WO2012063800A1 - 電力系統制御システム及び方法 - Google Patents

電力系統制御システム及び方法 Download PDF

Info

Publication number
WO2012063800A1
WO2012063800A1 PCT/JP2011/075676 JP2011075676W WO2012063800A1 WO 2012063800 A1 WO2012063800 A1 WO 2012063800A1 JP 2011075676 W JP2011075676 W JP 2011075676W WO 2012063800 A1 WO2012063800 A1 WO 2012063800A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
distributed
control
adjustment amount
Prior art date
Application number
PCT/JP2011/075676
Other languages
English (en)
French (fr)
Inventor
寿人 佐久間
耕治 工藤
仁之 矢野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/823,594 priority Critical patent/US9612584B2/en
Priority to JP2012542922A priority patent/JP6048146B2/ja
Publication of WO2012063800A1 publication Critical patent/WO2012063800A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a power system control system and method for controlling the voltage of a power system in which a large number of distributed power sources are interconnected.
  • DG distributed power generator
  • PV photovoltaic power generation
  • the PV system converts DC power generated by a photovoltaic power generation panel into an AC voltage suitable for a power system by a PCS (Power Conditioning System) and supplies the AC voltage to a distribution line.
  • PCS Power Conditioning System
  • Non-Patent Document 1 the distribution line voltage supplied to the low voltage consumer must be maintained within 101 ⁇ 6V for the standard voltage 100V, and within 202 ⁇ 20V for the standard voltage 200V. It must be.
  • the power system consists of a high-voltage distribution line for transmitting high-voltage power output from the distribution transformer in the substation, and a low-voltage distribution line for transmitting power converted from high voltage to low voltage by the pole transformer.
  • each consumer is connected to a low voltage distribution line.
  • These distribution lines are connected in a radial manner so as not to form a loop, and in a conventional power system in which only a load is connected, it is assumed that the voltage decreases toward the end of the radially connected low-voltage distribution line. It was designed so that the voltage did not deviate from the proper range even at the end of the distribution line.
  • the distributed power source when the distributed power source is connected to the power system, the current supplied from the power system to the consumer with the distributed power source is reduced, so the distribution line voltage may rise and deviate from the appropriate range. is there.
  • the end of the low-voltage distribution line reaches the distribution line.
  • the voltage deviation tends to occur toward the end, and in the high-voltage distribution line, the voltage deviation tends to occur.
  • the distribution line voltage may be originally set higher due to the turn ratio of the pole transformer, and even in such a low voltage distribution line, the distribution line voltage easily deviates from the appropriate range. Furthermore, when a large number of distributed power sources are connected to any one point of the low-voltage distribution line or the high-voltage distribution line, the distribution line voltage easily deviates from the appropriate range even near the connection point.
  • the distributed power source is obliged to have a function called autonomous power control (P control) and reactive power control (Q control) to suppress voltage rise autonomously.
  • P control autonomous power control
  • Q control reactive power control
  • Non-Patent Document 1 when the distribution line voltage at the interconnection point exceeds 107 V, which is the upper limit of the appropriate range, phase advance reactive power is output to the distributed power source until the power factor reaches 85% (Q control). ) To lower the distribution line voltage, and if the distribution line voltage still does not return within the appropriate range, it is required to suppress the power generation amount (P control).
  • voltage suppression control control for suppressing voltage rise
  • Voltage suppression control is for customers to increase costs by providing a QS function in the PCS, PCS degradation by using the P control function and Q control function, and to reduce power sales by suppressing power generation. It is a loss. It is a problem that such losses are concentrated in some customers, and this inequality is a problem for customers who are relatively close to each other, such as customers connected to the same pole transformer. This is a big problem because power generation conditions such as these occur between the same consumers.
  • Non-Patent Document 2 proposes a method for instructing all PCSs connected to a high-voltage distribution line to output reactive power.
  • Non-Patent Document 2 a PCS that does not have a Q control function does not need to perform voltage suppression control. Therefore, a consumer with a PCS that does not have a Q control function and a Q control function. Inequality arises with consumers with PCS. In general, even if the control amount (voltage adjustment amount) for suppressing voltage rise by any customer is the same, the amount of change in the distribution line voltage at the interconnection point of other customers is controlled.
  • Non-Patent Document 2 Depends on the location where the distributed power supply is connected Therefore, as proposed in Non-Patent Document 2, the Q control is equally assigned to the PCS linked to the position where the effect of suppressing the voltage increase is small, because the total amount of the voltage adjustment amount for suppressing the voltage increase is Therefore, the increase in voltage cannot be efficiently suppressed.
  • the voltage suppression control causes a loss for the consumer, and it is desirable that the voltage adjustment amount for suppressing the voltage increase is as small as possible.
  • suppression of voltage rise by Q control generally causes an increase in power distribution loss, which increases the loss for electric power companies. Therefore, it is desirable that the total amount of Q control by each distributed power source for suppressing the voltage rise is as small as possible.
  • Non-Patent Document 3 proposes to pay an incentive according to the amount of reactive power output from each distributed power source to each consumer equipped with the distributed power source.
  • there are many items to be considered such as deterioration of PCS by using the P control function and the Q control function, and it is difficult to determine an incentive that can eliminate inequality.
  • an object of the present invention is to provide a power system control system and method capable of efficiently avoiding voltage deviation while eliminating inequality of voltage suppression control between neighboring consumers.
  • a power system control system of the present invention includes a distributed power source connected to a power system, A voltage measuring unit that measures a voltage at an interconnection point of the distributed power source with respect to the power system; When the voltage at the interconnection point deviates from a predetermined appropriate range, the voltage adjustment amount for returning the voltage to the appropriate range is uniformly allocated to all the distributed power sources in a predetermined group set in advance.
  • the power system control method of the present invention is a power system control system including a distributed power source connected to the power system, and a voltage measuring unit that measures a voltage at an interconnection point of the distributed power source with respect to the power system.
  • the distributed power source is adjusted in voltage at the interconnection point according to the allocated voltage adjustment amount.
  • FIG. 1 is a schematic diagram for explaining the principle of the power system control system of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the power system control system of the present invention.
  • FIG. 3 is a schematic diagram showing how the highest distribution line voltage in the group changes when the power system control method of the present embodiment is applied.
  • FIG. 4 is a flowchart showing a processing procedure of the centralized control apparatus shown in FIG.
  • FIG. 5 is a flowchart showing a processing procedure of the distributed processing apparatus shown in FIG.
  • FIG. 1 is a schematic diagram for explaining the principle of the power system control system of the present invention.
  • Fig. 1 (a) shows the electric power in which three pole transformers are connected to the high-voltage distribution lines, and three customers with distributed power sources are connected to each pole transformer via the low-voltage distribution lines.
  • An example of the system configuration is shown.
  • DG-A provided by the customer indicates a distributed power source including PCS having PV and reactive power control (Q control) function
  • DG-B indicates a distributed power source including PCS not having PV and Q control function. Show.
  • the load of each consumer has shown the general electric appliance which consumes electric power.
  • each DG In the power system shown in FIG. 1A, the power generation amount of each DG increases, and the distribution line voltage at the connection point of each customer (customers 1 to 9) to the power system is shown in FIG. 1B.
  • the DG measures the distribution line voltage at its interconnection point, and when voltage deviation is detected, the voltage rises by the Q control or P control. Is suppressed autonomously. In that case, as described above, the voltage suppression control concentrates on the DG of the customer linked to a specific position (the customer 9 in the example shown in FIG. 1B).
  • Non-Patent Document 2 if DGs of all customers (customers 1 to 9) are instructed to output reactive power, only DG-A having a Q control function is suppressed in voltage.
  • DG-B that performs control and does not have a Q control function causes inequality in which voltage suppression control is not performed. For example, when a voltage deviation occurs at the connection point of the customer 3, the DG-A of the neighboring consumers 1 and 2 performs the voltage suppression control, and the DG-B of the customer 3 does not perform the voltage suppression control. become.
  • the amount of voltage change at any interconnection point in the power system varies depending on the interconnection position of the DG. It is not efficient to assign the Q control evenly to the PCS of the customer linked to the position where the voltage suppression effect is small because the total amount of the voltage adjustment amount increases.
  • the ratio which the voltage adjustment amount in the arbitrary interconnection points in an electric power system gives to the voltage fluctuation of other interconnection points is called voltage sensitivity below.
  • the voltage sensitivity of the consumers 1 to 6 with respect to the voltage at the connection point of the customer 9, which is a voltage deviation point, is compared with the voltage sensitivity of the consumers 7, 8, and 9. Very small. For this reason, it is not efficient to cause the DGs of the consumers 1 to 6 to execute the voltage suppression control. This is because the impedance of the pole transformer is larger than the impedance of the distribution line, so voltage fluctuations at the interconnection point of each customer to the power system are considered to be mainly caused by the pole transformer. .
  • a voltage increase is suppressed for all DGs in the group including DGs having no Q control function.
  • the voltage adjustment amount for doing so is assigned equally, and each DG is caused to execute voltage suppression control.
  • the DG having the Q control function is caused to execute Q control corresponding to the assigned voltage adjustment amount, and the DG not having the Q control function is configured to generate power corresponding to the assigned voltage adjustment amount.
  • P control for suppressing the amount is executed.
  • a consumer having a DG that does not have a Q control function operates a controllable load provided by the consumer corresponding to the allocated voltage adjustment amount, and suppresses voltage rise by increasing power consumption.
  • the voltage suppression by P control includes the increase in power consumption by operating a controllable load.
  • Each consumer determines a control amount by P control or Q control by multiplying the assigned voltage adjustment amount by a common conversion coefficient in the group.
  • each neighboring consumer executes the voltage suppression control equally. Further, voltage suppression control can be executed by both the DG having only the P control function and the DG having the Q control function.
  • a group is formed with the consumer connected to the same pole transformer.
  • the P control amount of the customer A is dP A
  • the Q control amount of the customer A is dQ A
  • the voltage change amount at the connection point of the customer B is dV B
  • the value of dV B / dQ a is the customer a and B are connected to pole transformer different when connected to the same pole transformer It becomes very large as compared with the values of A and dV B / dQ A.
  • the voltage adjustment amount for suppressing the voltage rise is evenly assigned to each DG of the group consisting of consumers connected to the same pole transformer, from the customers connected to different pole transformers Compared with the case where the voltage adjustment amount is uniformly allocated to each DG of the group, the total amount of the voltage adjustment amount is small.
  • a group is formed by the consumers 1, 2, 3, a group is formed by the customers 4, 5, 6, and a group is formed by the consumers 7, 8, 9. ing.
  • the voltage adjustment amount is evenly assigned to the customers 7, 8, 9 and the customers 7, 8, 9 are in accordance with their own facilities.
  • the assigned voltage adjustment amount may be converted into a P control amount or a Q control amount using a common conversion coefficient within the group, and voltage suppression control may be performed.
  • DG-A with Q control function performs Q control
  • consumers with DG-B without Q control function are energy storage functions such as electric vehicles (EV) and heat pump water heaters (HP). If you have a controllable load with, you can suppress the voltage rise without reducing the amount of power generation by consuming them.
  • EV electric vehicles
  • HP heat pump water heaters
  • each customer connected to the same pole transformer has almost the same voltage sensitivity to the voltage deviation point, and the voltage sensitivity is different from the voltage deviation point.
  • the value is larger for each consumer connected to the same pole transformer as the voltage deviation point than for each consumer connected to the appliance.
  • the voltage adjustment amount for suppressing the voltage rise is equally allocated to each consumer connected to the same pole transformer as the voltage deviation point, the same pole transformer that is a neighboring consumer is assigned.
  • the voltage deviation can be efficiently avoided while eliminating the inequality between the connected consumers.
  • FIG. 2 is a block diagram showing a configuration example of the power system control system of the present invention.
  • a plurality of pole transformers 203 are connected to a distribution transformer 201 via a high-voltage distribution line 202, and each pole transformer 203 is distributed.
  • a plurality of consumers power consumers 205 to 211 in FIG. 2 each having a power source are connected via low-voltage distribution lines 204.
  • the customers 205 to 211 have a distributed processing apparatus 221 that controls the operation of the PV system 224 or 225, the PV system 224 or 225 that is a distributed power source, and can transmit and receive information to and from the outside using the communication unit 212.
  • a general load 222 that is a general electric appliance that consumes electric power, which is not controlled by the device 221, and a measuring instrument 220 that measures electric power (amount of electric power sold) generated by the PV system 224 or 225 and flowing backward to the electric power system.
  • the consumer may have a controllable load 223 whose power consumption can be controlled (in the example shown in FIG. 2, the consumers 205 and 206).
  • the customer who is not provided with PV system 224 or 225 is abbreviate
  • the PV systems 224 and 225 include a voltage measurement unit, a PV panel, a PCS, and the like (not shown).
  • the voltage measurement unit measures the distribution line voltage at the connection point of the PV system 224 or 225.
  • the distribution line voltage measured by the voltage measuring unit is notified to the central control device 240 via the distributed processing device 221.
  • the PV panel is a power generation facility that generates power using energy obtained from sunlight.
  • the PCS converts the power generated by the PV panel into a voltage / frequency that can be linked to the power system.
  • the PV systems 224 and 225 have a function of controlling reactive power or active power in accordance with instructions from the centralized controller 240.
  • the PV system 225 shown in FIG. 2 is a system having a reactive power control (Q control) function, and the PV system 224 is a system not having a Q control function.
  • Q control reactive power control
  • the distributed processing device 221 is connected to the central control device 240 via the communication unit 212 so as to be able to transmit and receive information.
  • the communication means 212 a known Internet, PLC (Power Line Communications), wireless communication means or the like may be used.
  • the distributed processing device 221 causes the PV systems 224 and 225 to execute Q control or P control in accordance with an instruction from the centralized control device 240, and at the distribution line voltage measured at the voltage measuring unit or the measuring device 220.
  • the centralized control device 240 is notified of the power flowing backward to the measured power system via the communication means 212.
  • the central control device 240 transmits / receives information to / from each distributed processing device 221 via the communication unit 212 and controls the operations of the PV systems 224 and 225 and the controllable load 223 via the distributed processing device 221.
  • the distributed processing device 221 and the central control device 240 can be realized by, for example, an information processing device (computer) including a CPU, a storage device, and a known communication interface.
  • the controllable load 223 is an electric device capable of controlling the power consumption, and the power consumption of the controllable load 223 is instructed from the centralized control device 240 via the distributed processing device 221.
  • the controllable load 223 may be an energy storage device such as EV, HP, or storage battery that can individually set the time for taking in power from the power system or the PV system 224 and the time for actually using the taken-in power. desirable.
  • FIG. 2 shows a configuration example in which the power system control system includes the distributed processing device 221 and the centralized control device 240 independently, but the functions of the centralized control device 240 are provided in an arbitrary distributed processing device 221. Also good. Further, FIG. 2 shows a configuration example in which the voltage measurement unit is built in the PV systems 224 and 225, but the voltage measurement unit may be an apparatus independent of the PV systems 224 and 225.
  • each PV of the group consisting of consumers connected to the low-voltage distribution line 204 is used.
  • the system 224 and 225 are instructed to perform voltage suppression control from the central control device 240 via the distributed processing device 221.
  • FIG. 3 is a schematic diagram showing how the highest distribution line voltage in the group changes when the power system control method of the present embodiment is applied.
  • the upper limit value (107V in Japan) of the appropriate value of the distribution line voltage or a value slightly lower than the upper limit value (for example, 0.1V) is set.
  • One threshold value V ST is set, and a value lower than the first threshold value V ST (for example, V ST ⁇ 0.3 V) is set as the second threshold value V ED .
  • the centralized control device 240 instructs all the distributed processing devices 221 in the group to increase the voltage adjustment amount for suppressing the voltage increase. Thereafter, when V MAX decreases due to an increase in the voltage adjustment amount for suppressing the voltage increase and reaches the first threshold value VST , the central control device 240 increases the voltage to all the distributed processing devices 221 in the group. An instruction is given to make the voltage adjustment amount for suppressing noise constant.
  • the centralized control device 240 suppresses the voltage increase in all the distributed processing devices 221 in the group.
  • the voltage adjustment amount is instructed to be constant.
  • FIG. 4 is a flowchart showing a processing procedure of the central control apparatus shown in FIG.
  • the central control device 240 first groups each consumer in step 402. As described above, in this embodiment, a group is formed for each customer connected to the same pole transformer 203.
  • each consumer for each pole transformer 203 As a method of grouping each consumer for each pole transformer 203, a method of forming a group based on a power distribution diagram obtained from an electric power company, a method of forming a group based on a distribution line voltage, There is a method of forming a group based on voltage sensitivity.
  • the centralized control device 240 acquires the distribution line voltage at the interconnection point measured by the voltage measurement unit included in each PV system 224 and 225, and the distribution line voltage value is Allocate nearby customers to the same group.
  • the centralized control device 240 may distribute customers having similar voltage sensitivity values to the same group.
  • the voltage sensitivity can be obtained from a correlation value between the amount of power that flows backward from the interconnection point for each consumer to the power system and the amount of change in the distribution line voltage at the interconnection point for each customer.
  • the amount of power to be reversely flowed from the customer to the power system may be measured by the measuring device 220 as described above and notified to the centralized control device 240 by the distributed processing device 221.
  • the amount of change in the distribution line voltage is obtained by recording the distribution line voltage at the interconnection point measured by the voltage measurement unit included in the PV systems 224 and 225 and obtaining the time differential value thereof.
  • the centralized controller 240 uses conversion coefficients used for calculating the P control amount and the Q control amount corresponding to the voltage adjustment amount for suppressing the voltage increase instructed to each distributed processing device 221 in step 403.
  • the obtained conversion coefficient is notified to each distributed processing device 221.
  • the conversion coefficient is set so that, for example, the ratio between the P control amount and the Q control amount is 1 / (dV / dP): 1 / (dV / dQ).
  • V is the distribution line voltage at the interconnection point of any customer in the group
  • P is the active power amount
  • Q is the reactive power amount.
  • dV / dP and dV / dQ may be obtained from, for example, the amount of power to be reversely flown from the customer to the power system and the amount of change in the distribution line voltage at the interconnection point for each customer, and the correlation value thereof.
  • an approximate value obtained by dividing the real part of the impedance of the pole transformer 203 by a representative value (for example, 100 V) of the secondary voltage of the pole transformer 203 may be used.
  • an approximate value obtained by dividing the imaginary part of the impedance of the pole transformer 203 by the representative value (for example, 100 V) of the secondary voltage of the pole transformer 203 may be used. Even if such approximate values are used for dV / dP and dV / dQ, conversion coefficients having no practical problem can be obtained.
  • the central control apparatus 240 acquires the value of the distribution line voltage from the distributed processing apparatus 221 of each customer, and substitutes the maximum distribution line voltage value in the group into the variable V MAX (step 404).
  • the central control unit 240 determines whether higher than the first threshold value V ST. If the variable V MAX is higher than the first threshold value V ST , the central control apparatus 240 proceeds to the processing of steps 413 to 418.
  • the central control apparatus 240 determines whether or not the variable V MAX is lower than the second threshold value V ED in step 405. When the variable V MAX is lower than the second threshold value V ED , the central control apparatus 240 proceeds to the processing of steps 406 to 411.
  • the centralized control device 240 determines that the total amount of voltage adjustment amount for suppressing the voltage increase by all consumers in the corresponding group in step 413 is predetermined. It is determined whether or not the upper limit value has been reached.
  • an upper limit value is set in advance for the total amount of voltage adjustment amount for suppressing the voltage rise that can be controlled by the centralized control device 240, and when the voltage deviation is not eliminated even when the upper limit value is reached, The process proceeds to autonomous voltage suppression control by the PV systems 224 and 225.
  • Non-Patent Document 1 As the upper limit value of the voltage adjustment amount by all the PV systems 224 and 225 that can be controlled by the centralized control device 240, for example, the output value of reactive power by all the PV systems 224 and 225 in the group is defined in Non-Patent Document 1. There is a method of setting a lower limit value, specifically, a value at which the power factor becomes 85%.
  • the voltage suppression control by the further centralized control device 240 is not executed, and the PV systems 224 and 225 are Voltage increase is suppressed by an autonomous voltage suppression function (specified in Non-Patent Document 1).
  • the central control apparatus 240 repeats the processing from step 404.
  • the central control device 240 When the total amount of the voltage adjustment amount for suppressing the voltage increase by the consumers in the group has not reached the predetermined upper limit value, the central control device 240 is equal to all the consumers in the group in step 414. To increase the voltage adjustment amount. At this time, the voltage adjustment amount instructed to each consumer includes an active power amount, a reactive power amount, and a voltage value, and a time differential value of these active power amount, reactive power amount, and voltage value.
  • the centralized control device 240 records the voltage change of the maximum distribution line voltage V MAX in the group, and dV MAX / obtained from the recorded value. What is necessary is just to instruct
  • the central control apparatus 240 has a total voltage adjustment amount (total voltage adjustment amount allocated to all consumers in the group) of (V MAX ⁇ V ST) / (dV / dP ) and so that may be evenly distributed active energy to the customers.
  • the central control device 240 allows each consumer to supply the active power amount so that the total amount of the voltage adjustment amount becomes (dV MAX / dT) ⁇ (dV / dP). What is necessary is just to distribute a time differential value equally.
  • the conversion coefficient obtained in step 403 is (dV / dP) / (dV / dQ), and a consumer who performs reactive power control can set the instructed active power amount to (dV / dP) / (dV / The reactive power value may be changed in such a direction as to suppress the voltage rise by the value multiplied by dQ).
  • the central control apparatus 240 allows each customer to make the total amount of the voltage adjustment amount (V MAX ⁇ V ST ) / (dV / dQ). It is sufficient to distribute the reactive power amount evenly.
  • the centralized control device 240 allows each consumer to set the reactive power amount so that the sum of the voltage adjustment amounts becomes (dV MAX / dT) ⁇ (dV / dQ). What is necessary is just to distribute a time differential value equally.
  • the conversion coefficient obtained in step 403 is (dV / dQ) / (dV / dP), and a consumer who performs active power control sets (dV / dQ) / (dV / The active power value may be changed in a direction that suppresses the voltage increase by a value multiplied by dP).
  • the central control device 240 evenly distributes the voltage value to each consumer so that the sum of the voltage adjustment amounts becomes (V MAX -V ST ). do it.
  • the centralized control device 240 can evenly distribute the time differential value of the voltage value to each consumer so that the sum of the voltage adjustment amounts is (dV MAX / dT). Good.
  • the conversion coefficient obtained in step 403 is (dV / dP) or (dV / dQ), and the consumer who performs active power control increases the voltage by a value obtained by dividing the instructed voltage value by dV / dP. What is necessary is just to change an active power value in the direction which suppresses. Moreover, the consumer who performs reactive power control should just change a reactive power value in the direction which suppresses a voltage rise only by the value which divided the instructed voltage value by dV / dQ.
  • the voltage adjustment amount allocated to each consumer may use an equal value obtained by dividing the total amount of voltage adjustment amount by the number of consumers as described above, and within the range where the total amount of voltage adjustment amount does not change. You may use the value which provided the predetermined weight for every consumer with respect to the value. For example, a weight proportional to the capacity of the power generation equipment included in each consumer may be given to the equal value, or a weight proportional to the reverse tide flow rate of each consumer may be given. A weight proportional to the amount of power sold for one month may be given.
  • the central control apparatus 240 waits for a certain time in step 415, and then determines whether or not voltage deviation continues in steps 416 and 417. If the voltage deviation continues, the centralized controller 240 returns to step 413 and repeats the processing of steps 413 to 417. If the voltage deviation has been resolved, the central controller 240 instructs each customer's PV system 224, 225 in step 418 to keep the voltage adjustment amount for suppressing the voltage rise from step 404. Repeat the process.
  • the central control device 240 first starts the PV system 224 of each consumer at step 406. It is determined whether or not 225 is executing voltage suppression control, that is, whether or not the voltage adjustment amount for suppressing the voltage increase can be further reduced. When the PV systems 224 and 225 of the respective consumers are not executing the voltage suppression control, the central control device 240 repeats the processing from Step 404.
  • step 407 the reverse process of step 414 described above may be executed. Specifically, (V MAX ⁇ V ST ) used for calculating the total amount of voltage adjustment is replaced with (V MAX ⁇ V ED ), and the active power value or the reactive power value is changed in a direction to suppress the voltage increase. May be replaced with a process of changing the active power value or the reactive power value in a direction not to suppress the voltage rise.
  • Central controller 240 after a predetermined time wait at step 408 repeats steps 406-409 in steps 409 and 410 until the variable V MAX exceeds a second threshold value V ED.
  • the centralized controller 240 keeps the voltage adjustment amount for suppressing the voltage rise in the PV systems 224 and 225 of each customer constant at step 411. After the instruction is given, the processing from step 404 is repeated.
  • the central control device 240 determines that the other pole change You may request
  • a voltage suppression control is requested to a group connected to the pole transformer 203 adjacent to the pole transformer 203 where the voltage deviation has occurred.
  • the distribution substation side is the upstream side and the terminal side of the low-voltage distribution line 204 is the downstream side when viewed from the pole transformer 203 where the voltage deviation occurs, the column downstream from the pole transformer 203 where the voltage deviation occurs There is a method of requesting voltage suppression control to a group connected to the upper transformer 203.
  • the pole transformer 203 downstream from the group as viewed from the distribution substation By requesting the connected group to perform voltage suppression control, it is possible to avoid voltage deviation while suppressing an increase in voltage adjustment amount.
  • voltage suppression control is requested to a group adjacent to the group where the voltage deviation has occurred at this time, it is possible to reduce inequalities between neighboring consumers.
  • voltage suppression control is requested to the most downstream group as viewed from the distribution substation, the group is downstream from all groups connected to the same high-voltage distribution line 202. Even when a deviation occurs and voltage suppression control by the centralized control device 240 is disabled in the group, the voltage deviation can be avoided while suppressing an increase in the voltage adjustment amount.
  • voltage suppression control is applied to a group including a consumer having the next highest voltage after the group in which the voltage deviation has occurred, or a group including a consumer having the largest change in the distribution line voltage V (dV / dT). Just ask.
  • the distributed processing device 221 acquires the conversion coefficient corresponding to the own group obtained by the central control device 240 in step 403 in FIG. 4 from the central control device 240.
  • the distributed processing device 221 when the distributed processing device 221 is instructed to increase the voltage adjustment amount from the central control device 240 in step 414 of FIG.
  • the voltage adjustment amount is increased in order of the active power control (P control) by the load 223 and the active power control (P control) by the power generation amount of the PV systems 224 and 225 to suppress the voltage rise.
  • the distributed processing device 221 when the distributed processing device 221 is instructed to reduce the voltage adjustment amount from the central control device 240 in step 407 of FIG.
  • the voltage adjustment amount is reduced in the order of active power control (P control) and reactive power control (Q control) by the load 223.
  • FIG. 5 is a flowchart showing a processing procedure of the distributed processing apparatus shown in FIG.
  • the distributed processing device 221 first acquires the conversion coefficient obtained in step 403 of FIG. 4 from the centralized control device 240 in step 502.
  • the distributed processing device 221 waits until a change in the voltage adjustment amount is instructed from the central control device 240 (steps 503 and 513). If an instruction to increase the voltage adjustment amount is instructed, the process proceeds to step 504. If an instruction to reduce the voltage adjustment amount is given, the process proceeds to step 513.
  • the distributed processing device 221 When an instruction to increase the voltage adjustment amount is given, the distributed processing device 221 first determines in step 504 whether or not reactive power control (Q control) by the PCS of the PV systems 224 and 225 is possible. When the Q control is possible, the distributed processing device 221 converts the voltage adjustment amount instructed from the central control device 240 into the Q control amount using the conversion coefficient (step 505), and with respect to the PCS of the PV systems 224 and 225, Then, a change (increase) to the Q control amount after conversion is instructed (step 506).
  • Q control reactive power control
  • the distributed processing device 221 proceeds to step 507 and uses the controllable load 223. Take control.
  • the distributed processing device 221 first determines whether or not active power control (P control) by load increase using the controllable load 223 is possible (step 507).
  • P control active power control
  • the distributed processing device 221 converts the voltage adjustment amount instructed from the central control device 240 into the P control amount by using the conversion coefficient (step 508), and can be controlled.
  • the load 223 is instructed to change to the P control amount after conversion (increase in load) (step 509).
  • controllable load 223 is not provided or the controllable load 223 is already operating at the maximum load, the distributed processing device 221 proceeds to step 510 and performs P control based on the power generation amount of the PV systems 224 and 225. .
  • step 510 the distributed processing device 221 determines whether or not P control by the PCS of the PV systems 224 and 225 is possible.
  • the distributed processing device 221 converts the voltage adjustment amount instructed from the central control device 240 into the P control amount using the conversion coefficient (step 511), and converts the PCS after the conversion.
  • An instruction to change to the P control amount (reduction of power generation amount) is given (step 512).
  • the distributed processing device 221 repeats the processing from step 503.
  • the distributed processing device 221 executes the processing of steps 514 to 522.
  • the processing in steps 514 to 522 is opposite to the processing when the central control device 240 instructed to increase the voltage adjustment amount in steps 504 to 512 is P control by PCS, P control by controllable load 223, PCS
  • the voltage adjustment amount may be reduced in the order of Q control according to.
  • the P control process procedure by the PCS is the same as the above-described steps 510 to 512
  • the P control process procedure by the controllable load 223 is the same as the above-described steps 507 to 509
  • the Q control process procedure by the PCS is as follows. This is the same as steps 504 to 506 described above.
  • the energy storage device such as a storage battery or a heat pump water heater for the controllable load 223.
  • the energy storage device has a rated capacity that is the upper limit of the amount of energy that can be stored. For this reason, it is desirable for the consumer to have a plurality of controllable loads 223. In that case, when the amount of energy stored in the controllable load 223 reaches the rated capacity by P control for an arbitrary controllable load 223, the controllable load 223 for storing energy may be switched.
  • the distributed processing device 221 may assign the voltage adjustment amount for the controllable load 223 used so far to the controllable load 223 after switching, and execute the processing from step 504 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 電力系統制御システムは、電力系統に接続される分散型電源と、電力系統に対する分散型電源の連系点の電圧を測定する電圧計測部とを備える。集中制御装置は、電力系統への連系点における電圧が所定の適正範囲を逸脱したとき、該電圧を適正範囲に戻すための電圧調整量を、予め設定した所定のグループに所属する全ての分散型電源に均等に割り当てる。分散処理装置は、集中制御装置から割り当てられた電圧調整量にしたがって分散型電源に連系点における電圧を調整させる。

Description

電力系統制御システム及び方法
 本発明は多数の分散型電源が連系された電力系統の電圧を制御するための電力系統制御システム及び方法に関する。
 近年、化石燃料に対する依存の低減や環境問題の観点から、太陽光発電(PV:Photo Voltaic)システムに代表される分散型電源(DG:Distributed Generator)の導入が進められている。
 分散型電源の多くは、配電用変電所から出力される電力を、事業者、公共施設、個人住宅、集合住宅等(以下、需要家と総称する)に分配するための配電線に連系される。例えば、PVシステムは太陽光発電パネルで発電された直流電力をPCS(Power Conditioning System)によって電力系統に適した交流電圧に変換して配電線に供給する。
 分散型電源は、比較的小規模な事業者や利用者等が独自に管理するものが多く、そのような分散型電源が電力系統に多数連系すると、電力系統を擾乱する可能性がある。そこで、分散型電源を電力系統に連系するためのガイドラインが資源エネルギー庁より示されている(非特許文献1参照)。
 分散型電源が普及した際に生じる擾乱の一つに電圧逸脱問題がある。非特許文献1によると、低圧需要家に供給する配電線電圧は、標準電圧100Vに対しては101±6V以内に維持されなければならず、標準電圧200Vに対しては202±20V以内に維持されなければならない。
 電力系統は、変電所の配電用変圧器から出力される高圧な電力を送電するための高圧配電線と、柱上変圧器で高圧から低圧に変換された電力を送電するための低圧配電線とによって構成され、一般に各需要家は低圧配電線に接続される。これらの配電線は、ループを形成しないように放射状に接続され、負荷のみが接続されていた従来の電力系統では、放射状に接続された低圧配電線の末端ほど電圧が低下すると想定して、低圧配電線の末端でも電圧が適正範囲から逸脱しないように設計されていた。
 しかしながら、分散型電源が電力系統に連系されると、電力系統から該分散型電源を備える需要家に供給される電流が低減するため、配電線電圧が上昇して適正範囲から逸脱することがある。また、分散型電源で発電した余剰電力を電力会社へ売電することで、需要家から柱上変圧器の方向に電流が流れる逆潮流と呼ばれる現象が生じると、低圧配電線の末端ほど配電線電圧が上昇して適正範囲から逸脱する可能性が高くなる。配電線電圧の適正範囲からの逸脱のしやすさは場所によって異なり、低圧配電線では末端へいくほど電圧逸脱が発生しやすく、高圧配電線でも末端へいくほど電圧逸脱が発生しやすくなる。また、低圧配電線では、柱上変圧器の巻数比により配電線電圧が元々高めに設定されている場合があり、そのような低圧配電線でも配電線電圧が適正範囲から逸脱しやすくなる。さらに、低圧配電線または高圧配電線の任意の一点に大量の分散型電源が連系されている場合、その連系点の近傍でも配電線電圧が適正範囲から逸脱しやすくなる。
 この電圧逸脱問題を回避するため、分散型電源には有効電力制御(P制御)及び無効電力制御(Q制御)と呼ばれる電圧上昇を自律的に抑制する機能を搭載することが義務付けられている。
 非特許文献1によると、連系点における配電線電圧が適正範囲の上限である107Vを越える場合、分散型電源には、力率が85%になるまで進相無効電力を出力する(Q制御)ことで配電線電圧を低下させ、それでも配電線電圧が適正範囲内に戻らない場合は発電量を抑制する(P制御)ことが要求されている。
 但し、単独の分散型電源によるQ制御では電圧上昇の抑制効果が少なく、またQ制御機能をPCSに付加するとPCSのコストが増大するため、Q制御機能を持たないPCSも多い。その場合、連系点における配電線電圧が適正範囲を越えると、分散型電源は直ちにP制御を開始することになる。
 上述したように、低圧配電線の末端等、電圧逸脱が生じやすい位置は決まっており、電圧上昇を抑制するための制御(以下、電圧抑制制御と称す)は、そのような場所に分散型電源を連系している一部の需要家に集中する。
 電圧抑制制御は、PCSにQ制御機能を備えることによるコストの増大、P制御機能やQ制御機能を使用することによるPCSの劣化、発電量を抑制することによる売電量の低減等、需要家にとって損失を招くものである。そのような損失が一部の需要家に集中するのは問題であり、この不平等は距離が比較的近い需要家、例えば同一の柱上変圧器に接続された需要家等のように、天候等の発電条件が同一の需要家間で生じるため、大きな問題となる。
 そこで、電圧逸脱問題を回避しつつ、一部の需要家に損失が集中する不平等を解消する方法として、電圧逸脱が発生した場合に、該電圧逸脱が発生した低圧配電線が接続される、高圧配電線に連系する全てのPCSに無効電力を出力するよう指示する方法が、例えば非特許文献2で提案されている。
 しかしながら、非特許文献2で提案された方法では、Q制御機能を持たないPCSは電圧抑制制御を行わなくて済むため、Q制御機能を持たないPCSを備えた需要家と、Q制御機能を持つPCSを備えた需要家との間で不平等が生じる。また、一般に、任意の需要家による電圧上昇を抑制するための制御量(電圧調整量)は同じであっても、他の需要家の連系点における配電線電圧の変化量は、制御を実施する分散型電源が連系する位置によって異なる。そのため、非特許文献2が提案するように電圧上昇の抑制効果が少ない位置に連系しているPCSにも平等にQ制御を割り当てるのは、電圧上昇を抑制するための電圧調整量の総量が増大するため、電圧上昇を効率よく抑制できるものではない。上述したように、電圧抑制制御は、需要家にとって損失を招くものであり、電圧上昇を抑制するための電圧調整量はできるだけ少ない方が望ましい。また、Q制御による電圧上昇の抑制は、一般に配電損失の増大を招くため、電力会社にとっても損失が増えることである。そのため、電圧上昇を抑制するための各分散型電源によるQ制御の総量はできるだけ少ないことが望ましい。
 電圧逸脱問題を回避しつつ、一部の需要家に損失が集中する不平等を解消し、さらに電圧上昇を抑制するための電圧調整量の総量も低減する方法としては、電圧上昇の抑制効果が大きい位置に連系しているPCSに大きな電圧調整量を負担させ、代わりに電圧調整量の不平等による損失を金銭等で補う方法が考えられる。例えば非特許文献3では、分散型電源を備えた各需要家に対して、各々の分散型電源からの無効電力出力量に応じたインセンティブを支払うことを提案している。しかしながら、このような方法は、P制御機能やQ制御機能を使用することによるPCSの劣化等、考慮すべき項目が多く、不平等を解消できるインセンティブを決定するのは困難である。
 上述したように背景技術の電力系統制御システムでは、分散型電源による電圧抑制制御を行う際に、分散型電源の電力系統に対する連系位置や所有するPCSがQ制御機能を有するか否かによって、電圧抑制制御の負担が一部の需要家に集中する不平等が生じる問題がある。
 また、電圧逸脱が発生した低圧配電線が接続される、高圧配電線に連系する全てのPCSに無効電力を出力させる方法も、Q制御機能を持たないPCSでは電圧抑制制御を実施しなくて済むため、需要家間の不平等を解消できるものではない。また、この方法は、各分散型電源による電圧を抑制するための電圧調整量の総量が増大するため、電圧上昇を効率よく抑制できるものではない。
 さらに、電圧調整量の不平等による損失を金銭等で補う方法は、不平等を解消できるインセンティブを決定するのが困難である。
資源エネルギー庁、「電力品質確保に係る系統連系技術要件ガイドライン」、平成16年10月1日http://www.meti.go.jp/policy/tsutatsutou/tuuti1/aa501.pdf 八太啓行、小林広武、「適正電圧維持制御に起因する分散形電源出力低下の抑制手法-遠隔情報による無効電力分担手法-」、財団法人電力中央研究所、研究報告R06011、平成19年6月 辻隆男他、「経済性を考慮した将来型電力系統の自律分散型電圧分布制御方式」、電気学会論文誌B、128巻第1号、pp.174-185、2008年
 そこで本発明は、近隣の需要家間における電圧抑制制御の不平等を解消しつつ、電圧逸脱を効率的に回避できる電力系統制御システム及び方法を提供することを目的とする。
 上記目的を達成するため本発明の電力系統制御システムは、電力系統に接続される分散型電源と、
 前記電力系統に対する前記分散型電源の連系点の電圧を測定する電圧計測部と、
 前記連系点における電圧が所定の適正範囲を逸脱したとき、該電圧を前記適正範囲に戻すための電圧調整量を、予め設定した所定のグループ内の全ての前記分散型電源に均等に割り当てる集中制御装置と、
 前記集中制御装置から割り当てられた前記電圧調整量にしたがって前記分散型電源に前記連系点における電圧を調整させる分散処理装置と、
を有する。
 一方、本発明の電力系統制御方法は、電力系統に接続される分散型電源と、前記電力系統に対する前記分散型電源の連系点の電圧を測定する電圧計測部とを備えた電力系統制御システムの電力制御方法であって、
 前記連系点における電圧が所定の適正範囲を逸脱したとき、該電圧を前記適正範囲に戻すための電圧調整量を、予め設定した所定のグループに所属する全ての前記分散型電源に均等に割り当て、
 前記割り当てられた前記電圧調整量にしたがって前記分散型電源に前記連系点における電圧を調整させる方法である。
図1は、本発明の電力系統制御システムの原理を説明するための模式図である。 図2は、本発明の電力系統制御システムの一構成例を示すブロック図である。 図3は、本実施形態の電力系統制御方法を適用したときにグループ内で最も高い配電線電圧がどのように変化するかを示した模式図である。 図4は、図2に示した集中制御装置の処理手順を示すフローチャートである。 図5は、図2に示した分散処理装置の処理手順を示すフローチャートである。
 次に本発明について図面を用いて説明する。
 まず、本発明の原理について説明する。
 図1は、本発明の電力系統制御システムの原理を説明するための模式図である。
 図1(a)は、高圧配電線に3つの柱上変圧器が接続され、各柱上変圧器に分散型電源を備えた3軒の需要家がそれぞれ低圧配電線を介して接続された電力系統の構成例を示している。需要家が備えるDG-Aは、PV及び無効電力制御(Q制御)機能を有するPCSを含む分散型電源を示し、DG-Bは、PV及びQ制御機能を持たないPCSを含む分散型電源を示している。また、各需要家の負荷は、電力を消費する一般的な電気器具を示している。
 図1(a)に示す電力系統において、各DGの発電量が増大して各需要家(需要家1~9)の電力系統への連系点における配電線電圧が図1(b)で示すように変化したと仮定する。このとき、各DGが上記非特許文献1のガイドラインに従っている場合、DGは、自機の連系点の配電線電圧を測定し、電圧逸脱を検出したときに上記Q制御やP制御により電圧上昇を自律的に抑制する。その場合、上述したように特定の位置に連系した需要家のDGに電圧抑制制御が集中する(図1(b)に示す例では需要家9)問題が生じる。
 また、非特許文献2で提案されているように、全ての需要家(需要家1~9)のDGに対して無効電力を出力するよう指示すると、Q制御機能を有するDG-Aのみ電圧抑制制御を行い、Q制御機能を持たない(設備投資の少ない)DG-Bは電圧抑制制御を行わない不平等が生じる。例えば、需要家3の連系点で電圧逸脱が発生した場合、近隣の需要家1,2のDG-Aは電圧抑制制御を行い、需要家3のDG-Bは電圧抑制制御を行わないことになる。
 また、上述したように、DGによる電圧上昇を抑制するための電圧調整量が同じであっても、電力系統内の任意の連系点における電圧変化量は、該DGの連系位置によって異なるため、電圧抑制効果が少ない位置に連系している需要家のPCSにも均等にQ制御を割り当てるのは、電圧調整量の総量が増大するため、効率的ではない。なお、電力系統内の任意の連系点における電圧調整量が他の連系点の電圧変動に与える割合を、以下では電圧感度と称す。
 例えば、図1(c)に示すように、電圧逸脱点である需要家9の連系点の電圧に対する需要家1~6の電圧感度は、需要家7,8,9の電圧感度と比べて非常に小さい。そのため、需要家1~6のDGに電圧抑制制御を実行させるのは効率的ではない。これは、柱上変圧器のインピーダンスが配電線のインピーダンスと比べて大きいため、電力系統に対する各需要家の連系点における電圧変動は主として柱上変圧器で発生していると考えられるからである。
 本発明では、近隣の複数の需要家によってグループを形成し、任意のグループで電圧逸脱が発生した場合、Q制御機能を持たないDGを含む該グループ内の全てのDGに対して電圧上昇を抑制するための電圧調整量を均等に割り当て、各DGに電圧抑制制御を実行させる。このとき、本実施形態では、Q制御機能を有するDGには割り当てられた電圧調整量に対応するQ制御を実行させ、Q制御機能を持たないDGには割り当てられた電圧調整量に対応する発電量を抑制するP制御を実行させる。あるいは、Q制御機能を持たないDGを有する需要家には、割り当てられた電圧調整量に対応して該需要家が備える可制御負荷を稼働させ、電力消費量を増大させることで電圧上昇の抑制に寄与させる。なお、以降、特に言及しない限りは、P制御による電圧抑制に可制御負荷を稼動させることによる電力消費量の増大も含むものとする。各需要家は、割り当てられた電圧調整量にグループ内で共通の変換係数を乗算することで、P制御またはQ制御による制御量を決定する。
 このようにグループ内の各DGに電圧上昇を抑制するための電圧調整量を均等に割り当てることで、近隣の各需要家が電圧抑制制御を平等に実行することになる。また、P制御機能のみ有するDGとQ制御機能を有するDGの双方に電圧抑制制御を実行させることができる。
 また、本実施形態では、同一の柱上変圧器に接続されている需要家によってグループを形成する。例えば、需要家AのP制御量をdPとし、需要家AのQ制御量をdQとし、需要家Bの連系点における電圧変化量をdVとした場合、需要家AとBが同一の柱上変圧器に接続されているときのdV/dP、dV/dQの値は、需要家AとBが異なる柱上変圧器に接続されているときのdV/dP、dV/dQの値と比べて非常に大きくなる。そのため、同一の柱上変圧器に接続される需要家から成るグループの各DGに電圧上昇を抑制するための電圧調整量を均等に割り当てれば、異なる柱上変圧器に接続された需要家から成るグループの各DGに電圧調整量を均等に割り当てる場合と比べて電圧調整量の総量が少なくて済む。
 また、同一の柱上変圧器に接続されている複数の需要家から成るグループでは、上記需要家A及びBをどのように選んでもdV/dP、dV/dQがほぼ同じ値になる。そのため、dV/dP=dV/dPとし、dV/dQ=dV/dQとすると、Q制御量をP制御量の(dV/dP)/(dV/dQ)倍にすれば、P制御とQ制御とでほぼ同じ電圧抑制効果が得られるため、P制御を行う需要家とQ制御を行う需要家間の平等性を確保できる。
 例えば、図1に示した電力系統システムでは、需要家1,2,3によってグループが形成され、需要家4,5,6によってグループが形成され、需要家7,8,9によってグループが形成されている。ここで、需要家9の連系点で電圧逸脱が生じた場合、需要家7,8,9に対して電圧調整量を均等に割り当て、需要家7,8,9が自己の設備に応じて割り当てられた電圧調整量をグループ内で共通の変換係数を用いてP制御量またはQ制御量に変換し、電圧抑制制御を行えばよい。
 その場合、Q制御機能を有するDG-AはQ制御を行い、Q制御機能を持たないDG-Bを有する需要家は、電気自動車(EV)やヒートポンプ式給湯器(HP)等のエネルギー蓄積機能を有する可制御負荷を所有していれば、それらに電力を消費させることで発電量を低減しなくても電圧上昇を抑制できる。
 図1(c)で示したように、同一の柱上変圧器に接続されている各需要家は電圧逸脱点に対する電圧感度がほぼ同じであり、電圧感度は、電圧逸脱点と異なる柱上変圧器に接続された各需要家よりも、電圧逸脱点と同一の柱上変圧器に接続された各需要家で大きな値となる。
 そのため、電圧逸脱点と同一の柱上変圧器に接続された各需要家に電圧上昇を抑制するための電圧調整量を均等に割り当てれば、近隣の需要家である同一の柱上変圧器に接続された需要家間の不平等を解消しつつ、電圧逸脱を効率よく回避できる。
 次に本実施形態の電力系統制御システムの構成について図面を用いて説明する。
 図2は、本発明の電力系統制御システムの一構成例を示すブロック図である。
 図2に示すように、本実施形態の電力系統制御システムは、複数の柱上変圧器203が高圧配電線202を介して配電用変圧器201に接続され、各柱上変圧器203に分散型電源を備えた複数の需要家(図2では需要家205~211)が低圧配電線204を介してそれぞれ接続された構成である。
 需要家205~211は、分散型電源であるPVシステム224または225と、通信手段212を用いて外部と情報を送受信できる、PVシステム224または225の動作を制御する分散処理装置221と、分散処理装置221で制御されない、電力を消費する一般的な電気器具である一般負荷222と、PVシステム224または225で発電され、電力系統へ逆潮流する電力(売電量)を測定する計測器220とを備えている。需要家は、電力消費量が制御可能な可制御負荷223を備えている場合もある(図2に示す例では、需要家205及び206)。なお、図2に示す電力系統制御システムでは、PVシステム224または225を備えていない(一般負荷222のみ有する)需要家を省略している。
 PVシステム224及び225は、不図示の電圧計測部、PVパネル及びPCS等を備えている。電圧計測部は、PVシステム224または225の連系点における配電線電圧を測定する。電圧計測部で測定された配電線電圧は、分散処理装置221を介して集中制御装置240に通知される。PVパネルは、太陽光から得られるエネルギーで発電する発電設備である。PCSはPVパネルで発電された電力を電力系統に連系可能な電圧・周波数に変換する。PVシステム224及び225は、集中制御装置240の指示にしたがって無効電力または有効電力を制御する機能を備えている。図2に示すPVシステム225は無効電力制御(Q制御)機能を有するシステムであり、PVシステム224はQ制御機能を持たないシステムである。
 分散処理装置221は、通信手段212を介して集中制御装置240と情報の送受信が可能に接続される。通信手段212には、周知のインターネット、PLC(Power Line Communications)、無線通信手段等を用いればよい。分散処理装置221は、集中制御装置240からの指示にしたがってPVシステム224及び225にQ制御またはP制御を実行させると共に、電圧計測部で測定された連系点における配電線電圧や計測器220で測定された電力系統へ逆潮流する電力を、通信手段212を介して集中制御装置240へ通知する。
 集中制御装置240は、各分散処理装置221と通信手段212を介して情報を送受信すると共に、分散処理装置221を介してPVシステム224及び225、並びに可制御負荷223の動作を制御する。分散処理装置221及び集中制御装置240は、例えばCPU、記憶装置及び周知の通信用インタフェースを備えた情報処理装置(コンピュータ)によって実現できる。
 可制御負荷223は、電力消費量を制御することが可能な電気機器であり、可制御負荷223の電力消費量は、分散処理装置221を介して集中制御装置240から指示される。可制御負荷223には、電力系統やPVシステム224から電力を取り込む時間と、取り込んだ電力を実際に利用する時間とを個別に設定できる、EV、HP、蓄電池等のエネルギー蓄積装置であることが望ましい。
 図2は、電力系統制御システムが、分散処理装置221及び集中制御装置240をそれぞれ独立して備える構成例を示しているが、集中制御装置240の機能は任意の分散処理装置221が備えていてもよい。また、図2は、PVシステム224及び225に電圧計測部を内蔵する構成例を示しているが、電圧計測部はPVシステム224及び225から独立した装置であってもよい。
 次に、本実施形態の電力系統制御方法について図面を用いて説明する。
 本実施形態の電力系統制御方法では、任意の柱上変圧器203に接続された低圧配電線204で電圧逸脱が発生した場合、該低圧配電線204に連系する需要家から成るグループの各PVシステム224及び225に対し、集中制御装置240から分散処理装置221を介して電圧抑制制御を指示する。
 図3は、本実施形態の電力系統制御方法を適用したときに、グループ内で最も高い配電線電圧がどのように変化するかを示した模式図である。
 図3に示すように、本実施形態の電力系統制御方法では、配電線電圧の適正値の上限値(日本では107V)または該上限値よりもわずかに低い値(例えば0.1Vなど)を第1しきい値VSTとし、該第1しきい値VSTよりも低い値(例えばVST-0.3V等)を第2しきい値VEDとする。
 そして、グループ内で最も高い配電線電圧をVMAXとしたとき、例えば各分散型電源の発電量が増大することでVMAXが上昇し、VMAXが第1しきい値VSTを越える場合、図3(a)に示すように、集中制御装置240はグループ内の全分散処理装置221に電圧上昇を抑制するための電圧調整量の増加を指示する。その後、電圧上昇を抑制するための電圧調整量の増加によりVMAXが低下し、第1しきい値VSTに到達した場合、集中制御装置240は、グループ内の全分散処理装置221に電圧上昇を抑制するための電圧調整量を一定にするよう指示する。
 一方、例えば分散型電源の発電量が低減し、VMAXが第2しきい値VEDに到達した場合、図3(b)に示すように、集中制御装置240はグループ内の全分散処理装置221に電圧上昇を抑制するための電圧調整量の低減を指示する。その後、電圧調整量が0になるか、またはVMAXが上昇して第2しきい値VEDに到達した場合、集中制御装置240は、グループ内の全分散処理装置221に電圧上昇を抑制するための電圧調整量を一定にするよう指示する。
 図4は、図2に示した集中制御装置の処理手順を示すフローチャートである。
 図4に示すように、集中制御装置240は、まずステップ402にて各需要家をグループ分けする。上述したように、本実施形態では同一の柱上変圧器203に接続された需要家毎にグループを形成する。
 各需要家を柱上変圧器203毎にグループ分けする方法としては、電力会社等から取得した電力系統の配電図に基づいてグループを形成する方法、配電線電圧に基づいてグループを形成する方法、電圧感度に基づいてグループを形成する方法がある。
 配電線電圧に基づいてグループを形成する場合、集中制御装置240は、各PVシステム224及び225が備える電圧計測部により測定された連系点の配電線電圧を取得し、配電線電圧の値が近い需要家を同一のグループに振り分ければよい。
 電圧感度に基づいてグループを形成する場合、集中制御装置240は、電圧感度の値が近い需要家を同一のグループに振り分ければよい。電圧感度は、需要家毎の連系点から電力系統へ逆潮流させる電力量と、需要家毎の連系点における配電線電圧の変化量との相関値から求めることができる。需要家から電力系統へ逆潮流させる電力量は、上述したように計測器220で測定し、分散処理装置221により集中制御装置240へ通知させればよい。配電線電圧の変化量は、PVシステム224及び225が備える電圧計測部によって測定された連系点の配電線電圧を記録し、その時間微分値を求めることで得られる。
 次に、集中制御装置240は、ステップ403にて各分散処理装置221に対して指示する電圧上昇を抑制するための電圧調整量に対応するP制御量やQ制御量の算出に用いる変換係数を求め、求めた変換係数を各分散処理装置221に通知する。変換係数は、例えばP制御量とQ制御量の比が1/(dV/dP):1/(dV/dQ)となるように設定する。ここで、Vはグループ内の任意の需要家の連系点における配電線電圧、Pは有効電力量、Qは無効電力量である。
 上述したように、同一の柱上変圧器203に接続された各PVシステム224,225のP制御及びQ制御による各需要家の連系点における配電線電圧の変動量はほぼ同じであるため、上記dV/dP、dV/dQにはグループ内で共通の値を用いることができる。dV/dP、dV/dQは、例えば需要家から電力系統へ逆潮流させる電力量と、需要家毎の連系点における配電線電圧の変化量とを取得し、それらの相関値から求めればよい。なお、dV/dPには柱上変圧器203のインピーダンスの実部を該柱上変圧器203の二次側電圧の代表値(例えば100V)で除算した近似値を用いてもよく、dV/dQには柱上変圧器203のインピーダンスの虚部を該柱上変圧器203の二次側電圧の代表値(例えば100V)で除算した近似値を用いてもよい。dV/dP、dV/dQにこのような近似値を用いても実用上問題の無い変換係数が得られる。
 次に、集中制御装置240は、各需要家の分散処理装置221から配電線電圧の値を取得し、グループ内で最大の配電線電圧の値を変数VMAXに代入する(ステップ404)。
 続いて、集中制御装置240は、ステップ412にて変数VMAXが第1しきい値VSTよりも高いか否かを判定する。変数VMAXが第1しきい値VSTよりも高い場合、集中制御装置240はステップ413~418の処理へ移行する。
 変数VMAXが第1しきい値VSTよりも低い場合、集中制御装置240は、ステップ405にて変数VMAXが第2しきい値VEDよりも低いか否かを判定する。変数VMAXが第2しきい値VEDよりも低い場合、集中制御装置240はステップ406~411の処理へ移行する。
 次に、ステップ412にて変数VMAXが第1しきい置VSTよりも高いと判定した場合の集中制御装置240の処理について説明する。
 集中制御装置240は、変数VMAXが第1しきい置VSTよりも高い場合、ステップ413にて対応するグループ内の全需要家による電圧上昇を抑制するための電圧調整量の総量が所定の上限値に到達しているか否かを判定する。
 本実施形態では、集中制御装置240で制御可能な電圧上昇を抑制するための電圧調整量の総量に予め上限値を設け、該上限値に到達しても電圧逸脱が解消しない場合、上述した各PVシステム224,225による自律的な電圧抑制制御に移行する。
 集中制御装置240で制御可能な全PVシステム224,225による電圧調整量の上限値としては、例えばグループ内の全PVシステム224,225による無効電力の出力値に、非特許文献1で規定された下限値、具体的には力率が85%になる値を設定する方法がある。
 グループ内の需要家による電圧上昇を抑制するための電圧調整量の総量が所定の上限値に到達している場合、さらなる集中制御装置240による電圧抑制制御は実行せず、PVシステム224,225が備える自律的な電圧抑制機能(非特許文献1で規定)により電圧上昇を抑制させる。この場合、集中制御装置240は、ステップ404からの処理を繰り返す。
 グループ内の需要家による電圧上昇を抑制するための電圧調整量の総量が所定の上限値に到達していない場合、集中制御装置240は、ステップ414にてグループ内の全需要家に対して均等に電圧調整量を増加させるよう指示する。このとき各需要家に指示する電圧調整量には、有効電力量、無効電力量及び電圧値と、これら有効電力量、無効電力量及び電圧値の時間微分値とがある。
 各需要家に指示する電圧調整量として時間微分値を用いる場合、集中制御装置240は、グループ内で最大の配電線電圧VMAXの電圧変化を記録し、該記録した値から得られるdVMAX/dTを相殺するように、有効電力量、無効電力量、または電圧値の時間微分値を各需要家に指示すればよい。
 例えば、各需要家に指示する電圧調整量として有効電力量を用いる場合、集中制御装置240は、電圧調整量の総量(グループ内の全需要家に割り当てる電圧調整量の総和)が(VMAX-VST)/(dV/dP)となるように、各需要家に有効電力量を均等に配分すればよい。
 また、有効電力量の時間微分値を用いる場合、集中制御装置240は、電圧調整量の総量が(dVMAX/dT)×(dV/dP)となるように、各需要家に有効電力量の時間微分値を均等に配分すればよい。
 どちらの場合もステップ403で求める変換係数は(dV/dP)/(dV/dQ)であり、無効電力制御を行う需要家は、指示された有効電力量に(dV/dP)/(dV/dQ)を乗算した値だけ電圧上昇を抑制する方向に無効電力値を変化させればよい。
 各需要家に指示する電圧調整量として無効電力量を用いる場合、集中制御装置240は、電圧調整量の総量が(VMAX-VST)/(dV/dQ)となるように、各需要家に無効電力量を均等に配分すればよい。
 また、無効電力量の時間微分値を用いる場合、集中制御装置240は、電圧調整量の総和が(dVMAX/dT)×(dV/dQ)となるように、各需要家に無効電力量の時間微分値を均等に配分すればよい。
 どちらの場合もステップ403で求める変換係数は(dV/dQ)/(dV/dP)であり、有効電力制御を行う需要家は、指示された無効電力量に(dV/dQ)/(dV/dP)を乗算した値だけ電圧上昇を抑制する方向に有効電力値を変化させればよい。
 各需要家に指示する電圧調整量として電圧値を用いる場合、集中制御装置240は、電圧調整量の総和が(VMAX-VST)となるように、各需要家に電圧値を均等に配分すればよい。
 また、電圧値の時間微分値を用いる場合、集中制御装置240は、電圧調整量の総和が(dVMAX/dT)となるように各需要家に電圧値の時間微分値を均等に配分すればよい。
 どちらの場合もステップ403で求める変換係数は(dV/dP)または(dV/dQ)であり、有効電力制御を行う需要家は、指示された電圧値をdV/dPで除算した値だけ電圧上昇を抑制する方向に有効電力値を変化させればよい。また、無効電力制御を行う需要家は、指示された電圧値をdV/dQで除算した値だけ電圧上昇を抑制する方向に無効電力値を変化させればよい。
 ここで、需要家毎に割り当てる電圧調整量は、上述したように電圧調整量の総量を需要家数で除算した均等値を用いてもよく、電圧調整量の総量が変化しない範囲内で該均等値に対して需要家毎に所定の重みを付与した値を用いてもよい。例えば均等値に対して各需要家が備える発電設備の容量に比例した重みを付与してもよく、各需要家の逆潮流量に比例した重みを付与してもよく、過去の一定期間(例えば1カ月)の売電量に比例した重みを付与してもよい。
 次に、集中制御装置240は、ステップ415にて一定時間待機した後、ステップ416、417にて電圧逸脱が継続しているか否かを判定する。電圧逸脱が継続している場合、集中制御装置240はステップ413に戻ってステップ413~417の処理を繰り返す。電圧逸脱が解消している場合、集中制御装置240はステップ418にて各需要家のPVシステム224,225に電圧上昇を抑制するための電圧調整量を一定に保つよう指示した後、ステップ404からの処理を繰り返す。
 次に、ステップ412、405にて変数VMAXが第2しきい値VEDよりも低いと判定した場合の集中制御装置240の処理について説明する。
 例えばPVシステム224,225の発電量が低下することで変数VMAXが第2しきい値VED以下となった場合、集中制御装置240は、まずステップ406にて各需要家のPVシステム224,225が電圧抑制制御を実行中であるか否か、すなわち電圧上昇を抑制するための電圧調整量のさらなる低減が可能であるか否かを判定する。各需要家のPVシステム224,225が電圧抑制制御を実行していない場合、集中制御装置240はステップ404からの処理を繰り返す。
 各需要家のPVシステム224,225が電圧抑制制御を実行している場合、集中制御装置240は、ステップ407にてグループ内の各需要家のPVシステム224,225に電圧調整量を均等に低減するよう指示する。ステップ407では、上述したステップ414と逆の処理を実行すればよい。具体的には、電圧調整量の総量の計算に用いる(VMAX-VST)を(VMAX-VED)に置き換え、電圧上昇を抑制する方向に有効電力値または無効電力値を変化させる処理を、電圧上昇を抑制しない方向に有効電力値または無効電力値を変化させる処理に置き換えればよい。
 集中制御装置240は、ステップ408にて一定時間待機した後、ステップ409、410にて変数VMAXが第2しきい値VEDを越えるまでステップ406~409の処理を繰り返す。変数VMAXが第2しきい値VEDを越えた場合、集中制御装置240は、ステップ411にて各需要家のPVシステム224,225に電圧上昇を抑制するための電圧調整量を一定に保つよう指示した後、ステップ404からの処理を繰り返す。
 なお、上述したステップ413にてグループ内の全需要家による電圧上昇を抑制するための電圧調整量の総量が所定の上限値に到達している場合、集中制御装置240は、他の柱上変圧器203に接続された需要家のPVシステム224,225に対して電圧抑制制御を依頼してもよい。
 その場合、例えば、近隣の需要家間での不平等性を低減するため、電圧逸脱が発生した柱上変圧器203と隣接する柱上変圧器203に接続されたグループに電圧抑制制御を依頼する方法がある。
 あるいは、電圧逸脱が発生した柱上変圧器203から見て配電用変電所側を上流、低圧配電線204の末端側を下流とした場合、電圧逸脱が発生した柱上変圧器203から下流の柱上変圧器203に接続されたグループに電圧抑制制御を依頼する方法がある。
 任意の需要家が連係する配電線電圧を低下させる場合、上述したように同一の柱上変圧器203に接続される各需要家で電圧抑制制御するのが電圧調整量の総量が最も少なくて済み、それよりも下流の柱上変圧器203に接続される各需要家で電圧抑制制御を行うと、同一の柱上変圧器203に接続される各需要家で電圧抑制制御する場合の次に電圧調整量の総量が少なくて済む。これは柱上変圧器203の連系位置に依らず電圧逸脱が発生した柱上変圧器203よりも下流であれば必要な電圧調整量は一定である。逆に電圧逸脱が発生した柱上変圧器203よりも上流側の柱上変圧器203に接続された各需要家で電圧抑制制御を行うと電圧上昇を抑制するための電圧調整量が増大し、上流ほど大きい電圧調整量が必要になる。
 したがって、任意のグループで電圧逸脱が発生し、かつ該グループで集中制御装置240による電圧抑制制御が不能になった場合、配電用変電所から見て該グループよりも下流の柱上変圧器203に接続されたグループに電圧抑制制御を依頼すれば、電圧調整量の増大を抑制しつつ電圧逸脱を回避できる。また、このとき電圧逸脱が発生したグループと隣接するグループに電圧抑制制御を依頼すれば、近隣の需要家間での不平等を低減することが可能である。また、配電用変電所から見て最下流のグループに電圧抑制制御を依頼すれば、該グループは同一の高圧配電線202に連系した全てのグループから見て下流にあるため、どのグループで電圧逸脱が発生し、かつ該グループで集中制御装置240による電圧抑制制御が不能になった場合でも、電圧調整量の増大を抑制しつつ電圧逸脱を回避できる。
 なお、任意のグループで電圧逸脱が発生し、かつ該グループで集中制御装置240による電圧抑制制御が不能になった場合、次に電圧逸脱が発生する可能性の高いグループに電圧抑制制御を依頼する方法もある。具体的には、電圧逸脱が発生したグループの次に最大電圧が高い需要家を含むグループ、あるいは配電線電圧Vの変化量(dV/dT)が最も大きい需要家を含むグループに電圧抑制制御を依頼すればよい。
 次に、需要家毎に備える分散処理装置221の処理手順について説明する。
 分散処理装置221は、図4のステップ403で集中制御装置240が求めた自グループに対応する変換係数を集中制御装置240から取得する。
 また、分散処理装置221は、図4のステップ414にて集中制御装置240から電圧調整量の増加が指示されると、PVシステム224,225が備えるPCSによる無効電力制御(Q制御)、可制御負荷223による有効電力制御(P制御)、PVシステム224,225の発電量による有効電力制御(P制御)の順に電圧調整量を増加させ、電圧上昇を抑制する。また、分散処理装置221は、図4のステップ407にて集中制御装置240から電圧調整量の低減が指示されると、PVシステム224,225の発電量による有効電力制御(P制御)、可制御負荷223による有効電力制御(P制御)、無効電力制御(Q制御)の順に電圧調整量を低減する。
 図5は、図2に示した分散処理装置の処理手順を示すフローチャートである。
 分散処理装置221は、まずステップ502にて図4のステップ403で求めた変換係数を集中制御装置240から取得する。
 次に、分散処理装置221は、集中制御装置240から電圧調整量の変更が指示されるまで待機し(ステップ503、513)、電圧調整量の増加が指示された場合はステップ504の処理へ移行し、電圧調整量の低減が指示された場合はステップ513の処理へ移行する。
 電圧調整量の増加が指示された場合、分散処理装置221は、まずステップ504にてPVシステム224,225のPCSによる無効電力制御(Q制御)が可能か否かを判定する。Q制御が可能な場合、分散処理装置221は、変換係数を用いて集中制御装置240から指示された電圧調整量をQ制御量に変換し(ステップ505)、PVシステム224,225のPCSに対して変換後のQ制御量への変更(増加)を指示する(ステップ506)。
 PCSがQ制御機能を備えていない、または無効電力の出力量が予め設定された上限値に到達している場合、分散処理装置221は、ステップ507に移行して可制御負荷223を用いたP制御を行う。
 分散処理装置221は、まず可制御負荷223を用いた負荷増による有効電力制御(P制御)が可能か否かを判定する(ステップ507)。可制御負荷223を用いたP制御が可能な場合、分散処理装置221は、変換係数を用いて集中制御装置240から指示された電圧調整量をP制御量に変換し(ステップ508)、可制御負荷223に対して変換後のP制御量への変更(負荷の増加)を指示する(ステップ509)。
 可制御負荷223を備えていない、または可制御負荷223が既に最大負荷で稼働している場合、分散処理装置221は、ステップ510に移行してPVシステム224,225の発電量によるP制御を行う。
 分散処理装置221は、まずステップ510にてPVシステム224,225のPCSによるP制御が可能か否かを判定する。PCSによるP制御が可能な場合、分散処理装置221は、変換係数を用いて集中制御装置240から指示された電圧調整量をP制御量に変換し(ステップ511)、PCSに対して変換後のP制御量への変更(発電量の低減)を指示する(ステップ512)。
 PCSが発電量抑制のために既に停止している場合、電圧上昇を抑制するための電圧調整量をさらに増加させることができない。その場合、分散処理装置221はステップ503からの処理を繰り返す。
 ステップ513にて集中制御装置240から電圧調整量の低減を指示された場合、分散処理装置221は、ステップ514~522の処理を実行する。ステップ514~522の処理は、ステップ504~512で示した集中制御装置240から電圧調整量の増加を指示されたときの処理とは逆にPCSによるP制御、可制御負荷223によるP制御、PCSによるQ制御の順に電圧調整量を低減すればよい。PCSによるP制御の処理手順は上述したステップ510~512と同様であり、可制御負荷223によるP制御の処理手順は上述したステップ507~509と同様であり、PCSによるQ制御の処理手順は、上述したステップ504~506と同様である。但し、ステップ514、517及び520の処理では、PCSまたは可制御負荷223がP制御またはQ制御を実行中であるか否か、すなわち電圧調整量のさらなる低減が可能か否かを判定する。
 なお、上述したように可制御負荷223には蓄電池やヒートポンプ式給湯器等のエネルギー蓄積装置を用いることが望ましい。但し、エネルギー蓄積装置は、蓄積可能なエネルギー量の上限である定格容量が決まっている。そのため、需要家は複数の可制御負荷223を備えていることが望ましい。その場合、任意の可制御負荷223に対するP制御により該可制御負荷223で蓄積しているエネルギー量が定格容量に到達したら、エネルギーを蓄積する可制御負荷223を切り替えればよい。分散処理装置221は、切り替え後の可制御負荷223に対して、それまで用いていた可制御負荷223に対する電圧調整量を割り当て、図5のステップ504からの処理を実行すればよい。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2010年11月8日に出願された特願2010-249745号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  電力系統に接続される分散型電源と、
     前記電力系統に対する前記分散型電源の連系点の電圧を測定する電圧計測部と、
     前記連系点における電圧が所定の適正範囲を逸脱したとき、該電圧を前記適正範囲に戻すための電圧調整量を、予め設定した所定のグループ内の全ての前記分散型電源に均等に割り当てる集中制御装置と、
     前記集中制御装置から割り当てられた前記電圧調整量にしたがって前記分散型電源に前記連系点における電圧を調整させる分散処理装置と、
    を有する電力系統制御システム。
  2.  前記分散処理装置は、
     前記分散型電源から前記電力系統に逆潮流させる無効電力または有効電力により前記連系点における電圧を調整する請求項1記載の電力系統制御システム。
  3.  電力消費量が制御可能な可制御負荷を備え、
     前記分散処理装置は、
     前記分散型電源から前記電力系統に逆潮流させる進相無効電力、前記分散型電源の発電量、または前記可制御負荷の電力消費量で、前記連系点における電圧を調整する請求項2記載の電力系統制御システム。
  4.  前記分散処理装置は、
     前記連系点における電圧をV、前記有効電力量をP、前記無効電力量をQとしたとき、前記無効電力による電圧調整量と前記有効電力による電圧調整量との比を、1/(dV/dP):1/(dV/dQ)とする請求項1から3のいずれか1項記載の電力系統制御システム。
  5.  前記グループは、
     同一の柱上変圧器に接続された、前記分散型電源、前記電圧計測部及び前記分散処理装置を備えた需要家で形成され、
     前記集中制御装置は、
     前記電圧調整量を、前記電圧が前記適正範囲を逸脱した連系点の分散型電源を含むグループ内の全ての前記分散型電源に均等に割り当てる請求項1から4のいずれか1項記載の電力系統制御システム。
  6.  電力系統に接続される分散型電源と、前記電力系統に対する前記分散型電源の連系点の電圧を測定する電圧計測部とを備えた電力系統制御システムの電力制御方法であって、
     前記連系点における電圧が所定の適正範囲を逸脱したとき、該電圧を前記適正範囲に戻すための電圧調整量を、予め設定した所定のグループに所属する全ての前記分散型電源に均等に割り当て、
     前記割り当てられた前記電圧調整量にしたがって前記分散型電源に前記連系点における電圧を調整させる電力系統制御方法。
  7.  前記分散型電源から前記電力系統に逆潮流させる無効電力または有効電力により前記連系点における電圧を調整する請求項6記載の電力系統制御方法。
  8.  前記電力系統制御システムに電力消費量が制御可能な可制御負荷を備え、
     前記分散型電源から前記電力系統に逆潮流させる進相無効電力、前記分散型電源の発電量、または前記可制御負荷の電力消費量で、前記連系点における電圧を調整する請求項7記載の電力系統制御方法。
  9.  前記連系点における電圧をV、前記有効電力量をP、前記無効電力量をQとしたとき、前記無効電力による電圧調整量と前記有効電力による電圧調整量との比を、1/(dV/dP):1/(dV/dQ)とする請求項6から8のいずれか1項記載の電力系統制御方法。
  10.  前記グループは、
     同一の柱上変圧器に接続された、前記分散型電源、前記電圧計測部及び前記分散処理装置を備えた需要家で形成され、
     前記電圧調整量を、前記電圧が前記適正範囲を逸脱した連系点の分散型電源を含むグループ内の全ての前記分散型電源に均等に割り当てる請求項6から9のいずれか1項記載の電力系統制御方法。
PCT/JP2011/075676 2010-11-08 2011-11-08 電力系統制御システム及び方法 WO2012063800A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/823,594 US9612584B2 (en) 2010-11-08 2011-11-08 Electric power grid control system and method for electric power control
JP2012542922A JP6048146B2 (ja) 2010-11-08 2011-11-08 電力系統制御システム及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010249745 2010-11-08
JP2010-249745 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012063800A1 true WO2012063800A1 (ja) 2012-05-18

Family

ID=46050943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075676 WO2012063800A1 (ja) 2010-11-08 2011-11-08 電力系統制御システム及び方法

Country Status (3)

Country Link
US (1) US9612584B2 (ja)
JP (2) JP6048146B2 (ja)
WO (1) WO2012063800A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078330A (zh) * 2013-02-25 2013-05-01 华东电网有限公司 辅助电压调控决策的关系型电压监控指标方法
JP2013183578A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 制御装置、及び制御方法
WO2014001055A2 (de) * 2012-06-29 2014-01-03 Siemens Aktiengesellschaft Verfahren und vorrichtung zur dezentralen regelung einer spannung in einem verteilnetz
WO2014013010A3 (de) * 2012-07-18 2014-03-27 Sma Solar Technology Ag Steuerung von betriebsmitteln über beeinflussung der netzspannung
WO2014075970A2 (de) * 2012-11-13 2014-05-22 Sma Solar Technology Ag Verfahren zur spannungsstabilisierung in einem elektrischen verteilnetz und vorrichtung hierzu
WO2015052824A1 (ja) * 2013-10-11 2015-04-16 株式会社日立製作所 分散電源管理システム
KR20160091896A (ko) * 2013-10-21 2016-08-03 리스토어 엔브이 포트폴리오 관리된, 수요측 응답 시스템
EP2961030A4 (en) * 2013-02-19 2016-11-02 Nec Corp POWER FLOW CONTROL SYSTEM AND ENERGY FLOW MANAGEMENT PROCESS
JP2018107981A (ja) * 2016-12-28 2018-07-05 積水化学工業株式会社 配電系統の潮流制御方法及び配電システム
US10079501B2 (en) 2013-02-08 2018-09-18 Nec Corporation Battery control device, battery control system, battery control method, and recording medium
JP2021168598A (ja) * 2016-12-22 2021-10-21 株式会社日立製作所 自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553453B2 (en) * 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
EP2869422A1 (en) * 2013-11-04 2015-05-06 ABB Technology AG Method and system for monitoring a grid voltage in a low voltage grid
US9882386B2 (en) * 2014-04-23 2018-01-30 Nec Corporation Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing
US11063431B2 (en) * 2014-07-04 2021-07-13 Apparent Labs Llc Hierarchical and distributed power grid control
US10096998B2 (en) 2014-07-23 2018-10-09 Mitsubishi Electric Research Laboratories, Inc. Distributed reactive power control in power distribution systems
US9829880B2 (en) * 2014-11-20 2017-11-28 General Electric Company System and method for modelling load in an electrical power network
EP3374838B1 (en) * 2015-11-09 2020-08-05 ABB Schweiz AG Power distribution system
US10008317B2 (en) 2015-12-08 2018-06-26 Smart Wires Inc. Voltage or impedance-injection method using transformers with multiple secondary windings for dynamic power flow control
US10418814B2 (en) 2015-12-08 2019-09-17 Smart Wires Inc. Transformers with multi-turn primary windings for dynamic power flow control
US10903653B2 (en) 2015-12-08 2021-01-26 Smart Wires Inc. Voltage agnostic power reactor
US10180696B2 (en) 2015-12-08 2019-01-15 Smart Wires Inc. Distributed impedance injection module for mitigation of the Ferranti effect
US10199150B2 (en) 2015-12-10 2019-02-05 Smart Wires Inc. Power transmission tower mounted series injection transformer
US10097037B2 (en) 2016-02-11 2018-10-09 Smart Wires Inc. System and method for distributed grid control with sub-cyclic local response capability
US10218175B2 (en) 2016-02-11 2019-02-26 Smart Wires Inc. Dynamic and integrated control of total power system using distributed impedance injection modules and actuator devices within and at the edge of the power grid
US10651633B2 (en) 2016-04-22 2020-05-12 Smart Wires Inc. Modular, space-efficient structures mounting multiple electrical devices
CN109314394B (zh) * 2016-06-08 2022-10-21 日立能源瑞士股份公司 微电网的分布式网络控制
WO2018003042A1 (ja) * 2016-06-29 2018-01-04 三菱電機株式会社 給湯システム、給湯機及び給湯機の制御方法
US10468880B2 (en) 2016-11-15 2019-11-05 Smart Wires Inc. Systems and methods for voltage regulation using split-conductors with loop current reduction
GB201710090D0 (en) 2017-06-23 2017-08-09 Selc Ireland Ltd Method and system for controlling power grid stability utilising mains frequency dynamic load control
US10666038B2 (en) 2017-06-30 2020-05-26 Smart Wires Inc. Modular FACTS devices with external fault current protection
EP3565077B1 (de) * 2018-05-04 2022-01-05 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Aktiver filter
JP7044666B2 (ja) * 2018-08-29 2022-03-30 一般財団法人電力中央研究所 電力需給制御装置および電力需給制御方法
CN109543910A (zh) * 2018-11-27 2019-03-29 长沙理工大学 一种考虑偏差考核惩罚的售电公司电量鲁棒决策电路及方法
CN110994702A (zh) * 2019-12-26 2020-04-10 孝感科先电力工程咨询设计有限责任公司 一种基于功率-电压灵敏度的配电网分区电压控制方法
US11870261B2 (en) * 2021-05-27 2024-01-09 Power Engineers, Incorporated Method for controlling voltage and reactive power for an electrical grid
US11870260B2 (en) * 2021-05-27 2024-01-09 Power Engineers, Incorporated System for controlling voltage and reactive power for an electrical grid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (ja) * 2000-06-09 2001-12-21 Sharp Corp インバータ装置および電力を商用系統に逆潮流する方法
JP2006121853A (ja) * 2004-10-25 2006-05-11 Hitachi Ltd 分散発電装置の制御方法及び装置
JP2010200539A (ja) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd 系統連系装置及び配電システム
JP2010213542A (ja) * 2009-03-12 2010-09-24 Kansai Electric Power Co Inc:The 配電系統

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591300B2 (ja) 1998-04-24 2004-11-17 株式会社日立製作所 電力供給制御装置
JP2002152976A (ja) 2000-11-13 2002-05-24 Sharp Corp 分散電源電力供給システム
JP4019150B2 (ja) 2004-03-17 2007-12-12 独立行政法人産業技術総合研究所 配電系統情報監視システム
JP4498247B2 (ja) 2005-09-08 2010-07-07 財団法人電力中央研究所 配電系統の電圧制御方法、装置並びにプログラム
US20070100506A1 (en) * 2005-10-31 2007-05-03 Ralph Teichmann System and method for controlling power flow of electric power generation system
JP4890920B2 (ja) 2006-04-14 2012-03-07 株式会社日立製作所 複数の分散型電源が連系された配電系統の電力品質維持支援方法及び電力品質維持支援システム
US8097980B2 (en) * 2007-09-24 2012-01-17 Sunlight Photonics Inc. Distributed solar power plant and a method of its connection to the existing power grid
JP2009153333A (ja) 2007-12-21 2009-07-09 Tokyo Gas Co Ltd 分散型電源システム及びその制御方法
JP4719760B2 (ja) 2008-03-25 2011-07-06 株式会社日立製作所 分散型電源群の制御方法及びシステム
US7839024B2 (en) * 2008-07-29 2010-11-23 General Electric Company Intra-area master reactive controller for tightly coupled windfarms
US8041465B2 (en) * 2008-10-09 2011-10-18 General Electric Company Voltage control at windfarms
US8401709B2 (en) * 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
JP5618294B2 (ja) 2010-10-13 2014-11-05 独立行政法人産業技術総合研究所 高圧・低圧配電系統電圧調節システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (ja) * 2000-06-09 2001-12-21 Sharp Corp インバータ装置および電力を商用系統に逆潮流する方法
JP2006121853A (ja) * 2004-10-25 2006-05-11 Hitachi Ltd 分散発電装置の制御方法及び装置
JP2010200539A (ja) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd 系統連系装置及び配電システム
JP2010213542A (ja) * 2009-03-12 2010-09-24 Kansai Electric Power Co Inc:The 配電系統

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183578A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 制御装置、及び制御方法
WO2014001055A3 (de) * 2012-06-29 2014-05-30 Siemens Aktiengesellschaft Verfahren und vorrichtung zur dezentralen regelung einer spannung in einem verteilnetz
WO2014001055A2 (de) * 2012-06-29 2014-01-03 Siemens Aktiengesellschaft Verfahren und vorrichtung zur dezentralen regelung einer spannung in einem verteilnetz
WO2014013010A3 (de) * 2012-07-18 2014-03-27 Sma Solar Technology Ag Steuerung von betriebsmitteln über beeinflussung der netzspannung
WO2014075970A3 (de) * 2012-11-13 2014-12-31 Sma Solar Technology Ag Verfahren zur spannungsstabilisierung in einem elektrischen verteilnetz und vorrichtung hierzu
WO2014075970A2 (de) * 2012-11-13 2014-05-22 Sma Solar Technology Ag Verfahren zur spannungsstabilisierung in einem elektrischen verteilnetz und vorrichtung hierzu
US10784702B2 (en) 2013-02-08 2020-09-22 Nec Corporation Battery control device, battery control system, battery control method,and recording medium
US10079501B2 (en) 2013-02-08 2018-09-18 Nec Corporation Battery control device, battery control system, battery control method, and recording medium
US10069302B2 (en) 2013-02-19 2018-09-04 Nec Corporation Power flow control system and power flow control method
EP2961030A4 (en) * 2013-02-19 2016-11-02 Nec Corp POWER FLOW CONTROL SYSTEM AND ENERGY FLOW MANAGEMENT PROCESS
CN103078330A (zh) * 2013-02-25 2013-05-01 华东电网有限公司 辅助电压调控决策的关系型电压监控指标方法
WO2015052824A1 (ja) * 2013-10-11 2015-04-16 株式会社日立製作所 分散電源管理システム
JPWO2015052824A1 (ja) * 2013-10-11 2017-03-09 株式会社日立製作所 分散電源管理システム
KR20160091896A (ko) * 2013-10-21 2016-08-03 리스토어 엔브이 포트폴리오 관리된, 수요측 응답 시스템
JP2016540472A (ja) * 2013-10-21 2016-12-22 レストレ・エンフェーRestore Nv ポートフォリオ管理によるデマンドサイド・レスポンスシステム
KR102233790B1 (ko) 2013-10-21 2021-03-30 리스토어 엔브이 포트폴리오 관리된, 수요측 응답 시스템
JP2021168598A (ja) * 2016-12-22 2021-10-21 株式会社日立製作所 自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法
JP7304385B2 (ja) 2016-12-22 2023-07-06 株式会社日立製作所 自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法
JP2018107981A (ja) * 2016-12-28 2018-07-05 積水化学工業株式会社 配電系統の潮流制御方法及び配電システム

Also Published As

Publication number Publication date
US9612584B2 (en) 2017-04-04
JP6048546B2 (ja) 2016-12-21
JPWO2012063800A1 (ja) 2014-05-12
JP6048146B2 (ja) 2016-12-21
JP2015188313A (ja) 2015-10-29
US20130184894A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP6048546B2 (ja) 電力系統制御システム及び方法
Islam et al. Multiobjective optimization technique for mitigating unbalance and improving voltage considering higher penetration of electric vehicles and distributed generation
Jung et al. Voltage regulation method for voltage drop compensation and unbalance reduction in bipolar low-voltage DC distribution system
Rafi et al. Hierarchical controls selection based on PV penetrations for voltage rise mitigation in a LV distribution network
JP5618294B2 (ja) 高圧・低圧配電系統電圧調節システム
WO2019109084A1 (en) Optimization framework and methods for adaptive ev charging
JP5705606B2 (ja) 電圧上昇抑制装置および分散電源連系システム
Karagiannopoulos et al. A centralised control method for tackling unbalances in active distribution grids
Cappelle et al. Introducing small storage capacity at residential PV installations to prevent overvoltages
JP2015167461A (ja) 太陽光発電システムの制御方法
US10230242B2 (en) Maximizing energy savings by utilizing conservation voltage reduction with adaptive voltage control and peak demand reduction at point of use
Khodayar et al. Solar photovoltaic generation: Benefits and operation challenges in distribution networks
Brandao et al. Coordinated control of three-and single-phase inverters coexisting in low-voltage microgrids
Shahnia et al. Application of DSTATCOM for surplus power circulation in MV and LV distribution networks with single-phase distributed energy resources
Li et al. Optimal voltage regulation of unbalanced distribution networks with coordination of OLTC and PV generation
Levis et al. Multi-objective optimal active and reactive power dispatch for centrally controlled distributed PV systems
JP2013165593A (ja) 発電制御装置、発電制御方法、発電制御プログラム及び発電制御システム
JP2016187285A (ja) 電力変換装置及び電力管理装置
Pandi et al. Adaptive coordinated feeder flow control in distribution system with the support of distributed energy resources
Islam et al. Grid power fluctuation reduction by fuzzy control based energy management system in residential microgrids
He et al. A two-layer dynamic voltage regulation strategy for DC distribution networks with distributed energy storages
AU2017345388A1 (en) Maximizing energy savings by utilizing conservation voltage reduction with adaptive voltage control and peak demand reduction at point of use
Brandao et al. Coordinated control of distributed generators in meshed low-voltage microgrids: Power flow control and voltage regulation
Lu et al. Profit optimization-based power compensation control strategy for grid-connected PV system
Jaraniya et al. Integration of multi voltages, multi electric vehicle spots based three phase photovoltaic array charging station to the modern distribution grid with improved electric vehicle charging capability and power quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823594

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012542922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839365

Country of ref document: EP

Kind code of ref document: A1