JP2013145761A - 電気化学素子用電極の製造方法 - Google Patents

電気化学素子用電極の製造方法 Download PDF

Info

Publication number
JP2013145761A
JP2013145761A JP2013080735A JP2013080735A JP2013145761A JP 2013145761 A JP2013145761 A JP 2013145761A JP 2013080735 A JP2013080735 A JP 2013080735A JP 2013080735 A JP2013080735 A JP 2013080735A JP 2013145761 A JP2013145761 A JP 2013145761A
Authority
JP
Japan
Prior art keywords
active material
electrode
electrode active
current collector
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080735A
Other languages
English (en)
Inventor
Yujiro Toyoda
裕次郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2013080735A priority Critical patent/JP2013145761A/ja
Publication of JP2013145761A publication Critical patent/JP2013145761A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 集電体、特にパンチングメタルやエキスパンドメタルなどの表裏貫通孔を有する孔開き集電体上に簡便に、しかも均一かつ密着性良く電極活物質層を形成することができる電気化学素子用電極の製造方法を提供すること。
【解決手段】 本発明に係る電気化学素子用電極の製造方法は、
基材表面に、電極活物質、導電材及び結着材を含む電極組成物から電極活物質層を形成する工程、
該形成した電極活物質層と集電体とを導電性接着剤層を介して貼り合わせる工程、及び、
電極活物質層から基材を分離する工程を有することを特徴としている。
【選択図】なし

Description

本発明は、リチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子に使用される電極(以下、総称して「電気化学素子用電極」と記載することがある)の製造方法に関し、さらに詳しくは集電体、特に孔開き集電体に簡便に電極活物質層を形成しうる方法に関する。
小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタおよびリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどの分野で利用されている。また、電気二重層キャパシタは急速充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている。さらに電気二重層キャパシタは電気自動車用の大型電源としての応用が期待されている。また、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたハイブリッドキャパシタは、エネルギー密度、出力密度ともに高いことから注目を集めている。これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性の向上など、よりいっそうの改善が求められている。
ハイブリッドキャパシタは、正極に分極性電極、負極に非分極性電極を備え、有機系電解液を用いることで作動電圧を高め、エネルギー密度を高めることができる。ハイブリッドキャパシタでは、リチウムイオンを吸蔵、脱離しうる材料に、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた材料を負極に用いることが提案されている(例えば、特許文献1、2)。
また、電気化学素子の内部抵抗を低減する目的で、集電体表面に導電性接着剤層をコーティングする方法(例えば、特許文献3参照)が提案されている。
自動車用電源など大型セルを対象とした場合において、予めリチウムを負極に担持させる方法としては、正極集電体および負極集電体がそれぞれ表裏に貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムと電気化学的接触により担持される有機電解質電池が提案されている(例えば、特許文献4参照)。特許文献4においては、集電体に表裏面を貫通する孔を設け、孔開き集電体の表裏面に電極活物質層を形成している(以下、貫通孔を有する集電体を「孔開き集電体」と記載することがある)。このような構成により、静電容量が向上し、またリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるため、積層枚数の多いセル構成の蓄電装置においても、当該貫通孔を通じて、リチウム近傍に配置された負極だけでなくリチウムから離れて配置された負極にもリチウムを電気化学的に担持させることが可能となる。また、貫通孔を通じてリチウムイオンが自由に各極間を移動できるため、充放電がスムーズに進行する。
電極活物質層は、電極活物質、導電材及び結着材を含む電極組成物のスラリーを集電体に塗布、乾燥して形成される。特に集電体の表裏面に同時に電極活物質層を形成することを目的として、垂直方向に走行する集電体の搬送路の両側に一対のダイを配し、この一対のダイの上方に一対のブレードを設けて、ダイから吐出されたスラリーをブレードで掻き落として塗工厚みを制御するツインブレード法が提案されている。しかし、集電体が貫通孔を有する孔開き集電体の場合には、スラリーを均一な厚みに塗工することが困難であり、得られる電極における電極活物質層の厚みおよび活物質量が一定せず、電極性能にばらつきが生じる。また、この方法では、集電体の両面からスラリーを塗布するため、必ず2台のダイを必要とし、さらに、塗料タンクや供給ポンプ、フィルター、配管などがそれぞれ2セット必要であり、設備が複雑化し、コストの増大を招く。また、塗工厚さや電極の表面状態を制御するためには、2台のダイのクリアランスやスラリーの吐出量、ダイリップ部のクリアランスなどを厳密に調整する必要があった。さらに、コンマコーターなどの一般的な横型の塗工機に、パンチングメタルやエキスパンドメタルなどの孔開き集電体を搬送すると、回転しているローラーにスラリーが転写してしまい、スラリーを均一に集電体上に塗工することが困難であった。
孔開き集電体上に均一な厚みで電極活物質層を形成する方法として、たとえば、特許文献5には、定量フィーダーを用いて電極材料を一対のプレスロールに供給するとともに、プレスロール間に集電体を供給することで、電極材料のシート化と集電体への接合を同時に行う方法が開示されている。
また、特許文献6には、基材に塗布したスラリーを孔開き集電体に接触させ一体化し、その後スラリーを乾燥し、基材を剥離し、集電体上に電極活物質層を形成する方法が提案されている。この方法では、基材が積層された状態でスラリー層の乾燥を行うため、スラリーの溶媒が均一に蒸発し難い。このため、特許文献5では、基材として多孔質基材を用いて、溶媒を均一に蒸発させ、乾燥後の電極活物質の厚みを均一化している。
特開平3−233860号公報 特開平5−325965号公報 特開2002−75805号公報 国際公開第98/33227号公報 特開2007−5747号公報 特開2008−41971号公報
しかし、特許文献5に記載の方法では、電極材料をプレスロールから集電体に転写する際に、プレスロール上に電極材料が残着することがある。この結果、集電体に転写される電極材料の量が一定にならず、また電極活物資層の厚みが不均一になり、電極特性にもばらつきが生じることがあった。
特許文献6の方法においても、スラリーの乾燥後に多孔質基材を電極活物質層から剥離する際に、多孔質基材上に電極材料が残着し、同様の問題を招来する。また、スラリーの塗工および乾燥のため、スラリー粘度や多孔質基材の孔径に制限があるといった問題点があった。
したがって、本発明の目的は、集電体、特にパンチングメタルやエキスパンドメタルなどの表裏貫通孔を有する孔開き集電体上に簡便に、しかも均一かつ密着性良く電極活物質層を形成することができる電気化学素子用電極の製造方法を提供することにある。
本発明者は上記課題を解決するために鋭意検討した結果、基材表面に電極活物質層を形成し、これを導電性接着剤層を介して集電体に貼付することで、パンチングメタルやエキスパンドメタルのような塗工が難しい孔開き集電体に対して生産性良く、しかも品質の均一な電気化学素子用電極を密着性良く作製できることを見出した。
すなわち、上記課題を解決する本発明は、以下の事項を要旨として含む。
(1)基材表面に、電極活物質、導電材及び結着材を含む電極組成物から電極活物質層を形成する工程、
該形成した電極活物質層と集電体とを導電性接着剤層を介して貼り合わせる工程、及び、
電極活物質層から基材を分離する工程を有する電気化学素子用電極の製造方法。
(2)基材表面に剥離処理が施されてなる(1)に記載の製造方法。
(3)基材が、熱可塑性樹脂フィルムからなり、その片面または両面に熱硬化樹脂にて剥離処理を施してなる基材である(1)に記載の製造方法。
(4)基材の剥離処理面における水との接触角が80〜110°であり、
前記電極組成物と水とを含む水系スラリーを、剥離処理された基材表面に塗工して電極活物質層を形成する工程を含む(1)に記載の製造方法。
(5)電極活物質、導電材及び結着材を含む電極組成物のスラリーを塗工後、乾燥して電極活物質層を形成した後、電極活物質層と集電体とを導電性接着剤層を介して貼り合わせる(1)〜(4)のいずれかに記載の製造方法。
(6)導電性接着剤層が、樹脂と導電性粒子とを含む(1)に記載の製造方法。
(7)樹脂が、アクリレート系重合体又はジエン系重合体である(6)に記載の製造方法。
(8)導電性粒子が、炭素粒子である(6)または(7)に記載の製造方法。
(9)炭素粒子の体積平均粒子径分布が、マルチモーダルである(8)に記載の製造方法。
(10)炭素粒子の体積平均粒子径分布が、バイモーダルである(8)に記載の製造方法。
(11)前記炭素粒子が、体積平均粒子径が0.01μm以上1μm未満である炭素粒子(A)と体積平均粒子径が1μm以上10μm以下である炭素粒子(B)とを含む(10)に記載の製造方法。
(12)前記炭素粒子(A)と炭素粒子(B)との割合が、(A)/(B)重量比で0.05〜1の範囲である(11)に記載の製造方法。
(13)集電体が、孔開き集電体である(1)〜(12)のいずれかに記載の製造方法。
本発明によれば、集電体、特にパンチングメタルやエキスパンドメタルなどの孔開き集電体上に均一な厚みの電極活物質層を密着性良く容易に形成することができる。さらに、一般的な設備を用いることができ、生産性良く電気化学素子用電極を作製できる。また、電極活物質層を基材上に形成するため、集電体の両面に同時に電極活物質層を貼り合わせることもでき、電極作製の生産性を上げることができる。
以下、本発明に係る電気化学素子用電極の製造方法について、図面を参照しながら、さらに具体的に説明する。図1および図2に本発明の製法についての概略フローを示す。
本発明に係る電気化学素子用電極の製造方法は、基材1表面に、電極活物質、導電材及び結着材を含む電極組成物から電極活物質層を形成する工程(図1参照)、
該形成した電極活物質層と集電体2とを導電性接着剤層を介して貼り合わせる工程、及び、
電極活物質層から基材1を分離する工程を有することを特徴としている(図2参照)。
以下、本発明で使用する基材、電極活物質、導電材、結着材、集電体、導電性接着剤層等について説明する。
<基材>
本発明に使用される基材は、電極組成物層を基材上に塗工することができれば無機材料、有機材料制限はなく使用することが出来る。例えば、アルミニウム箔、銅箔、アイオノマーフィルム(IOフィルム)、ポリエチレンフィルム(PEフィルム)、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリエチレンナフレタートフィルム(PENフィルム)、ポリ塩化ビニルフィルム(PVCフィルム)、ポリ塩化ビニリデンフィルム(PVDCフィルム)、ポリビニルアルコールフィルム(PVAフィルム)、ポリプロピレンフィルム(PPフィルム)、ポリエステルフィルム、ポリカーボネートフィルム(PCフィルム)、ポリスチレンフィルム(PSフィルム)、ポリアクリロニトリルフィルム(PANフィルム)、エチレン−酢酸ビニル共重合体フィルム(EVAフィルム)、エチレン−ビニルアルコール共重合体フィルム(EVOHフィルム)、エチレン−メタクリル酸共重合体フィルム(EMAAフィルム)、ナイロンフィルム(NYフィルム、ポリアミド(PA)フィルム)、セロファン、イミドフィルム、紙などが上げられる。また、上記フィルムを重ねた多層構造のフィルムを用いても良い。これらの中でも、汎用性や取扱性の観点から熱可塑性樹脂フィルムが好ましく、特にPETフィルム、PEフィルム、PPフィルム、PVCフィルム等が好ましい。
基材の厚さは特に限定されないが5μm〜200μmが好適であり、30μm〜150μmがさらに好適である。また、幅も特に限定されないが約100mm〜1000mm、さらには約200mm〜500mmが好適である。
電極活物質層が形成される基材表面には剥離処理を施しておくことが好ましい。剥離処理は、基材の片面のみに施してもよく、両面に施しておいてもよい。剥離処理の方法は特に限定されないが、例えばアルキド樹脂などの熱硬化性樹脂を基材上に塗工し、これを硬化する方法、シリコーン樹脂を基材上に塗工し、これを硬化する方法、フッ素樹脂を基材上に塗工する方法を用いることが好ましい。特に、均質な剥離処理層を容易に形成できる熱硬化性樹脂を用いた剥離処理が好ましく、また後述する水系スラリーの塗工性、および得られる電極活物質層の剥離性のバランスの観点からアルキド樹脂の塗工、硬化による剥離処理が好ましい。
電極組成物層を、水系スラリーを塗工して形成する場合、基材の剥離処理面における水との接触角は、好ましくは80〜110°、さらに好ましくは90〜100°の範囲にある。剥離処理面における水との接触角が小さすぎる場合には、スラリーの塗工性は良好ではあるが、スラリー乾燥後に形成される電極活物質層を基材から剥離することが困難になる場合がある。一方、接触角が大きすぎる場合には、電極活物質層を基材から剥離することは容易になるが、スラリーが基材表面ではじかれ、均一な塗工が困難になる。このように、塗工性と剥離性とは一般に両立し難い特性ではあるが、基材の剥離処理面における水との接触角を上記範囲とすることで、水系スラリーの塗工性と電極活物質層の剥離性がバランスされ、均一な厚みの電極組成物層を形成でき、また電極活物質層の剥離も容易になる。
基材は繰り返し使用することも可能であり、繰り返し使用することで、さらに電極の生産コストを安くできる。
<電極組成物>
電極活物質層は、電極活物質、導電材及び結着材を含む電極組成物から形成される。
(電極活物質)
本発明に用いる電極活物質は、電気化学素子用電極内で電子の受け渡しをする物質である。電極活物質には主としてリチウムイオン二次電池用活物質、電気二重層キャパシタ用活物質やリチウムイオンキャパシタ用活物質がある。
リチウムイオン二次電池用活物質には、正極用、負極用がある。リチウムイオン二次電池用電極の正極に用いる電極活物質としては、具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化物が例示される。さらに、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子が挙げられる。好ましくは、リチウム含有複合金属酸化物である。
リチウムイオン二次電池用電極の負極に用いる電極活物質としては、具体的には、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性炭素質材料である。
リチウムイオン二次電池用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
リチウムイオン二次電池用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。
リチウムイオン二次電池用電極に用いる電極活物質のタップ密度は、特に制限されないが、正極では2g/cm以上、負極では0.6g/cm以上のものが好適に用いられる。
電気二重層キャパシタ用電極に用いる電極活物質としては、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。
電気二重層キャパシタ用電極に用いる電極活物質の体積平均粒子径は、通常0.1〜100μm、好ましくは1〜50μm、更に好ましくは5〜20μmである。
電気二重層キャパシタ用電極に用いる電極活物質の比表面積は、30m/g以上、好ましくは500〜5,000m/g、より好ましくは1,000〜3,000m/gであることが好ましい。電極活物質の比表面積が大きいほど得られる電極活物質層の密度は小さくなる傾向があるので、電極活物質を適宜選択することで、所望の密度を有する電極活物質層を得ることができる。
リチウムイオンキャパシタ用電極に用いる電極活物質には、正極用と負極用がある。リチウムイオンキャパシタ用電極の正極に用いる電極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであれば良い。具体的には、通常、炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体を組み合わせて使用する場合は、平均粒径又は粒径分布の異なる二種類以上の炭素の同素体を組み合わせて使用してもよい。また、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。好ましくは、電気二重層キャパシタ用電極に用いる電極活物質である。
リチウムイオンキャパシタ用電極の負極に用いる電極活物質は、リチウムイオンを可逆的に担持できる物質である。具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。好ましくは、黒鉛、難黒鉛化炭素等の結晶性炭素材料、上記正極活物質としても記載したポリアセン系物質(PAS)等を挙げることができる。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
リチウムイオンキャパシタ用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
リチウムイオンキャパシタ用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。これらの電極活物質は、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
(導電材)
本発明に用いる導電材は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
本発明に用いる導電材の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmである。導電材の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。導電材の量は、電極活物質100重量部に対して通常0.1〜50重量部、好ましくは0.5〜15重量部、より好ましくは1〜10重量部の範囲である。導電材の量がこの範囲にあると、得られる電極を使用した電池の容量を高く且つ内部抵抗を低くすることができる。
(結着材)
本発明に用いる結着材は、電極活物質および導電材を相互に結着させることができる化合物であれば特に制限はない。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材として、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリレート系重合体が好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
アクリレート系重合体は、一般式(1):CH=CR−COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体単位を含む重合体である。一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート系重合体中の前記一般式(1)で表される化合物由来の単量体単位の割合は、通常50重量%以上、好ましくは70重量%以上である。前記一般式(1)で表される化合物由来の単量体単位の割合が前記範囲であるアクリレート系重合体を用いると、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗を小さくできる。
前記アクリレート系重合体は、一般式(1)で表される化合物の他に、共重合可能なカルボン酸基含有単量体を用いることができ、具体例としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体;マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体が挙げられる。なかでも、二塩基酸含有単量体が好ましく、集電体との結着性を高め、電極強度を向上できる点で、イタコン酸が特に好ましい。これらの一塩基酸含有単量体、二塩基酸含有単量体は、それぞれ単独でまたは2種以上を組み合わせて使用できる。共重合の際のカルボン酸基含有単量体の量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。カルボン酸基含有単量体の量がこの範囲であると、集電体との結着性に優れ、得られる電極の強度が向上する。
前記アクリレート系重合体は、一般式(1)で表される化合物の他に、共重合可能なニトリル基含有単量体を用いることができる。ニトリル基含有単量体の具体例としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、中でもアクリロニトリルが、導電性接着剤層との結着性が高まり、電極強度が向上できる点で好ましい。アクリロニトリルの量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜40重量部、好ましくは0.5〜30重量部、より好ましくは1〜20重量部の範囲である。アクリロニトリルの量がこの範囲であると、導電性接着剤層との結着性に優れ、得られる電極の強度が向上する。
結着材の形状は、特に制限はないが、導電性接着剤層との結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
結着材のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは−40〜0℃である。結着材のガラス転移温度(Tg)がこの範囲にあると、少量の使用量で結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
結着材の数平均粒子径は、格別な限定はないが、通常は0.0001〜100μm、好ましくは0.001〜10μm、より好ましくは0.01〜1μmである。結着材の数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を電極活物質層に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ結着材粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの結着材は単独でまたは二種類以上を組み合わせて用いることができる。結着材の量は、電極活物質100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。結着材の量がこの範囲にあると、得られる電極活物質層と導電性接着剤層との密着性が充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。
(界面活性剤)
さらに、電極組成物には、界面活性剤が含まれていても良い。界面活性剤は、電極活物質、導電材および結着材を良分散し、またスラリーの表面張力を低下させ、塗工性を向上させる。界面活性剤としては、具体的には、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩、ナフタレンスルホン酸ホルマリン縮合物などの陰イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、グリセリン脂肪酸エステルなどの非イオン性界面活性剤、アルキルアミン塩、第四級アンモニウム塩などの陽イオン性界面活性剤、アルキルアミンオキサイド、アルキルベタインなどの両性界面活性剤が挙げられ、陰イオン界面活性剤、非イオン性界面活性剤が好ましく、電気化学素子の耐久性に優れる点で陰イオン性界面活性剤が特に好ましい。
界面活性剤を使用する場合、その配合量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。界面活性剤の配合量がこの範囲であると、電気化学素子の耐久性に優れる。
(有機溶剤)
また、電極組成物には有機溶剤が含まれていても良い。有機溶剤を使用することで、スラリーの塗工性が向上する。また、沸点(常圧)が50〜150℃の有機溶剤を使用すると、水系スラリーを塗布して形成した電極組成物層を乾燥する際に、水の揮発とともに同時に有機溶媒が揮発するため、乾燥工程を簡素化できる。また、乾燥後の電極活物質層に有機溶剤が残存することもなく、電極の耐久性が向上する。有機溶剤としては、具体的には、メタノール、エタノール、イソプロパノールなどのアルコール類、酢酸メチル、酢酸エチルなどのアルキルエステル類、アセトン、メチルエチルケトンなどのケトン類などが挙げられ、好ましくはアルコール類、アルキルエステル類が挙げられ、電気化学素子の耐久性に優れる点でアルコール類が特に好ましい。
有機溶剤を使用する場合、その配合量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。有機溶剤の配合量がこの範囲であると、得られる電気化学素子の耐久性に優れる。
また、上記の界面活性剤と有機溶剤とを併用することが特に好ましい。界面活性剤と有機溶剤とを併用することにより、電極組成物スラリーの表面張力をより低下させ、生産性が向上する。この場合、界面活性剤と有機溶剤との合計量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。
(分散剤)
電極組成物は、上記電極活物質、導電材、結着材に加えて、これら各成分を均一に分散するため、分散剤を含んでいても良い。
分散剤の具体例としては、カルボキシメチルセルロースなどのセルロース誘導体;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの中でもセルロース誘導体が特に好ましい。
セルロース誘導体は、セルロースの水酸基の少なくとも一部をエーテル化またはエステル化した化合物であり、水溶性のものが好ましい。セルロース誘導体は、通常、ガラス転移点を有さない。具体的には、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシエチルセルロースおよびヒドロキシプロピルセルロースなどが挙げられる。また、これらのアンモニウム塩およびアルカリ金属塩が挙げられる。中でも、カルボキシメチルセルロースの塩が好ましく、カルボキシメチルセルロースのアンモニウム塩が特に好ましい。セルロース誘導体のエーテル化度は、好ましくは0.5〜2、より好ましくは0.5〜1.5である。なお、ここでエーテル化度とは、セルロースのグルコース単位あたりに3個含まれる水酸基が、平均で何個エーテル化されているかを表す値である。エーテル化度がこの範囲であると、電極組成物を含むスラリーの安定性が高く、固形分の沈降や凝集が生じにくい。さらに、セルロース誘導体を用いることにより、塗料の塗工性や流動性が向上する。
<集電体>
集電体2を構成する材料の種類は、例えば、金属、炭素、導電性高分子等を用いることができ、好適には金属が用いられる。例えば電池やキャパシタなどの用途で提案されている種々の材質を用いることができ、正極用集電体にはアルミニウム、ステンレス等、負極用集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いることができる。また、集電体は貫通孔を有しない構造であってもよいが、本発明の方法は、特に貫通孔を有する集電体(孔開き集電体)上への電極活物質層の形成に適している。したがって、集電体は、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、エッチングにより貫通孔を付与したエッヂング箔、あるいはエンボスロールを用いて突起付与および貫通孔を付与された突起付き集電体等が好ましく用いられる。
孔開き集電体の開孔部の形状は特に限定はされず、開口率は好ましくは10%〜90%であり、さらに好ましくは20%〜60%、特に好ましくは40%〜60%の範囲にある。開口率は、孔開き集電体の平面観察により求められる。具体的には、孔開き集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を決定する。
集電体の開口率を上記範囲とすることで、電気化学素子を作製した際のロット間の容量バラツキを抑えることができる。通常の開孔部を有さない集電体を用いた電気化学素子では、積層型の電気化学素子を作製した際に電極同士が向かい合わない非対向面ができると、その非対抗面からは静電容量は取り出せない。さらに電極の単位面積当たりの活物質量にバラツキが生じると、活物質量の重量から計算された静電容量に比べ、実際に取り出せる静電容量は少なくなることがあり、そのことが電気化学素子の劣化の要因にも繋がる。そのため、電気化学素子のロット間での容量バラツキが生じ、さらに電気化学素子の寿命を縮めることがある。これは電解質イオンの拡散は正負極の対抗面のみでしか起らないためである。しかし、孔開き集電体を用いることで、電解質イオンが集電体を通過し、拡散するため、電極が向かい合わない非対向面からも静電容量を取り出すことができる。さらに、電極の単位面積あたりの活物質量が異なっている電極を用いても、電極活物質の総重量さえ合わせれば、容易にキャパシタセル内で容量バランスを取ることができるため、電気化学素子のロット間での容量バラツキを抑えられる。さらに、セル内での電荷の偏りが生じないため、電気化学素子の寿命を延ばすことができる。
また、負極活物質にリチウムを担持させるのに、集電体の開口率が高すぎる場合には、担持させるのに要する時間が短く、リチウムの担持むらも生じにくいが、集電体の強度は低下し、皺や切れが発生しやすい。また、貫通孔に活物質等を保持させることが困難となり、活物質等の脱落、電極の切れ等により、電極製造時に歩留まりが低下する等の問題が生じる。
一方、開口率が低すぎる場合には、負極活物質にリチウムを担持させるのに要する時間が長くなり生産効率の低下およびセル特性のバラツキ増大などの問題が発生するが、集電体の強度は高くなり、活物質の脱落も起こりにくいため電極の歩留まりは高くなる。集電体の開口率や孔径は、電池の構造(積層タイプや捲回タイプなど)や生産性を考慮し、上述の範囲で適宜選定することが望ましい。
集電体は帯状であり、厚さは特に限定されないが厚さ5〜50μmが好適であり、さらには厚さ10〜40μmが好適である。また、幅も特に限定されないが約100〜1000mm、さらには約200〜500mmが好適である。
<導電性接着剤層>
本発明においては、前記電極活物質層と集電体とを導電性接着剤層を介して貼り合わせる。導電性接着剤層は、導電性物質、好ましくは炭素粒子を含み、必要に応じ成形のための樹脂成分を含む。導電性接着剤層に、樹脂を含むことにより、集電体と電極組成物層との接着性を高め、電気化学素子の内部抵抗を低減し、出力密度を高めることができる。
導電性接着剤層に好適に用いる樹脂は、上記の電極組成物層で例示した結着剤と同様であり、好ましくは溶媒に分散する性質のある分散型バインダーである。分散型バインダーとして、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリレート系重合体が好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
本発明において、導電性接着剤層中の樹脂の含有量は、炭素粒子100重量部に対して、好ましくは0.5〜20重量部、より好ましくは1〜15重量部、特に好ましくは2〜10重量部である。
導電性接着剤層は、炭素粒子と、好適に用いられる樹脂とを含み、またこれらを均一に分散するための分散剤を含んでいても良い。分散剤の具体例は、前記電極組成物において例示したものと同様であり、中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。
これらの分散剤の使用量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、炭素粒子100重量部に対して、通常は0.1〜15重量部、好ましくは0.5〜10重量部、より好ましくは0.8〜5重量部の範囲である。
本発明において、導電性接着剤層は、上記成分を含む導電性接着剤スラリー組成物を、集電体に塗布、乾燥することにより形成してもよいし、導電性接着剤スラリー組成物を電極活物質層に塗布、乾燥することにより形成してもよい。導電性接着剤スラリー組成物の塗工方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって、集電体または電極活物質層上に塗工される。しかしながら、集電体上に導電性接着剤層を形成することが、工程の煩雑さも少なく好ましい。また、導電性接着剤層は、導電性接着剤からなる造粒粒子を集電体上また電極活物質層上に供給し、乾式にてシート状に成形してもよい。さらに、導電性接着剤層を剥離フィルム上に、塗布法または乾式法にて形成し、これを集電体上また電極活物質層上に転写してもよい。
導電性接着剤層の厚みは、通常は0.01〜20μm、好ましくは0.1〜10μm、特に好ましくは1〜5μmである。導電性接着剤層の厚みが前記範囲であることにより、良好な接着性が得られ、かつ電子移動抵抗を低減することができる。
(炭素粒子)
導電性接着剤層の導電性物質として好ましく用いられる炭素粒子としては、非局在化したπ電子の存在によって高い導電性を有する黒鉛(具体的には天然黒鉛、人造黒鉛など);黒鉛質の炭素微結晶が数層集まって乱層構造を形成した球状集合体であるカーボンブラック(具体的にはアセチレンブラック、ケッチェンブラック、その他のファーネスブラック、チャンネルブラック、サーマルランプブラックなど);炭素繊維やカーボンウィスカーなどが挙げられ、これらの中でも、導電性接着剤層の炭素粒子が高密度に充填し、電子移動抵抗を低減でき、さらにリチウムイオンキャパシタの内部抵抗を低減できる点で、黒鉛又はカーボンブラックが、特に好ましい。
炭素粒子は、上記で挙げたものを単独で用いても良いが、二種類を組み合わせて用いることが特に好ましい。具体的には、黒鉛とカーボンブラック、黒鉛と炭素繊維、黒鉛とカーボンウィスカー、カーボンブラックと炭素繊維、カーボンブラックとカーボンウィスカーなどが挙げられ、好ましくは黒鉛とカーボンブラック、黒鉛と炭素繊維、カーボンブラックと炭素繊維、特に好ましくは黒鉛とカーボンブラック、黒鉛と炭素繊維の組み合わせ等があげられる。炭素粒子をこの組み合わせで用いると、導電性接着剤層の炭素粒子が高密度に充填するため、電子移動抵抗が低減され、電気化学素子の内部抵抗が低減する。
炭素粒子の電気抵抗率は、好ましくは0.0001〜1Ω・cmであり、より好ましくは0.0005〜0.5Ω・cm、特に好ましくは0.001〜0.1Ω・cmである。炭素粒子の電気抵抗率がこの範囲にあると、導電性接着剤層の電子移動抵抗を低減し、内部抵抗を低減することができる。ここで、電気抵抗率は、粉体抵抗測定システム(MCP−PD51型;ダイアインスツルメンツ社製)を用いて、炭素粒子に圧力をかけ続けながら抵抗値を測定し、圧力に対して収束した抵抗値R(Ω)と、圧縮された炭素粒子層の面積S(cm)と厚みd(cm)から電気抵抗率ρ(Ω・cm)=R×(S/d)を算出する。
炭素粒子の体積平均粒子径は、好ましくは0.01〜20μm、より好ましくは0.05〜15μm、特に好ましくは0.1〜10μmである。炭素粒子の体積平均粒子径がこの範囲であると、導電性接着剤層の炭素粒子が高密度に充填するため、電子移動抵抗が低減され、電気化学素子の内部抵抗が低減する。ここで体積平均粒子径は、レーザー回折式粒度分布測定装置(SALD−3100;島津製作所製)にて測定し、算出される体積平均粒子径である。
本発明の電気化学素子用電極の製造方法において、導電性接着剤層に用いる炭素粒子の体積平均粒子径分布はマルチモーダルであることが好ましい。ここで、マルチモーダルとは、粒径に対して、当該粒径を有する粒子の存在頻度をプロットした際に、複数のピークが出現する状態である。炭素粒子の体積平均粒子径分布は、好ましくは2つのピークを有するバイモーダルである。具体的には、炭素粒子が、体積平均粒子径が0.01μm以上1μm未満である炭素粒子(A)と体積平均粒子径が1μm以上10μm以下である炭素粒子(B)とを含むものであることが好ましい。炭素粒子の体積平均粒子径分布がバイモーダルであると、導電性接着剤層の炭素粒子が高密度に充填するため、電子移動抵抗が低減され、内部抵抗が低減する。ここで体積平均粒子径分布は、レーザー回折式粒度分布測定装置(SALD−3100;島津製作所製)にて測定し、算出される体積平均粒子径分布である。
本発明に好適に用いる二種類の炭素粒子(A)と炭素粒子(B)との割合は、(A)/(B)重量比で0.05〜1であり、0.1〜0.8が好ましく、0.2〜0.5が特に好ましい。二種類の炭素粒子の重量比がこの範囲であると、導電性接着剤層の炭素粒子が高密度に充填するため、電子移動抵抗が低減され、電気化学素子の内部抵抗が低減する。
<電極活物質層の形成方法>
本発明の製造方法では、前記各成分からなる電極組成物層を基材1上へ形成し、必要に応じ乾燥等を行い、電極活物質層を得る。電極活物質層の好ましい形成法としては、たとえば、電極組成物からなる造粒粒子を基材上に供給し、乾式にてシート状に成形する方法(シート成形法)、電極組成物を溶媒に分散させたスラリーを基材上に塗工し、溶媒を揮発させる方法(塗布法)などが挙げられるが、基材上に均一形成できる点で塗布法が好ましい。
電極組成物スラリーは、電極活物質、導電材、結着材および、必要に応じ添加される分散剤、界面活性剤、有機溶剤を、水またはN−メチル−2−ピロリドンやテトラヒドロフランなどの有機溶媒中で混練することにより製造することができる。電極組成物スラリーは、電極活物質層の乾燥の容易さと環境への負荷に優れる点から水を分散媒とした水系スラリーが好ましい。
水系スラリーの製造方法としては、水および前記の各成分を、混合機を用いて混合して製造できる。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。また、電極活物質と導電材とを擂潰機、プラネタリーミキサー、ヘンシェルミキサー、およびオムニミキサーなどの混合機を用いて先ず混合し、次いでバインダーを添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一なスラリーを得ることができる。
本発明に使用されるスラリーの粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常100〜100,000mPa・s、好ましくは、1,000〜50,000mPa・s、より好ましくは5,000〜20,000mPa・sである。
スラリーの基材への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。スラリーの塗布厚は、目的とする電極活物質層の厚みに応じて適宜に設定される。
次いで、上記スラリーの塗布により形成された電極組成物からなる電極活物質層を集電体2に導電性接着剤層を介して貼り付ける。集電体への貼付は、スラリーの塗工後直ちに行っても良いが、電極組成物層を乾燥させた後に集電体への貼付を行うことが特に好ましい。電極組成物層を乾燥することで、層厚が一定となり、また強度が向上するため、集電体への貼付が容易になる。また、乾燥後に集電体に貼付するため、集電体上の必要な箇所にのみ電極活物質層を形成することができる。さらに集電体への貼付後、基材を剥離する際に、電極活物質層の一部が基材に残着することも防止できる。
乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。本発明における乾燥温度と乾燥時間は、集電体に塗布したスラリー中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度としては100〜300℃、好ましくは120〜250℃である。乾燥時間としては、通常1分〜60分間、好ましくは5分〜30分間である。
塗布法による電極活物質層の形成工程についてのさらに具体的な例を図1に示す。図1では、アンワインダー10に基材1の巻収体を取り付け、アンワインダー10から基材1を送り出し、基材1表面に塗工機3から電極組成物のスラリーを吐出し、基材1表面に電極組成物層を形成する。なお、図では形成された電極組成物層については図示していない。次いで、表面に電極組成物層が形成された基材を乾燥機4に導入し、電極組成物層を乾燥し、電極活物質層を形成する。その後、電極活物質層を有する基材1をワインダー11により巻き取り、電極活物質層付基材1の巻収体を得る。
<電極活物質層の集電体への貼付>
電極活物質層の集電体への貼り付けは導電性接着剤層を介して行われる。電極活物質層の集電体への貼り付けは、上記乾燥の前に行ってもよいし、乾燥の後でもよいが、好ましくは前述したように、スラリー乾燥後の電極活物質層を、導電性接着剤層を介して集電体に貼り付ける。この際、プレスを行うことにより、電極活物質層に含まれる結着材が塑性変形しやすく、集電体と電極組成物の密着性が向上する。さらに、プレスにより、表面が平滑で均一な電極を得ることができる。また、乾燥後にプレスを行うと、電極密度を容易に高めることができる。また、プレスと同時に熱を加える熱プレスにより電極活物質層と集電体とを導電性接着剤層を介して一体化してもよい。
熱プレス法としては、具体的には、バッチ式熱プレス、連続式熱ロールプレスなどが挙げられ、生産性が高められる連続式熱ロールプレスが好ましい。熱プレスの温度は、基材を損なわない程度であれば、特に制限されないが、通常50〜200℃、好ましくは70〜150℃である。熱プレスの温度がこの範囲であると、集電体に電極活物質層を均一に貼り合わせることができ、電極強度に優れる。
熱プレスの線圧は、基材を損なわない程度であれば、特に制限されないが、通常50〜2,000KN/m、好ましくは100〜1,000KN/m、特に好ましくは200〜500KN/mである。熱プレスの線圧がこの範囲であると、集電体に電極活物質層を均一に張り合わせることができ、電極強度に優れる。
(電極活物質層から基材の分離)
電極活物質層から基材を分離する方法は、特に制限されないが、たとえば電極活物質層を貼付後、電極活物質層が貼り付けられた集電体と、基材とを別々のロールに捲回することで、容易に分離することができる。かくして電極活物質層を有する集電体が得られる。
上記のような電極活物質層の集電体への貼付および基材の分離の一連の工程について、さらに具体的な態様を図2に示す。なお、図では電極活物質層および導電性接着剤層は図示していない。電極活物質層は基材1表面に形成され、導電性接着剤層は電極活物質層表面または集電体表面に形成されている。図2では、前述した電極活物質層付基材1の巻収体をアンワインダー12に取り付け、電極活物質層付基材1を送り出す。別に、導電性接着剤層付の集電体2の巻収体をアンワインダー14に取り付け、集電体を送り出す。次いで、電極活物質層付基材1と集電体2とを加熱機構を備えたラミネーター16に導入し、熱プレスを行い、導電性接着剤層を介して集電体2に電極活物質層付基材1を貼り付ける。次いで、基材1を電極活物質層から剥離し、ワインダー13で巻き取り、また電極活物質層が転写された集電体2をワインダー15により巻き取り、電極活物質層付集電体の巻収体が得られる。なお、集電体上への導電性接着剤層の形成および電極活物質層付基材1の貼り付けをインラインで行うこともできる。この場合、導電性接着剤層が形成された集電体2をそのまま、巻き取ることなく次工程に移送し、電極活物質層付基材1の貼り付けを行っても良い。
また、電極活物質層を形成した集電体のもう一方の面に、電極活物質層を形成した基材を熱プレスで貼り合わせて、集電体の両面に電極活物質層を形成した電気化学素子用電極を製造することもできる。さらに、図2に示したように、集電体の両面に上記方法により同時に電極活物質層を形成してもよい。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。実施例および比較例における各特性は、下記の方法に従い測定する。
(集電体上に形成された電極活物質層のピール強度)
電極組成物の塗布方向が長辺となるように電極を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極組成物層面を下にして電極組成物層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定する。測定を3回行い、その平均値を求めてこれをピール強度とする。ピール強度が大きいほど電極組成物層の集電体への接着強度が大きいことを示す。
(基材表面の水との接触角)
基材表面に純水2μlを滴下し、静的接触角を測定し、θ/2法により基材表面の水との接触角を算出する。
(開口率の測定)
集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を算出する。
(電極活物質層の厚さの測定)
電極活物質層の厚さは集電体の両面に電極活物質層を形成した後に、渦電流式変位センサ(センサヘッド部EX−110V、アンプユニット部EX−V02:キーエンス社製)を用いて測定する。2cm間隔で各電極活物質層の厚さを測定し、それらの平均値を電極活物質層の厚さとする。
(ハイブリッドキャパシタの電気特性)
110mAの定電流で充電を開始し、3.8Vの充電電圧に達したらその電圧を保って定電圧充電とし、20分間定電圧充電を行った時点で充電を完了する。次いで、充電終了直後に定電流110mAで2.1Vに達するまで放電を行う。この充放電操作を3サイクル行い、3サイクル目の放電曲線より、体積あたりの容量と体積抵抗率を求める。
<実施例1>
(導電性接着剤スラリーの製造方法)
炭素粒子として体積平均粒子径が3.7μm、電気抵抗率0.004Ω・cmの黒鉛(KS−6;ティムカル社製)を90部、体積平均粒子径が0.3μm、電気抵抗率0.06Ω・cmのカーボンブラック(Super−P;ティムカル社製)を10部、分散剤としてカルボキシメチルセルロースの4.0%水溶液(DN−10L;ダイセル化学工業社製)を固形分相当で4部、バインダーとしてジエン系重合体の40%水分散体を固形分相当で8部及びイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤層形成用のスラリー組成物を調製する。
なお、ジエン系重合体としては、スチレン46.5部、ブタジエン50部、メタクリル酸3部およびアクリル酸0.5部を乳化重合して得られる、Tgが−20℃、数平均粒子径が0.25μmの共重合体を用いる。
なお、図3に、導電性接着剤スラリーに使用した炭素粒子の体積平均粒子径分布を示す。
(導電性接着剤付集電体の製造方法)
上記で得た導電性接着剤スラリーを、厚さ30μm(開口率50%)のアルミニウム製パンチングメタル(福田金属箔粉工業社製)の両面にダイコーターを用いて4m/minの速度で塗工し、次いで乾燥炉で乾燥し、厚さ4μmの導電性接着剤層を有する正極用アルミ製集電体を得て、これを巻き取る。
また、アルミニウム製パンチングメタルに代えて、厚さ20μm(開口率50%)の銅製パンチングメタル(福田金属箔粉工業社製)を用い、上記と同様にして、厚さ4μmの導電性接着剤層を有する負極用銅製集電体を得て、これを巻き取る。
(正極用スラリーの製造方法)
エーテル化度が0.6で1%水溶液の粘度が30mPa・sであるカルボキシメチルセルロースアンモニウム塩3.3部をイオン交換水213.2部に溶解し、導電性付与剤として体積平均粒径0.035μmのアセチレンブラック(デンカブラック粉状:電気化学工業社製)50部を添加し、プラネタリーミキサーを用いて混合分散して固形分濃度20%の導電剤分散液を得る。
得られる導電剤分散液26部、電極活物質として平均粒径5μmで比表面積が2,000m/gの活性炭粉末100部、アクリレート系重合体の固形分濃度40%の水分散液7.5部およびエーテル化度が0.6で1%水溶液の粘度が900mPa・sであるカルボキシメチルセルロースアンモニウム塩1部に適当量の水を加え、プラネタリーミキサーを用いて混合分散し、粘度が5,000〜20,000mPa・sの間に入る正極用スラリーを得る。なお、アクリレート系重合体としては、アクリル酸2−エチルヘキシル76部、アクリロニトリル20部およびイタコン酸4部を乳化重合して得られる、ガラス転移温度(Tg)が−20℃、数平均粒子径が0.15μmの共重合体を用いる。
(正極の製造方法)
基材にアルキド樹脂により剥離処理を施してある厚さ38μmポリエチレンフィルム(リンテック社製、基材表面の水との接触角:97°)を用いて、前記記載の正極用スラリーをダイコーターを用いて10m/minの速度で塗工し、次いで乾燥炉で乾燥し、厚さ16μmの電極活物質層を有する基材を得て、これを巻き取る。巻き取った電極活物質層付基材を、導電性接着剤層付正極用アルミ製集電体の両面に10m/minの速度でラミネーター(温度:100℃、線圧300kN/m)を用いて貼り合わせ、最後に、基材を電極活物質層から剥離し、片面44μmの電極活物質層を持つ両面電極を作製する。なお、集電体からの電極活物質層のピール強度は10N/mである。
(負極用スラリーの製造方法)
体積平均粒子径が2.7μmの黒鉛(KS‐4、ティムカル社製)100部、ジエン系重合体の固形分濃度40%の水分散液4部およびエーテル化度が0.6で1%水溶液の粘度が900mPa・sであるカルボキシメチルセルロースアンモニウム塩1部に適当量の水を加え、プラネタリーミキサーを用いて混合分散し、粘度が5,000〜20,000mPa・sの間に入る負極用スラリーを得る。なお、ジエン系重合体としては、スチレン46.5部、ブタジエン50部、メタクリル酸3部およびアクリル酸0.5部を乳化重合して得られる、Tgが−20℃、数平均粒子径が0.25μmの共重合体を用いる。
(負極の製造方法)
基材にアルキド樹脂により剥離処理を施してある厚さ38μmポリエチレンフィルム(リンテック社製、基材表面の水との接触角:97°)を用いて、前記記載の負極用スラリーをダイコーターを用いて12m/minの速度で塗工し、次いで乾燥炉で乾燥し、厚さ16μmの電極活物質層を有する基材を得て、これを巻き取る。巻き取った電極活物質層付基材を導電性接着剤層付負極用銅製集電体の両面に12m/minの速度でラミネーター(温度:100℃、線圧300kN/m)を用いて貼り合わせ、最後に、基材を電極活物質層から剥離し、片面25μmの電極活物質層を持つ両面電極を作製する。なお、集電体からの電極活物質層のピール強度は12N/mである。
(測定用セルの作製)
上記で作製した両面電極(正極、負極)を、電極活物質層が形成されていない未塗工部を縦2cm×横2cm残るように、かつ電極活物質層が形成されている部分が縦5cm×横5cmになるように切り抜く(未塗工部は電極活物質層が形成されている5cm×5cmの正方形の一辺をそのまま延長するように形成される。)。このように切り抜いた正極10組、負極11組を用意し、それぞれ未塗工部を超音波溶接する。さらに、正極はアルミ、負極はニッケルからなる、縦7cm×横1cm×厚み0.01cmのタブ材を、それぞれ積層溶接した未塗工部に超音波溶接して測定用電極を作製する。測定用電極は、200℃で24時間真空乾燥した。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、正極集電体、負極集電体の端子溶接部がそれぞれ反対側になるよう配置し、正極、負極が交互になるように、また積層した電極の最外部の電極が負極となるようにすべて積層する。最上部と最下部はセパレータを配置させて4辺をテープ留めする。
リチウム極として、リチウム金属箔(厚み51μm、縦5cm×横5cm)を厚さ80μmのステンレス網に圧着したものを用い、該リチウム極を最外部の負極と完全に対向するように積層した電極の上部および下部に各1枚配置する。尚、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接する。
上記リチウム箔を最上部と最下部に配置した積層体を深絞り下外装フィルムの内部へ設置し、外装ラミネートフィルムで覆い三辺を融着後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/リットルの濃度にLiPF6を溶解した溶液を真空含浸させた後、残り一辺を融着させ、フィルム型キャパシタを作製する。
(セルの特性評価)
16日間室温にて放置後、セルを分解したところ、リチウム金属は完全に無くなっていることから、リチウムは正極および負極の表裏間を移動して全ての負極に予備充電されたと判断する。電気特性の結果、セル容量は16mAh/ccである。
<比較例1>
実施例1において、導電性接着剤層を有しない孔開き集電体を使用する以外は同様の操作を行い、電極活物質層を有する集電体を得る。集電体からの電極活物質層のピール強度は、いずれも8N/mである。またセル容量は15.5mAh/ccである。
本発明に係る製法の1工程を示す概略チャート図である。 本発明に係る製法の1工程を示す概略チャート図である。 導電性接着剤スラリーに使用した炭素粒子の体積平均粒子径分布を示す。
1…基材
2…集電体
3…塗工機
4…乾燥機
10,12,14…アンワインダー
11,13,15…ワインダー
16…ラミネーター

Claims (9)

  1. 基材表面に、電極活物質、導電材及び結着材を含む電極組成物から電極活物質層を形成する工程、
    該形成した電極活物質層と集電体とを、樹脂と導電性粒子とを含む導電性接着剤層を介して貼り合わせる工程、及び、
    電極活物質層から基材を分離する工程を有する電気化学素子用電極の製造方法。
  2. 樹脂が、アクリレート系重合体又はジエン系重合体である請求項1に記載の製造方法。
  3. 導電性粒子が、炭素粒子である請求項1または2に記載の製造方法。
  4. 炭素粒子の体積平均粒子径分布が、マルチモーダルである請求項3に記載の製造方法。
  5. 炭素粒子の体積平均粒子径分布が、バイモーダルである請求項4に記載の製造方法。
  6. 前記炭素粒子が、体積平均粒子径が0.01μm以上1μm未満である炭素粒子(A)と体積平均粒子径が1μm以上10μm以下である炭素粒子(B)とを含む請求項4又は5に記載の製造方法。
  7. 前記炭素粒子(A)と炭素粒子(B)との割合が、(A)/(B)重量比で0.05〜1の範囲である請求項6に記載の製造方法。
  8. 集電体が、孔開き集電体である請求項1〜7のいずれかに記載の製造方法。
  9. 前記電極組成物から電極活物質層を形成する工程、
    該形成した電極活物質層と集電体とを導電性接着剤層を介してして貼り合わせる工程、及び、
    電極活物質層から基材を分離する工程を、この順に有する請求項1〜8のいずれかに記載の製造方法。
JP2013080735A 2013-04-08 2013-04-08 電気化学素子用電極の製造方法 Pending JP2013145761A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080735A JP2013145761A (ja) 2013-04-08 2013-04-08 電気化学素子用電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080735A JP2013145761A (ja) 2013-04-08 2013-04-08 電気化学素子用電極の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008254589A Division JP2010086788A (ja) 2008-09-30 2008-09-30 電気化学素子用電極の製造方法

Publications (1)

Publication Number Publication Date
JP2013145761A true JP2013145761A (ja) 2013-07-25

Family

ID=49041422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080735A Pending JP2013145761A (ja) 2013-04-08 2013-04-08 電気化学素子用電極の製造方法

Country Status (1)

Country Link
JP (1) JP2013145761A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025763A1 (ja) * 2013-08-19 2015-02-26 Nippon Chemi-Con Corporation 電気化学キャパシタ
WO2017163726A1 (ja) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 リード部材付き電気化学デバイス用正極およびその製造方法ならびに電気化学デバイス
CN108199004A (zh) * 2017-12-25 2018-06-22 深圳市山木新能源科技股份有限公司 电极片的制造方法及电极片
JP2020061279A (ja) * 2018-10-10 2020-04-16 新興化学工業株式会社 非水電解質蓄電デバイス用電極
JP2020129485A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 全固体電池
CN114335541A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技股份有限公司 一种正极浆料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352796A (ja) * 2001-05-22 2002-12-06 Fuji Heavy Ind Ltd リチウム二次電池用正極およびリチウム二次電池
JP2003178750A (ja) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd 非水二次電池
JP2005019762A (ja) * 2003-06-27 2005-01-20 Asahi Kasei Electronics Co Ltd 非水系リチウム型蓄電素子
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤
JP2005516412A (ja) * 2002-01-28 2005-06-02 エプコス アクチエンゲゼルシャフト 電極ならびに電極の製造法ならびに電極を備えたコンデンサ
JP2007087948A (ja) * 2005-09-19 2007-04-05 Gm Global Technology Operations Inc 燃料電池のセパレータプレートのための耐久力のある伝導性接着結合
JP2007095839A (ja) * 2005-09-27 2007-04-12 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極シートの製造方法
JP2007326905A (ja) * 2006-06-06 2007-12-20 Hitachi Powdered Metals Co Ltd 電気二重層キャパシタ用導電性接着剤
JP2008227481A (ja) * 2007-02-15 2008-09-25 Unitika Ltd 導電性スラリー、電極スラリー、それらを用いた電気二重層キャパシタ用電極

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352796A (ja) * 2001-05-22 2002-12-06 Fuji Heavy Ind Ltd リチウム二次電池用正極およびリチウム二次電池
JP2003178750A (ja) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd 非水二次電池
JP2005516412A (ja) * 2002-01-28 2005-06-02 エプコス アクチエンゲゼルシャフト 電極ならびに電極の製造法ならびに電極を備えたコンデンサ
JP2005019762A (ja) * 2003-06-27 2005-01-20 Asahi Kasei Electronics Co Ltd 非水系リチウム型蓄電素子
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤
JP2007087948A (ja) * 2005-09-19 2007-04-05 Gm Global Technology Operations Inc 燃料電池のセパレータプレートのための耐久力のある伝導性接着結合
JP2007095839A (ja) * 2005-09-27 2007-04-12 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極シートの製造方法
JP2007326905A (ja) * 2006-06-06 2007-12-20 Hitachi Powdered Metals Co Ltd 電気二重層キャパシタ用導電性接着剤
JP2008227481A (ja) * 2007-02-15 2008-09-25 Unitika Ltd 導電性スラリー、電極スラリー、それらを用いた電気二重層キャパシタ用電極

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025763A1 (ja) * 2013-08-19 2015-02-26 Nippon Chemi-Con Corporation 電気化学キャパシタ
WO2017163726A1 (ja) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 リード部材付き電気化学デバイス用正極およびその製造方法ならびに電気化学デバイス
CN108885947A (zh) * 2016-03-22 2018-11-23 松下知识产权经营株式会社 附带引线部件的电化学设备用正极及其制造方法以及电化学设备
JPWO2017163726A1 (ja) * 2016-03-22 2019-01-31 パナソニックIpマネジメント株式会社 リード部材付き電気化学デバイス用正極およびその製造方法ならびに電気化学デバイス
CN108885947B (zh) * 2016-03-22 2021-01-05 松下知识产权经营株式会社 附带引线部件的电化学设备用正极及其制造方法以及电化学设备
US11063324B2 (en) 2016-03-22 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode with lead member for electrochemical devices, method for producing same and electrochemical device
CN108199004A (zh) * 2017-12-25 2018-06-22 深圳市山木新能源科技股份有限公司 电极片的制造方法及电极片
JP2020061279A (ja) * 2018-10-10 2020-04-16 新興化学工業株式会社 非水電解質蓄電デバイス用電極
JP7213053B2 (ja) 2018-10-10 2023-01-26 新興化学工業株式会社 非水電解質蓄電デバイス用電極
JP2020129485A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 全固体電池
JP7243249B2 (ja) 2019-02-08 2023-03-22 トヨタ自動車株式会社 全固体電池
CN114335541A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技股份有限公司 一种正极浆料及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5413368B2 (ja) 電気化学素子用電極の製造方法
JP2010097830A (ja) 電気化学素子用電極の製造方法
JP5098954B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
CN106654177B (zh) 一种干法制备电池电容复合电极的方法
JP5549672B2 (ja) 電気化学素子用電極および電気化学素子
JP2010109354A (ja) 電気化学素子用電極の製造方法
JP5493656B2 (ja) 電気化学素子用電極の製造方法及び製造装置
JP4605467B2 (ja) 電気化学素子の製造方法
CN104466229A (zh) 一种柔性锂二次电池及其制备方法
CN103187572B (zh) 薄膜锂离子电池
JP5293383B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法
JP2013145761A (ja) 電気化学素子用電極の製造方法
KR101214727B1 (ko) 전극, 이의 제조방법, 및 이를 포함하는 전기 화학 캐패시터
JP6185984B2 (ja) 集電体、電極構造体、非水電解質電池又は蓄電部品
CN107978732A (zh) 极片及电池
JP5169720B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
JP2009212113A (ja) 電気化学素子電極用シートの製造方法
JP5293539B2 (ja) 支持体付電極活物質シート及び電気化学素子用電極の製造方法
JP2009212131A (ja) ハイブリッドキャパシタ用集電体およびその集電体を用いたハイブリッドキャパシタ用電極シート
JP2010086788A (ja) 電気化学素子用電極の製造方法
CN106876714A (zh) 一种用于汽车启停系统的锂离子电池
JP2013077558A (ja) 電気化学素子用電極
JP2006269827A (ja) 電気化学素子電極用組成物
JP2009253168A (ja) 電気化学素子電極の製造方法
JP5605533B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141105