JP2013229442A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2013229442A
JP2013229442A JP2012100130A JP2012100130A JP2013229442A JP 2013229442 A JP2013229442 A JP 2013229442A JP 2012100130 A JP2012100130 A JP 2012100130A JP 2012100130 A JP2012100130 A JP 2012100130A JP 2013229442 A JP2013229442 A JP 2013229442A
Authority
JP
Japan
Prior art keywords
well
conductivity type
field relaxation
electric field
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100130A
Other languages
English (en)
Inventor
Yuji Hirosaki
有史 廣崎
Takahiro Takimoto
貴博 瀧本
Kazufumi Naruse
一史 成瀬
Kazutomo Doi
一智 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012100130A priority Critical patent/JP2013229442A/ja
Publication of JP2013229442A publication Critical patent/JP2013229442A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】高耐圧でかつ安価なトリプルウエル構造の半導体装置を提供する。
【解決手段】半導体装置は、第1導電型の半導体基板の表面層に形成される第1導電型とは反対の第2導電型の第1ウエルと、第1ウエル内に前記半導体基板から分離して形成される第1導電型の第2ウエルと、第2ウエル内に第1ウエルから分離して形成される第2導電型の電界緩和領域と、第2ウエル内に形成され第2ウエルよりも不純物濃度が高い第1導電型の埋め込み領域とを有する。前記埋め込み領域は、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離している。
【選択図】図1

Description

本発明は、半導体装置及びその製造方法に関し、特にトリプルウエル構造の半導体装置及びその製造方法に関するものである。
半導体装置においては、負電源回路を主とする異なる電位をもつ回路を構成するためや基板におけるノイズを吸収するために、トリプルウエル構造が採用されてきた。
トリプルウエル構造は、図16に示すように、第1導電型の半導体基板1の表面層に第1導電型とは反対の第2導電型の第1ウエル2を形成し、第1ウエル2内に第1導電型の第2ウエル3を半導体基板1から分離して形成した構造である。
図16に示すトリプルウエル構造を用いた従来のトランジスタ構造を図17に示す。当該トランジスタ構造は例えば特許文献1に低耐圧トランジスタ構造が開示されている。
従来のトランジスタ構造では、半導体基板1の表面に各素子同士を分離するための素子分離膜(絶縁膜)4が形成されている。また、第2ウエル3内に第2ウエル3とは反対の導電型であるソース電界緩和層7Sとドレイン電界緩和層7Dが互いに間隔を空けて形成され、ソース電界緩和層7Sとドレイン電界緩和層7Dの間の第2ウエル3上にゲート酸化膜5が形成され、ゲート酸化膜5上にゲート電極6が形成されている。さらに、ソース電界緩和層7S内とドレイン電界緩和層7D内にソース電界緩和層7S及びドレイン電界緩和層7Dより高い不純物濃度の第2導電型の高濃度不純物層8が形成され、第1ウエル2内の素子分離膜4と素子分離膜4の間に第1ウエル2より高い不純物濃度の第2導電型の高濃度不純物層8が形成され、第2ウエル3内の素子分離膜4と素子分離膜4の間に第2ウエル3より高い不純物濃度の第1導電型の高濃度不純物層9が形成されている。
図17に示す従来のトランジスタ構造は、ソース電界緩和層7S及びドレイン電界緩和層7Dによってドレインとソースのそれぞれのジャンクション耐圧(20[V]以下)を確保しているが、第2ウエル3へのパンチスルーを防ぐためにはソース電界緩和層7S及びドレイン電界緩和層7DのXjを浅くする必要があるため、高耐圧(例えば20[V]以上のソース−ドレイン間耐圧)を確保することは困難であった。
そこで、耐圧を向上させるために、低電圧トランジスタ構造(電界緩和層を有しない)においては第2ウエル3の底面に接している高濃度拡散層を形成することが提案されている(特許文献2及び特許文献3参照)。しかしながら、この構成では電界緩和層がなくパンチスルーを高濃度拡散層において防ぐことができても高耐圧(例えば20[V]以上のソース−ドレイン間耐圧)を実現することはできない。
一方、高耐圧トリプルウエルを形成する方法として、SOIウエハーを使用する方法、あるいは、埋め込みEPIウエハーを使用する方法が提案されている。しかしながら、これらの方法はコストが高くなるという欠点がある。
特開平9−27556号公報 特開平8−97378号公報 特許第3949006号公報 特開平11−297853号公報 特開平6−302771号公報
本発明は、上記の状況に鑑み、高耐圧でかつ安価なトリプルウエル構造の半導体装置及びその製造方法を提供することを目的とするものである。
上記目的を達成するために本発明の一局面に係る半導体装置は、第1導電型の半導体基板の表面層に形成される第1導電型とは反対の第2導電型の第1ウエルと、第1ウエル内に前記半導体基板から分離して形成される第1導電型の第2ウエルと、第2ウエル内に第1ウエルから分離して形成される第2導電型の電界緩和領域と、第2ウエル内に形成され第2ウエルよりも不純物濃度が高い第1導電型の埋め込み領域とを有し、前記埋め込み領域が、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離している構成(第1の構成)である。なお、前記埋め込み領域が、前記電界緩和領域から分離していることが望ましい。
上記第1の構成によると、SOIウエハーあるいは埋め込みEPIウエハーを使用せず、一般的なバルクウエハを使用することができるので、安価な半導体装置を実現することができる。また、上記第1の構成によると、埋め込み領域が第2ウエルの側面及び底面に接していないので、特許文献2及び特許文献3で提案されている半導体装置よりも耐圧が向上し、高耐圧(例えば20[V]以上のソース−ドレイン間耐圧)を実現することができる。
また、上記目的を達成するために本発明の他の局面に係る半導体装置は、第1導電型の半導体基板の表面層に形成される第1導電型とは反対の第2導電型の第1ウエルと、第1ウエル内に前記半導体基板から分離して形成される第1導電型の第2ウエルと、第2ウエル内に形成され第2ウエルよりも不純物濃度が高い第1導電型の第3ウエルと、第3ウエル内に形成され第3ウエルよりも不純物濃度が低い第1導電型の第4ウエルと、第4ウエル内に第1ウエルから分離して形成される第2導電型の電界緩和領域と、第3ウエルが、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離している構成(第2の構成)である。なお、前記第3ウエルが、前記電界緩和領域から分離していることが望ましい。
上記第2の構成によると、SOIウエハーあるいは埋め込みEPIウエハーを使用せず、一般的なバルクウエハを使用することができるので、安価な半導体装置を実現することができる。また、上記第2の構成によると、第3ウエルが第2ウエルの側面及び底面に接していないので、特許文献2及び特許文献3で提案されている半導体装置よりも耐圧が向上し、高耐圧(例えば20[V]以上のソース−ドレイン間耐圧)を実現することができる。
また、上記目的を達成するために本発明の一局面に係る半導体装置の製造方法は、第1導電型の半導体基板の表面層に第1導電型とは反対の第2導電型の第1ウエルを形成する工程と、第1ウエル内に第1導電型の第2ウエルを前記半導体基板から分離して形成する工程と、第2ウエル内に第2導電型の電界緩和領域を第1ウエルから分離して形成する工程と、第2ウエル内に第2ウエルよりも不純物濃度が高い第1導電型の埋め込み領域を形成する工程とを有し、前記埋め込み領域が、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離するように前記埋め込み領域を形成する。
また、上記目的を達成するために本発明の他の局面に係る半導体装置の製造方法は、第1導電型の半導体基板の表面層に第1導電型とは反対の第2導電型の第1ウエルを形成する工程と、第1ウエル内に第1導電型の第2ウエルを前記半導体基板から分離して形成する工程と、第2ウエル内に第2ウエルよりも不純物濃度が高い第1導電型の第3ウエルを形成する工程と、第3ウエル内に第3ウエルよりも不純物濃度が低い第1導電型の第4ウエルを形成する工程と、第4ウエル内に第2導電型の電界緩和領域を第1ウエルから分離して形成する工程と、第3ウエルが、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離するように第3ウエルを形成する。
本発明によると、高耐圧でかつ安価なトリプルウエル構造の半導体装置及びその製造方法を実現することができる。
本発明の一実施形態に係る半導体装置の構造を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第1の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第2の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第3の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第4の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第5の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第6の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第7の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第8の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第9の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第10の工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す第11の工程断面図である。 不純物濃度を示す図である。 本発明の一実施形態に係る半導体装置の上面図である。 本発明の他の実施形態に係る半導体装置の構造を示す断面図である。 トリプルウエル構造を示す断面図である。 トリプルウエル構造を用いた従来のトランジスタ構造を示す断面図である。
本発明の実施形態について図面を参照して以下に説明する。本発明の一実施形態に係る半導体装置の構造を図1に示す。なお、図1において図17と同一の部分には同一の符号を付し詳細な説明を省略する。
本発明の一実施形態に係る半導体装置は、図17に示す構造に加えて、第2ウエル3内に形成され第2ウエル3よりも不純物濃度が高い第1導電型の埋め込み領域10及び11を有している。埋め込み領域10及び11は、第2ウエル3の側面及び底面とソース電界緩和層(領域)7S及びドレイン電界緩和層(領域)7Dとの間に形成され、第1ウエル2並びにソース電界緩和層7S及びドレイン電界緩和層7Dから分離している。
このような構造によると、SOIウエハーあるいは埋め込みEPIウエハーを使用せず、一般的なバルクウエハを使用することができるので、安価な半導体装置を実現することができる。また、このような構造によると、埋め込み領域10及び11が第2ウエル3の側面及び底面に接していないので、特許文献2及び特許文献3で提案されている半導体装置よりも耐圧が向上し、高耐圧(例えば20[V]以上のソース−ドレイン間耐圧)を実現することができる。
次に、本発明の一実施形態に係る半導体装置の製造方法の一例について図2〜図14を参照して説明する。以下の例では、第1導電型をP型とし、第2導電型をN型としている。なお、図1の各部分に相当する図2〜図14の各部分には図1と同一の符号を付す。
まず、比抵抗1〜200[Ωcm]程度のP型シリコン基板1上に膜厚10〜100[nm]程度の熱酸化膜101を形成し、リソグラフィ工程により深いNウエルを形成するためのパターンニングを行う(図2参照)。パターンニングによって形成したレジスト102をマスクとして1.0×1012〜5.0×1013[cm-2]のドーズ量のリン(P)イオンを180〜10000[keV]の加速エネルギーでイオン注入し、P型シリコン基板1内にリン注入領域103を形成する(図2参照)。
次に、レジスト102を除去した後、1000〜1200[℃]、300〜600[分]の熱拡散により、注入したリンのドライブイン拡散を行い、深いNウエル2を形成する。なお、本製造方法例では、深いNウエル2の形成直後における深いNウエル2の深さXj1を6.0[μm]以上に調整している。深いNウエル2の形成後、P型シリコン基板1の表面上に形成していた熱酸化膜101をフッ化水素によるウエットエッチングにて全面剥離する。それから、熱酸化にて熱酸化膜104を形成し、CVD法にてシリコン窒化膜を熱酸化膜104上に全面形成し、その後パターンニング技術にてパターンニングされたシリコン窒化膜105を形成する(図3参照)。
次に、シリコン窒化膜105をマスクとして熱酸化にて膜厚300〜600[nm]程度の素子分離膜4を形成する。それから、エッチング技術にてシリコン窒化膜105をエッチングし、その後、熱酸化にて膜厚40〜100[nm]程度の熱酸化膜106を形成する(図4参照)。
次に、リソグラフィ工程により深いNウエル2内にPウエル3を形成するためのパターンニングをおこなう。パターンニングによって形成したレジストをマスクとして100〜2000[keV]の加速エネルギーで1.0×1012〜5.0×1013[cm-2]のドーズ量のボロン(B)を多段イオン注入する。その後、レジストを除去し、1000〜1200[℃]、300〜600[分]の熱拡散により、注入したボロンのドライブイン拡散を行い、Pウエル3を形成する(図5参照)。なお、本製造方法例では、Pウエル3の形成後における深いNウエル2の深さXj2を7.0[μm]程度、Pウエル3の深さXj3を3.0[μm]程度に調整している。
次に、リソグラフィ技術によりPウエル3内にPウエル3よりも不純物濃度が高いP型の埋め込み領域10を形成するためのパターンニングを行う。なお、本製造方法例では、埋め込み領域10を形成するためのパターンニングによって形成したレジストで覆われていない部分の幅(紙面の左右方向の長さ)はPウエル3を形成するためのパターンニングによって形成したレジストで覆われていない部分の幅(紙面の左右方向の長さ)よりも1.0[μm]以上小さくなるように調整している。これにより、埋め込み領域10がPウエル3の側面に接して埋め込み領域10が第1ウエル2から分離していない構造になることを防止することができる。その後、パターンニングによって形成したレジストをマスクとして900〜2000[keV]の加速エネルギーで5.0×1011〜5.0×1013[cm-2]のドーズ量のボロン(B)をイオン注入して埋め込み領域10を形成し、埋め込み領域10の形成後にレジストを除去する(図6参照)。なお、イオンの加速エネルギーの設定値は埋め込み領域10がPウエル3の底面に接することがないように選択される必要がある。
次に、リソグラフィ技術によりPウエル3内にPウエル3よりも不純物濃度が高いP型の埋め込み領域11を形成するためのパターンニングを行う。なお、P型シリコン基板1の表面の法線方向から半導体装置を見た平面視において、埋め込み領域11を形成するためのパターンニングによって形成したレジストが、Pウエル3の側面を全て覆っており、レジストのエッジとPウエル3の側面との距離が1.0[μm]以上であることが好ましい。これにより、埋め込み領域11がPウエル3の側面に接して埋め込み領域11が第1ウエル2から分離していない構造になることを防止することができるとともに、Pウエル3の電位を安定させることができる。その後、パターンニングによって形成したレジストをマスクとして50〜2000[keV]の加速エネルギーで5.0×1011〜5.0×1013[cm-2]のドーズ量のボロン(B)を多段イオン注入して埋め込み領域11を形成し、埋め込み領域11の形成後にレジストを除去する(図7参照)。なお、イオンの加速エネルギーの設定値は埋め込み領域11がPウエル3の底面に接することがないように選択される必要がある。また、埋め込み領域11を形成する工程は、同じP型シリコン基板1に形成される他のトランジスタ(不図示)のPウエルを形成する工程と同時に実施することができる。
次に、リソグラフィ技術によりPウエル3内にソース電界緩和層7S及びドレイン電界緩和層7Dを形成するためのパターンニングを行う。なお、本製造方法例では、ソース電界緩和層7S及びドレイン電界緩和層7Dがそれぞれ埋め込み領域11から1.5[μm]以上離れるようにしている。また、ソース電界緩和層7Sとドレイン電界緩和層7Dの間の距離はトランジスタのチャネル長となるため厳しく管理する必要がある。その後、パターンニングによって形成したレジストをマスクとして50〜1000[keV]の加速エネルギーで5.0×1011〜5.0×1013[cm-2]のドーズ量のリン(P)を多段イオン注入してソース電界緩和層7S及びドレイン電界緩和層7Dを形成し、ソース電界緩和層7S及びドレイン電界緩和層7Dの形成後にレジストを除去する(図8)。なお、イオンの加速エネルギーの設定値はソース電界緩和層7S及びドレイン電界緩和層7Dが埋め込み領域10に接することがないように選択される必要がある。また、イオンの加速エネルギーの設定値は必要とされる耐圧等に基づいて選択されなければならない。
次に、リソグラフィ技術により厚膜のゲート酸化膜5を形成するためにパターンニングを行う。パターンニング後、ウエットエッチング技術等により熱酸化膜106のパターンニングされた以外の部分を除去し、除去されなかった熱酸化膜106がゲート酸化膜5になる。その後、熱酸化により熱酸化膜107を形成する。なお、熱酸化膜107は同じP型シリコン基板1に形成される他のトランジスタ(不図示)のゲート酸化膜と共用される(図9参照)。
次に、通常のMOSトランジスタを形成するプロセスによりMOSトランジスタを形成する。例えば、ポリシリコン膜をCVD法により堆積し、リンをドーピングして低抵抗化する。それから、リソグラフィ技術によりパターンニングを行いドライエッチング技術にてエッチングを行う。その後、レジストを除去し、ゲート電極6を形成する(図10参照)。
次に、リソグラフィ技術によりN型の高濃度不純物層8を形成するためのパターンニングを行う。パターン形成後、砒素(AS)の注入を行う。同時に同じP型シリコン基板1に形成される他のトランジスタ(不図示)を形成するためのLDD注入が実施されてもかまわない。その後、レジストの剥離を行う(図11参照)。N型の高濃度不純物層8はソース電界緩和層7S及びドレイン電界緩和層7Dよりも不純物濃度が高い層である。ソース電界緩和層7S内に形成されるN型の高濃度不純物層8はソース電極として機能し、ドレイン電界緩和層7D内に形成されるN型の高濃度不純物層8はドレイン電極として機能し、素子分離膜4間に形成されるN型の高濃度不純物層8は深いNウエル2の電位をとるための電極として機能する。
最後に、リソグラフィ技術によりPウエル3の電位をとるための電極として機能するP型の高濃度不純物層9及びP型シリコン基板1の電位をとるための電極として機能するP型の高濃度不純物層(不図示)を形成するためのパターニングを行う。パターン形成後、BF2の注入を行う。その後、レジスト剥離を行う(図12参照)。P型の高濃度不純物層9及びP型シリコン基板1の電位をとるための電極として機能するP型の高濃度不純物層(不図示)はPウエル3よりも不純物濃度が高い層である。
ここで、図12中のA−A線上の深さ方向(P型シリコン基板1の表面の法線方向)の濃度プロファイルを図13示す。深いNウエルが7[μm]程度の深さで形成されており、深いNウエル2内に深さ3.5[μm]程度のPウエル3が形成されている。Pウエル3と深いNウエル2の境界に近い領域に高濃度のP型の埋め込み領域10が形成されている。埋め込み領域10の不純物濃度は1.0×1017[/cc]程度である。高濃度のP型の埋め込み領域10とP型シリコン基板1との間の領域にソース電界緩和層7Sが形成されている。ソース電界緩和層7Sは高濃度のP型の埋め込み領域10と重ならないことが望ましい。ドレイン電界緩和層7Dも同様である。そして、P型シリコン基板1に1.0×1021[/cc]程度のN型の高濃度不純物層が形成されている。
本発明の一実施形態に係る半導体装置の各層の配置を図14に示す。ただし、図14ではゲート電極6は図示を省略している。深いNウエル2の中にPウエル3が配置され、Pウエル3のエッジ(側面)から一定の距離内側に埋め込み領域10が配置され、Pウエル3のエッジ(側面)に沿って一定の距離内側にリング形状の埋め込み領域11が配置されている。リング形状の埋め込み領域11に囲まれた領域にソース電界緩和層7S、ドレイン電界緩和層7D、及び厚膜のゲート酸化膜5を有するトランジスタが配置される。
本発明の他の実施形態に係る半導体装置の構造を図15に示す。図15に示す本発明の他の実施形態に係る半導体装置は、図1に示す本発明の他の実施形態に係る半導体装置において、埋め込み領域10及び11を第2ウエル3よりも不純物濃度が高い第1導電型の第3ウエル12に置換し、第2ウエル3の埋め込み領域10及び11より内側の部分を第3ウエル12よりも不純物濃度が低い第1導電型の第4ウエル13に置換した構造である。
図15に示す本発明の他の実施形態に係る半導体装置の製造方法例としては、図1に示す本発明の一実施形態に係る半導体装置の製造方法例において、Pウエル3を形成した後に、Pウエル3を形成した方法と同様の方法で、P型の第3ウエル12を形成し、さらにその後、P型の第4ウエル13を形成し、埋め込み領域10及び11を形成する工程を省けばよい。
1 第1導電型の半導体基板、P型シリコン基板
2 第2導電型の第1ウエル、深いNウエル
3 第1導電型の第2ウエル、Pウエル
4 素子分離膜
5 ゲート酸化膜
6 ゲート電極
7S ソース電界緩和層
7D ドレイン電界緩和層
8 第2導電型の高濃度不純物層
9 第1導電型の高濃度不純物層
10、11 埋め込み領域
12 第1導電型の第3ウエル
13 第1導電型の第4ウエル
101、104、106、107 熱酸化膜
102 レジスト
103 リン注入領域
105 シリコン窒化膜

Claims (6)

  1. 第1導電型の半導体基板の表面層に形成される第1導電型とは反対の第2導電型の第1ウエルと、
    第1ウエル内に前記半導体基板から分離して形成される第1導電型の第2ウエルと、
    第2ウエル内に第1ウエルから分離して形成される第2導電型の電界緩和領域と、
    第2ウエル内に形成され第2ウエルよりも不純物濃度が高い第1導電型の埋め込み領域とを有し、
    前記埋め込み領域が、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離していることを特徴とする半導体装置。
  2. 前記埋め込み領域が、前記電界緩和領域から分離している請求項1に記載の半導体装置。
  3. 第1導電型の半導体基板の表面層に形成される第1導電型とは反対の第2導電型の第1ウエルと、
    第1ウエル内に前記半導体基板から分離して形成される第1導電型の第2ウエルと、
    第2ウエル内に形成され第2ウエルよりも不純物濃度が高い第1導電型の第3ウエルと、
    第3ウエル内に形成され第3ウエルよりも不純物濃度が低い第1導電型の第4ウエルと、
    第4ウエル内に第1ウエルから分離して形成される第2導電型の電界緩和領域と、
    第3ウエルが、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離していることを特徴とする半導体装置。
  4. 前記第3ウエルが、前記電界緩和領域から分離している請求項3に記載の半導体装置。
  5. 第1導電型の半導体基板の表面層に第1導電型とは反対の第2導電型の第1ウエルを形成する工程と、
    第1ウエル内に第1導電型の第2ウエルを前記半導体基板から分離して形成する工程と、
    第2ウエル内に第2導電型の電界緩和領域を第1ウエルから分離して形成する工程と、
    第2ウエル内に第2ウエルよりも不純物濃度が高い第1導電型の埋め込み領域を形成する工程とを有し、
    前記埋め込み領域が、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離するように前記埋め込み領域を形成することを特徴とする半導体装置の製造方法。
  6. 第1導電型の半導体基板の表面層に第1導電型とは反対の第2導電型の第1ウエルを形成する工程と、
    第1ウエル内に第1導電型の第2ウエルを前記半導体基板から分離して形成する工程と、
    第2ウエル内に第2ウエルよりも不純物濃度が高い第1導電型の第3ウエルを形成する工程と、
    第3ウエル内に第3ウエルよりも不純物濃度が低い第1導電型の第4ウエルを形成する工程と、
    第4ウエル内に第2導電型の電界緩和領域を第1ウエルから分離して形成する工程と、
    第3ウエルが、第2ウエルの側面及び底面と前記電界緩和領域との間に形成され、第1ウエルから分離するように第3ウエルを形成することを特徴とする半導体装置の製造方法。
JP2012100130A 2012-04-25 2012-04-25 半導体装置及びその製造方法 Pending JP2013229442A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100130A JP2013229442A (ja) 2012-04-25 2012-04-25 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100130A JP2013229442A (ja) 2012-04-25 2012-04-25 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2013229442A true JP2013229442A (ja) 2013-11-07

Family

ID=49676795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100130A Pending JP2013229442A (ja) 2012-04-25 2012-04-25 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2013229442A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897378A (ja) * 1994-09-22 1996-04-12 Fujitsu Ltd 半導体装置及びその製造方法
JP2007019200A (ja) * 2005-07-07 2007-01-25 Renesas Technology Corp 半導体装置およびその製造方法
JP2007158105A (ja) * 2005-12-06 2007-06-21 Matsushita Electric Ind Co Ltd 集積回路およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897378A (ja) * 1994-09-22 1996-04-12 Fujitsu Ltd 半導体装置及びその製造方法
JP2007019200A (ja) * 2005-07-07 2007-01-25 Renesas Technology Corp 半導体装置およびその製造方法
JP2007158105A (ja) * 2005-12-06 2007-06-21 Matsushita Electric Ind Co Ltd 集積回路およびその製造方法

Similar Documents

Publication Publication Date Title
US9153666B1 (en) LDMOS with corrugated drift region
KR100968182B1 (ko) 고이동도 벌크 실리콘 pfet
US7843002B2 (en) Fully isolated high-voltage MOS device
JP4437388B2 (ja) 半導体装置
US9337256B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8502326B2 (en) Gate dielectric formation for high-voltage MOS devices
JP2010087133A (ja) 半導体装置およびその製造方法
US7642617B2 (en) Integrated circuit with depletion mode JFET
JP4477309B2 (ja) 高耐圧半導体装置及びその製造方法
JP4501183B2 (ja) 半導体装置の製造方法
KR20140001087A (ko) 수직 파워 mosfet 및 그 제조 방법
TW201924064A (zh) 半導體裝置及其製造方法
JP2014192361A (ja) 半導体装置およびその製造方法
KR100922557B1 (ko) Cmos 트랜지스터 및 그 제조 방법
US8242007B2 (en) Semiconductor device formed using single polysilicon process and method of fabricating the same
JP3744438B2 (ja) 半導体装置
JP5799620B2 (ja) 半導体装置
JP5517691B2 (ja) 半導体装置およびその製造方法
JP2009302114A (ja) 半導体装置及びその製造方法
JP2013229442A (ja) 半導体装置及びその製造方法
JP5926576B2 (ja) 半導体装置及び半導体装置の製造方法
JP2014053414A (ja) 半導体装置の製造方法
JP5784269B2 (ja) 半導体装置及びその製造方法
JP6064240B2 (ja) 半導体装置および半導体装置の製造方法
JP2010028054A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004