンバ、
22 Xeエキシマランプ、
23 ホルダー、
24 試料ステージ、
25 試料、
26 遮光板。

Claims (10)

  1. 基材およびバリア層を有するガスバリア性フィルムと、
    封止部材と、
    前記ガスバリア性フィルムと前記封止部材との間に位置する、有機素子および封止剤層と、
    を有し、
    前記封止剤層は、硬化後のショアD硬度が80以上である第1の封止剤と、硬化後のショアD硬度が80未満である第2の封止剤と、を含む、有機エレクトロニクスデバイス。
  2. 前記第1の封止剤の硬化後の水蒸気透過度が20g/m・day以下であり、前記第2の封止剤の硬化後の水蒸気透過度が50g/m・day以下である、請求項1に記載の有機エレクトロニクスデバイス。
  3. 前記第2の封止剤は、面方向の中心部に配置され、前記第1の封止剤は前記中心部を囲う外周部に配置される、請求項1または2に記載の有機エレクトロニクスデバイス。
  4. 前記外周部の外側に、さらに前記第2の封止剤が配置される、請求項3に記載の有機エレクトロニクスデバイス。
  5. 前記封止部材は、金属または金属化合物を含む、請求項1〜4のいずれか1項に記載の有機エレクトロニクスデバイス。
  6. 前記バリア層は、ポリシラザンを含む層を改質処理して形成される、請求項1〜5のいずれか1項に記載の有機エレクトロニクスデバイス。
  7. 前記バリア層は、無機層と有機層との積層体である、請求項1〜5のいずれか1項に記載の有機エレクトロニクスデバイス。
  8. 前記第1の封止剤は、エポキシ樹脂およびアクリル樹脂の少なくとも一方を含む、請求項1〜7のいずれか1項に記載の有機エレクトロニクスデバイス。
  9. 前記第2の封止剤は、ポリオレフィン樹脂、フッ素樹脂、およびポリ塩化ビニリデン樹脂からなる群より選択される少なくとも1種を含む、請求項1〜8のいずれか1項に記載の有機エレクトロニクスデバイス。
  10. 前記封止剤層は、液晶滴下工法により形成される、請求項1〜9のいずれか1項に記載の有機エレクトロニクスデバイス。
JP2012103372A 2012-04-27 2012-04-27 有機エレクトロニクスデバイス Expired - Fee Related JP5835083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103372A JP5835083B2 (ja) 2012-04-27 2012-04-27 有機エレクトロニクスデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103372A JP5835083B2 (ja) 2012-04-27 2012-04-27 有機エレクトロニクスデバイス

Publications (2)

Publication Number Publication Date
JP2013232317A true JP2013232317A (ja) 2013-11-14
JP5835083B2 JP5835083B2 (ja) 2015-12-24

Family

ID=49678592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103372A Expired - Fee Related JP5835083B2 (ja) 2012-04-27 2012-04-27 有機エレクトロニクスデバイス

Country Status (1)

Country Link
JP (1) JP5835083B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147096A1 (ja) * 2014-03-26 2015-10-01 リンテック株式会社 シート状封止材、封止シートおよび電子デバイス封止体
WO2016068415A1 (ko) * 2014-10-28 2016-05-06 삼성에스디아이 주식회사 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
JP2016201236A (ja) * 2015-04-09 2016-12-01 Dic株式会社 発光装置、照明器具及び情報表示装置ならびに発光装置の製造方法
JPWO2015152076A1 (ja) * 2014-03-31 2017-04-13 リンテック株式会社 長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
JPWO2016031877A1 (ja) * 2014-08-29 2017-06-22 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2017115783A1 (ja) 2015-12-28 2017-07-06 凸版印刷株式会社 積層体及びその製造方法、ガスバリアフィルム及びその製造方法、並びに有機発光素子
JP2017173508A (ja) * 2016-03-23 2017-09-28 株式会社ジャパンディスプレイ 表示装置
KR20230137518A (ko) * 2022-03-21 2023-10-05 박현배 다회성 열압착용 실리콘 쿠션패드를 이용한 모니터링 시스템

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236274A (ja) * 1994-12-28 1996-09-13 Tonen Corp エレクトロルミネッセンス素子
JPH08236271A (ja) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp 有機電界発光素子及びその製造方法
JPH1036832A (ja) * 1996-07-30 1998-02-10 Mitsubishi Chem Corp 有機電界発光素子
JPH10316658A (ja) * 1997-05-21 1998-12-02 Mitsubishi Chem Corp 4,4’−ビス(n−カルバゾリル)ジフェニルアミン誘導体及びそれを用いた有機電界発光素子
JP2006202952A (ja) * 2005-01-20 2006-08-03 Shin Etsu Chem Co Ltd シリコーン封止型led
JP2008311152A (ja) * 2007-06-15 2008-12-25 Tomoegawa Paper Co Ltd 電子機器積層体
JP2009048834A (ja) * 2007-08-17 2009-03-05 Seiko Epson Corp 有機エレクトロルミネッセンス装置及びその製造方法、電子機器
JP2009095989A (ja) * 2007-10-12 2009-05-07 Fujifilm Corp ガスバリアフィルムおよび環境感受性デバイス
JP2010080289A (ja) * 2008-09-26 2010-04-08 Dainippon Printing Co Ltd 有機エレクトロルミネッセンスパネル、及びその製造方法
JP2010529645A (ja) * 2007-06-01 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト 発光体を有するシリコン成形部材
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
US20110278553A1 (en) * 2010-05-17 2011-11-17 Samsung Mobile Display Co., Ltd. Organic light-emitting apparatus and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236274A (ja) * 1994-12-28 1996-09-13 Tonen Corp エレクトロルミネッセンス素子
JPH08236271A (ja) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp 有機電界発光素子及びその製造方法
JPH1036832A (ja) * 1996-07-30 1998-02-10 Mitsubishi Chem Corp 有機電界発光素子
JPH10316658A (ja) * 1997-05-21 1998-12-02 Mitsubishi Chem Corp 4,4’−ビス(n−カルバゾリル)ジフェニルアミン誘導体及びそれを用いた有機電界発光素子
JP2006202952A (ja) * 2005-01-20 2006-08-03 Shin Etsu Chem Co Ltd シリコーン封止型led
JP2010529645A (ja) * 2007-06-01 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト 発光体を有するシリコン成形部材
JP2008311152A (ja) * 2007-06-15 2008-12-25 Tomoegawa Paper Co Ltd 電子機器積層体
JP2009048834A (ja) * 2007-08-17 2009-03-05 Seiko Epson Corp 有機エレクトロルミネッセンス装置及びその製造方法、電子機器
JP2009095989A (ja) * 2007-10-12 2009-05-07 Fujifilm Corp ガスバリアフィルムおよび環境感受性デバイス
JP2010080289A (ja) * 2008-09-26 2010-04-08 Dainippon Printing Co Ltd 有機エレクトロルミネッセンスパネル、及びその製造方法
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
US20110278553A1 (en) * 2010-05-17 2011-11-17 Samsung Mobile Display Co., Ltd. Organic light-emitting apparatus and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147096A1 (ja) * 2014-03-26 2015-10-01 リンテック株式会社 シート状封止材、封止シートおよび電子デバイス封止体
JPWO2015152076A1 (ja) * 2014-03-31 2017-04-13 リンテック株式会社 長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
JPWO2016031877A1 (ja) * 2014-08-29 2017-06-22 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2016068415A1 (ko) * 2014-10-28 2016-05-06 삼성에스디아이 주식회사 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
JP2016201236A (ja) * 2015-04-09 2016-12-01 Dic株式会社 発光装置、照明器具及び情報表示装置ならびに発光装置の製造方法
WO2017115783A1 (ja) 2015-12-28 2017-07-06 凸版印刷株式会社 積層体及びその製造方法、ガスバリアフィルム及びその製造方法、並びに有機発光素子
KR20180098354A (ko) 2015-12-28 2018-09-03 도판 인사츠 가부시키가이샤 적층체 및 그 제조 방법, 가스 배리어 필름 및 그 제조 방법, 그리고 유기 발광 소자
US11005065B2 (en) 2015-12-28 2021-05-11 Toppan Printing Co., Ltd. Laminate comprising tantalum oxide and method of producing the same, gas barrier film and method of producing the same, and organic light-emitting element
JP2017173508A (ja) * 2016-03-23 2017-09-28 株式会社ジャパンディスプレイ 表示装置
KR20230137518A (ko) * 2022-03-21 2023-10-05 박현배 다회성 열압착용 실리콘 쿠션패드를 이용한 모니터링 시스템
KR102650412B1 (ko) * 2022-03-21 2024-03-22 박현배 다회성 열압착용 실리콘 쿠션패드를 이용한 모니터링 시스템

Also Published As

Publication number Publication date
JP5835083B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5835083B2 (ja) 有機エレクトロニクスデバイス
JP6156366B2 (ja) ガスバリア性フィルム、電子デバイス用基板および電子デバイス
KR101885053B1 (ko) 유기 일렉트로루미네센스 소자
JP5895689B2 (ja) 電子デバイスおよびその製造方法
US9640780B2 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JP5895684B2 (ja) ガスバリア性フィルムの製造方法、および前記ガスバリア性フィルムを用いた電子デバイスの製造方法
US10074825B2 (en) Organic electroluminescent element
WO2014203729A1 (ja) 有機発光素子
JP5581816B2 (ja) ガスバリア性フィルム、及びそれを用いた有機素子デバイス
KR20150104196A (ko) 유기 일렉트로루미네센스 소자 및 조명 장치
JP2022010127A (ja) ガスバリアフィルムの製造方法、透明導電部材の製造方法、及び、有機エレクトロルミネッセンス素子の製造方法
JP2012086393A (ja) 機能性多層フィルムの製造方法、ガスバリア性フィルム、及び有機素子デバイス
WO2016063869A1 (ja) 光取り出し基板、光取り出し基板の製造方法、有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
US20180212184A1 (en) Organic electroluminescent element
JP5609524B2 (ja) ガスバリア性フィルム及びそれを用いた有機素子デバイス
WO2016163215A1 (ja) 有機エレクトロルミネッセンス素子
WO2017217200A1 (ja) 光取り出しフィルム、及び、有機エレクトロルミネッセンス発光装置
WO2014126063A1 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
CN108293279B (zh) 发光装置
WO2017158920A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2014208315A1 (ja) 有機エレクトロルミネッセンス素子
JP2016190442A (ja) ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子
JP2016054097A (ja) 有機エレクトロルミネッセンス素子、及び、基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees