JP2013183578A - 制御装置、及び制御方法 - Google Patents

制御装置、及び制御方法 Download PDF

Info

Publication number
JP2013183578A
JP2013183578A JP2012047092A JP2012047092A JP2013183578A JP 2013183578 A JP2013183578 A JP 2013183578A JP 2012047092 A JP2012047092 A JP 2012047092A JP 2012047092 A JP2012047092 A JP 2012047092A JP 2013183578 A JP2013183578 A JP 2013183578A
Authority
JP
Japan
Prior art keywords
power
input
control
solar cell
input power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012047092A
Other languages
English (en)
Other versions
JP5886658B2 (ja
Inventor
Hiroaki Nakamura
浩明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012047092A priority Critical patent/JP5886658B2/ja
Publication of JP2013183578A publication Critical patent/JP2013183578A/ja
Application granted granted Critical
Publication of JP5886658B2 publication Critical patent/JP5886658B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】マルチストリング入力パワーコンディショナにおいて系統電圧を規定値以下としつつ最大入力電力が得られるような出力電力抑制を行う。
【解決手段】制御装置に、複数の太陽電池ストリングからそれぞれ入力される入力電力を調節して、商用電源系統との連系点へ出力する調節部と、前記太陽電池ストリングごとに発電される最大の電力が入力されるように前記調節部に各入力電力を調節させる第1の制御を行い、前記第1の制御を行っているときに前記連系点における系統電圧が第1の基準電圧以上のときは、前記調節部に各入力電力の所定の割合に対応する調節量で当該入力電力を減少させる第2の制御に切り替える制御部と、を設けたことにより、マルチストリング入力パワーコンディショナにおいて入力電力抑制を各入力電力に応じた調節量で行い、系統電圧を規定値以下としつつ最大入力電力が得られるような出力電力抑制が可能になる。
【選択図】 図3

Description

本発明は、複数の太陽電池ストリングからそれぞれ入力される入力電力を調節する制御装置、及び制御方法に関する。
太陽光発電用パワーコンディショナは、太陽電池の特性を利用して、太陽電池が発電する最大の電力を常時取り出すように動作する。太陽電池の特性は、電圧が上昇すると電流が下降し、電圧が下降すると電流が上昇する特性であり、この特性は縦軸を電流、横軸を電圧としたI−V曲線や縦軸を電力としたP−V曲線として知られている。太陽光発電用パワーコンディショナは、最大電力点追跡(MPPT: Maximum Power Point Tracking)制御と呼ばれる技術を用いてP−V曲線の最大動作点で動作して、太陽電池から最大電力を取り出す。
しかし、太陽電池による発電電力のうちの余剰電力を商用電源系統(以下、単に系統という)に対し逆潮流により売却する家庭用の太陽光発電システム(たとえば、特許文献1)では、一方で、系統との連系点における電圧(以下、系統電圧という)を適正に保つことが求められる。たとえば、電気事業法には、標準電圧100V(ボルト)に対して101±6V、標準電圧200Vに対して202±20V以内に維持するよう、規定されている(非特許文献1)。
このため、太陽光発電用パワーコンディショナにおいては、運転中に系統電圧が上昇し、規定の電圧を超えるような場合に、系統電圧が適正値となるような調節を行うことが求められる。一般的に、パワーコンディショナには、進相無効電力制御や出力電力抑制により自動的に系統電圧を適正値に調節する機能を備えたものがある。一般的な家庭用パワーコンディショナの場合、低圧配電系統では系統のリアクタンス成分が小さいため、進相無効電力制御による電圧調節効果は小さい。そのため、家庭用パワーコンディショナでは、出力電力抑制が採用される。家庭用パワーコンディショナの出力電力抑制機能は、たとえば、太陽電池からの入力電力を低下させることで系統との連系点への出力電力を抑制し、系統電圧を低下させる。
特開2001−309560号公報
電力品質確保に係る系統連系技術要件ガイドライン、第2節低圧配電線との連系(平成16年10月1日、資源エネルギー庁)
ところで、家庭用の太陽光発電用パワーコンディショナは、太陽電池との接続方法に応じて2種類に大別される。一つ目は、複数の太陽電池ストリング(複数枚の太陽電池モジュールを直列接続して出力電圧を上昇させたもの)をいわゆる接続箱等で並列接続し、1つに集電することで直流電流を上昇させてからパワーコンディショナに入力する形態である。二つ目は、例えば、上記特許文献1のように、複数の太陽電池ストリングをパワーコンディショナにそれぞれ直接入力する形態である。後者の形態のように、太陽電池ストリングごとの直流電力が入力されるDC/DC変換部を有するパワーコンディショナは、一般に、マルチストリング入力パワーコンディショナと呼ばれる。
接続箱で集電する形態のパワーコンディショナでは、1つの系列の太陽電池ストリングからの入力に対してMPPT制御が行われる。よって、系統電圧の調節を行うために出力電力を抑制するためには、1つの系列の太陽電池ストリングのMPPT制御を停止して入力電力を低下させればよい。すなわち、系統電圧が規定値以下となるように、MPPT制御で求めたP−V曲線上の最大動作点からより電力が低い動作点へと、入力動作点を変化させればよい。ただし、入力電力を低下させすぎると、本来逆潮流できる出力電力までも出力できなくなる。よって、動作点は最適値となるように制御されることが望ましい。すなわち、出力電力抑制を行う際には、系統電圧が規定値以下となる範囲において、最大入力電力が得られるような動作点に制御することが求められる。
一方、マルチストリング入力パワーコンディショナでは、入力される太陽電池ストリングそれぞれに対してMPPT制御が行われる。また、マルチストリング入力パワーコンディショナの場合、一般的に、太陽電池ストリングごとに発電電力が異なる。これは、太陽電池ストリングごとに太陽電池を異なる方位に設置することで日射量が異なったり、太陽電池ストリングごとに接続される太陽電池モジュールの数が異なったりすることによる。すると、系統電圧の調節を行うために入力電力を低下させるには、複数の太陽電池ストリングに対するより複雑な制御が必要になる。たとえば、系統電圧を低下させるためだけなら、いずれかの太陽電池ストリングの入力を停止することも可能である。しかし、これでは、系統電圧が規定値以下となる範囲において最大入力電力を得るという細かい調節ができず、逆潮流に支障を来たす。
そこで、上記に鑑みてなされた本発明の目的は、マルチストリング入力パワーコンディショナにおいて、系統電圧を規定値以下としつつ最大入力電力が得られるような、出力電力抑制を行う制御装置等を提供することにある。
上記の目的を達成するために、本発明の一側面における制御装置は、複数の太陽電池ストリングからそれぞれ入力される入力電力を調節して、商用電源系統との連系点へ出力する調節部と、前記太陽電池ストリングごとに発電される最大の(または最大に近い)電力が入力されるように前記調節部に各入力電力を調節させる第1の制御を行い、前記第1の制御を行っているときに前記連系点における系統電圧が第1の基準電圧以上のときは、前記調節部に各入力電力の第1の割合に対応する調節量で当該入力電力を減少させる第2の制御に切り替える制御部と、を有する。
上記側面の一態様では、前記制御部は、前記第2の制御を行っているときに前記系統電圧が前記第1の基準電圧以下の第2の基準電圧を下回るときは、前記調節部に各入力電力の第2の割合に対応する調節量で当該入力電力を増加させ、前記第1の制御に切り替える。
上記側面の別の態様では、前記調節部は、前記第2の制御が行われるとき、各入力電力が所定の下限値を下回らないように当該入力電力を調節する。
上記側面のさらに別の態様では、前記調節部は、前記第2の制御が行われるとき、前記太陽電池ストリングから入力される入力電圧を上昇させることにより前記入力電力を減少させる。
上記側面によれば、調節部に各入力電力の所定の割合に対応する調節量で当該入力電力を減少させることで、マルチストリング入力パワーコンディショナにおいて系統電圧を規定値以下としつつ最大入力電力が得られるような出力電力抑制を行うことが可能になる。
本実施形態における制御装置が適用される、マルチストリング入力パワーコンディショナの構成を説明する図である。 調節部8の動作について説明する図である。 出力電力抑制について説明する図である 本実施形態におけるパワーコンディショナ10の動作手順を説明するフローチャート図である。 本実施形態におけるパワーコンディショナ10の入力電力抑制手順を示すフローチャート図である。 変形例におけるパワーコンディショナ10の入力電力抑制方法について説明する図である。
以下、図面にしたがって本発明の実施の形態について説明する。但し、本発明の技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。
図1は、本実施形態における制御装置が適用される、マルチストリング入力パワーコンディショナの構成を説明する図である。図1に示す太陽光発電装置11は、2つの太陽電池ストリング1a、1bと、太陽電池ストリング1a、1bの発電電力が入力されるパワーコンディショナ10とを有する。太陽電池ストリング1a、1bにおける太陽電池は、たとえば、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、またはCIGS等薄膜系太陽電池等である。光電変換可能なものであれば、その種類は制限されない。ここでは、パワーコンディショナ10が、本実施形態の制御装置の例である。なお、以下では、説明の便宜上、2つの太陽電池ストリングから発電電力が入力されるパワーコンディショナを例とするが、3つ以上の太陽電池ストリングから発電電力が入力される場合も、本発明の技術的範囲に含まれる。
パワーコンディショナ10は、太陽電池ストリング1a、1bに対応して、それぞれ入力される直流電圧を昇圧するDC/DC変換部2a、2bを有する。また、パワーコンディショナ10は、DC/DC変換部2a、2bが出力する直流電力を交流にDC/AC変換する電力変回路3を有する。電力変換回路3は、DC/AC変換回路を有するが、その他各種制御回路で構成されていてもよい。電力変換回路3は、リレー7を介して商用電源系統(以下、系統という)5に並列接続される。これにより、交流に変換された発電電力が、系統5に逆潮流される。なお、以下では、太陽電池ストリング1a、1bで発電された直流電力を発電電力、電力変換回路3で変換された交流電力を出力電力という。
DC/DC変換部2a、2b、及び電力変換回路3のいずれか一方または両方は、後述するように、太陽電池ストリング1a、1bからの発電電力の入力電力を調節して、系統5への出力電力を抑制する。たとえば、DC/DC変換部2a、2bは、太陽電池ストリング1a、1bからの入力電力をそれぞれ調節する。または、電力変換回路3は、出力電力自体を調節することで、太陽電池ストリング1a、1bからDC/DC変換部2a、2bへの入力電力を調節する。本実施形態では、DC/DC変換部2a、2b、及び電力変換回路3のいずれか一方または両方が、複数の太陽電池ストリングからそれぞれ入力される入力電力を調節して系統5との連系点へ出力する調節部8に対応する。
パワーコンディショナ10は、DC/DC変換部2a、2b、電力変換回路3、及びリレー7を制御する制御部4を有する。制御部4には、系統電圧検出センサ6から、系統5との連系点における電圧(以下、系統電圧)の計測値が送信される。制御部4は、系統電圧検出センサ6の計測値から系統電圧が法定の定格値(または定格値に対応する基準値)以上になったことを検出すると、調節部8に対して出力電力抑制を指示する出力電力抑制指示信号を発信する。制御部4は、出力電力抑制指示信号を発信してからは、出力電圧が定格値(または基準値)未満になったことを検出すると、調節部8に対して出力電力抑制を解除する出力電力抑制解除信号を発信する。また、制御部4は、出力電圧の異常時にはリレー7に対し連系を解除する指示信号を送信する連系保護機能を有する。制御部4は、たとえば、マイクロコンピュータである。上記の制御動作は、CPU(Central Processing Unit)が記憶媒体内に格納された制御プログラムに従って動作することで、実行される。
図2は、調節部8の動作について説明する図である。図2における説明は、太陽電池ストリング1aを例とするが、太陽電池ストリング1bにも適用される。図2(A)には、ある日射量での、太陽電池ストリング1aの発電電力の電流・電圧特性IVが示される。横軸は電圧、縦軸は電流を示す。また、図2(B)には、図2(A)に対応する電力・電圧特性PVが示される。横軸は電圧、縦軸は電力を示す。
図2(A)の電流・電圧特性IVと、図2(B)の電力・電圧特性PVの関係は、次のとおりである。図2(A)の電流・電圧特性IVにおいて、電圧軸の切片と電流軸の切片が、それぞれ太陽電池ストリング1aの開放電圧Voと短絡電流Isに対応する。電流・電圧特性IVに示されるように、太陽電池ストリング1aの発電電力は、発電電圧が開放電圧Voから電圧Vcに降下するにつれて電流が上昇し、発電電圧が電圧Vcを下回ると短絡電流Isと略一致するという特性を有する。これに対応して、図2(B)の電力・電圧特性PVは、電圧Vcで電力が最大Pmaxとなる凸形状の曲線を描く。この電力Pmaxが、太陽電池ストリング1aの発電電力の最大値である。なお、かかる電流・電圧特性IVと、これに対応する電力・電圧特性PVは、日照と温度によって変動する。
調節部8におけるDC/DC変換部2aは、太陽電池ストリング1aの発電電力(電圧および電流)を太陽電池ストリング1aとDC/DC変換部2aとの間に配置されたセンサなど(図示省略)によって検出し、自身に接続されている太陽電池ストリング1aに対してMPPT制御を行う。MPPT制御は、太陽電池ストリング1aから常時最大電力(または最大近くの電力)を入力するように、電力・電圧特性PVのピークをトラッキングする制御である。たとえば、DC/DC変換部2aは、太陽電池ストリング1aの電圧を開放電圧Voから降圧させながら電力(または電流)を監視する。このとき、たとえば図2(A)、(B)の動作点W1の電圧(開放電圧Vo)から降圧するにしたがい、電流及び電力は増加する(矢印21)。そして、電圧Vcのとき、電流及び電力は最大となる。かかる動作点が、最大動作点MPPである。DC/DC変換部2aは、たとえば、降下させる単位電圧あたりの電流または電流の増加量が所定の基準量を下回るか、あるいはゼロになったとき、最大動作点MPPを検出する。または、電力が減少に転じたときに最大動作点MPPを検出してもよい。
そして、調節部8は、制御部4からの出力電力抑制指示信号を受信した場合は、MPPT制御を停止し、入力電力を減少させて(矢印22)動作点W2まで移動させる。そうすることで、出力電力が抑制される。
ところで、マルチストリング入力パワーコンディショナでは、太陽電池ストリングが異なる方位に設置されてそれぞれの日射量が異なり、あるいは、直列接続されるモジュール数が太陽電池ストリングごとに異なる場合がある。すると、各太陽電池ストリングの発電電力が設置方位における日照量やモジュール数に依存して異なり、したがって、各太陽電池ストリングからの入力電力が異なる場合がある。かかる場合に、本実施形態の一態様は、太陽電池ストリングごとに、その入力電力に応じた異なる調節量で入力電力を減少させる、出力電力抑制を行う。
図3は、出力電力抑制について説明する図である。図3(A)は、太陽電池ストリング1aの電流電圧特性IVaを示し、図3(B)は、太陽電池ストリング1bの電流電圧特性IVbを示す。図3(A)、(B)では、横軸が電圧、縦軸が電流を示す。ここでは、太陽電池ストリング1aに対する日射量「1.0」が、太陽電池ストリング1bに対する日射量「0.5」より強い場合が示される。この場合、太陽電池ストリング1aの発電電力の方が太陽電池ストリング1bの発電電力より大きいので、太陽電池ストリング1aにおける最大動作点MPPaの電力の方が、太陽電池ストリング1bにおける最大動作点MPPbの電力より大きくなる。このため、太陽電池ストリング1aからの入力電力の方が太陽電池ストリング1bからの入力電力より大きい。
本実施形態では、調節部8は、太陽電池ストリング1a、1bの入力電力に対する補正割合(ゲイン)を「1」以下に減少させて、すなわち減少ゲインを用いて入力電力を減少させる。たとえば、図3(A)、(B)で、ゲインを「0.5」としたとき、図3(A)では、太陽電池ストリング1aの最大動作点MPPaに対応する電流10A(アンペア)は5A(=10A×0.5)に減少する(動作点Wa)。一方、図3(B)では、太陽電池ストリング1bの最大動作点MPPbに対応する電流5Aは2.5A(=5A×0.5)に減少する(動作点Wb)。このとき、太陽電池ストリング1aの入力電流の減少幅は5Aであり、太陽電池ストリング1bの入力電流の減少幅は2.5Aである。このようにして、入力電力が大きいほど大きい減少量で、入力電力が減少される。
このとき、本実施形態では、入力電力調節のための入力電流指令値が、次式で算出される。
入力電流指令値[単位:A] = 出力電力抑制開始前の電流指令値[単位:A]×減少ゲイン
具体的には、出力電力抑制の開始時の入力電流指令の初期値は、開始直前のMPPT制御で決定された入力電流指令値とし、また、減少ゲインの初期値を「1.0」とされる。そして、減少ゲインを徐々に減少させていくことで、入力電流指令値を減少させていく制御が行われる。なお、入力電流の減少率は減少ゲインの変化速度で定義される(たとえば100ミリ秒毎に減少ゲイン0.01とすれば、出力電力抑制開始から10秒で最小0Aまで抑制される)。このように、入力電流指令値を0Aに向けて減少していくことで、動作点は必ず電流・電圧曲線上の最大動作点MPPaまたはMPPbから開放電圧側(図3中、右側)へ向かって移動する。そうすることで、出力電力抑制中は必ず最大動作点に対し開放側で動作する入力電圧が確保され、短絡側に移動して不意にパワーコンディショナ10が電源を喪失するといった危険性が減少する。
また、上記のようにして減少ゲインを用いて入力電力を減少させることで、次のような効果が得られる。たとえば、各太陽電池ストリングの減少ゲインがさらに低下して「0.1」となった場合、太陽電池ストリング1a、1bの入力電流は、下記のように同レベルに近づくが、入力電流が0Aに至ることはない。
太陽電池ストリング1a:10A×0.1=1.0A
太陽電池ストリング1b:5.0A×0.1=0.5A
これに対し、たとえば、一律の減少幅で入力電力を減少させる場合には、入力電流が0Aになるストリングが生じる可能性がある。たとえば、減少幅を一律に5Aとした場合、太陽電池ストリング1a、1bの入力電流は、下記のようになる。
太陽電池ストリング1a:10A−5.0A=5.0A
太陽電池ストリング1b:5.0A−5.0A=0A
すると、太陽電池ストリング1bでは、動作点が太陽電池の開放電圧点となるので、DC/DC変換部2bが停止してしまう。一旦DC/DC変換部2bが停止すると、再起動時には過電流抑止のためにソフトスタートが必要になり、また開放電圧点から最大動作点MPPに到達するまで時間を要することで発電にロスが生じる。そこで、本実施形態では、減少ゲインを用いて、入力電力が大きいほど大きい減少量で入力電力を減少させる。そうすることで、かかる事態を回避できる。
図4は、本実施形態におけるパワーコンディショナ10の動作手順を説明するフローチャート図である。図4の手順は、所定周期(たとえば、数十ミリ秒ごと)に実行される。
まず、制御部4は、系統電圧検出センサ6により系統電圧を計測し(S401)、計測値から系統電圧の実効値を算出する(S402)。そして、制御部4は、前回の処理サイクルまでに出力電力抑制を開始していた場合(S403のYes)は手順S405へ進み、出力電力抑制の解除判定を行う。出力電力抑制を開始していない場合(S403のNo)は手順S404へ進み、出力電力抑制の開始判定を行う。
手順S404で系統電圧が上限基準値以上の場合(S404のYes)、制御部4は、出力電力抑制を開始する(S408)。この場合、後述する図5の手順が実行され、出力電力が抑制される。一方、上限基準値未満の場合(S404のNo)は、制御部4は、出力電力抑制の必要はないため何も処理を行わない。なお、出力電力抑制のための電圧の上限基準値は、接続される系統の標準電圧が100Vの場合には、たとえば、107Vである。または、標準電圧が200Vの場合は、たとえば、222Vである。ただし、かかる基準値は、たとえば107V以下の数ボルト(最大6V)または222V以下の数V(最大20V)の範囲で任意に設定される。なお、系統側の交流電圧は、送電距離に応じた送電線の抵抗や周波数変動、近隣地域での発電状況などに依存して、標準電圧(100Vまたは200V)を中心に変動する場合がある。かかる場合に、たとえば、上記のような上限基準値を設けておけば、系統側の電圧が変動した場合においても、法規制を遵守した対応が可能になる。
一方、手順S405で、系統電圧が下限基準値未満の場合(S405のYes)、制御部4は、出力電力抑制を解除する(S410)。たとえば、下限基準値を上限基準値から1V下回った電圧値として、これを系統電圧が下回った場合は出力電力を増加方向に転じる。この場合、出力制御を解除することで、再び、MPPT制御が実行され、出力電力が増加する。そうすることで、系統電圧を下げすぎて逆潮流に支障を来たすことを回避できる。
一方、系統電圧が下限基準値以上の場合(手順S405のNo)、制御部4は、出力電力抑制を継続する(S412)。この場合、後述する図5の手順によりさらに出力電力が抑制され、系統電圧を低下させる方向に制御が行われる。
そして、制御部4は、図3で説明した処理により決定した減少ゲインに基づく入力電流指令値を調節部8に与え(S414)、調節部8が太陽電池ストリング1a、1bの入力電力を調節する。たとえば、DC/DC変換部2a、2bが、それぞれの入力電流を減少ゲインに応じた電流に調節する。または、電力変換回路3が、入力電流が入力電流指令値に対応一致するようにPWM制御で内部のスイッチング素子を駆動する。そうすることで、DC/DC変換部2a、2bからの入力電力がそれぞれ減少ゲインに対応する減少量で減少される。
図5は、本実施形態におけるパワーコンディショナ10の出力電力抑制手順を示すフローチャート図である。図5の手順は、調節部8(DC/DC変換部2a、2b、電力変換回路3の両方またはいずれか)により、制御部4からの出力電力抑制指示信号または解除信号に応答して実行される。調節部8は、出力電力抑制中ならば自身の入力電力を低下させ、解除ならば入力電力を出力電力抑制前のレベルまで増加させる。
調節部8は、制御部4からの出力電力抑制指示信号を受信し、出力電力抑制中ならば(S501のYes)、手順S502へ進む。調節部8は、前回の処理サイクルまでに出力電力抑制の指示を受信して、入力電力の調節(抑制)を開始しているかの判定を行う(S502)。入力電力の調節を開始していなければ(S502のNo)、手順S503へ進む。調節部8は、手順S503で、MPPT制御を停止して、入力電力調節を開始する。調節部8は、現時点の入力電流をDC/DC変換部2a、2b、または電力変換回路3の内部メモリに抑制前の入力電流として格納し(S503a)、減少ゲインを初期値「1.0」に設定する(S503b)。
一方、手順S502で、既に入力電力抑制中ならば(S502のYes)、出力電力抑制要求に従い入力電力を低下させるため手順S504へ進む。調節部8は、手順S504で、現時点の減少ゲインを所定量ずつ減少させて、入力電流を減少させる。たとえば、現時点の減少ゲインから「0.01」ずつ減算する。ただし、このとき、入力電流が0A以下にならないように、減少ゲインの減算を途中で停止する。
また、手順S501で出力電力抑制が解除されていれば(S501のNo)手順S505へ進む。制御部4にて出力電力抑制が解除された時点で減少ゲインが「1.0」未満の場合(S505のNo)、調節部8は、減少ゲインを徐々に増加させて入力電流を抑制開始前まで復帰させる(S505a)。たとえば、現時点の減少ゲインに「0.01」を加算して、減少ゲインを徐々に増加させ、入力電流を増加させる。この場合、各太陽電池ストリングでは、入力電力に応じた減少量で入力電力を減少させたところ、増加する際も入力電力に応じた増加量で入力電力を増加できる。よって、太陽電池ストリングごとの入力電力の大小にかかわらず、MPPT制御への復帰を迅速に行うことができる。
そして、調節部8は、出力電力抑制中の入力電流指令値を新しく算出して更新する(S507)。たとえば、入力電流指令値は、次式により算出される。
入力電流指令値=出力電力抑制前の入力電流指令値×減少ゲイン
また、減少ゲインが「1.0」以上の場合(S505のYes)、すなわち減少ゲインが回復した時点で、調節部8は、入力電力抑制を終了してMPPT制御へ移行する(S506)。なお、ここでのMPPT制御は、太陽電池の入力電流から最大動作点を求める制御方法であってもよいし、入力電圧から最大動作点を求める制御であってもよい。
上述の手順によれば、出力電力抑制開始直前のMPPT制御で決定している入力電流指令値を出力電力抑制時の入力電流指令の初期値とし、出力電力抑制開始時の減少ゲインを「1.0」として、減少ゲインの値を徐々に減少させていくので、入力電流指令値を徐々に減少させていくことができる。
また、上述の手順によれば、太陽電池ストリング1a、1bのいずれかの入力電力を完全に停止するような場合と比べて、次のような効果が得られる。たとえば、太陽電池ストリング1a、1bのいずれかの入力電力を完全に停止すると、系統電圧が低下しすぎて逆潮流に支障を来たし、再度、停止したストリングのMMPT制御を実行するような場合に、MMPT制御まで復帰するまで時間がかかり、発電のロスになる。一方、上述の手段によれば、太陽電池ストリングごとに入力電力に応じた減少量で入力電力を減少させることで、入力電力が停止するストリングが生じることがない。よって、MMPT制御へ迅速に復帰でき、発電ロスを最小限とすることができる。
なお、上述の手順では、太陽電池ストリング1a、1bに対し、同じ減少ゲインを用いて入力電力抑制を行うことで、入力電力が大きいほど大きい減少幅で入力電力を減少させた。しかし、減少ゲインに対し、入力電力に応じた重み付けをする場合も、本実施形態に含まれる。たとえば、減少ゲインに対し入力電力が大きいほど大きい重みを付けることで、入力電力が大きいほどさらに大きい減少量で入力電力を減少させることができる。あるいは、減少ゲインに対し入力電力が小さいほど大きい重みを付けることで、太陽電池ストリングごとの減少量を平準化、あるいは入力電力が小さいほど大きい減少量で入力電力を減少させることができる。その場合であっても、減少ゲインを用いることで、一律な減少幅で入力電力を減少させる場合のように、入力電流が0AになってDC/DC変換部の再起動が必要となるような事態を回避できる。減少ゲインに重み付けをする場合、制御部4は、太陽電池ストリング1a、1bごとに異なる重みを算出し、調節部8に指令する。調節部8では、たとえば、DC/DC変換部2a、2bが、それぞれの指令値に従って太陽電池ストリング1a、1bからの入力電流を調節することで、入力電力を調節する。
[変形例]
次に、本実施形態における変形例について説明する。上述した手順において、入力電力の抑制が大きく働いた場合、ストリングによっては動作点が開放電圧に近づき、入力電流が0A付近まで低下する場合がある。入力電流が0Aまでではないにしろ非常に小さくなると、DC/DC変換部2a、2bが電流制御を行っている場合に昇圧動作が困難になることがある。たとえば、DC/DC変換部2a、2bが、入出力の直流電流を計測してフィードバック制御を行うことで所望の入力電流となるように電流制御を行っている、または、計測した電流値から制御異常を検出しているような場合であって、直流電流を計測するセンサの精度が低い場合に、入力電流が微小になると、入力電流の大きさに対する誤差の割合が大きくなる。そして、フィードバック制御が有効に機能できなくなると、昇圧動作が安定しなくなるおそれがある。そこで、次の変形例では、入力電力調節動作により入力電流がある程度以下にならないように、入力電力の抑制が制限される。
図6は、変形例におけるパワーコンディショナ10の入力電力調節動作について説明する図である。図6(A)、(B)は、それぞれ、太陽電池ストリング1a、1bがMPPT制御により最大動作点MPPa、MPPbで動作している場合を示す。ここでは、図6(A)における太陽電池ストリング1aの日射量を「1.0」、最大動作点MPPaにおける電流を10Aとする。また、図6(B)における太陽電池ストリング1bの日射量を「0.1」、最大動作点MPPbにおける電流を1Aとする。
ここで、減少ゲインを「0.4」とすると、各太陽電池ストリングにおける入力電流は次のように減少される。
太陽電池ストリング1a: 10A×0.4=4.0A
太陽電池ストリング1b: 1A×0.4=0.4A
本変形例では、両ストリングとも、入力電流を0.5A以下に低下させないように制限を設ける。すると、太陽電池ストリング1aにおける減少ゲインによる入力電流指令値は0.5Aを上回る4.0Aになる(図6(A)の動作点Wa´)が、太陽電池ストリング1aにおける減少ゲインによる入力電流指令値は、0.5Aを下回る0.4Aとなる(図6(B)の動作点Wb´)。このとき、制御部4は、太陽電池ストリング1bの入力電流指令値を0.5Aに制限する(動作点Wb´´)。そうすることで、たとえば、DC/DC変換部2bの昇圧動作が困難になることを回避できる。
ただし、系統電圧を基準値以下にすべく出力電力を抑制するためには、太陽電池ストリング1bで制限された入力電流指令値0.1A(=0.5A−0.4A)分の入力電力を別の太陽電池ストリングで分担して減少する必要がある。そのため、太陽電池ストリング1aにおいて、入力電流をさらに0.1Aだけ低下させ、3.9A(=4.0A−0.1A)とする(動作点Wa´´)。そうすることで、全体としての出力電力を抑制しつつ、個々の太陽電池ストリングでは入力電流をある程度以上に保つことで、良好なフィードバック制御を可能にすることができる。
変形例におけるパワーコンディショナ10の動作手順には、図5で示した手順のうち手順S504を変形した手順が適用される。たとえば、手順S504で、DC/DC変換部2a、2bがそれぞれ減少ゲインを「0.01」ずつ減少させて入力電流を減少させるときの入力電流の下限値を、「0A」の代わりに、たとえば、「0.5A」など所望の電流値に設定する。そうすることで、たとえば、図6(A)、(B)の例では、まず、DC/DC変換部2bが先に下限値に達するので、入力電力の減少を停止する。その場合、図4の手順S403では、DC/DC変換部2bが入力電力抑制を停止したことにより依然として出力電力抑制中と判断される(S403のYes)。その結果、出力電力は下限基準値以上であるので(S405のNo)、出力電力抑制が継続される(S412、S414)。この判断を受けて、DC/DC変換部2aは、図5の手順において出入力電力抑制中と判断し(S501のYes、S502のYes)、手順S504で入力電力抑制を継続する。このとき、太陽電池ストリング1aは下限値まで余裕があるので、継続して入力電力が抑制される。そうすることで、太陽電池ストリング1bの入力電力の抑制が停止された分を分担して抑制できる。そうすることで、系統電圧が基準値以下になるように、全体としての出力電力が制御される。
上述の説明では、理解を容易にするために2つの太陽電池ストリングが入力されるパワーコンディショナ10を示した。ここで、3つの太陽電池ストリングが入力される例を示す。ここでは、太陽電池ストリング1a、1bに加え、3つ目の太陽電池ストリングを1cとする。たとえば、出力電力抑制前の各太陽電池ストリングの入力電流は次のとおりである。
太陽電池ストリング1a:10A
太陽電池ストリング1b:5A
太陽電池ストリング1c:1A
[第1実施例]
まず、減少ゲインを「0.5」とする場合を示す。この場合、各太陽電池ストリングの入力電流は、次のように調節される。
太陽電池ストリング1a:10A×0.5=5A
太陽電池ストリング1b:5A×0.5=2.5A
太陽電池ストリング1c:1A×0.5=0.5A
上記において、最も入力電力が大きい太陽電池ストリング1aが最大の減少幅5Aで、最も入力電力が小さい太陽電池ストリング1cが最小の減少幅0.5Aで減少される。そして、全体として、16Aから8Aまで入力電流が低下される。
[第2実施例]
次に、各太陽電池ストリングの減少ゲインがさらに低下して0.1となった場合を示す。下記に示すように、各太陽電池ストリングで入力電力はほぼ同レベルに近づくが、0Aに至るストリングはない。
太陽電池ストリング1a:10A×0.1=1A
太陽電池ストリング1b:5A×0.1=0.5A
太陽電池ストリング1c:1A×0.1=0.1A
このとき、全体としては、16Aから1.6Aまで入力電流が低下される。
[第3実施例]
さらに、入力電流の下限値が設定される場合であって減少ゲインが「0.35」の場合を示す。
太陽電池ストリング1a:10A×0.35=3.5A
太陽電池ストリング1b:5A×0.35=1.75A
太陽電池ストリング1c:1A×0.35=0.35A
ここで、入力電流の下限値が「0.5A」だとすると、太陽電池ストリング1cはこれを下回ることになるので、抑制後の電流値は「0.5A」に制限される。よって、全体であと「0.15A」抑制する必要がある。そこで、上述した変形例の手順によれば、次の処理サイクル移行の手順S504(図5)で、太陽電池ストリング1a、1bの入力電力が、それぞれ減少ゲイン「0.01」ずつ減少する。よって、10サイクル後には、全体として0.15Aの電流を追加的に抑制することができ、目標とする電流値を得ることができる。
以上説明したように、本実施形態によれば、各調節部に入力電力に応じた調節量で当該入力電力を減少させることで、マルチストリング入力パワーコンディショナにおいて系統電圧を規定値以下としつつ最大入力電力が得られるような出力電力抑制を行うことが可能になる。
1a、b:太陽電池ストリング、 2a、b:DC/DC変換部、 3:電力変換回路、4:制御部、 5:商用電源系統、10:パワーコンディショナ、 11:太陽光発電装置

Claims (5)

  1. 複数の太陽電池ストリングからそれぞれ入力される入力電力を調節して、商用電源系統との連系点へ出力する調節部と、
    前記太陽電池ストリングごとに発電される最大の電力が入力されるように前記調節部に各入力電力を調節させる第1の制御を行い、前記第1の制御を行っているときに前記連系点における系統電圧が第1の基準電圧以上のときは、前記調節部に各入力電力の第1の割合に対応する調節量で当該入力電力を減少させる第2の制御に切り替える制御部と、
    を有する制御装置。
  2. 請求項1において、
    前記制御部は、前記第2の制御を行っているときに前記系統電圧が前記第1の基準電圧以下の第2の基準電圧を下回るときは、前記調節部に各入力電力の第2の割合に対応する調節量で当該入力電力を増加させ、前記第1の制御に切り替える、
    制御装置。
  3. 請求項1または2において、
    前記調節部は、前記第2の制御が行われるとき、各入力電力が所定の下限値を下回らないように当該入力電力を調節する、
    制御装置。
  4. 請求項1乃至3のいずれかにおいて、
    前記調節部は、前記第2の制御が行われるとき、前記太陽電池ストリングから入力される入力電圧を上昇させることにより前記入力電力を減少させる、
    制御装置。
  5. 複数の太陽電池ストリングからそれぞれ電力が入力される制御装置にて各入力電力を調節して商用電源系統との連系点へ出力する制御方法であって、
    前記太陽電池ストリングごとに発電される最大の電力が入力されるように各入力電力を調節する第1の制御を行う工程と、
    前記第1の制御を行っているときに前記連系点における系統電圧が第1の基準電圧以上のときは、各入力電力の第1の割合に対応する調節量で当該入力電力を減少させる第2の制御に切り替える工程と、
    前記第2の制御を行っているときに前記系統電圧が前記第1の基準電圧以下の第2の基準電圧を下回るときは、各入力電力の第2の割合に対応する調節量で当該入力電力を増加させ、前記第1の制御に切り替える工程と、
    を有する制御方法。
JP2012047092A 2012-03-02 2012-03-02 制御装置、及び制御方法 Active JP5886658B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047092A JP5886658B2 (ja) 2012-03-02 2012-03-02 制御装置、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047092A JP5886658B2 (ja) 2012-03-02 2012-03-02 制御装置、及び制御方法

Publications (2)

Publication Number Publication Date
JP2013183578A true JP2013183578A (ja) 2013-09-12
JP5886658B2 JP5886658B2 (ja) 2016-03-16

Family

ID=49273869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047092A Active JP5886658B2 (ja) 2012-03-02 2012-03-02 制御装置、及び制御方法

Country Status (1)

Country Link
JP (1) JP5886658B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011931A1 (ja) * 2013-07-26 2015-01-29 京セラ株式会社 電力変換装置、電力管理方法、および電力変換システム
JP2015109721A (ja) * 2013-12-03 2015-06-11 株式会社ダイヘン 電力変換回路を制御する制御回路、当該制御回路を備えた電力変換装置、および、方法
JP2015207238A (ja) * 2014-04-23 2015-11-19 大井電気株式会社 太陽電池制御装置
WO2016027560A1 (ja) * 2014-08-20 2016-02-25 日本電気株式会社 制御装置、発電制御方法および制御プログラム
JPWO2014119145A1 (ja) * 2013-02-04 2017-01-26 シャープ株式会社 太陽光エネルギー利用システム及びそれに含まれる保冷庫、空気調和機、またはポンプ
JP2017078876A (ja) * 2015-10-19 2017-04-27 オムロン株式会社 パワーコンディショナ及び太陽光発電システム
JPWO2016098200A1 (ja) * 2014-12-17 2017-09-07 東芝三菱電機産業システム株式会社 太陽光発電所の制御システム
JP2018148627A (ja) * 2017-03-02 2018-09-20 株式会社ダイヘン 電力システム
JP7417088B2 (ja) 2020-03-23 2024-01-18 日新電機株式会社 制御装置および出力制御装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332553A (ja) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd 太陽光発電システムの電力制御方法および電力制御装置
JPH08317664A (ja) * 1995-05-17 1996-11-29 Yaskawa Electric Corp 太陽光発電用電力変換装置の系統過電圧保護方法
JP2000341862A (ja) * 1999-03-19 2000-12-08 Uinzu:Kk エネルギー変換装置
JP2001255949A (ja) * 2000-03-13 2001-09-21 Toshiba Corp 太陽光発電インバータ装置
JP2002199589A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Works Ltd 太陽光発電システム
JP2006180660A (ja) * 2004-12-24 2006-07-06 Kyocera Corp 太陽光発電システム
JP2009118670A (ja) * 2007-11-08 2009-05-28 Nichicon Corp 電力供給装置
WO2009078076A1 (ja) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. 風力発電システム及びその運転制御方法
WO2012063800A1 (ja) * 2010-11-08 2012-05-18 日本電気株式会社 電力系統制御システム及び方法
JP2013005537A (ja) * 2011-06-14 2013-01-07 Sharp Corp 発電システム及び発電装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332553A (ja) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd 太陽光発電システムの電力制御方法および電力制御装置
JPH08317664A (ja) * 1995-05-17 1996-11-29 Yaskawa Electric Corp 太陽光発電用電力変換装置の系統過電圧保護方法
JP2000341862A (ja) * 1999-03-19 2000-12-08 Uinzu:Kk エネルギー変換装置
JP2001255949A (ja) * 2000-03-13 2001-09-21 Toshiba Corp 太陽光発電インバータ装置
JP2002199589A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Works Ltd 太陽光発電システム
JP2006180660A (ja) * 2004-12-24 2006-07-06 Kyocera Corp 太陽光発電システム
JP2009118670A (ja) * 2007-11-08 2009-05-28 Nichicon Corp 電力供給装置
WO2009078076A1 (ja) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. 風力発電システム及びその運転制御方法
WO2012063800A1 (ja) * 2010-11-08 2012-05-18 日本電気株式会社 電力系統制御システム及び方法
JP2013005537A (ja) * 2011-06-14 2013-01-07 Sharp Corp 発電システム及び発電装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119145A1 (ja) * 2013-02-04 2017-01-26 シャープ株式会社 太陽光エネルギー利用システム及びそれに含まれる保冷庫、空気調和機、またはポンプ
WO2015011931A1 (ja) * 2013-07-26 2015-01-29 京セラ株式会社 電力変換装置、電力管理方法、および電力変換システム
JP6077658B2 (ja) * 2013-07-26 2017-02-08 京セラ株式会社 電力変換装置、電力管理方法、および電力変換システム
JP2017073973A (ja) * 2013-07-26 2017-04-13 京セラ株式会社 電力変換装置、電力管理方法、および電力変換システム
US10074989B2 (en) 2013-07-26 2018-09-11 Kyocera Corporation Power conversion apparatus, method for power management, and power conversion system
JP2015109721A (ja) * 2013-12-03 2015-06-11 株式会社ダイヘン 電力変換回路を制御する制御回路、当該制御回路を備えた電力変換装置、および、方法
JP2015207238A (ja) * 2014-04-23 2015-11-19 大井電気株式会社 太陽電池制御装置
WO2016027560A1 (ja) * 2014-08-20 2016-02-25 日本電気株式会社 制御装置、発電制御方法および制御プログラム
JPWO2016098200A1 (ja) * 2014-12-17 2017-09-07 東芝三菱電機産業システム株式会社 太陽光発電所の制御システム
JP2017078876A (ja) * 2015-10-19 2017-04-27 オムロン株式会社 パワーコンディショナ及び太陽光発電システム
JP2018148627A (ja) * 2017-03-02 2018-09-20 株式会社ダイヘン 電力システム
JP7417088B2 (ja) 2020-03-23 2024-01-18 日新電機株式会社 制御装置および出力制御装置

Also Published As

Publication number Publication date
JP5886658B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5886658B2 (ja) 制御装置、及び制御方法
TWI533575B (zh) 將直流匯流排處之直流電力轉換成交流電力之電力轉換系統
EP2061143A2 (en) Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
JP6480198B2 (ja) 蓄電池システム及びそれを有する太陽光発電システム
JP6063031B2 (ja) パワーコンディショナ及びその制御方法
JP2013183577A (ja) 電力制御システム、電力制御装置、及び電力制御方法
JP6480196B2 (ja) 蓄電池システム及びそれを有する太陽光発電システム
CN109787271B (zh) 能源利用系统及相应的实现方法
CN107172885A (zh) 最大电力点追踪装置及太阳能电池模块的评估方法
JP5620304B2 (ja) 太陽光発電システム、及び、当該システムを構成する電力変換装置
AU2019300646A1 (en) Power conversion system, method for controlling converter circuit, and program
JP5942218B2 (ja) 太陽光発電用パワーコンディショナ
CN105244900A (zh) 一种基于移频控制的微电网离网能量平衡控制方法
JP6320723B2 (ja) 太陽光発電システム、それに用いる動作点補正装置、および動作点補正方法
CN113014195A (zh) 光伏跟踪系统的功率降额方法、控制器及光伏跟踪系统
JP6894219B2 (ja) 太陽光発電制御装置
KR20190026379A (ko) 정격 전압 및 정격 주파수의 유지 제어가 가능한 독립형 마이크로그리드 시스템
JP6503155B2 (ja) 分散電源の出力変動抑制システム
JP2015192549A (ja) 電力変換装置及び電力変換方法
JP6768571B2 (ja) 電力制御装置、方法及び発電システム
JP2018007323A (ja) 電力変動制御装置及び方法
KR102472719B1 (ko) 태양광 발전 제어 방법 및 태양광 발전 장치
JP7272186B2 (ja) パワーコンディショナおよびパワーコンディショナシステム
CN110943459B (zh) 基于电压响应的多无功补偿装置并列运行控制方法及系统
JP2018170931A (ja) 電力変換装置、電力変換システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160212

R150 Certificate of patent or registration of utility model

Ref document number: 5886658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150